1
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
2
|
Sharma S, Sharma D, Dhobi M, Wang D, Tewari D. An insight to treat cardiovascular diseases through phytochemicals targeting PPAR-α. Mol Cell Biochem 2024; 479:707-732. [PMID: 37171724 DOI: 10.1007/s11010-023-04755-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Peroxisome proliferator-activated receptor-α (PPAR-α) belonging to the nuclear hormone receptor superfamily is a promising target for CVDs which mechanistically improves the production of high-density lipid as well as inhibit vascular smooth muscle cell proliferation. PPAR-α mainly interferes with adenosine monophosphate-activated protein kinase, transforming growth factor-β-activated kinase, and nuclear factor-κB pathways to protect against cardiac complications. Natural products/extracts could serve as a potential therapeutic strategy in CVDs for targeting PPAR-α with broad safety margins. In recent years, the understanding of naturally derived PPAR-α agonists has considerably improved; however, the information is scattered. In vitro and in vivo studies on acacetin, apigenin, arjunolic acid, astaxanthin, berberine, resveratrol, vaticanol C, hispidulin, ginsenoside Rb3, and genistein showed significant effects in CVDs complications by targeting PPAR-α. With the aim of demonstrating the tremendous chemical variety of natural products targeting PPAR-α in CVDs, this review provides insight into various natural products that can work to prevent CVDs by targeting the PPAR-α receptor along with their detailed mechanism.
Collapse
Affiliation(s)
- Supriya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Divya Sharma
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Mahaveer Dhobi
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| | - Dongdong Wang
- Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada.
- Department of Medicine, McMaster University, Hamilton, ON, Canada.
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India.
| |
Collapse
|
3
|
More SA, Deore RS, Pawar HD, Sharma C, Nakhate KT, Rathod SS, Ojha S, Goyal SN. CB2 Cannabinoid Receptor as a Potential Target in Myocardial Infarction: Exploration of Molecular Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1683. [PMID: 38338960 PMCID: PMC10855244 DOI: 10.3390/ijms25031683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1β. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-β/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.
Collapse
Affiliation(s)
- Sagar A. More
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Rucha S. Deore
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Harshal D. Pawar
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates;
| | - Kartik T. Nakhate
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Sumit S. Rathod
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Sameer N. Goyal
- Department of Pharmacology, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule 424001, Maharashtra, India; (S.A.M.); (R.S.D.); (H.D.P.); (K.T.N.); (S.S.R.)
| |
Collapse
|
4
|
Walker MA, Chen H, Yadav A, Ritterhoff J, Villet O, McMillen T, Wang Y, Purcell H, Djukovic D, Raftery D, Isoherranen N, Tian R. Raising NAD + Level Stimulates Short-Chain Dehydrogenase/Reductase Proteins to Alleviate Heart Failure Independent of Mitochondrial Protein Deacetylation. Circulation 2023; 148:2038-2057. [PMID: 37965787 PMCID: PMC10842390 DOI: 10.1161/circulationaha.123.066039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Strategies to increase cellular NAD+ (oxidized nicotinamide adenine dinucleotide) level have prevented cardiac dysfunction in multiple models of heart failure, but molecular mechanisms remain unclear. Little is known about the benefits of NAD+-based therapies in failing hearts after the symptoms of heart failure have appeared. Most pretreatment regimens suggested mechanisms involving activation of sirtuin, especially Sirt3 (sirtuin 3), and mitochondrial protein acetylation. METHODS We induced cardiac dysfunction by pressure overload in SIRT3-deficient (knockout) mice and compared their response with nicotinamide riboside chloride treatment with wild-type mice. To model a therapeutic approach, we initiated the treatment in mice with established cardiac dysfunction. RESULTS We found nicotinamide riboside chloride improved mitochondrial function and blunted heart failure progression. Similar benefits were observed in wild-type and knockout mice. Boosting NAD+ level improved the function of NAD(H) redox-sensitive SDR (short-chain dehydrogenase/reductase) family proteins. Upregulation of Mrpp2 (mitochondrial ribonuclease P protein 2), a multifunctional SDR protein and a subunit of mitochondrial ribonuclease P, improves mitochondrial DNA transcripts processing and electron transport chain function. Activation of SDRs in the retinol metabolism pathway stimulates RXRα (retinoid X receptor α)/PPARα (proliferator-activated receptor α) signaling and restores mitochondrial oxidative metabolism. Downregulation of Mrpp2 and impaired mitochondrial ribonuclease P were found in human failing hearts, suggesting a shared mechanism of defective mitochondrial biogenesis in mouse and human heart failure. CONCLUSIONS These findings identify SDR proteins as important regulators of mitochondrial function and molecular targets of NAD+-based therapy. Furthermore, the benefit is observed regardless of Sirt3-mediated mitochondrial protein deacetylation, a widely held mechanism for NAD+-based therapy for heart failure. The data also show that NAD+-based therapy can be useful in pre-existing heart failure.
Collapse
Affiliation(s)
- Matthew A. Walker
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Hongye Chen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Aprajita Yadav
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Outi Villet
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Tim McMillen
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Yuliang Wang
- Department of Computer Science & Engineering,
University of Washington, Seattle, WA 98195
| | - Hayley Purcell
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Danijel Djukovic
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Daniel Raftery
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| | - Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University
of Washington, Seattle, WA 98195
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of
Anesthesiology & Pain Medicine, University of Washington, Seattle, WA
98109
| |
Collapse
|
5
|
Fillmore N, Hou V, Sun J, Springer D, Murphy E. Cardiac specific knock-down of peroxisome proliferator activated receptor α prevents fasting-induced cardiac lipid accumulation and reduces perilipin 2. PLoS One 2022; 17:e0265007. [PMID: 35259201 PMCID: PMC8903264 DOI: 10.1371/journal.pone.0265007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/18/2022] [Indexed: 11/19/2022] Open
Abstract
While fatty acid metabolism is altered under physiological conditions, alterations can also be maladaptive in diseases such as diabetes and heart failure. Peroxisome Proliferator Activated Receptor α (PPARα) is a transcription factor that regulates fat metabolism but its role in regulating lipid storage in the heart is unclear. The aim of this study is to improve our understanding of how cardiac PPARα regulates cardiac health and lipid accumulation. To study the role of cardiac PPARα, tamoxifen inducible cardiac-specific PPARα knockout mouse (cPPAR-/-) were treated for 5 days with tamoxifen and then studied after 1–2 months. Under baseline conditions, cPPAR-/- mice appear healthy with normal body weight and mortality is not altered. Importantly, cardiac hypertrophy or reduced cardiac function was also not observed at baseline. Mice were fasted to elevate circulating fatty acids and induce cardiac lipid accumulation. After fasting, cPPAR-/- mice had dramatically lower cardiac triglyceride levels than control mice. Interestingly, cPPAR-/- hearts also had reduced Plin2, a key protein involved in lipid accumulation and lipid droplet regulation, which may contribute to the reduction in cardiac lipid accumulation. Overall, this suggests that a decline in cardiac PPARα may blunt cardiac lipid accumulation by decreasing Plin2 and that independent of differences in systemic metabolism a decline in cardiac PPARα does not seem to drive pathological changes in the heart.
Collapse
Affiliation(s)
- Natasha Fillmore
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, North Dakota, United States of America
- * E-mail:
| | - Vincent Hou
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Danielle Springer
- Murine Phenotyping Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
6
|
de Wit-Verheggen VHW, van de Weijer T. Changes in Cardiac Metabolism in Prediabetes. Biomolecules 2021; 11:1680. [PMID: 34827678 PMCID: PMC8615987 DOI: 10.3390/biom11111680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/05/2023] Open
Abstract
In type 2 diabetes mellitus (T2DM), there is an increased prevalence of cardiovascular disease (CVD), even when corrected for atherosclerosis and other CVD risk factors. Diastolic dysfunction is one of the early changes in cardiac function that precedes the onset of cardiac failure, and it occurs already in the prediabetic state. It is clear that these changes are closely linked to alterations in cardiac metabolism; however, the exact etiology is unknown. In this narrative review, we provide an overview of the early cardiac changes in fatty acid and glucose metabolism in prediabetes and its consequences on cardiac function. A better understanding of the relationship between metabolism, mitochondrial function, and cardiac function will lead to insights into the etiology of the declined cardiac function in prediabetes.
Collapse
Affiliation(s)
- Vera H. W. de Wit-Verheggen
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
| | - Tineke van de Weijer
- Department of Nutrition and Movement Sciences, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands;
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Cardiac-Specific Overexpression of ERRγ in Mice Induces Severe Heart Dysfunction and Early Lethality. Int J Mol Sci 2021; 22:ijms22158047. [PMID: 34360813 PMCID: PMC8348522 DOI: 10.3390/ijms22158047] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/17/2022] Open
Abstract
Proper cardiac function depends on the coordinated expression of multiple gene networks related to fuel utilization and mitochondrial ATP production, heart contraction, and ion transport. Key transcriptional regulators that regulate these gene networks have been identified. Among them, estrogen-related receptors (ERRs) have emerged as crucial modulators of cardiac function by regulating cellular metabolism and contraction machinery. Consistent with this role, lack of ERRα or ERRγ results in cardiac derangements that lead to functional maladaptation in response to increased workload. Interestingly, metabolic inflexibility associated with diabetic cardiomyopathy has been recently associated with increased mitochondrial fatty acid oxidation and expression of ERRγ, suggesting that sustained expression of this nuclear receptor could result in a cardiac pathogenic outcome. Here, we describe the generation of mice with cardiac-specific overexpression of ERRγ, which die at young ages due to heart failure. ERRγ transgenic mice show signs of dilated cardiomyopathy associated with cardiomyocyte hypertrophy, increased cell death, and fibrosis. Our results suggest that ERRγ could play a role in mediating cardiac pathogenic responses.
