1
|
Cerebral Ischemia/Reperfusion Injury and Pharmacologic Preconditioning as a Means to Reduce Stroke-induced Inflammation and Damage. Neurochem Res 2022; 47:3598-3614. [DOI: 10.1007/s11064-022-03789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
2
|
Kumar S, Verma R, Tyagi N, Gangenahalli G, Verma YK. Therapeutics effect of mesenchymal stromal cells in reactive oxygen species-induced damages. Hum Cell 2022; 35:37-50. [PMID: 34800267 PMCID: PMC8605474 DOI: 10.1007/s13577-021-00646-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/10/2021] [Indexed: 12/16/2022]
Abstract
Reactive Oxygen Species are chemically unstable molecules generated during aerobic respiration, especially in the electron transport chain. ROS are involved in various biological functions; any imbalance in their standard level results in severe damage, for instance, oxidative damage, inflammation in a cellular system, and cancer. Oxidative damage activates signaling pathways, which result in cell proliferation, oncogenesis, and metastasis. Since the last few decades, mesenchymal stromal cells have been explored as therapeutic agents against various pathologies, such as cardiovascular diseases, acute and chronic kidney disease, neurodegenerative diseases, macular degeneration, and biliary diseases. Recently, the research community has begun developing several anti-tumor drugs, but these therapeutic drugs are ineffective. In this present review, we would like to emphasize MSCs-based targeted therapy against pathologies induced by ROS as cells possess regenerative potential, immunomodulation, and migratory capacity. We have also focused on how MSCs can be used as next-generation drugs with no side effects.
Collapse
Affiliation(s)
- Subodh Kumar
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ranjan Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nishant Tyagi
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gurudutta Gangenahalli
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Yogesh Kumar Verma
- Stem Cell & Gene Therapy Research Group, Institute of Nuclear Medicine & Allied Sciences (INMAS), Defence Research and Development Organisation (DRDO), Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
3
|
Low-intensity pulsed ultrasound therapy suppresses coronary adventitial inflammatory changes and hyperconstricting responses after coronary stent implantation in pigs in vivo. PLoS One 2021; 16:e0257175. [PMID: 34516572 PMCID: PMC8437271 DOI: 10.1371/journal.pone.0257175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
Backgrounds We demonstrated that coronary adventitial inflammation plays important roles in the pathogenesis of drug-eluting stent (DES)-induced coronary hyperconstricting responses in pigs in vivo. However, no therapy is yet available to treat coronary adventitial inflammation. We thus developed the low-intensity pulsed ultrasound (LIPUS) therapy that ameliorates myocardial ischemia by enhancing angiogenesis. Aims We aimed to examine whether our LIPUS therapy suppresses DES-induced coronary hyperconstricting responses in pigs in vivo, and if so, what mechanisms are involved. Methods Sixteen normal male pigs were randomly assigned to the LIPUS or the sham therapy groups after DES implantation into the left anterior descending (LAD) coronary artery. In the LIPUS group, LIPUS (32 cycles, 193 mW/cm2) was applied to the heart at 3 different levels (segments proximal and distal to the stent edges and middle of the stent) for 20 min at each level for every other day for 2 weeks. The sham therapy group was treated in the same manner but without LIPUS. At 4 weeks after stent implantation, we performed coronary angiography, followed by immunohistological analysis. Results Coronary vasoconstricting responses to serotonin in LAD at DES edges were significantly suppressed in the LIPUS group compared with the sham group. Furthermore, lymph transport speed in vivo was significantly faster in the LIPUS group than in the sham group. Histological analysis at DES edges showed that inflammatory changes and Rho-kinase activity were significantly suppressed in the LIPUS group, associated with eNOS up-regulation and enhanced lymph-angiogenesis. Conclusions These results suggest that our non-invasive LIPUS therapy is useful to treat coronary functional abnormalities caused by coronary adventitial inflammation, indicating its potential for the novel and safe therapeutic approach of coronary artery disease.
Collapse
|
4
|
Liberale L, Bonaventura A, Montecucco F, Dallegri F, Carbone F. Impact of Red Wine Consumption on Cardiovascular Health. Curr Med Chem 2019; 26:3542-3566. [PMID: 28521683 DOI: 10.2174/0929867324666170518100606] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/05/2017] [Accepted: 03/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND The devastating effects of heavy alcohol drinking have been long time recognized. In the last decades, potential benefits of modest red wine drinking were suggested. In European countries in which red wide intake is not negligible (such as France), the association between cholesterol and cardiovascular (CV) risk was less evident, suggesting the action of some protective molecules in red wine or other foods and drinks. METHODS This narrative review is based on the material searched for and obtained via PubMed up to May 2016. The search terms we used were: "red wine, cardiovascular, alcohol" in combination with "polyphenols, heart failure, infarction". RESULTS Epidemiological and mechanistic evidence of a J-shaped relationship between red wine intake and CV risk further supported the "French paradox". Specific components of red wine both in vitro and in animal models were discovered. Polyphenols and especially resveratrol largely contribute to CV prevention mainly through antioxidant properties. They exert beneficial effects on endothelial dysfunction and hypertension, dyslipidemia, metabolic diseases, thus reducing the risk of adverse CV events such as myocardial infarction ischemic stroke and heart failure. Of interest, recent studies pointed out the role of ethanol itself as a potential cardioprotective agent, but a clear epidemiological evidence is still missing. The aim of this narrative review is to update current knowledge on the intracellular mechanism underlying the cardioprotective effects of polyphenols and ethanol. Furthermore, we summarized the results of epidemiological studies, emphasizing their methodological criticisms and the need for randomized clinical trials able to clarify the potential role of red wine consumption in reducing CV risk. CONCLUSION Caution in avowing underestimation of the global burden of alcohol-related diseases was particularly used.
