1
|
Zou X, Huang Q, Kang T, Shen S, Cao C, Wu J. An integrated investigation of mitochondrial genes in COPD reveals the causal effect of NDUFS2 by regulating pulmonary macrophages. Biol Direct 2025; 20:4. [PMID: 39789601 PMCID: PMC11715544 DOI: 10.1186/s13062-025-00593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Despite the increasing body of evidence that mitochondrial activities implicate in chronic obstructive pulmonary disease (COPD), we are still far from a causal-logical and mechanistic understanding of the mitochondrial malfunctions in COPD pathogenesis. RESULTS Differential expression genes (DEGs) from six publicly available bulk human lung tissue transcriptomic datasets of COPD patients were intersected with the known mitochondria-related genes from MitoCarta3.0 to obtain mitochondria-related DEGs associated with COPD (MitoDEGs). The 32 hub MitoDEGs identified from protein-protein interaction (PPI) networks demonstrated superior overall diagnostic efficacy to non-hub MitoDEGs. Random forest (RF) analysis, least absolute shrinkage and selection operator (LASSO) regression, and Mendelian Randomization (MR) analysis of hub MitoDEGs further nominated NDUFS2, CAT, and MRPL2 as causal MitoDEGs for COPD, whose predominate expressions in pulmonary macrophages were revealed by an independent single-cell transcriptomic dataset of COPD human lungs. Finally, NDUFS2 was evaluated as the top-ranked contributor to COPD in the nomogram model and its downregulation in pulmonary macrophages could result in pro-inflammatory secretion, enhanced intercellular communications, whereas depressed phagocytosis of macrophages as revealed by gene set variation analysis (GSVA) and cell-cell interaction (CCI) analysis of single-cell transcriptomic dataset of COPD human lungs, which was later confirmed in COPD mouse model and macrophage cell lines. CONCLUSIONS Our study established the causal linkage between mitochondrial malfunctions and COPD, providing a potential therapeutic avenue to alleviate pulmonary inflammation accounting for COPD by targeting mitochondria-related genes. NDUFS2, a canonical component of mitochondrial electron respiratory chain, was highlighted instrumental for the susceptibility of risk-exposed individuals to COPD.
Collapse
Affiliation(s)
- Xiaoli Zou
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Qiqing Huang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Tutu Kang
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Shaoran Shen
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Chenxi Cao
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China
| | - Jianqing Wu
- Key Laboratory of Geriatrics of Jiangsu Province, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
2
|
Qian SH, Liu S, Wang M, Wang Q, Hu CP, Huang JH, Zhang Z. Deficiency of endothelial TRPV4 cation channels ameliorates experimental abdominal aortic aneurysm. Eur J Pharmacol 2025; 986:177150. [PMID: 39577553 DOI: 10.1016/j.ejphar.2024.177150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 11/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA), albeit usually asymptomatic, is highly lethal if ruptured. The 28-member transient receptor potential (TRP) ion channel superfamily, most of which are present in the aortic cells, is understudied in AAA. We aim to identify single TRP channel that could represent a novel therapeutic target, and dissect dysfunctional ionic signaling that drives AAA. METHODS AAA was developed in mice by perfusing porcine pancreatic elastase into the infrarenal abdominal aorta. AAA was assessed by measurement of external diameter with a digital caliper, or internal diameter with ultrasonography. Aortic pathohistology was evaluated via histological and immunohistochemical staining. The TRP channel family was analyzed in the GSE17901 dataset. TRPC6, TRPC1/4/5 and TRPC3 channels were blocked in aneurysmal mice by BI749327, Pico145 and Pyr3, respectively. Endothelial cell-selective Trpv4 knockout mice were generated and leveraged for AAA analysis. TRPV4 channel was activated indirectly by TPPU or directly opened by GSK1016790A. RESULTS RNA-seq data mining revealed altered expression profiles of Trpc3/Trpc6, Trpv4. Pharmacological block of TRPC6, TRPC1/4/5 or TRPC3 did not influence AAA, whereas selective deletion of endothelial TRPV4 protected against AAA in endothelial cell-selective Trpv4 knockout mice. Indirect activation of TRPV4 by TPPU exacerbated AAA, but TRPV4-mediated nitric oxide signaling contributed minimally to AAA. TRPV4 activation promoted endothelial cell apoptosis in a Ca2+-dependent manner, a relevant mechanism underlying AAA. CONCLUSIONS Our data underscore the pathogenic importance of Ca2+ perturbation in AAA and illuminate that endothelial TRPV4 cation channel could be harnessed for AAA treatment.