Collapse
|
8
|
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. They are ligand-activated transcription factors and exist in three different isoforms, PPARα (NR1C1), PPARβ/δ (NR1C2), and PPARγ (NR1C3). PPARs regulate a variety of functions, including glucose and lipid homeostasis, inflammation, and development. They exhibit tissue and cell type-specific expression patterns and functions. Besides the established notion of the therapeutic potential of PPAR agonists for the treatment of glucose and lipid disorders, more recent data propose specific PPAR ligands as potential therapies for cardiovascular diseases. In this review, we focus on the knowledge of PPAR function in myocardial infarction, a severe pathological condition for which therapeutic use of PPAR modulation has been suggested.
Collapse
|
9
|
Li FH, Huang XL, Wang H, Guo SW, Li P. Protective effect of Yi-Qi-Huo-Xue Decoction against ischemic heart disease by regulating cardiac lipid metabolism. Chin J Nat Med 2020; 18:779-792. [PMID: 33039057 DOI: 10.1016/s1875-5364(20)60018-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 10/23/2022]
Abstract
Yi-Qi-Huo-Xue Decoction (YQHX) is the recombination of Dang-Gui-Bu-Xue Decoction (DBD), which is one of the well-known traditional Chinese Medicine (TCM) prescription, and has long been shown to have significant protective effects against myocardial ischemic injury. In previous studies, we found that YQHX could regulate lipid and glucose metabolism, promote angiogenesis, attenuate inflammatory response, and ameliorate left ventricular function in myocardial ischemia rat models. However, the underlying mechanism of how YQHX involves in lipid metabolism remains unclear so far. In this study, the underlying mechanism of YQHX in lipid metabolism disorders was elucidated in a myocardial ischemia rat model and a hypoxia-induced H9c2 cell injury model. YQHX (8.2 g·kg-1) and positive-control drug trimetazidine (10 mg·kg-1) were administered daily on the second day after left anterior descending (LAD) operation. At 7 days and 28 days after surgery, changes of cardiac morphology, structure, and function were evaluated by H&E staining and echocardiography, respectively. The plasma lipid levels and mitochondrial ATP content were also evaluated. Western blot and RT-PCR were used to determine the protein and mRNA expressions of AMPK, PGC-1α, CPT-1α, and PPARα. YQHX improved cardiac function and ameliorated lipid metabolism disorders. Furthermore, YQHX increased the expression of p-AMPK, PGC-1α, and CPT-1α without changing PPARα in ischemic rat myocardium. In vitro, YQHX activated the protein and mRNA expression of PGC-1α, CPT-1α, and PPARα in hypoxia-induced H9c2 cells injury, whereas AMPK inhibitor Compound c blocked the effects of YQHX. Taken together, the results suggest that YQHX reduces lipid metabolism disorders in myocardial ischemia via the AMPK-dependent signaling pathway.
Collapse
Affiliation(s)
- Fang-He Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiao-Lou Huang
- College of Acupuncture and Orthopedics, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Hui Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shu-Wen Guo
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing 102400, China.
| | - Ping Li
- The Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
10
|
Kim DK, Shin SJ, Lee J, Park SY, Kim YT, Choi HY, Yoon YE, Moon HS. Carbon monoxide-releasing molecule-3: Amelioration of renal ischemia reperfusion injury in a rat model. Investig Clin Urol 2020; 61:441-451. [PMID: 32666002 PMCID: PMC7329640 DOI: 10.4111/icu.2020.61.4.441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose Despite the role of carbon monoxide in ameliorating ischemia-reperfusion injury (IRI), its use in the clinical setting is restricted owing to its toxicity. Herein, we investigated the in vivo effects of carbon monoxide–releasing molecule-3 (CORM-3) on IRI. Materials and Methods Fifteen rats were equally and randomly divided into three groups: sham (right nephrectomy), control (right nephrectomy and left renal ischemia), and CORM-3 (right nephrectomy and CORM-3 injection before left renal ischemia). Kidney tissues and blood samples collected from sacrificed rats were evaluated to determine the renoprotective effect and mechanism of CORM-3. Results Concentrations of serum creatinine and kidney injury molecule-1 in the CORM-3 group were significantly lower than in the control group after 75 minutes of IRI (1.2 vs. 2.4 mg/dL, p=0.01, and 292 vs. 550 pg/mL, p<0.001, respectively). Furthermore, the CORM-3 group exhibited a higher portion of normal tubules and glomeruli. TUNEL staining revealed fewer apoptotic renal tubular cells in the CORM-3 group than in the control group. The expression of 960 genes in the CORM-3 group was also altered. Pretreatment with CORM-3 before renal IRI produced a significant renoprotective effect. Fifteen of the altered genes were found to be involved in the peroxisome proliferator-activated receptors signaling pathway, and the difference in the expression of these genes between the CORM-3 and control groups was statistically significant (p<0.001). Conclusions CORM-3 ameliorates IRI by decreasing apoptosis and may be a novel strategy for protection against renal warm IRI.
Collapse
Affiliation(s)
- Dae Keun Kim
- Department of Urology, CHA Fertility Center Seoul Station, CHA University School of Medicine, Seoul, Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jiyoung Lee
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Sung Yul Park
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Yong Tae Kim
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hong Yong Choi
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Young Eun Yoon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| | - Hong Sang Moon
- Department of Urology, Hanyang University College of Medicine, Seoul, Korea
| |
Collapse
|
11
|
Hu X, Ou-Yang Q, Wang L, Li T, Xie X, Liu J. AdipoRon prevents l-thyroxine or isoproterenol-induced cardiac hypertrophy through regulating the AMPK-related pathway. Acta Biochim Biophys Sin (Shanghai) 2019; 51:20-30. [PMID: 30566571 DOI: 10.1093/abbs/gmy152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/05/2018] [Indexed: 12/17/2022] Open
Abstract
Cardiac hypertrophy is a risk factor which can intrigue heart failure. In the present study, we explored whether AdipoRon attenuates isoprenaline (ISO) or l-thyroxine-induced cardiac hypertrophy in Sprague-Dawley (SD) rats and whether the anti-hypertrophy effect is mediated by AMPK-related pathway. Here, cardiac hypertrophy was induced by injection of l-thyroxine or ISO in SD rats. In the treatment group, AdipoRon was co-administered. We examined the effects of AdipoRon on cardiac hypertrophy and hypertrophy signaling pathway. The weight of SD rats was recorded every day. Rats were killed for collection of blood and heart under anesthesia. The left heart weight and heart weight were weighed. Paraffin-embedded heart tissue regions (4 μm) were stained with hematoxylin and eosin or Masson to detect left heart hypertrophy and myocardial fibrosis. The serum BNP levels were determined by using an enzyme-linked immunosorbent assay. The mRNA levels of ANP, BNP, PGC-1α, and ERRα were evaluated by real-time PCR analysis. The protein expression levels of PGC-1α, ERRα, and pAMPK/AMPK were determined by western blot analysis. The results showed that AdipoRon significantly reversed heart weight (HW)/body weight (BW) ratio, left ventricular (LV)/BW ratio, serum BNP level and the mRNA level of ANP and BNP induced by ISO or l-thyroxine. ISO or l-thyroxine reduced both the mRNA level and protein level of ERRα and PGC-1α, and also reduced the protein level of pAMPK/AMPK. However, AdipoRon reversed ISO or l-thyroxine-induced changes of pAMPK/AMPK, ERRα, and PGC-1α. Our data indicated that the effects of AdipoRon are mediated partly by activating AMPK-related pathway, and AdipoRon plays a potential role in the prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xinlei Hu
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Qiong Ou-Yang
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Lanlan Wang
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Tingting Li
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Xiaoxue Xie
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| | - Jun Liu
- Jiangsu Key Lab of Drug Screening and Jiangsu Key Lab of Metabolic Disease and Drug Discovery, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Slezak J, Kura B, Babal P, Barancik M, Ferko M, Frimmel K, Kalocayova B, Kukreja RC, Lazou A, Mezesova L, Okruhlicova L, Ravingerova T, Singal PK, Szeiffova Bacova B, Viczenczova C, Vrbjar N, Tribulova N. Potential markers and metabolic processes involved in the mechanism of radiation-induced heart injury. Can J Physiol Pharmacol 2017; 95:1190-1203. [PMID: 28750189 DOI: 10.1139/cjpp-2017-0121] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Irradiation of normal tissues leads to acute increase in reactive oxygen/nitrogen species that serve as intra- and inter-cellular signaling to alter cell and tissue function. In the case of chest irradiation, it can affect the heart, blood vessels, and lungs, with consequent tissue remodelation and adverse side effects and symptoms. This complex process is orchestrated by a large number of interacting molecular signals, including cytokines, chemokines, and growth factors. Inflammation, endothelial cell dysfunction, thrombogenesis, organ dysfunction, and ultimate failing of the heart occur as a pathological entity - "radiation-induced heart disease" (RIHD) that is major source of morbidity and mortality. The purpose of this review is to bring insights into the basic mechanisms of RIHD that may lead to the identification of targets for intervention in the radiotherapy side effect. Studies of authors also provide knowledge about how to select targeted drugs or biological molecules to modify the progression of radiation damage in the heart. New prospective studies are needed to validate that assessed factors and changes are useful as early markers of cardiac damage.