Collapse
Affiliation(s)
- Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- IRCCS AOU San Martino - IST, Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| |
Collapse
|
5
|
Roth I, Casas R, Ribó-Coll M, Doménech M, Lamuela-Raventós RM, Estruch R. Acute consumption of Andalusian aged wine and gin decreases the expression of genes related to atherosclerosis in men with high cardiovascular risk: Randomized intervention trial. Clin Nutr 2018; 38:1599-1606. [PMID: 30471795 DOI: 10.1016/j.clnu.2018.07.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease. Previous studies have suggested the beneficial effects of moderate consumption of alcoholic beverages on reducing cardiovascular risk (CVR). The aim of this study was to evaluate the effects of acute consumption of Andalusian aged wine (AAW) and gin by analyzing the expression of genes related to the appearance and progression of atherosclerosis in men with high CVR. METHODS We performed an open, randomized, controlled, crossover trial including 41 men with high CVR between 55 and 80 years age, who received a single dose of AAW or gin (0.5 g ethanol/kg). The expression of 10 genes related to atherosclerosis was determined by RT-PCR at baseline and 4 h after the intervention. RESULTS Gene expression analysis 4 h after consumption of each alcoholic beverage showed a significant decrease in Toll-like receptors 4 and 6 (TLR4, TLR6) and Caspase-1 (p < 0.05 all). Additionally, TLR2, Interleukin-1 receptor, chemokine receptor 3 and inflammasome expression decreased after AAW intake (p < 0.05, all) while only chemokine receptor 5 decreased after gin consumption (p = 0.039). CONCLUSION The decrease in the expression of several genes related to the appearance and progression of atherosclerosis was greater after AAW than gin intake, suggesting that the phenolic content of AAW may play a protective role against atherosclerosis.
Collapse
Affiliation(s)
- Irene Roth
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Rosa Casas
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain; CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain
| | - Margarita Ribó-Coll
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Mónica Doménech
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain
| | - Rosa M Lamuela-Raventós
- CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain; Nutrition and Food Science Department-XaRTA, INSA, Pharmacy School, University of Barcelona, Spain
| | - Ramón Estruch
- Department of Internal Medicine, Hospital Clínic, Institut d'Investigació Biomèdica August Pi i Sunyer, Universitat de Barcelona, Spain; CIBER CB06/03 Fisiopatología de la Obesidad y la Nutrición, (CIBERobn), Instituto de Salud Carlos III (ISCIII), Spain.
| |
Collapse
|
6
|
Dai H, Wang M, Patel PN, Kalogeris T, Liu Y, Durante W, Korthuis RJ. Preconditioning with the BK Ca channel activator NS-1619 prevents ischemia-reperfusion-induced inflammation and mucosal barrier dysfunction: roles for ROS and heme oxygenase-1. Am J Physiol Heart Circ Physiol 2017; 313:H988-H999. [PMID: 28822969 DOI: 10.1152/ajpheart.00620.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 07/25/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022]
Abstract
Activation of large-conductance Ca2+-activated K+ (BKCa) channels evokes cell survival programs that mitigate intestinal ischemia and reperfusion (I/R) inflammation and injury 24 h later. The goal of the present study was to determine the roles of reactive oxygen species (ROS) and heme oxygenase (HO)-1 in delayed acquisition of tolerance to I/R induced by pretreatment with the BKCa channel opener NS-1619. Superior mesentery arteries were occluded for 45 min followed by reperfusion for 70 min in wild-type (WT) or HO-1-null (HO-1-/-) mice that were pretreated with NS-1619 or saline vehicle 24 h earlier. Intravital microscopy was used to quantify the numbers of rolling and adherent leukocytes. Mucosal permeability, tumor necrosis factor-α (TNF-α) levels, and HO-1 activity and expression in jejunum were also determined. I/R induced leukocyte rolling and adhesion, increased intestinal TNF-α levels, and enhanced mucosal permeability in WT mice, effects that were largely abolished by pretreatment with NS-1619. The anti-inflammatory and mucosal permeability-sparing effects of NS-1619 were prevented by coincident treatment with the HO-1 inhibitor tin protoporphyrin-IX or a cell-permeant SOD mimetic, Mn(III)tetrakis (4-benzoic acid) porphyrin (MnTBAP), in WT mice. NS-1619 also increased jejunal HO-1 activity in WT animals, an effect that was attenuated by treatment with the BKCa channel antagonist paxilline or MnTBAP. I/R also increased postischemic leukocyte rolling and adhesion and intestinal TNF-α levels in HO-1-/- mice to levels comparable to those noted in WT animals. However, NS-1619 was ineffective in preventing these effects in HO-1-deficient mice. In summary, our data indicate that NS-1619 induces the development of an anti-inflammatory phenotype and mitigates postischemic mucosal barrier disruption in the small intestine by a mechanism that may involve ROS-dependent HO-1 activity.NEW & NOTEWORTHY Antecedent treatment with the large-conductance Ca2+-activated K+ channel opener NS-1619 24 h before ischemia-reperfusion limits postischemic tissue injury by an oxidant-dependent mechanism. The present study shows that NS-1619-induced oxidant production prevents ischemia-reperfusion-induced inflammation and mucosal barrier disruption in the small intestine by provoking increases in heme oxygenase-1 activity.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Meifang Wang
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Parag N Patel
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Theodore Kalogeris
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Yajun Liu
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - William Durante
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology and Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