Collapse
MESH Headings
- Animals
- TRPV Cation Channels/genetics
- TRPV Cation Channels/metabolism
- TRPV Cation Channels/deficiency
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Mice
- Mice, Knockout
- Disease Models, Animal
- Male
- Mice, Inbred C57BL
- Endothelial Cells/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/pathology
- Humans
- Calcium/metabolism
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/drug effects
- Apoptosis/drug effects
Collapse
Affiliation(s)
- She-Hua Qian
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China
| | - Shuai Liu
- Department of General and Vascular Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Mi Wang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Qing Wang
- Department of the Interventional Radiology & Vascular Surgery, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410005, Hunan, China
| | - Chang-Ping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410013, Hunan, China
| | - Jun-Hao Huang
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou, 510050, Guangdong, China.
| | - Zheng Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Li X, Kempf S, Delgado Lagos F, Ukan Ü, Popp R, Hu J, Frömel T, Günther S, Weigert A, Fleming I. A regulatory loop involving the cytochrome P450-soluble epoxide hydrolase axis and TGF-β signaling. iScience 2024; 27:110938. [PMID: 39398242 PMCID: PMC11466655 DOI: 10.1016/j.isci.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Fatty acid metabolites, produced by cytochrome P450 enzymes and soluble epoxide hydrolase (sEH), regulate inflammation. Here, we report that the transforming growth factor β (TGF-β)-induced polarization of macrophages to a pro-resolving phenotype requires Alk5 and Smad2 activation to increase sEH expression and activity. Macrophages lacking sEH showed impaired repolarization, reduced phagocytosis, and maintained a pro-inflammatory gene expression profile. 11,12-Epoxyeicosatrienoic acid (EET) was one altered metabolite in sEH-/- macrophages and mimicked the effect of sEH deletion on gene expression. Notably, 11,12-EET also reduced Alk5 expression, inhibiting TGF-β-induced Smad2 phosphorylation by triggering the cytosolic translocation of the E3 ligase Smurf2. These findings suggest that sEH expression is controlled by TGF-β and that sEH activity, which lowers 11,12-EET levels and promotes TGF-β signaling by metabolizing 11,12-EET to prevent Alk5 degradation. Thus, an autocrine loop between sEH/11,12-EET and TGF-β1 regulates macrophage function.
Collapse
Affiliation(s)
- Xiaoming Li
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Sebastian Kempf
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Fredy Delgado Lagos
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Ürün Ukan
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Rüdiger Popp
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Jiong Hu
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- Department of Embryology and Histology, School of Basic Medicine, Tongi Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Timo Frömel
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Andreas Weigert
- Goethe University, Institute of Biochemistry I, Frankfurt am Main, Germany
| | - Ingrid Fleming
- Goethe University, Institute for Vascular Signalling, Centre for Molecular Medicine, Frankfurt am Main, Germany
- German Center of Cardiovascular Research (DZHK), Partner site Rhein-Main, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Ma Q, He X, Wang X, Zhao G, Zhang Y, Su C, Wei M, Zhang K, Liu M, Zhu Y, He J. PTPN14 aggravates neointimal hyperplasia via boosting PDGFRβ signaling in smooth muscle cells. Nat Commun 2024; 15:7398. [PMID: 39191789 PMCID: PMC11350182 DOI: 10.1038/s41467-024-51881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Smooth muscle cell (SMC) phenotypic modulation, primarily driven by PDGFRβ signaling, is implicated in occlusive cardiovascular diseases. However, the promotive and restrictive regulation mechanism of PDGFRβ and the role of protein tyrosine phosphatase non-receptor type 14 (PTPN14) in neointimal hyperplasia remain unclear. Our study observes a marked upregulation of PTPN14 in SMCs during neointimal hyperplasia. PTPN14 overexpression exacerbates neointimal hyperplasia in a phosphatase activity-dependent manner, while SMC-specific deficiency of PTPN14 mitigates this process in mice. RNA-seq indicates that PTPN14 deficiency inhibits PDGFRβ signaling-induced SMC phenotypic modulation. Moreover, PTPN14 interacts with intracellular region of PDGFRβ and mediates its dephosphorylation on Y692 site. Phosphorylation of PDGFRβY692 negatively regulates PDGFRβ signaling activation. The levels of both PTPN14 and phospho-PDGFRβY692 are correlated with the degree of stenosis in human coronary arteries. Our findings suggest that PTPN14 serves as a critical modulator of SMCs, promoting neointimal hyperplasia. PDGFRβY692, dephosphorylated by PTPN14, acts as a self-inhibitory site for controlling PDGFRβ activation.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Coronary Vessels/pathology
- Coronary Vessels/metabolism
- Hyperplasia/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima/metabolism