Collapse
Affiliation(s)
- Jan Slezak
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Branislav Kura
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pavel Babal
- b Institute of Pathology, Medical Faculty of Comenius University, Bratislava, Slovakia
| | - Miroslav Barancik
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Miroslav Ferko
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Karel Frimmel
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Barbora Kalocayova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Rakesh C Kukreja
- c Division of Cardiology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
| | - Antigone Lazou
- d School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucia Mezesova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Ludmila Okruhlicova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Tanya Ravingerova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Pawan K Singal
- e University of Manitoba, St. Boniface Research Centre, Winnipeg, MB R2H 2A6, Canada
| | | | - Csilla Viczenczova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Norbert Vrbjar
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Narcis Tribulova
- a Institute for Heart Research, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| |
Collapse
|
13
|
Chong CR, Clarke K, Levelt E. Metabolic Remodeling in Diabetic Cardiomyopathy. Cardiovasc Res 2017; 113:422-430. [PMID: 28177068 PMCID: PMC5412022 DOI: 10.1093/cvr/cvx018] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/02/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetes is a risk factor for heart failure and cardiovascular mortality with specific changes to myocardial metabolism, energetics, structure, and function. The gradual impairment of insulin production and signalling in diabetes is associated with elevated plasma fatty acids and increased myocardial free fatty acid uptake and activation of the transcription factor PPARα. The increased free fatty acid uptake results in accumulation of toxic metabolites, such as ceramide and diacylglycerol, activation of protein kinase C, and elevation of uncoupling protein-3. Insulin signalling and glucose uptake/oxidation become further impaired, and mitochondrial function and ATP production become compromised. Increased oxidative stress also impairs mitochondrial function and disrupts metabolic pathways. The diabetic heart relies on free fatty acids (FFA) as the major substrate for oxidative phosphorylation and is unable to increase glucose oxidation during ischaemia or hypoxia, thereby increasing myocardial injury, especially in ageing female diabetic animals. Pharmacological activation of PPARγ in adipose tissue may lower plasma FFA and improve recovery from myocardial ischaemic injury in diabetes. Not only is the diabetic heart energetically-impaired, it also has early diastolic dysfunction and concentric remodelling. The contractile function of the diabetic myocardium negatively correlates with epicardial adipose tissue, which secretes proinflammatory cytokines, resulting in interstitial fibrosis. Novel pharmacological strategies targeting oxidative stress seem promising in preventing progression of diabetic cardiomyopathy, although clinical evidence is lacking. Metabolic agents that lower plasma FFA or glucose, including PPARγ agonism and SGLT2 inhibition, may therefore be promising options.
Collapse
Affiliation(s)
- Cher-Rin Chong
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Kieran Clarke
- 1 Department of Physiology, Anatomy and Genetics, University of Oxford
| | - Eylem Levelt
- 2 Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital
| |
Collapse
|
14
|
Strunz CMC, Roggerio A, Cruz PL, Pacanaro AP, Salemi VMC, Benvenuti LA, Mansur ADP, Irigoyen MC. Down-regulation of fibroblast growth factor 2 and its co-receptors heparan sulfate proteoglycans by resveratrol underlies the improvement of cardiac dysfunction in experimental diabetes. J Nutr Biochem 2017; 40:219-227. [DOI: 10.1016/j.jnutbio.2016.11.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/26/2016] [Accepted: 11/14/2016] [Indexed: 01/10/2023]
|
15
|
Wang Q, Li C, Zhang Q, Wang Y, Shi T, Lu L, Zhang Y, Wang Y, Wang W. The effect of Chinese herbs and its effective components on coronary heart disease through PPARs-PGC1α pathway. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:514. [PMID: 27955667 PMCID: PMC5153825 DOI: 10.1186/s12906-016-1496-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 12/05/2016] [Indexed: 11/25/2022]
Abstract
Background DanQi pill (DQP) is prescribed widely in China and has definite cardioprotective effect on coronary heart disease. Our previous studies proved that DQP could effectively regulate plasma levels of high density lipoprotein (HDL) and low density lipoprotein (LDL). However, the regulatory mechanisms of DQP and its major components Salvianolic acids and Panax notoginseng saponins (DS) on lipid metabolism disorders haven’t been comprehensively studied so far. Methods Rat model of coronary heart disease was induced by left anterior descending (LAD) artery ligation operations. Rats were divided into sham, model, DQP treated, DS treated and positive drug (clofibrate) treated groups. At 28 days after surgery, cardiac functions were assessed by echocardiography. Expressions of transcription factors and key molecules in energy metabolism pathway were measured by reverse transcriptase polymerase chain reaction or western blotting. Results In ischemic heart model, cardiac functions were severely injured but improved by treatments of DQP and DS. Expression of LPL was down-regulated in model group. Both DQP and DS could up-regulate the mRNA expression of LPL. Membrane proteins involved in lipid transport and uptake, such as FABP4 and CPT-1A, were down-regulated in ischemic heart tissues. Treatment with DQP and DS regulated lipid metabolisms by up-regulating expressions of FABP4 and CPT-1A. DQP and DS also suppressed expression of cytochrome P450. Furthermore, transcriptional factors, such as PPARα, PPARγ, RXRA and PGC-1α, were down-regulated in ischemic model group. DQP and DS could up-regulate expressions of these factors. However, DS showed a better efficacy than DQP on PGC-1α, a coactivator of PPARs. Key molecules in signaling pathways such as AKT1/2, ERK and PI3K were also regulated by DQP and DS simultaneously. Conclusions Salvianolic acids and Panax notoginseng are the major effective components of DanQi pill in improving lipid metabolism in ischemic heart model. The effects may be mediated by regulating transcriptional factors such as PPARs, RXRA and PGC-1α.
Collapse
|
16
|
Zlobine I, Gopal K, Ussher JR. Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1555-68. [DOI: 10.1016/j.bbalip.2016.02.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/15/2016] [Indexed: 12/11/2022]
|
17
|
Cole MA, Abd Jamil AH, Heather LC, Murray AJ, Sutton ER, Slingo M, Sebag-Montefiore L, Tan SC, Aksentijević D, Gildea OS, Stuckey DJ, Yeoh KK, Carr CA, Evans RD, Aasum E, Schofield CJ, Ratcliffe PJ, Neubauer S, Robbins PA, Clarke K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury. FASEB J 2016; 30:2684-2697. [PMID: 27103577 PMCID: PMC5072355 DOI: 10.1096/fj.201500094r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
The role of peroxisome proliferator-activated receptor α (PPARα)-mediated metabolic remodeling in cardiac adaptation to hypoxia has yet to be defined. Here, mice were housed in hypoxia for 3 wk before in vivo contractile function was measured using cine MRI. In isolated, perfused hearts, energetics were measured using (31)P magnetic resonance spectroscopy (MRS), and glycolysis and fatty acid oxidation were measured using [(3)H] labeling. Compared with a normoxic, chow-fed control mouse heart, hypoxia decreased PPARα expression, fatty acid oxidation, and mitochondrial uncoupling protein 3 (UCP3) levels, while increasing glycolysis, all of which served to maintain normal ATP concentrations ([ATP]) and thereby, ejection fractions. A high-fat diet increased cardiac PPARα expression, fatty acid oxidation, and UCP3 levels with decreased glycolysis. Hypoxia was unable to alter the high PPARα expression or reverse the metabolic changes caused by the high-fat diet, with the result that [ATP] and contractile function decreased significantly. The adaptive metabolic changes caused by hypoxia in control mouse hearts were found to have occurred already in PPARα-deficient (PPARα(-/-)) mouse hearts and sustained function in hypoxia despite an inability for further metabolic remodeling. We conclude that decreased cardiac PPARα expression is essential for adaptive metabolic remodeling in hypoxia, but is prevented by dietary fat.-Cole, M. A., Abd Jamil, A. H., Heather, L. C., Murray, A. J., Sutton, E. R., Slingo, M., Sebag-Montefiore, L., Tan, S. C., Aksentijević, D., Gildea, O. S., Stuckey, D. J., Yeoh, K. K., Carr, C. A., Evans, R. D., Aasum, E., Schofield, C. J., Ratcliffe, P. J., Neubauer, S., Robbins, P. A., Clarke, K. On the pivotal role of PPARα in adaptation of the heart to hypoxia and why fat in the diet increases hypoxic injury.
Collapse
Affiliation(s)
- Mark A Cole
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Amira H Abd Jamil
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Andrew J Murray
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Elizabeth R Sutton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Mary Slingo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Liam Sebag-Montefiore
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Suat Cheng Tan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Dunja Aksentijević
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ottilie S Gildea
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Daniel J Stuckey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kar Kheng Yeoh
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom; and
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Rhys D Evans
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Ellen Aasum
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | | - Peter J Ratcliffe
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
18
|
The Correlation of PPARα Activity and Cardiomyocyte Metabolism and Structure in Idiopathic Dilated Cardiomyopathy during Heart Failure Progression. PPAR Res 2016; 2016:7508026. [PMID: 26981112 PMCID: PMC4770161 DOI: 10.1155/2016/7508026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/11/2016] [Indexed: 12/20/2022] Open
Abstract
This study aimed to define relationship between PPARα expression and metabolic-structural characteristics during HF progression in hearts with DCM phenotype. Tissue endomyocardial biopsy samples divided into three groups according to LVEF ((I) 45–50%, n = 10; (II) 30–40%, n = 15; (III) <30%, n = 15; and control (donor hearts, >60%, n = 6)) were investigated. The PPARα mRNA expression in the failing hearts was low in Group (I), high in Group (II), and comparable to that of the control in Group (III). There were analogous changes in the expression of FAT/CD36 and CPT-1 mRNA in contrast to continuous overexpression of GLUT-4 mRNA and significant increase of PDK-4 mRNA in Group (II). In addition, significant structural changes of cardiomyocytes with glycogen accumulation were accompanied by increased expression of PPARα. For the entire study population with HF levels of FAT/CD36 mRNA showed a strong tendency of negative correlation with LVEF. In conclusion, PPARα elevated levels may be a direct cause of adverse remodeling, both metabolic and structural. Thus, there is limited time window for therapy modulating cardiac metabolism and protecting cardiomyocyte structure in failing heart.