7
|
Godfrey J, Jeanguenin L, Castro N, Olney JJ, Dudley J, Pipkin J, Walls SM, Wang W, Herr DR, Harris GL, Brasser SM. Chronic Voluntary Ethanol Consumption Induces Favorable Ceramide Profiles in Selectively Bred Alcohol-Preferring (P) Rats. PLoS One 2015; 10:e0139012. [PMID: 26405804 PMCID: PMC4583526 DOI: 10.1371/journal.pone.0139012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/07/2015] [Indexed: 12/20/2022] Open
Abstract
Heavy alcohol consumption has detrimental neurologic effects, inducing widespread neuronal loss in both fetuses and adults. One proposed mechanism of ethanol-induced cell loss with sufficient exposure is an elevation in concentrations of bioactive lipids that mediate apoptosis, including the membrane sphingolipid metabolites ceramide and sphingosine. While these naturally-occurring lipids serve as important modulators of normal neuronal development, elevated levels resulting from various extracellular insults have been implicated in pathological apoptosis of neurons and oligodendrocytes in several neuroinflammatory and neurodegenerative disorders. Prior work has shown that acute administration of ethanol to developing mice increases levels of ceramide in multiple brain regions, hypothesized to be a mediator of fetal alcohol-induced neuronal loss. Elevated ceramide levels have also been implicated in ethanol-mediated neurodegeneration in adult animals and humans. Here, we determined the effect of chronic voluntary ethanol consumption on lipid profiles in brain and peripheral tissues from adult alcohol-preferring (P) rats to further examine alterations in lipid composition as a potential contributor to ethanol-induced cellular damage. P rats were exposed for 13 weeks to a 20% ethanol intermittent-access drinking paradigm (45 ethanol sessions total) or were given access only to water (control). Following the final session, tissues were collected for subsequent chromatographic analysis of lipid content and enzymatic gene expression. Contrary to expectations, ethanol-exposed rats displayed substantial reductions in concentrations of ceramides in forebrain and heart relative to non-exposed controls, and modest but significant decreases in liver cholesterol. qRT-PCR analysis showed a reduction in the expression of sphingolipid delta(4)-desaturase (Degs2), an enzyme involved in de novo ceramide synthesis. These findings indicate that ethanol intake levels achieved by alcohol-preferring P rats as a result of chronic voluntary exposure may have favorable vs. detrimental effects on lipid profiles in this genetic line, consistent with data supporting beneficial cardioprotective and neuroprotective effects of moderate ethanol consumption.
Collapse
Affiliation(s)
- Jessica Godfrey
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Lisa Jeanguenin
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Norma Castro
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Jeffrey J. Olney
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Jason Dudley
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Joseph Pipkin
- Department of Psychology, San Diego State University, San Diego, California, United States of America
| | - Stanley M. Walls
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Deron R. Herr
- Department of Biology, San Diego State University, San Diego, California, United States of America
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Greg L. Harris
- Department of Biology, San Diego State University, San Diego, California, United States of America
- * E-mail: (SMB); (GLH)
| | - Susan M. Brasser
- Department of Psychology, San Diego State University, San Diego, California, United States of America
- * E-mail: (SMB); (GLH)
| |
Collapse
|
8
|
Kalogeris TJ, Baines C, Korthuis RJ. Adenosine prevents TNFα-induced decrease in endothelial mitochondrial mass via activation of eNOS-PGC-1α regulatory axis. PLoS One 2014; 9:e98459. [PMID: 24914683 PMCID: PMC4051583 DOI: 10.1371/journal.pone.0098459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022] Open
Abstract
We tested whether adenosine, a cytoprotective mediator and trigger of preconditioning, could protect endothelial cells from inflammation-induced deficits in mitochondrial biogenesis and function. We examined this question using human microvascular endothelial cells exposed to TNFα. TNFα produced time and dose-dependent decreases in mitochondrial membrane potential, cellular ATP levels, and mitochondrial mass, preceding an increase in apoptosis. These effects were prevented by co-incubation with adenosine, a nitric oxide (NO) donor, a guanylate cyclase (GC) activator, or a cell-permeant cyclic GMP (cGMP) analog. The effects of adenosine were blocked by a nitric oxide synthase inhibitor, a soluble guanylate cyclase inhibitor, a morpholino antisense oligonucleotide to endothelial nitric oxide synthase (eNOS), or siRNA knockdown of the transcriptional coactivator, PGC-1α. Incubation with exogenous NO, a GC activator, or a cGMP analog reversed the effect of eNOS knockdown, while the effect of NO was blocked by inhibition of GC. The protective effects of NO and cGMP analog were prevented by siRNA to PGC-1α. TNFα also decreased expression of eNOS, cellular NO levels, and PGC-1α expression, which were reversed by adenosine. Exogenous NO, but not adenosine, rescued expression of PGC-1α in cells in which eNOS expression was knocked down by eNOS antisense treatment. Thus, TNFα elicits decreases in endothelial mitochondrial function and mass, and an increase in apoptosis. These effects were reversed by adenosine, an effect mediated by eNOS-synthesized NO, acting via soluble guanylate cyclase/cGMP to activate a mitochondrial biogenesis regulatory program under the control of PGC-1α. These results support the existence of an adenosine-triggered, mito-and cytoprotective mechanism dependent upon an eNOS-PGC-1α regulatory pathway, which acts to preserve endothelial mitochondrial function and mass during inflammatory challenge.