- Neointima/pathology
- Phosphorylation
- Protein Tyrosine Phosphatases, Non-Receptor/metabolism
- Protein Tyrosine Phosphatases, Non-Receptor/genetics
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Qiannan Ma
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xue Wang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Guobing Zhao
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Yanhong Zhang
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518040, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Yi Zhu
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- Department of Endocrinology and Metabolism, Tianjin Research Institute of Endocrinology, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - Jinlong He
- Tianjin Key Laboratory of Metabolic Diseases, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Yousef A, Sosnowski DK, Fang L, Legaspi RJ, Korodimas J, Lee A, Magor KE, Seubert JM. Cardioprotective response and senescence in aged sEH null female mice exposed to LPS. Am J Physiol Heart Circ Physiol 2024; 326:H1366-H1385. [PMID: 38578240 DOI: 10.1152/ajpheart.00706.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Deterioration of physiological systems, like the cardiovascular system, occurs progressively with age impacting an individual's health and increasing susceptibility to injury and disease. Cellular senescence has an underlying role in age-related alterations and can be triggered by natural aging or prematurely by stressors such as the bacterial toxin lipopolysaccharide (LPS). The metabolism of polyunsaturated fatty acids by CYP450 enzymes produces numerous bioactive lipid mediators that can be further metabolized by soluble epoxide hydrolase (sEH) into diol metabolites, often with reduced biological effects. In our study, we observed age-related cardiac differences in female mice, where young mice demonstrated resistance to LPS injury, and genetic deletion or pharmacological inhibition of sEH using trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid attenuated LPS-induced cardiac dysfunction in aged female mice. Bulk RNA-sequencing analyses revealed transcriptomics differences in aged female hearts. The confirmatory analysis demonstrated changes to inflammatory and senescence gene markers such as Il-6, Mcp1, Il-1β, Nlrp3, p21, p16, SA-β-gal, and Gdf15 were attenuated in the hearts of aged female mice where sEH was deleted or inhibited. Collectively, these findings highlight the role of sEH in modulating the aging process of the heart, whereby targeting sEH is cardioprotective.NEW & NOTEWORTHY Soluble epoxide hydrolase (sEH) is an essential enzyme for converting epoxy fatty acids to their less bioactive diols. Our study suggests deletion or inhibition of sEH impacts the aging process in the hearts of female mice resulting in cardioprotection. Data indicate targeting sEH limits inflammation, preserves mitochondria, and alters cellular senescence in the aged female heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Deanna K Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Liye Fang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Renald James Legaspi
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jacob Korodimas
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Andy Lee
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Katharine E Magor
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, Alberta, Canada
| | - John M Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Kim SA, Lee AS, Lee HB, Hur HJ, Lee SH, Sung MJ. Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching. Vascul Pharmacol 2022; 145:107086. [PMID: 35752378 DOI: 10.1016/j.vph.2022.107086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/22/2022] [Accepted: 06/20/2022] [Indexed: 11/29/2022]
Abstract
Atherosclerosis manifests as a chronic inflammation resulting from multiple interactions between circulating factors and various cell types in blood vessel walls. Growing evidence shows that phenotypic switching and proliferation of vascular smooth muscle cells (VSMCs) plays an important role in the progression of atherosclerosis. Soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids are mediated by vascular inflammation. N-[1-(1-oxopropyl)-4-piperidinyl]-N'-[4-(trifluoromethoxy)phenyl]-urea (TPPU) is an sEH inhibitor. This study investigated the therapeutic effect of TPPU on atherosclerosis in vivo and homocysteine-induced vascular inflammation in vitro and explored their molecular mechanisms. We found that TPPU decreased WD-induced atherosclerotic plaque lesions, inflammation, expression of sEH, and nicotinamide adenine dinucleotide phosphate oxidase-4 (Nox4), and increased the expression of contractile phenotype marker of aortas in ApoE (-/-) mice. TPPU also inhibited homocysteine-stimulated VSMC proliferation, migration, and phenotypic switching, and reduced Nox4 in human-aorta-VSMC regulation. We conclude that TPPU has anti-atherosclerotic effects, potentially because of the suppression of VSMC phenotype switching. Thus, TPPU could be a potential therapeutic target for phenotypic switching attenuation in atherosclerosis.