Collapse
|
19
|
Mansor LS, Mehta K, Aksentijevic D, Carr CA, Lund T, Cole MA, Le Page L, Sousa Fialho MDL, Shattock MJ, Aasum E, Clarke K, Tyler DJ, Heather LC. Increased oxidative metabolism following hypoxia in the type 2 diabetic heart, despite normal hypoxia signalling and metabolic adaptation. J Physiol 2016; 594:307-20. [PMID: 26574233 PMCID: PMC4713751 DOI: 10.1113/jp271242] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/10/2015] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Adaptation to hypoxia makes the heart more oxygen efficient, by metabolising more glucose. In contrast, type 2 diabetes makes the heart metabolise more fatty acids. Diabetes increases the chances of the heart being exposed to hypoxia, but whether the diabetic heart can adapt and respond is unknown. In this study we show that diabetic hearts retain the ability to adapt their metabolism in response to hypoxia, with functional hypoxia signalling pathways. However, the hypoxia-induced changes in metabolism are additive to abnormal baseline metabolism, resulting in hypoxic diabetic hearts metabolising more fat and less glucose than controls. This stops the diabetic heart being able to recover its function when stressed. These results demonstrate that the diabetic heart retains metabolic flexibility to adapt to hypoxia, but is hindered by the baseline effects of the disease. This increases our understanding of how the diabetic heart is affected by hypoxia-associated complications of the disease. ABSTRACT Hypoxia activates the hypoxia-inducible factor (HIF), promoting glycolysis and suppressing mitochondrial respiration. In the type 2 diabetic heart, glycolysis is suppressed whereas fatty acid metabolism is promoted. The diabetic heart experiences chronic hypoxia as a consequence of increased obstructive sleep apnoea and cardiovascular disease. Given the opposing metabolic effects of hypoxia and diabetes, we questioned whether diabetes affects cardiac metabolic adaptation to hypoxia. Control and type 2 diabetic rats were housed for 3 weeks in normoxia or 11% oxygen. Metabolism and function were measured in the isolated perfused heart using radiolabelled substrates. Following chronic hypoxia, both control and diabetic hearts upregulated glycolysis, lactate efflux and glycogen content and decreased fatty acid oxidation rates, with similar activation of HIF signalling pathways. However, hypoxia-induced changes were superimposed on diabetic hearts that were metabolically abnormal in normoxia, resulting in glycolytic rates 30% lower, and fatty acid oxidation 36% higher, in hypoxic diabetic hearts than hypoxic controls. Peroxisome proliferator-activated receptor α target proteins were suppressed by hypoxia, but activated by diabetes. Mitochondrial respiration in diabetic hearts was divergently activated following hypoxia compared with controls. These differences in metabolism were associated with decreased contractile recovery of the hypoxic diabetic heart following an acute hypoxic insult. In conclusion, type 2 diabetic hearts retain metabolic flexibility to adapt to hypoxia, with normal HIF signalling pathways. However, they are more dependent on oxidative metabolism following hypoxia due to abnormal normoxic metabolism, which was associated with a functional deficit in response to stress.
Collapse
Affiliation(s)
- Latt S Mansor
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Keshavi Mehta
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dunja Aksentijevic
- British Heart Foundation Centre of Research Excellence, King's College London, The Rayne Institute, London, UK
| | - Carolyn A Carr
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Trine Lund
- Department of Medical Biology, University of Tromso, Norway
| | - Mark A Cole
- University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK
| | - Lydia Le Page
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King's College London, The Rayne Institute, London, UK
| | - Ellen Aasum
- Department of Medical Biology, University of Tromso, Norway
| | - Kieran Clarke
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
20
|
Barlaka E, Galatou E, Mellidis K, Ravingerova T, Lazou A. Role of Pleiotropic Properties of Peroxisome Proliferator-Activated Receptors in the Heart: Focus on the Nonmetabolic Effects in Cardiac Protection. Cardiovasc Ther 2016; 34:37-48. [DOI: 10.1111/1755-5922.12166] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Eleftheria Barlaka
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Eleftheria Galatou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Kyriakos Mellidis
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| | - Tanya Ravingerova
- Institute for Heart Research; Slovak Academy of Sciences; Bratislava Slovak Republic
| | - Antigone Lazou
- School of Biology; Aristotle University of Thessaloniki; Thessaloniki Greece
| |
Collapse
|
21
|
Protective Effect of Peroxisome Proliferator-Activated Receptor α Activation against Cardiac Ischemia-Reperfusion Injury Is Related to Upregulation of Uncoupling Protein-3. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:3539649. [PMID: 26770648 PMCID: PMC4685116 DOI: 10.1155/2016/3539649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/17/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022]
Abstract
Activation of peroxisome proliferator-activated receptor α (PPARα) confers cardioprotection, while its mechanism remains elusive. We investigated the protective effect of PPARα activation against cardiac ischemia-reperfusion injury in terms of the expression of uncoupling protein (UCP). Myocardial infarct size and UCP expression were measured in rats treated with WY-14643 20 mg/kg, a PPARα ligand, or vehicle. WY-14643 increased UCP3 expression in vivo. Myocardial infarct size was decreased in the WY-14643 group (76 ± 8% versus 42 ± 12%, P<0.05). During reperfusion, the incidence of arrhythmia was higher in the control group compared with the WY-14643 group (9/10 versus 3/10, P<0.05). H9c2 cells were incubated for 24 h with WY-14643 or vehicle. WY-14643 increased UCP3 expression in H9c2 cells. WY-14643 decreased hypoxia-stimulated ROS production. Cells treated with WY-14643 were more resistant to hypoxia-reoxygenation than the untreated cells. Knocking-down UCP3 by siRNA prevented WY-14643 from attenuating the production of ROS. UCP3 siRNA abolished the effect of WY-14643 on cell viability against hypoxia-reoxygenation. In summary, administration of PPARα agonist WY-14643 mitigated the extent of myocardial infarction and incidence of reperfusion-induced arrhythmia. PPARα activation conferred cytoprotective effect against hypoxia-reoxygenation. Associated mechanisms involved increased UCP3 expression and resultant attenuation of ROS production.
Collapse
|
22
|
PPARs: Protectors or Opponents of Myocardial Function? PPAR Res 2015; 2015:835985. [PMID: 26713088 PMCID: PMC4680114 DOI: 10.1155/2015/835985] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/05/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Over 5 million people in the United States suffer from the complications of heart failure (HF), which is a rapidly expanding health complication. Disorders that contribute to HF include ischemic cardiac disease, cardiomyopathies, and hypertension. Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor family. There are three PPAR isoforms: PPARα, PPARγ, and PPARδ. They can be activated by endogenous ligands, such as fatty acids, as well as by pharmacologic agents. Activators of PPARs are used for treating several metabolic complications, such as diabetes and hyperlipidemia that are directly or indirectly associated with HF. However, some of these drugs have adverse effects that compromise cardiac function. This review article aims to summarize the current basic and clinical research findings of the beneficial or detrimental effects of PPAR biology on myocardial function.
Collapse
|
23
|
Drosatos K, Pollak NM, Pol CJ, Ntziachristos P, Willecke F, Valenti MC, Trent CM, Hu Y, Guo S, Aifantis I, Goldberg IJ. Cardiac Myocyte KLF5 Regulates Ppara Expression and Cardiac Function. Circ Res 2015; 118:241-53. [PMID: 26574507 DOI: 10.1161/circresaha.115.306383] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022]
Abstract
RATIONALE Fatty acid oxidation is transcriptionally regulated by peroxisome proliferator-activated receptor (PPAR)α and under normal conditions accounts for 70% of cardiac ATP content. Reduced Ppara expression during sepsis and heart failure leads to reduced fatty acid oxidation and myocardial energy deficiency. Many of the transcriptional regulators of Ppara are unknown. OBJECTIVE To determine the role of Krüppel-like factor 5 (KLF5) in transcriptional regulation of Ppara. METHODS AND RESULTS We discovered that KLF5 activates Ppara gene expression via direct promoter binding. This is blocked in hearts of septic mice by c-Jun, which binds an overlapping site on the Ppara promoter and reduces transcription. We generated cardiac myocyte-specific Klf5 knockout mice that showed reduced expression of cardiac Ppara and its downstream fatty acid metabolism-related targets. These changes were associated with reduced cardiac fatty acid oxidation, ATP levels, increased triglyceride accumulation, and cardiac dysfunction. Diabetic mice showed parallel changes in cardiac Klf5 and Ppara expression levels. CONCLUSIONS Cardiac myocyte KLF5 is a transcriptional regulator of Ppara and cardiac energetics.
Collapse
Affiliation(s)
- Konstantinos Drosatos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.).
| | - Nina M Pollak
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Christine J Pol
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Panagiotis Ntziachristos
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Florian Willecke
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Mesele-Christina Valenti
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Chad M Trent
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Yunying Hu
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Shaodong Guo
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Iannis Aifantis
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| | - Ira J Goldberg
- From the Metabolic Biology Laboratory, Department of Pharmacology, Center for Translational Medicine, Temple University School of Medicine, Philadelphia, PA (K.D., C.J.P., M.-C.V.); Institute of Molecular Biosciences, University of Graz, Graz, Austria (N.M.P.); Howard Hughes Medical Institute, Department of Pathology, New York University School of Medicine (P.N., I.A.); Division of Endocrinology, Diabetes, and Metabolism, New York University-Langone School of Medicine (F.W., C.M.T., Y.H., I.J.G.); and Division of Molecular Cardiology, Department of Medicine, Texas A & M Health Science Center, Temple (S.G.)
| |
Collapse
|
24
|
Stöhr R, Kappel BA, Carnevale D, Cavalera M, Mavilio M, Arisi I, Fardella V, Cifelli G, Casagrande V, Rizza S, Cattaneo A, Mauriello A, Menghini R, Lembo G, Federici M. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice. Mol Metab 2015; 4:741-52. [PMID: 26500845 PMCID: PMC4588459 DOI: 10.1016/j.molmet.2015.07.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 07/23/2015] [Accepted: 07/27/2015] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE Tissue inhibitor of metalloproteinase 3 (TIMP3) is an extracellular matrix (ECM) bound protein, which has been shown to be downregulated in human subjects and experimental models with cardiometabolic disorders, including type 2 diabetes mellitus, hypertension and atherosclerosis. The aim of this study was to investigate the effects of TIMP3 on cardiac energy homeostasis during increased metabolic stress conditions. METHODS ApoE(-/-)TIMP3(-/-) and ApoE(-/-) mice on a C57BL/6 background were subjected to telemetric ECG analysis and experimental myocardial infarction as models of cardiac stress induction. We used Western blot, qRT-PCR, histology, metabolomics, RNA-sequencing and in vivo phenotypical analysis to investigate the molecular mechanisms of altered cardiac energy metabolism. RESULTS ApoE(-/-)TIMP3(-/-) revealed decreased lifespan. Telemetric ECG analysis showed increased arrhythmic episodes, and experimental myocardial infarction by left anterior descending artery (LAD) ligation resulted in increased peri-operative mortality together with increased scar formation, ventricular dilatation and a reduction of cardiac function after 4 weeks in the few survivors. Hearts of ApoE(-/-)TIMP3(-/-) exhibited accumulation of neutral lipids when fed a chow diet, which was exacerbated by a high fat, high cholesterol diet. Metabolomics analysis revealed an increase in circulating markers of oxidative stress with a reduction in long chain fatty acids. Using whole heart mRNA sequencing, we identified apelin as a putative modulator of these metabolic defects. Apelin is a regulator of fatty acid oxidation, and we found a reduction in the levels of enzymes involved in fatty acid oxidation in the left ventricle of ApoE(-/-)TIMP3(-/-) mice. Injection of apelin restored the hitherto identified metabolic defects of lipid oxidation. CONCLUSION TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.