Collapse
Affiliation(s)
- Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| | - Christopher Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
9
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Pan H, Chen D, Liu B, Xie X, Zhang J, Yang G. Effects of sodium hydrosulfide on intestinal mucosal injury in a rat model of cardiac arrest and cardiopulmonary resuscitation. Life Sci 2013; 93:24-29. [PMID: 23727354 DOI: 10.1016/j.lfs.2013.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 04/19/2013] [Accepted: 05/15/2013] [Indexed: 12/11/2022]
|
11
|
Wang WZ, Jones AW, Wang M, Durante W, Korthuis RJ. Preconditioning with soluble guanylate cyclase activation prevents postischemic inflammation and reduces nitrate tolerance in heme oxygenase-1 knockout mice. Am J Physiol Heart Circ Physiol 2013; 305:H521-32. [PMID: 23771693 DOI: 10.1152/ajpheart.00810.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously we have shown that, unlike wild-type mice (WT), heme oxygenase-1 knockout (HO-1-/-) mice developed nitrate tolerance and were not protected from inflammation caused by ischemia-reperfusion (I/R) when preconditioned with a H2S donor. We hypothesized that stimulation (with BAY 41-2272) or activation (with BAY 60-2770) of soluble guanylate cyclase (sGC) would precondition HO-1-/- mice against an inflammatory effect of I/R and increase arterial nitrate responses. Intravital fluorescence microscopy was used to visualize leukocyte rolling and adhesion to postcapillary venules of the small intestine in anesthetized mice. Relaxation to ACh and BAY compounds was measured on superior mesenteric arteries isolated after I/R protocols. Preconditioning with either BAY compound 10 min (early phase) or 24 h (late phase) before I/R reduced postischemic leukocyte rolling and adhesion to sham control levels and increased superior mesenteric artery responses to ACh, sodium nitroprusside, and BAY 41-2272 in WT and HO-1-/- mice. Late-phase preconditioning with BAY 60-2770 was maintained in HO-1-/- and endothelial nitric oxide synthase knockout mice pretreated with an inhibitor (dl-propargylglycine) of enzymatically produced H2S. Pretreatment with BAY compounds also prevented the I/R increase in small intestinal TNF-α. We speculate that increasing sGC activity and related PKG acts downstream to H2S and disrupts signaling processes triggered by I/R in part by maintaining low cellular Ca²⁺. In addition, BAY preconditioning did not increase sGC levels, yet increased the response to agents that act on reduced heme-containing sGC. Collectively these actions would contribute to increased nitrate sensitivity and vascular function.
Collapse
Affiliation(s)
- Walter Z Wang
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; and
| | | | | | | | | |
Collapse
|
12
|
Zuidema MY, Dellsperger KC. Myocardial Stunning with Hemodialysis: Clinical Challenges of the Cardiorenal Patient. Cardiorenal Med 2012; 2:125-133. [PMID: 22851961 DOI: 10.1159/000337476] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We discuss the current state of knowledge related to the pathogenesis of myocardial stunning as well as the potential mechanisms responsible for the clinical presentation of myocardial stunning in hemodialysis patients. We suggest future research areas for this critical and clinically important condition in this high-risk patient population. In consideration of acute and chronic changes secondary to dialysis, especially in patients with risk for coronary artery disease, the prevalence of myocardial stunning and its role in the natural history of these patients' disease progression is considered. We propose a paradigm: that the majority of the pathophysiologic mechanisms by which hemodialysis may induce myocardial stunning falls into two categories with (1) vascular and/or (2) metabolic contributions. In order to prevent eventual myocardial hibernation, myocardial remodeling, scarring, and loss of contractile function with aberrant electrical conductivity that could lead to sudden death, it is imperative to identify the risk factors associated with myocardial stunning during hemodialysis. Further understanding of these mechanisms may lead to novel clinical interventions and pharmacologic therapeutic agents.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Division of Cardiovascular Medicine, Department of Internal Medicine, Columbia, Mo., USA
| | | |
Collapse
|
13
|
Krenz M, Korthuis RJ. Moderate ethanol ingestion and cardiovascular protection: from epidemiologic associations to cellular mechanisms. J Mol Cell Cardiol 2012; 52:93-104. [PMID: 22041278 PMCID: PMC3246046 DOI: 10.1016/j.yjmcc.2011.10.011] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 10/11/2011] [Accepted: 10/15/2011] [Indexed: 12/13/2022]
Abstract
While ethanol intake at high levels (3-4 or more drinks), either in acute (occasional binge drinking) or chronic (daily) settings, increases the risk for myocardial infarction and stroke, an inverse relationship between regular consumption of alcoholic beverages at light to moderate levels (1-2 drinks per day) and cardiovascular risk has been consistently noted in a large number of epidemiologic studies. Although initially attributed to polyphenolic antioxidants in red wine, subsequent work has established that the ethanol component contributes to the beneficial effects associated with moderate intake of alcoholic beverages regardless of type (red versus white wine, beer, spirits). Concerns have been raised with regard to interpretation of epidemiologic evidence for this association including heterogeneity of the reference groups examined in many studies, different lifestyles of moderate drinkers versus abstainers, and favorable risk profiles in moderate drinkers. However, better controlled epidemiologic studies and especially work conducted in animal models and cell culture systems have substantiated this association and clearly established a cause and effect relationship between alcohol consumption and reductions in tissue injury induced by ischemia/reperfusion (I/R), respectively. The aims of this review are to summarize the epidemiologic evidence supporting the effectiveness of ethanol ingestion in reducing the likelihood of adverse cardiovascular events such as myocardial infarction and ischemic stroke, even in patients with co-existing risk factors, to discuss the ideal quantities, drinking patterns, and types of alcoholic beverages that confer protective effects in the cardiovascular system, and to review the findings of recent experimental studies directed at uncovering the mechanisms that underlie the cardiovascular protective effects of antecedent ethanol ingestion. Mechanistic interrogation of the signaling pathways invoked by antecedent ethanol ingestion may point the way towards development of new therapeutic approaches that mimic the powerful protective effects of socially relevant alcohol intake to limit I/R injury, but minimize the negative psychosocial impact and pathologic outcomes that also accompany consumption of ethanol.
Collapse
Affiliation(s)
- Maike Krenz
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | | |
Collapse
|
14
|
Liu Y, Kalogeris T, Wang M, Zuidema M(Y, Wang Q, Dai H, Davis MJ, Hill MA, Korthuis RJ. Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine. Am J Physiol Gastrointest Liver Physiol 2012; 302:G44-54. [PMID: 21921289 PMCID: PMC3345957 DOI: 10.1152/ajpgi.00413.2010] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The objectives of this study were to determine whether neutrophil depletion with anti-neutrophil serum (ANS) or preconditioning with the hydrogen sulfide (H(2)S) donor NaHS (NaHS-PC) 24 h prior to ischemia-reperfusion (I/R) would prevent postischemic mitochondrial dysfunction in rat intestinal mucosa and, if so, whether calcium-activated, large conductance potassium (BK(Ca)) channels were involved in this protective effect. I/R was induced by 45-min occlusion of the superior mesenteric artery followed by 60-min reperfusion in rats preconditioned with NaHS (NaHS-PC) or a BK(Ca) channel activator (NS-1619-PC) 24 h earlier or treated with ANS. Mitochondrial function was assessed by measuring mitochondrial membrane potential, mitochondrial dehydrogenase function, and cytochrome c release. Mucosal myeloperoxidase (MPO) and TNF-α levels were also determined, as measures of postischemic inflammation. BK(Ca) expression in intestinal mucosa was detected by immunohistochemistry and Western blotting. I/R induced mitochondrial dysfunction and increased tissue MPO and TNF-α levels. Although mitochondrial dysfunction was attenuated by NaHS-PC or NS-1619-PC, the postischemic increases in mucosal MPO and TNF-α levels were not. The protective effect of NaHS-PC or NS-1619-PC on postischemic mitochondrial function was abolished by coincident treatment with BK(Ca) channel inhibitors. ANS prevented the I/R-induced increase in tissue MPO levels and reversed mitochondrial dysfunction. These data indicate that neutrophils play an essential role in I/R-induced mucosal mitochondrial dysfunction. In addition, NaHS-PC prevents postischemic mitochondrial dysfunction (but not inflammation) by a BK(Ca) channel-dependent mechanism.
Collapse
Affiliation(s)
- Yajun Liu
- 1Department of Medical Pharmacology and Physiology,
| | | | - Meifang Wang
- 1Department of Medical Pharmacology and Physiology,
| | - Mozow (Yusof) Zuidema
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Qun Wang
- 1Department of Medical Pharmacology and Physiology,
| | - Hongyan Dai
- 1Department of Medical Pharmacology and Physiology,
| | - Michael J. Davis
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Michael A. Hill
- 1Department of Medical Pharmacology and Physiology, ,3Department of Internal Medicine, University of Missouri School of Medicine, Columbia, Missouri
| | - Ronald J. Korthuis
- 1Department of Medical Pharmacology and Physiology, ,2Dalton Cardiovascular Research Center, and
| |
Collapse
|
15
|
Gaskin FS, Kamada K, Zuidema MY, Jones AW, Rubin LJ, Korthuis RJ. Isoform-selective 5'-AMP-activated protein kinase-dependent preconditioning mechanisms to prevent postischemic leukocyte-endothelial cell adhesive interactions. Am J Physiol Heart Circ Physiol 2011; 300:H1352-60. [PMID: 21239628 DOI: 10.1152/ajpheart.00944.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that preconditioning induced by ethanol consumption at low levels [ethanol preconditioning (EPC)] or with 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR-PC) 24 h before ischemia-reperfusion prevents postischemic leukocyte-endothelial cell adhesive interactions (LEI) by a mechanism that is initiated by nitric oxide formed by endothelial nitric oxide synthase. Recent work indicates that 1) ethanol increases the activity of AMP-activated protein kinase (AMPK) and 2) AMPK phosphorylates endothelial nitric oxide synthase at the same activation site seen following EPC (Ser1177). In light of these observations, we postulated that the heterotrimeric serine/threonine kinase, AMPK, may play a role in triggering the development of the anti-inflammatory phenotype induced by EPC. Ethanol was administered to C57BL/6J mice by gavage in the presence or absence of AMPK inhibition. Twenty-four hours later, the numbers of rolling and adherent leukocytes in postcapillary venules of the small intestine were recorded using an intravital microscopic approach. Following 45 min of ischemia, LEI were recorded after 30 and 60 min of reperfusion or at equivalent time points in control animals. Ischemia-reperfusion induced a marked increase in LEI relative to sham-operated control mice. The increase in LEI was prevented by EPC, an effect that was lost with AMPK inhibition during the period of ethanol exposure. Studies conducted in AMPK α(1)- and α(2)-knockout mice suggest that the anti-inflammatory effects of AICAR are not dependent on which isoform of the catalytic α-subunit is present because a deficiency of either isoform results in a loss of protection. In sharp contrast, EPC appears to be triggered by an AMPK α(2)-isoform-dependent mechanism.