Collapse
Affiliation(s)
- Robert Stöhr
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Ben Arpad Kappel
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Internal Medicine I, University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Daniela Carnevale
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michele Cavalera
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Mavilio
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ivan Arisi
- Genomics Facility, European Brain Research Institute, Rome, Italy
| | - Valentina Fardella
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Giuseppe Cifelli
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Viviana Casagrande
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Rizza
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute, Rome, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - Alessandro Mauriello
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Rossella Menghini
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Giuseppe Lembo
- Department of Angiocardioneurology and Translational Medicine, IRCCS Neuromed, 86077 Pozzilli, IS, Italy
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Center for Atherosclerosis, Department of Medicine, Policlinico Tor Vergata, 00133 Rome, Italy
- Corresponding author. Department of Systems Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy. Tel.: +39 06 72596889; fax: +39 06 72596890.
| |
Collapse
|
25
|
Ravingerová T, Ledvényiová-Farkašová V, Ferko M, Barteková M, Bernátová I, Pecháňová O, Adameová A, Kolář F, Lazou A. Pleiotropic preconditioning-like cardioprotective effects of hypolipidemic drugs in acute ischemia–reperfusion in normal and hypertensive rats. Can J Physiol Pharmacol 2015; 93:495-503. [DOI: 10.1139/cjpp-2014-0502] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although pleiotropy, which is defined as multiple effects derived from a single gene, was recognized many years ago, and considerable progress has since been achieved in this field, it is not very clear how much this feature of a drug is clinically relevant. During the last decade, beneficial pleiotropic effects from hypolipidemic drugs (as in, effects that are different from the primary ones) have been associated with reduction of cardiovascular risk. As with statins, the agonists of peroxisome proliferator-activated receptors (PPARs), niacin and fibrates, have been suggested to exhibit pleiotropic activity that could significantly modify the outcome of a cardiovascular ailment. This review examines findings demonstrating the impacts of treatment with hypolipidemic drugs on cardiac response to ischemia in a setting of acute ischemia–reperfusion, in relation to PPAR activation. Specifically, it addresses the issue of susceptibility to ischemia, with particular regard to the preconditioning-like cardioprotection conferred by hypolipidemic drugs, as well as the potential molecular mechanisms behind this cardioprotection. Finally, the involvement of PPAR activation in the mechanisms of non-metabolic cardioprotective effects from hypolipidemic drugs, and their effects on normal and pathologically altered myocardium (in the hearts of hypertensive rats) is also discussed.
Collapse
Affiliation(s)
- Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Veronika Ledvényiová-Farkašová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Miroslav Ferko
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Monika Barteková
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Iveta Bernátová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Ol’ga Pecháňová
- Institute of Normal and Pathological Physiology, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - František Kolář
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
26
|
Ali S, Ussher JR, Baggio LL, Kabir MG, Charron MJ, Ilkayeva O, Newgard CB, Drucker DJ. Cardiomyocyte glucagon receptor signaling modulates outcomes in mice with experimental myocardial infarction. Mol Metab 2014; 4:132-43. [PMID: 25685700 PMCID: PMC4314543 DOI: 10.1016/j.molmet.2014.11.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 11/23/2014] [Accepted: 11/24/2014] [Indexed: 11/26/2022] Open
Abstract
Objective Glucagon is a hormone with metabolic actions that maintains normoglycemia during the fasting state. Strategies enabling either inhibition or activation of glucagon receptor (Gcgr) signaling are being explored for the treatment of diabetes or obesity. However, the cardiovascular consequences of manipulating glucagon action are poorly understood. Methods We assessed infarct size and the following outcomes following left anterior descending (LAD) coronary artery ligation; cardiac gene and protein expression, acylcarnitine profiles, and cardiomyocyte survival in normoglycemic non-obese wildtype mice, and in newly generated mice with selective inactivation of the cardiomyocyte Gcgr. Complementary experiments analyzed Gcgr signaling and cell survival in cardiomyocyte cultures and cell lines, in the presence or absence of exogenous glucagon. Results Exogenous glucagon administration directly impaired recovery of ventricular pressure in ischemic mouse hearts ex vivo, and increased mortality from myocardial infarction after LAD coronary artery ligation in mice in a p38 MAPK-dependent manner. In contrast, cardiomyocyte-specific reduction of glucagon action in adult GcgrCM−/− mice significantly improved survival, and reduced hypertrophy and infarct size following myocardial infarction. Metabolic profiling of hearts from GcgrCM−/− mice revealed a marked reduction in long chain acylcarnitines in both aerobic and ischemic hearts, and following high fat feeding, consistent with an essential role for Gcgr signaling in the control of cardiac fatty acid utilization. Conclusions Activation or reduction of cardiac Gcgr signaling in the ischemic heart produces substantial cardiac phenotypes, findings with implications for therapeutic strategies designed to augment or inhibit Gcgr signaling for the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Safina Ali
- Department of Laboratory Medicine and Pathobiology, Department of Medicine, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - John R Ussher
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - M Golam Kabir
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Maureen J Charron
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA ; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA ; Sarah W. Stedman Nutrition and Metabolism Center and Duke Molecular Physiology Institute, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Daniel J Drucker
- Department of Laboratory Medicine and Pathobiology, Department of Medicine, Toronto, Ontario, Canada ; Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Toronto, ON, Canada ; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Virag JAI, Lust RM. Circadian influences on myocardial infarction. Front Physiol 2014; 5:422. [PMID: 25400588 PMCID: PMC4214187 DOI: 10.3389/fphys.2014.00422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/12/2014] [Indexed: 11/13/2022] Open
Abstract
Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
28
|
Ravingerová T, Carnická S, Ledvényiová V, Barlaka E, Galatou E, Chytilová A, Mandíková P, Nemčeková M, Adameová A, Kolář F, Lazou A. Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart. Physiol Res 2014; 62:S151-63. [PMID: 24329695 DOI: 10.33549/physiolres.932597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Genes encoding enzymes involved in fatty acids (FA) and glucose oxidation are transcriptionally regulated by peroxisome proliferator-activated receptors (PPAR), members of the nuclear receptor superfamily. Under conditions associated with O(2) deficiency, PPAR-alpha modulates substrate switch (between FA and glucose) aimed at the adequate energy production to maintain basic cardiac function. Both, positive and negative effects of PPAR-alpha activation on myocardial ischemia/reperfusion (I/R) injury have been reported. Moreover, the role of PPAR-mediated metabolic shifts in cardioprotective mechanisms of preconditioning (PC) is relatively less investigated. We explored the effects of PPAR-alpha upregulation mimicking a delayed "second window" of PC on I/R injury in the rat heart and potential downstream mechanisms involved. Pretreatment of rats with PPAR-alpha agonist WY-14643 (WY, 1 mg/kg, i.p.) 24 h prior to I/R reduced post-ischemic stunning, arrhythmias and the extent of lethal injury (infarct size) and apoptosis (caspase-3 expression) in isolated hearts exposed to 30-min global ischemia and 2-h reperfusion. Protection was associated with remarkably increased expression of PPAR-alpha target genes promoting FA utilization (medium-chain acyl-CoA dehydrogenase, pyruvate dehydrogenase kinase-4 and carnitine palmitoyltransferase I) and reduced expression of glucose transporter GLUT-4 responsible for glucose transport and metabolism. In addition, enhanced Akt phosphorylation and protein levels of eNOS, in conjunction with blunting of cardioprotection by NOS inhibitor L-NAME, were observed in the WY-treated hearts. CONCLUSIONS upregulation of PPAR-alpha target metabolic genes involved in FA oxidation may underlie a delayed phase PC-like protection in the rat heart. Potential non-genomic effects of PPAR-alpha-mediated cardioprotection may involve activation of prosurvival PI3K/Akt pathway and its downstream targets such as eNOS and subsequently reduced apoptosis.