Collapse
Affiliation(s)
- F Spencer Gaskin
- Departments of Medical Pharmacology and Physiology, University of Missouri, Columbia, 65212, USA
| | | | | | | | | | | |
Collapse
|
16
|
Zuidema MY, Yang Y, Wang M, Kalogeris T, Liu Y, Meininger CJ, Hill MA, Davis MJ, Korthuis RJ. Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels. Am J Physiol Heart Circ Physiol 2010; 299:H1554-67. [PMID: 20833953 DOI: 10.1152/ajpheart.01229.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objectives of this study were to determine the role of calcium-activated, small (SK), intermediate (IK), and large (BK) conductance potassium channels in initiating the development of an anti-inflammatory phenotype elicited by preconditioning with an exogenous hydrogen sulfide (H(2)S) donor, sodium hydrosulfide (NaHS). Intravital microscopy was used to visualize rolling and firmly adherent leukocytes in vessels of the small intestine of mice preconditioned with NaHS (in the absence and presence of SK, IK, and BK channel inhibitors, apamin, TRAM-34, and paxilline, respectively) or SK/IK (NS-309) or BK channel activators (NS-1619) 24 h before ischemia-reperfusion (I/R). I/R induced marked increases in leukocyte rolling and adhesion, effects that were largely abolished by preconditioning with NaHS, NS-309, or NS-1619. The postischemic anti-inflammatory effects of NaHS-induced preconditioning were mitigated by BKB channel inhibitor treatment coincident with NaHS, but not by apamin or TRAM-34, 24 h before I/R. Confocal imaging and immunohistochemistry were used to demonstrate the presence of BKα subunit staining in both endothelial and vascular smooth muscle cells of isolated, pressurized mesenteric venules. Using patch-clamp techniques, we found that BK channels in cultured endothelial cells were activated after exposure to NaHS. Bath application of the same concentration of NaHS used in preconditioning protocols led to a rapid increase in a whole cell K(+) current; specifically, the component of K(+) current blocked by the selective BK channel antagonist iberiotoxin. The activation of BK current by NaHS could also be demonstrated in single channel recording mode where it was independent of a change in intracellular Ca(+) concentration. Our data are consistent with the concept that H(2)S induces the development of an anti-adhesive state in I/R in part mediated by a BK channel-dependent mechanism.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Department of Medical Pharmacology and Physiology, Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Nicholson CK, Calvert JW. Hydrogen sulfide and ischemia-reperfusion injury. Pharmacol Res 2010; 62:289-97. [PMID: 20542117 DOI: 10.1016/j.phrs.2010.06.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/02/2010] [Accepted: 06/03/2010] [Indexed: 12/20/2022]
Abstract
Gasotransmitters are lipid soluble, endogenously produced gaseous signaling molecules that freely permeate the plasma membrane of a cell to directly activate intracellular targets, thus alleviating the need for membrane-bound receptors. The gasotransmitter family consists of three members: nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H(2)S). H(2)S is the latest gasotransmitter to be identified and characterized and like the other members of the gasotransmitter family, H(2)S was historically considered to be a toxic gas and an environmental/occupational hazard. However with the discovery of its presence and enzymatic production in mammalian tissues, H(2)S has gained much attention as a physiological signaling molecule. Also, much like NO and CO, H(2)S's role in ischemia/reperfusion (I/R) injury has recently begun to be elucidated. As such, modulation of endogenous H(2)S and administration of exogenous H(2)S has now been demonstrated to be cytoprotective in various organ systems through diverse signaling mechanisms. This review will provide a detailed description of the role H(2)S plays in different model systems of I/R injury and will also detail some of the mechanisms involved with its cytoprotection.
Collapse
Affiliation(s)
- Chad K Nicholson
- Department of Surgery, Division of Cardiothoracic Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, Atlanta, GA 30308, United States
| | | |
Collapse
|
18
|
Suo Z, Liu Y, Ferreri M, Zhang T, Liu Z, Mu X, Han B. Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. JOURNAL OF ETHNOPHARMACOLOGY 2009; 125:404-409. [PMID: 19635549 DOI: 10.1016/j.jep.2009.07.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Revised: 07/06/2009] [Accepted: 07/19/2009] [Indexed: 05/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Matrine (MT) is a main active ingredient of Sophora flavescens roots, which is used in Traditional Chinese Medicine (TCM) for the treatment of inflammations like enteritis, hepatitis and atopic dermatitis. AIMS OF THE STUDY Aim of the study is to gain insight into the effects of MT on nitric oxide (NO) release, intracellular NO production, and endothelial nitric oxide synthase (eNOS) level in second generation rat intestinal microvascular endothelial cells (RIMECs). Moreover, the effects of MT on soluble intercellular adhesion molecule-1 (sICAM-1), interleukin-6 (IL-6) and interleukin-8 (IL-8) production induced by lipopolysaccharide (LPS) in these cells were evaluated. MATERIAL AND METHODS Isolated and identified RIMECs cultures were exposed to different concentrations of matrine, and changes in extra- and intracellular NO concentrations were measured in dependance of time by Griess reaction or DAF-FM diacetate. Obtained cell cultures were solitude treated with lypopolysaccharide (LPS) or combined with MT to observe impacts on sICAM-1, IL-6 and IL-8 concentration in culture supernatants by ELISA. RESULTS Matrine dose-dependently increased the concentration of NO in culture supernatant of RIMECs. Exposure of MT resulted in a steady intracellular NO increase pattern under different concentrations with different values and has an increasing effect on eNOS concentration at a long time exposure. Additionally, matrine reduced the increasing effect of LPS on the production of IL-6, IL-8, and sICAM-1 in RIMECs. CONCLUSION These results show that matrine may serve as a protective agent against tissue damage in inflammation by improving NO-dependent vasomotion and inhibiting inflammatory cytokines induced by LPS.