Collapse
Affiliation(s)
- T Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Duerr GD, Heinemann JC, Arnoldi V, Feisst A, Kley J, Ghanem A, Welz A, Dewald O. Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart. Life Sci 2014; 102:88-97. [DOI: 10.1016/j.lfs.2014.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
|
30
|
Kolwicz SC, Purohit S, Tian R. Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 2013; 113:603-16. [PMID: 23948585 DOI: 10.1161/circresaha.113.302095] [Citation(s) in RCA: 582] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The network for cardiac fuel metabolism contains intricate sets of interacting pathways that result in both ATP-producing and non-ATP-producing end points for each class of energy substrates. The most salient feature of the network is the metabolic flexibility demonstrated in response to various stimuli, including developmental changes and nutritional status. The heart is also capable of remodeling the metabolic pathways in chronic pathophysiological conditions, which results in modulations of myocardial energetics and contractile function. In a quest to understand the complexity of the cardiac metabolic network, pharmacological and genetic tools have been engaged to manipulate cardiac metabolism in a variety of research models. In concert, a host of therapeutic interventions have been tested clinically to target substrate preference, insulin sensitivity, and mitochondrial function. In addition, the contribution of cellular metabolism to growth, survival, and other signaling pathways through the production of metabolic intermediates has been increasingly noted. In this review, we provide an overview of the cardiac metabolic network and highlight alterations observed in cardiac pathologies as well as strategies used as metabolic therapies in heart failure. Lastly, the ability of metabolic derivatives to intersect growth and survival are also discussed.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, Seattle, WA 98109, USA
| | | | | |
Collapse
|
31
|
NEMČEKOVÁ M, ČARNICKÁ S, FERKO M, MURÁRIKOVÁ M, LEDVÉNYIOVÁ V, RAVINGEROVÁ T. Treatment of Rats With Hypolipidemic Compound Pirinixic Acid Protects Their Hearts Against Ischemic Injury: Are Mitochondrial KATP Channels and Reactive Oxygen Species Involved? Physiol Res 2013; 62:577-84. [DOI: 10.33549/physiolres.932591] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hypolipidemic compound pirinixic acid (WY-14643, WY) is known to exert pleiotropic (other than primary) effects, such as activation of peroxisome proliferator-activated receptors (PPAR-α), transcription factors regulating different cardiac functions. Their role in ischemia-reperfusion (I/R) injury and cardioprotection is less clear, although protective effects of PPAR agonists have been documented. This study was designed to explore the effects of WY on the I/R injury in the rat heart and potential mechanisms involved, including mitochondrial KATP channels (mitoKATP) opening and production of reactive oxygen species (ROS). Langendorff-perfused hearts of rats intragastrally treated with WY (3 mg/kg/day) for 5 days and of control animals were subjected to 30-min global ischemia and 2-h reperfusion with or without 15-min perfusion with mitoKATP blocker 5-hydroxydecanoate (5-HD) prior to I/R. Evaluation of the infarct size (IS, TTC staining) served as the main end-point of protection. Lipid peroxidation (a marker of ROS production) was determined by measurement of myocardial concentration of conjugated dienes (CD), whereas protein expression of endothelial NO synthase was analysed by Western blotting. A 2-fold increase in the cardiac protein levels of eNOS after treatment with WY was accompanied by lower post-I/R levels of CD compared with those in the hearts of untreated controls, although WY itself enhanced ROS generation prior to ischemia. IS was reduced by 47 % in the hearts of WY-treated rats (P<0.05), and this effect was reversed by 5-HD. Results suggest that PPAR-α activation may confer protection against lethal I/R injury in the rat heart that involves up-regulation of eNOS, mitoKATP opening and reduced oxidative stress during I/R.
Collapse
Affiliation(s)
| | | | | | | | | | - T. RAVINGEROVÁ
- Institute for Heart Research, Slovak Academy of Sciences, Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| |
Collapse
|
32
|
Barlaka E, Ledvényiová V, Galatou E, Ferko M, Čarnická S, Ravingerová T, Lazou A. Delayed cardioprotective effects of WY-14643 are associated with inhibition of MMP-2 and modulation of Bcl-2 family proteins through PPAR-α activation in rat hearts subjected to global ischaemia–reperfusion. Can J Physiol Pharmacol 2013; 91:608-16. [DOI: 10.1139/cjpp-2012-0412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors regulating cardiac lipid metabolism and energy homeostasis. Although the activation of PPARs has been implicated in cardioprotection, the molecular mechanisms are largely unexplored. In this study, we aimed to investigate the effect of the PPAR-α agonist WY-14643 (WY), mimicking a delayed effect of preconditioning in rat hearts exposed to acute ischaemia–reperfusion (I/R) 24 h later, and to define whether antioxidative and antiapoptotic mechanisms are involved. Treatment with WY markedly attenuated post-ischaemic contractile dysfunction (as evidenced by the reduced infarct size), the higher left ventricular developed pressure (LVDP) recovery, and the decreased occurrence of arrhythmias. These effects were abolished in the presence of the PPAR-α antagonist MK886. Heme oxygenase-1, a key antioxidative enzyme implicated in cytoprotection, was upregulated in response to WY at baseline, but was markedly reduced after I/R, indicating reduced oxidative stress. WY treatment was also associated with decreased mRNA levels and enzymatic activity of matrix metalloproteinase-2, and increased ratios of Bcl-2:Bax proteins. These results indicate that PPAR-α activation by its selective ligand WY may confer delayed preconditioning-like protection in rat hearts subjected to I/R by modulating oxidative stress, activation of matrix metalloproteinase-2, and expression of Bcl-2 and Bax.
Collapse
Affiliation(s)
- Eleftheria Barlaka
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Veronika Ledvényiová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Miroslav Ferko
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Slávka Čarnická
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, Bratislava, Slovak Republic
| | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
33
|
Ussher JR, Sutendra G, Jaswal JS. The impact of current and novel anti-diabetic therapies on cardiovascular risk. Future Cardiol 2013. [PMID: 23176691 DOI: 10.2217/fca.12.68] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) has become an overwhelming health condition that is no longer just a threat to developed nations, but to undeveloped nations as well. Current therapies for T2DM are relatively effective in controlling hyperglycemia; examples include metformin, thiazolidinediones, sulfonylurea derivatives, α-glucosidase inhibitors, glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Despite their efficacy in controlling hyperglycemia, due to recent findings of increased cardiovascular risk following treatment with either rosiglitazone or intensive glucose lowering, new guidelines from the US FDA recommend that new therapies for diabetes not only improve glycemia, but exert no adverse cardiovascular effects. Based on cardiovascular risk profiles, metformin appears to be the superior anti-diabetic therapy, although studies in humans with glucagon-like peptide-1 receptor agonists are encouraging. As patients with T2DM also often have cardiovascular disease, the increased rigor in drug development should ultimately reduce the health burden of both of these conditions.
Collapse
Affiliation(s)
- John R Ussher
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Canada.
| | | | | |
Collapse
|
34
|
Matsushima S, Kuroda J, Ago T, Zhai P, Ikeda Y, Oka S, Fong GH, Tian R, Sadoshima J. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α. Circ Res 2013; 112:1135-49. [PMID: 23476056 DOI: 10.1161/circresaha.111.300171] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE NADPH oxidase (Nox) 2 and Nox4 are major components of the Nox family which purposefully produce reactive oxidative species, namely O2(-) and H2O2, in the heart. The isoform-specific contribution of Nox2 and Nox4 to ischemia/reperfusion (I/R) injury is poorly understood. OBJECTIVE We investigated the role of Nox2 and Nox4 in mediating oxidative stress and myocardial injury during I/R using loss-of-function mouse models. METHODS AND RESULTS Systemic (s) Nox2 knockout (KO), sNox4 KO, and cardiac-specific (c) Nox4 KO mice were subjected to I/R (30 minutes/24 hours, respectively). Both myocardial infarct size/area at risk and O2(-) production were lower in sNox2 KO, sNox4 KO, and cNox4 KO than in wild-type mice. Unexpectedly, however, the myocardial infarct size/area at risk was greater, despite less O2(-) production, in sNox2 KO+cNox4 KO (double-KO) mice and transgenic mice (Tg) with cardiac-specific expression of dominant-negative Nox, which suppresses both Nox2 and Nox4, than in wild-type or single KO mice. Hypoxia-inducible factor-1α was downregulated whereas peroxisome proliferator-activated receptor-α was upregulated in Tg-dominant-negative Nox mice. A cross with mice deficient in prolyl hydroxylase 2, which hydroxylates hypoxia-inducible factor-1α, rescued the I/R injury and prevented upregulation of peroxisome proliferator-activated receptor-α in Tg-dominant-negative Nox mice. A cross with peroxisome proliferator-activated receptor-α KO mice also attenuated the injury in Tg- dominant-negative Nox mice. CONCLUSIONS Both Nox2 and Nox4 contribute to the increase in reactive oxidative species and injury by I/R. However, low levels of reactive oxidative species produced by either Nox2 or Nox4 regulate hypoxia-inducible factor-1α and peroxisome proliferator-activated receptor-α, thereby protecting the heart against I/R, suggesting that Noxs also act as a physiological sensor for myocardial adaptation.