Collapse
Affiliation(s)
- Zhanwei Suo
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Xiaobin F, Jian C, Yuming G, Shuguo Z, Peng J, Xiaowu L, Jiahong D. Alcohol consumption might be beneficial for the patients with resectable liver cancer due to its induction of tolerance to the ischemia–reperfusion injury. Med Hypotheses 2009; 73:207-10. [DOI: 10.1016/j.mehy.2009.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2009] [Revised: 01/31/2009] [Accepted: 02/02/2009] [Indexed: 02/07/2023]
|
20
|
Yusof M, Kamada K, Kalogeris T, Gaskin FS, Korthuis RJ. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism. Am J Physiol Heart Circ Physiol 2009; 296:H868-76. [PMID: 19168723 DOI: 10.1152/ajpheart.01111.2007] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H(2)S) is one of three endogenous gases, along with carbon monoxide (CO) and nitric oxide (NO), that exert a variety of important vascular actions in vivo. Although it has been demonstrated that CO or NO can trigger the development of a preconditioned phenotype in postischemic tissues, it is unclear whether H(2)S may also induce protection in organs subsequently exposed to ischemia-reperfusion (I/R). In light of these observations, we postulated that preconditioning with the exogenous H(2)S donor sodium hydrosulfide (NaHS-PC) would inhibit leukocyte rolling (LR) and adhesion (LA) induced by I/R. We used intravital microscopic techniques to demonstrate that NaHS-PC 24 h, but not 1 h, before I/R causes postcapillary venules to shift to an anti-inflammatory phenotype in wild-type (WT) mice such that these vessels fail to support LR and LA during reperfusion. The protective effect of NaHS-PC on LR was largely abolished by coincident pharmacological inhibition of NO synthase (NOS) in WT animals and was absent in endothelial NOS-deficient (eNOS(-/-)) mice. A similar pattern of response was noted in WT mice treated concomitantly with NaHS plus p38 mitogen-activated protein kinase (MAPK) inhibitors (SB 203580 or SK-86002). Whereas the reduction in LA induced by antecedent NaHS was attenuated by pharmacological inhibition of NOS or p38 MAPK in WT mice, the antiadhesive effect of NaHS was still evident in eNOS(-/-) mice. Thus NaHS-PC prevents LR and LA by triggering the activation of an eNOS- and p38 MAPK-dependent mechanism. However, the role of eNOS in the antiadhesive effect of NaHS-PC was less prominent than its effect to reduce LR.
Collapse
Affiliation(s)
- Mozow Yusof
- Dept. of Medical Pharmacology and Physiology, Univ. of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, USA
| | | | | | | | | |
Collapse
|
21
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008. [PMID: 19032583 DOI: 10.1111/j.1530–0277.2008.00828.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
22
|
Collins MA, Neafsey EJ, Mukamal KJ, Gray MO, Parks DA, Das DK, Korthuis RJ. Alcohol in moderation, cardioprotection, and neuroprotection: epidemiological considerations and mechanistic studies. Alcohol Clin Exp Res 2008; 33:206-19. [PMID: 19032583 DOI: 10.1111/j.1530-0277.2008.00828.x] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In contrast to many years of important research and clinical attention to the pathological effects of alcohol (ethanol) abuse, the past several decades have seen the publication of a number of peer-reviewed studies indicating the beneficial effects of light-moderate, nonbinge consumption of varied alcoholic beverages, as well as experimental demonstrations that moderate alcohol exposure can initiate typically cytoprotective mechanisms. A considerable body of epidemiology associates moderate alcohol consumption with significantly reduced risks of coronary heart disease and, albeit currently a less robust relationship, cerebrovascular (ischemic) stroke. Experimental studies with experimental rodent models and cultures (cardiac myocytes, endothelial cells) indicate that moderate alcohol exposure can promote anti-inflammatory processes involving adenosine receptors, protein kinase C (PKC), nitric oxide synthase, heat shock proteins, and others which could underlie cardioprotection. Also, brain functional comparisons between older moderate alcohol consumers and nondrinkers have received more recent epidemiological study. In over half of nearly 45 reports since the early 1990s, significantly reduced risks of cognitive loss or dementia in moderate, nonbinge consumers of alcohol (wine, beer, liquor) have been observed, whereas increased risk has been seen only in a few studies. Physiological explanations for the apparent CNS benefits of moderate consumption have invoked alcohol's cardiovascular and/or hematological effects, but there is also experimental evidence that moderate alcohol levels can exert direct "neuroprotective" actions-pertinent are several studies in vivo and rat brain organotypic cultures, in which antecedent or preconditioning exposure to moderate alcohol neuroprotects against ischemia, endotoxin, beta-amyloid, a toxic protein intimately associated with Alzheimer's, or gp120, the neuroinflammatory HIV-1 envelope protein. The alcohol-dependent neuroprotected state appears linked to activation of signal transduction processes potentially involving reactive oxygen species, several key protein kinases, and increased heat shock proteins. Thus to a certain extent, moderate alcohol exposure appears to trigger analogous mild stress-associated, anti-inflammatory mechanisms in the heart, vasculature, and brain that tend to promote cellular survival pathways.
Collapse
Affiliation(s)
- Michael A Collins
- Department of Cell Biology, Neurobiology & Anatomy, Loyola University Chicago Stritch School of Medicine, 2160 S. 1st Avenue, Maywood, IL 60153, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Helicobacter pylori infection upregulates endothelial nitric oxide synthase expression and induces angiogenesis in gastric mucosa of dyspeptic patients. Eur J Gastroenterol Hepatol 2008; 20:441-9. [PMID: 18403947 DOI: 10.1097/meg.0b013e3282f4c35a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection induces nitric acid (NO) overproduction through inducible NO synthase (NOS) expression, subsequent DNA damage and enhanced antiapoptosis signal transduction sequence in the human gastric mucosa, whereas its possible effect on endothelial nitric oxide synthase (eNOS) expression has not as yet been investigated. The aim of this study was to evaluate the effect of H. pylori infection in the expression of eNOS in gastric mucosa. PATIENTS AND METHODS We prospectively studied 30 nonsmoking dyspeptic patients (12 men, 18 women, mean age 54.26+/-12.89 years). The diagnosis of H. pylori infection was based mainly on histology. The histological grading of H. pylori infection was evaluated according to the modified Sydney classification. Histological grading of eNOS expression and microvessel density as estimated by CD34 expression were determined by immunohistochemistry (degree 0-3) and correlated with H. pylori infection and histological degree of gastritis. RESULTS Twelve patients were H. pylori-positive and 18 patients were H. pylori-negative. The two groups were matched for age (P=0.139), sex (P=0.342) and similar degree of gastritis. Intensity of eNOS and CD34 expression in the corpus and antrum were significantly correlated (P<0.001). eNOS expression was correlated with H. pylori infection in the mucosa of the body and antrum (P=0.013 and 0.037, respectively) but not with gastric inflammation and activity (P=0.848 and 0.871, respectively, for the corpus and P=0.565 and 0.793, respectively, for the antrum). H. pylori-positive patients showed higher expression of CD34-positive blood vessels in the mucosa of the antrum (P=0.048). CD34 expression was correlated with gastric inflammation and activity (P=0.03 and 0.044, respectively) in the mucosa of the antrum of H. pylori-positive patients. CONCLUSION H. pylori infection upregulates eNOS, and induces angiogenesis, contributing to H. pylori-associated pathophysiology in gastric mucosa.