Collapse
Affiliation(s)
- Shouji Matsushima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee SK, Lee JO, Kim JH, Kim N, You GY, Moon JW, Sha J, Kim SJ, Lee YW, Kang HJ, Park SH, Kim HS. Coenzyme Q10 increases the fatty acid oxidation through AMPK-mediated PPARα induction in 3T3-L1 preadipocytes. Cell Signal 2012; 24:2329-36. [DOI: 10.1016/j.cellsig.2012.07.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 07/29/2012] [Indexed: 10/28/2022]
|
36
|
Chen W, Chen W, Xia Y, Zhao X, Wang H, Yu M, Li Y, Ye H, Zhang Y. Therapy with Astragalus polysaccharides rescues lipotoxic cardiomyopathy in MHC-PPARα mice. Mol Biol Rep 2012. [DOI: 10.1007/s11033-012-2325-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
37
|
Ravingerová T, Čarnická S, Nemčeková M, Ledvényiová V, Adameová A, Kelly T, Barlaka E, Galatou E, Khandelwal VKM, Lazou A. PPAR-alpha activation as a preconditioning-like intervention in rats in vivo confers myocardial protection against acute ischaemia–reperfusion injury: involvement of PI3K–Akt. Can J Physiol Pharmacol 2012; 90:1135-44. [DOI: 10.1139/y2012-052] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptors (PPAR) regulate the expression of genes involved in lipid metabolism, energy production, and inflammation. Their role in ischaemia–reperfusion (I/R) is less clear, although research indicates involvement of PPARs in some forms of preconditioning. This study aimed to explore the effects of PPAR-α activation on the I/R injury and potential cardioprotective downstream mechanisms involved. Langendorff-perfused hearts of rats pretreated with the selective PPAR-α agonist WY-14643 (WY, pirinixic acid; 3 mg·(kg body mass)·day–1; 5 days) were subjected to 30 min ischaemia – 2 h reperfusion with or without the phosphatidylinositol 3-kinase (PI3K)–Akt inhibitor wortmannin for the evaluation of functional (left ventricular developed pressure, LVDP) recovery, infarct size (IS), and reperfusion-induced arrhythmias. A 2-fold increase in baseline PPAR-α mRNA levels (qPCR) in the WY-treated group and higher post-I/R PPAR-α levels compared with those in untreated controls were accompanied by similar changes in the expression of PPAR-α target genes PDK4 and mCPT-1, regulating glucose and fatty acid metabolism, and by enhanced Akt phosphorylation. Post-ischaemic LVDP restoration in WY-treated hearts reached 60% ± 9% of the pre-ischaemic values compared with 24% ± 3% in the control hearts (P < 0.05), coupled with reduced IS and incidence of ventricular fibrillation that was blunted by wortmannin. Results indicate that PPAR-α up-regulation may confer preconditioning-like protection via metabolic effects. Downstream mechanisms of PPAR-α-mediated cardioprotection may involve PI3K–Akt activation.
Collapse
Affiliation(s)
- Táňa Ravingerová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dubravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Slávka Čarnická
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dubravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Martina Nemčeková
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dubravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Veronika Ledvényiová
- Institute for Heart Research, Slovak Academy of Sciences and Centre of Excellence of SAS NOREG, POB 104, Dubravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Adriana Adameová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| | - Tara Kelly
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftheria Barlaka
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleftheria Galatou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Antigone Lazou
- School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
38
|
Long-term treatment with the pan-PPAR agonist tetradecylthioacetic acid or fish oil is associated with increased cardiac content of n-3 fatty acids in rat. Lipids Health Dis 2012; 11:82. [PMID: 22738017 PMCID: PMC3459737 DOI: 10.1186/1476-511x-11-82] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/02/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Excess peroxisome proliferator-activated receptor (PPAR) stimulation has been associated with detrimental health effects including impaired myocardial function. Recently, supplementation with n-3 polyunsaturated fatty acids (PUFA) has been associated with improved left ventricular function and functional capacity in patients with dilated cardiomyopathy. We investigated the long-term effects of the pan-PPAR agonist tetradecylthioacetic acid (TTA) and/or high-dose fish oil (FO) on cardiac fatty acid (FA) composition and lipid metabolism. Male Wistar rats were given one out of four different 25% (w/v) fat diets: control diet; TTA diet; FO diet; or diet containing both TTA and FO. RESULTS After 50 weeks n-3 PUFA levels were increased by TTA and FO in the heart, whereas liver levels were reduced following TTA administration. TTA was associated with a decrease in arachidonic acid, increased activities of carnitine palmitoyltransferase II, fatty acyl-CoA oxidase, glycerol-3-phosphate acyltransferase, and fatty acid synthase in the heart. Furthermore, cardiac Ucp3 and Cact mRNA was upregulated. CONCLUSIONS Long-term treatment with the pan-PPAR agonist TTA or high-dose FO induced marked changes in PUFA composition and enzymatic activity involved in FA metabolism in the heart, different from liver. Changes included increased FA oxidation and a selective increase in cardiac n-3 PUFA.
Collapse
|
39
|
Kolwicz SC, Olson DP, Marney LC, Garcia-Menendez L, Synovec RE, Tian R. Cardiac-specific deletion of acetyl CoA carboxylase 2 prevents metabolic remodeling during pressure-overload hypertrophy. Circ Res 2012; 111:728-38. [PMID: 22730442 DOI: 10.1161/circresaha.112.268128] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE Decreased fatty acid oxidation (FAO) with increased reliance on glucose are hallmarks of metabolic remodeling that occurs in pathological cardiac hypertrophy and is associated with decreased myocardial energetics and impaired cardiac function. To date, it has not been tested whether prevention of the metabolic switch that occurs during the development of cardiac hypertrophy has unequivocal benefits on cardiac function and energetics. OBJECTIVE Because malonyl CoA production via acetyl CoA carboxylase 2 (ACC2) inhibits the entry of long chain fatty acids into the mitochondria, we hypothesized that mice with a cardiac-specific deletion of ACC2 (ACC2H-/-) would maintain cardiac FAO and improve function and energetics during the development of pressure-overload hypertrophy. METHODS AND RESULTS ACC2 deletion led to a significant reduction in cardiac malonyl CoA levels. In isolated perfused heart experiments, left ventricular function and oxygen consumption were similar in ACC2H-/- mice despite an ≈60% increase in FAO compared with controls (CON). After 8 weeks of pressure overload via transverse aortic constriction (TAC), ACC2H-/- mice exhibited a substrate utilization profile similar to sham animals, whereas CON-TAC hearts had decreased FAO with increased glycolysis and anaplerosis. Myocardial energetics, assessed by 31P nuclear magnetic resonance spectroscopy, and cardiac function were maintained in ACC2H-/- after 8 weeks of TAC. Furthermore, ACC2H-/--TAC demonstrated an attenuation of cardiac hypertrophy with a significant reduction in fibrosis relative to CON-TAC. CONCLUSIONS These data suggest that reversion to the fetal metabolic profile in chronic pathological hypertrophy is associated with impaired myocardial function and energetics and maintenance of the inherent cardiac metabolic profile and mitochondrial oxidative capacity is a viable therapeutic strategy.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington School of Medicine, 850 Republican St, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
40
|
Grammes F, Rørvik KA, Thomassen MS, Berge RK, Takle H. Genome wide response to dietary tetradecylthioacetic acid supplementation in the heart of Atlantic Salmon (Salmo salar L). BMC Genomics 2012; 13:180. [PMID: 22577878 PMCID: PMC3483216 DOI: 10.1186/1471-2164-13-180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 04/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background Under-dimensioned hearts causing functional problems are associated with higher mortality rates in intensive Atlantic salmon aquaculture. Previous studies have indicated that tetradecylthioacetic acid (TTA) induces cardiac growth and also stimulates transcription of peroxisome proliferator activated receptors (PPAR) αand βin the Atlantic salmon heart. Since cardiac and transcriptional responses to feed are of high interest in aquaculture, the objective of this study was to characterize the transcriptional mechanisms induced by TTA in the heart of Atlantic salmon. Results Atlantic salmon were kept at sea for 17 weeks. During the first 8 weeks the fish received a TTA supplemented diet. Using microarrays, profound transcriptional effects were observed in the heart at the end of the experiment, 9 weeks after the feeding of TTA stopped. Approximately 90% of the significant genes were expressed higher in the TTA group. Hypergeometric testing revealed the over-representation of 35 gene ontology terms in the TTA fed group. The GO terms were generally categorized into cardiac performance, lipid catabolism, glycolysis and TCA cycle. Conclusions Our results indicate that TTA has profound effects on cardiac performance based on results from microarray and qRT-PCR analysis. The gene expression profile favors a scenario of ”physiological”lright hypertrophy recognized by increased oxidative fatty acid metabolism, glycolysis and TCA cycle activity as well as cardiac growth and contractility in the heart ventricle. Increased cardiac efficiency may offer significant benefits in the demanding Aquaculture situations.
Collapse
|
41
|
Resveratrol and diabetic cardiac function: focus on recent in vitro and in vivo studies. J Bioenerg Biomembr 2012; 44:281-96. [DOI: 10.1007/s10863-012-9429-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Nakagawa K, Tanaka N, Morita M, Sugioka A, Miyagawa SI, Gonzalez FJ, Aoyama T. PPARα is down-regulated following liver transplantation in mice. J Hepatol 2012; 56:586-594. [PMID: 22037025 PMCID: PMC6399745 DOI: 10.1016/j.jhep.2011.08.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 07/31/2011] [Accepted: 08/25/2011] [Indexed: 01/14/2023]
Abstract
BACKGROUND & AIMS Graft dysfunction is one of the major complications after liver transplantation, but its precise mechanism remains unclear. Since steatotic liver grafts are susceptible to post-transplant dysfunction, and peroxisome proliferator-activated receptor (PPAR) α plays an important role in the maintenance of hepatic lipid homeostasis, we examined the role of PPARα in liver transplantation. METHODS Livers were harvested from Sv/129 wild-type (Ppara(+/+)) mice and PPARα-null (Ppara(-/-)) mice and transplanted orthotopically into syngeneic Ppara(+/+) mice. RESULTS Hepatocellular damage was unexpectedly milder in transplanted Ppara(-/-) livers compared with Ppara(+/+) ones. This was likely due to decreased lipid peroxides in the Ppara(-/-) livers, as revealed by the lower levels of fatty acid oxidation (FAO) enzymes, which are major sources of reactive oxygen species. Hepatic PPARα and its target genes, such as FAO enzymes and pyruvate dehydrogenase kinase 4, were strongly down-regulated after transplantation, which was associated with increases in hepatic tumor necrosis factor-α expression and nuclear factor-κB activity. Inhibiting post-transplant PPARα down-regulation by clofibrate treatment markedly augmented oxidative stress and hepatocellular injury. CONCLUSIONS Down-regulation of PPARα seemed to be an adaptive response to metabolic alterations following liver transplantation. These results provide novel information to the understanding of the pathogenesis of early post-transplant events.