Collapse
|
24
|
Zeng C, Armando I, Luo Y, Eisner GM, Felder RA, Jose PA. Dysregulation of dopamine-dependent mechanisms as a determinant of hypertension: studies in dopamine receptor knockout mice. Am J Physiol Heart Circ Physiol 2008; 294:H551-69. [PMID: 18083900 PMCID: PMC4029502 DOI: 10.1152/ajpheart.01036.2007] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dopamine plays an important role in the pathogenesis of hypertension by regulating epithelial sodium transport and by interacting with vasoactive hormones/humoral factors, such as aldosterone, angiotensin, catecholamines, endothelin, oxytocin, prolactin pro-opiomelancortin, reactive oxygen species, renin, and vasopressin. Dopamine receptors are classified into D(1)-like (D(1) and D(5)) and D(2)-like (D(2), D(3), and D(4)) subtypes based on their structure and pharmacology. In recent years, mice deficient in one or more of the five dopamine receptor subtypes have been generated, leading to a better understanding of the physiological role of each of the dopamine receptor subtypes. This review summarizes the results from studies of various dopamine receptor mutant mice on the role of individual dopamine receptor subtypes and their interactions with other G protein-coupled receptors in the regulation of blood pressure.
Collapse
MESH Headings
- Animals
- Blood Pressure/genetics
- Blood Pressure/physiology
- Dopamine/physiology
- Hypertension/genetics
- Hypertension/physiopathology
- Mice
- Mice, Knockout
- Receptors, Dopamine/genetics
- Receptors, Dopamine/physiology
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/physiology
- Receptors, Dopamine D3/genetics
- Receptors, Dopamine D3/physiology
- Receptors, Dopamine D4/genetics
- Receptors, Dopamine D4/physiology
- Receptors, Dopamine D5/genetics
- Receptors, Dopamine D5/physiology
Collapse
Affiliation(s)
- Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing City 400042, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
25
|
Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY, Korthuis RJ. Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 2007; 43:1048-60. [PMID: 17761301 PMCID: PMC2173699 DOI: 10.1016/j.freeradbiomed.2007.06.018] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 05/04/2007] [Accepted: 06/20/2007] [Indexed: 12/21/2022]
Abstract
Ethanol preconditioning (EtOH-PC) refers to a phenomenon in which tissues are protected from the deleterious effects of ischemia/reperfusion (I/R) by prior ingestion of ethanol at low to moderate levels. In this study, we tested whether prior (24 h) administration of ethanol as a single bolus that produced a peak plasma concentration of 42-46 mg/dl in gerbils would offer protective effects against neuronal damage due to cerebral I/R. In addition, we also tested whether reactive oxygen species (ROS) derived from NADPH oxidase played a role as initiators of these putative protective effects. Groups of gerbils were administered either ethanol or the same volume of water by gavage 24 h before transient global cerebral ischemia induced by occlusion of both common carotid arteries for 5 min. In some experiments, apocynin, a specific inhibitor of NADPH oxidase, was administered (5 mg/kg body wt, i.p.) 10 min before ethanol administration. EtOH-PC ameliorated behavioral deficit induced by cerebral I/R and protected the brain against I/R-induced delayed neuronal death, neuronal and dendritic degeneration, oxidative DNA damage, and glial cell activation. These beneficial effects were attenuated by apocynin treatment coincident with ethanol administration. Ethanol ingestion was associated with translocation of the NADPH oxidase subunit p67(phox) from hippocampal cytosol fraction to membrane, increased NADPH oxidase activity in hippocampus within the first hour after gavage, and increased lipid peroxidation (4-hydroxy-2-nonenal) in plasma and hippocampus within the first 2 h after gavage. These effects were also inhibited by concomitant apocynin treatment. Our data are consistent with the hypothesis that antecedent ethanol ingestion at socially relevant levels induces neuroprotective effects in I/R by a mechanism that is triggered by ROS produced through NADPH oxidase. Our results further suggest the possibility that preconditioning with other pharmacological agents that induce a mild oxidative stress may have similar therapeutic value for suppressing stroke-mediated damage in brain.
Collapse
Affiliation(s)
- Qun Wang
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Albert Y. Sun
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Agnes Simonyi
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Theodore J. Kalogeris
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Dennis K. Miller
- Department of Psychological Sciences, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Grace Y. Sun
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, MO 65212, USA
| | - Ronald J. Korthuis
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Dalton Cardiovascular Research Center, University of Missouri School of Medicine, Columbia, MO 65212, USA
- Corresponding author: Ronald J. Korthuis, Ph.D., Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, MA415, University of Missouri-Columbia, Columbia, MO 65212, Phone: (573) 882-8059, Fax: (573) 884-4276, E-mail:
| |
Collapse
|