Collapse
Affiliation(s)
- Kan Nakagawa
- Department of Metabolic Regulation, institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Japan
- Department of Surgery, Shinshu University School of Medicine, Japan
| | - Naoki Tanaka
- Department of Metabolic Regulation, institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Japan
- Department of Gastroenterology, Shinshu University School of Medicine, Japan
| | - Miwa Morita
- Department of Surgery, Fujita Health University School of Medicine, Japan
| | - Atsushi Sugioka
- Department of Surgery, Fujita Health University School of Medicine, Japan
| | | | - Frank J. Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer institute, National Institutes of Health, United States
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, institute on Aging and Adaptation, Shinshu University Graduate School of Medicine, Japan
| |
Collapse
|
43
|
Yao CX, Xiong CJ, Wang WP, Yang F, Zhang SF, Wang TQ, Wang SL, Yu HL, Wei ZR, Zang MX. Transcription Factor GATA-6 Recruits PPARα to Cooperatively Activate Glut4 Gene Expression. J Mol Biol 2012; 415:143-58. [DOI: 10.1016/j.jmb.2011.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Revised: 10/26/2011] [Accepted: 11/07/2011] [Indexed: 12/20/2022]
|
44
|
Cardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation. PPAR Res 2011; 2011:372854. [PMID: 21904539 PMCID: PMC3167180 DOI: 10.1155/2011/372854] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 06/27/2011] [Accepted: 06/28/2011] [Indexed: 12/15/2022] Open
Abstract
It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathological development in mice with cardiomyocyte-restricted PPARβ/δ deficiency. In the present study, a mouse model with long-term PPARβ/δ deficiency in PPARα-null background showed a comparably reduced cardiac expression of lipid metabolism to those of single PPAR-deficient mouse models. The PPARα-null background did not rescue or aggravate the cardiac pathological development linked to cardiomyocyte-restricted PPARβ/δ deficiency. Moreover, PPARα-null did not alter the phenotypic development in adult mice with the short-term deletion of PPARβ/δ in their hearts, which showed mitochondrial abnormalities, depressed cardiac performance, and cardiac hypertrophy with attenuated expression of key factors in mitochondrial biogenesis and defense. The present study demonstrates that cardiomyocyte-restricted deletion of PPARβ/δ in PPARα-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of fatty acid oxidation. Therefore, PPARβ/δ is essential for maintaining mitochondrial biogenesis and defense in cardiomyocytes independent of PPARα.
Collapse
|
45
|
The PPARalpha-PGC-1alpha Axis Controls Cardiac Energy Metabolism in Healthy and Diseased Myocardium. PPAR Res 2011; 2008:253817. [PMID: 18288281 PMCID: PMC2225461 DOI: 10.1155/2008/253817] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 09/03/2007] [Indexed: 12/30/2022] Open
Abstract
The mammalian myocardium is an omnivorous organ that relies on multiple substrates in order to fulfill its tremendous energy demands. Cardiac energy metabolism preference is regulated at several critical points, including at the level of gene transcription. Emerging evidence indicates that the nuclear receptor PPARα and its cardiac-enriched coactivator protein, PGC-1α, play important roles in the transcriptional control of myocardial energy metabolism. The PPARα-PGC-1α complex controls the expression of genes encoding enzymes involved in cardiac fatty acid and glucose metabolism as well as mitochondrial biogenesis. Also, evidence has emerged that the activity of the PPARα-PGC-1α complex is perturbed in several pathophysiologic conditions and that altered activity of this pathway may play a role in cardiomyopathic remodeling. In this review, we detail the current understanding of the effects of the PPARα-PGC-1α axis in regulating mitochondrial energy metabolism and cardiac function in response to physiologic and pathophysiologic stimuli.
Collapse
|
46
|
The PPAR-Platelet Connection: Modulators of Inflammation and Potential Cardiovascular Effects. PPAR Res 2011; 2008:328172. [PMID: 18288284 PMCID: PMC2233896 DOI: 10.1155/2008/328172] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 11/06/2007] [Indexed: 01/08/2023] Open
Abstract
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining
hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of
evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors
(PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently
identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons.
First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to
cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including
CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance
of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing
therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
Collapse
|
47
|
van Bilsen M, van Nieuwenhoven FA. PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets 2011; 14:1029-45. [PMID: 20854178 DOI: 10.1517/14728222.2010.512917] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE OF THE FIELD The role of peroxisome proliferator-activated receptors PPARα, PPARδ and PPARγ in cardiovascular disease is receiving widespread attention. As ligand-activated nuclear receptors, they play a role in regulation of lipid and glucose metabolism. This feature of the PPARs has been successfully exploited to treat systemic metabolic diseases, like hyperlipidemia and type-2 diabetes. Indirectly, their lipid lowering effect also leads to a reduction of the risk for cardiovascular diseases, primarily atherosclerosis. AREAS COVERED IN THIS REVIEW The pleiotropic effects of each of the PPAR isotypes on vascular and cardiac disease are discussed, with special emphasis on the molecular mechanism of action and on preclinical observations. The mechanism underlying the beneficial effect of PPARs is not confined to whole body metabolism, but also includes modulation of other vital processes, such as inflammation and cell fate (proliferation, differentiation, apoptosis). WHAT THE READER WILL GAIN A large body of preclinical studies indicates that, in addition to their effect on atherogenesis, PPAR ligands also impact on ischemic heart disease and the development of cardiac failure. It remains to be established to what extent these intriguing observations can be translated into clinical practice. TAKE HOME MESSAGE The versatile mechanism of action extends the potential therapeutic profile of the PPARs enormously. Conversely, this versatility makes it harder to attain a specific therapeutic effect, without increasing the risk of undesirable side effects. The future challenge will be to design PPAR-based therapeutic strategies that minimize the detrimental side effects.
Collapse
Affiliation(s)
- Marc van Bilsen
- Maastricht University, Cardiovascular Research Institute Maastricht, Department of Physiology, 6200 MD Maastricht, The Netherlands.
| | | |
Collapse
|
48
|
Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, Finck BN, Kelly DP. Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem 2011; 286:11155-62. [PMID: 21321124 DOI: 10.1074/jbc.m110.217349] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Diabetic cardiac dysfunction is associated with decreased rates of myocardial glucose oxidation (GO) and increased fatty acid oxidation (FAO), a fuel shift that has been shown to sensitize the heart to ischemic insult and ventricular dysfunction. We sought to evaluate the metabolic and functional consequences of chronic suppression of GO in heart as modeled by transgenic mice with cardiac-specific overexpression of pyruvate dehydrogenase kinase 4 (myosin heavy chain (MHC)-PDK4 mice), an inhibitor of pyruvate dehydrogenase. Hearts of MHC-PDK4 mice were shown to exhibit an insulin-resistant substrate utilization profile, characterized by low GO rates and high FAO flux. Surprisingly, MHC-PDK4 mice were not sensitized to cardiac ischemia-reperfusion injury despite a fuel utilization pattern that phenocopied the diabetic heart. In addition, MHC-PDK4 mice were protected against high fat diet-induced myocyte lipid accumulation, likely related to increased capacity for FAO. The high rates of mitochondrial FAO in the MHC-PDK4 heart were related to heightened activity of the AMP-activated protein kinase, reduced levels of malonyl-CoA, and increased capacity for mitochondrial uncoupled respiration. The expression of the known AMP-activated protein kinase target, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), a master regulator of mitochondrial function and biogenesis, was also activated in the MHC-PDK4 heart. These results demonstrate that chronic activation of PDK4 triggers transcriptional and post-transcriptional mechanisms that re-program the heart for chronic high rates of FAO without the expected deleterious functional or metabolic consequences.
Collapse
Affiliation(s)
- Kari T Chambers
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Hou N, Luo MS, Liu SM, Zhang HN, Xiao Q, Sun P, Zhang GS, Luo JD, Chen MS. Leptin induces hypertrophy through activating the peroxisome proliferator-activated receptor α pathway in cultured neonatal rat cardiomyocytes. Clin Exp Pharmacol Physiol 2011; 37:1087-95. [PMID: 20738325 DOI: 10.1111/j.1440-1681.2010.05442.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1. Our previous study has shown that leptin induces cardiomyocyte hypertrophy; however, the mechanisms are poorly understood. Recent studies have shown that peroxisome proliferator-activated receptor α (PPARα) activation might be responsible for pathological remodeling and severe cardiomyopathy. Leptin, as an endogenous activator of PPARα, regulates energy metabolism through activating PPARα in many cells. Therefore, we hypothesized that leptin induces cardiomyocyte hypertrophy through activating the cardiac PPARα pathway. 2. Cultured neonatal rat cardiomyocytes were used to evaluate the effects of PPARα on hypertrophy. The selective PPARα antagonist GW6471 concentration-dependently decreased atrial natriuretic factor mRNA expression by 23%, 36%, 44% and 59%, and significantly decreased total RNA levels, protein synthesis and cell surface areas, all of which were elevated by 72h of leptin treatment. The augmentation of reactive oxygen species levels in leptin treated cardiomyocytes was reversed by 0.1-10μmol/L GW6471 (40%, 52% and 58%). After 24h of treatment, leptin concentration-dependently enhanced mRNA expression by 7%, 93%, 100% and 256%, and protein expression by 31.2%, 64.2%, 143% and 199%, and the activity of PPARα. Meanwhile, cardiomycytes receiving 72h of treatment with the PPARα agonist, fenofibrate, concentration-dependently increased total RNA levels, atrial natriuretic factor mRNA expression, protein synthesis and cell surface area. Treatment of fenofibrate for 4 h also elevated oxygen species levels in a concentration-dependent manner. 3. In conclusion, these findings show that leptin induces hypertrophy through the activation of the PPARα pathway in cultured neonatal rat cardiomyocytes.
Collapse
Affiliation(s)
- Ning Hou
- Department of Pharmacology, Guangzhou Medical University, China
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sack MN. Rab4a signaling unmasks a pivotal link between myocardial homeostasis and metabolic remodeling in the diabetic heart. J Mol Cell Cardiol 2010; 49:908-10. [PMID: 20840849 DOI: 10.1016/j.yjmcc.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 09/02/2010] [Indexed: 11/15/2022]
|