Collapse
Affiliation(s)
- So Ah Kim
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea; Department of Food Biotechnology, Chonbuk National University, Jeollabuk-Do, Republic of Korea
| | - Ae Sin Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Han Bit Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Haeng Jeon Hur
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Sang Hee Lee
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea
| | - Mi Jeong Sung
- Research Group of Natural Materials and Metabolism, Food Functionality Research, Korea Food Research Institute, Jeollabuk-Do, Republic of Korea.
| |
Collapse
|
7
|
He W, Huang J, Liu Y, Xie C, Zhang K, Zhu X, Chen J, Huang H. Deletion of soluble epoxide hydrolase suppressed chronic kidney disease-related vascular calcification by restoring Sirtuin 3 expression. Cell Death Dis 2021; 12:992. [PMID: 34689162 PMCID: PMC8542048 DOI: 10.1038/s41419-021-04283-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 11/09/2022]
Abstract
Vascular calcification is common in chronic kidney disease (CKD) and contributes to cardiovascular disease (CVD) without any effective therapies available up to date. The expression of soluble epoxide hydrolase (sEH) is different in patients with and without vascular calcification. The present study investigates the role of sEH as a potential mediator of vascular calcification in CKD. Both Ephx2−/− and wild-type (WT) mice fed with high adenine and phosphate (AP) diet were used to explore the vascular calcification in CKD. Compared with WT, deletion of sEH inhibited vascular calcification induced by AP. sEH deletion also abolished high phosphorus (Pi)-induced phenotypic transition of vascular smooth muscle cells (VSMCs) independent of its epoxyeicosatrienoic acids (EETs) hydrolysis. Further gene expression analysis identified the potential role of Sirtuin 3 (Sirt3) in the sEH-regulated VSMC calcification. Under high Pi treatment, sEH interacted with Sirt3, which might destabilize Sirt3 and accelerate the degradation of Sirt3. Deletion of sEH may preserve the expression of Sirt3, and thus maintain the mitochondrial adenosine triphosphate (ATP) synthesis and morphology, significantly suppressing VSMC calcification. Our data supported that sEH deletion inhibited vascular calcification and indicated a promising target of sEH inhibition in vascular calcification prevention.
Collapse
Affiliation(s)
- Wanbing He
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Jieping Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Yang Liu
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.,Department of Cardiology, The Second Affiliated Hospital, University of South China, 30 Jiefang Road, Hengyang, 421001, China
| | - Changming Xie
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China
| | - Kun Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Xinhong Zhu
- Research Center of Brain Health, Pazhou Lab, 70 Anyue Road, Guangzhou, 510330, China
| | - Jie Chen
- Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang Road, Guangzhou, 510120, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-sen University, 3025 Shennan Middle Road, Shenzhen, 518033, China.
| |
Collapse
|
8
|
Association of rs11780592 Polymorphism in the Human Soluble Epoxide Hydrolase Gene (EPHX2) with Oxidized LDL and Mortality in Patients with Diabetic Chronic Kidney Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8817502. [PMID: 34040693 PMCID: PMC8121583 DOI: 10.1155/2021/8817502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/01/2021] [Accepted: 04/24/2021] [Indexed: 01/30/2023]
Abstract
Soluble epoxide hydrolase 2 (EPHX2) is an enzyme promoting increased cellular apoptosis through induction of oxidative stress (OS) and inflammation. The EPHX2 gene which encodes soluble EPHX2 might be implicated in the pathogenesis and development of OS and atherosclerosis. We aimed to assess the possible association between two functional polymorphisms of the EPHX2 gene (rs2741335 and rs11780592) with oxidized LDL (ox-LDL), carotid atherosclerosis, mortality, and cardiovascular (CV) disease in 118 patients with diabetic chronic kidney disease (CKD). At baseline, ox-LDL and carotid intima-media thickness (cIMT) were evaluated and all patients were followed for seven years with outcomes all-cause mortality and CV events. rs11780592 EPHX2 polymorphism was associated with ox-LDL, cIMT, albuminuria, and hypertension. Compared to AG and GG, AA homozygotes had higher values of albuminuria, ox-LDL, and cIMT (p = 0.046, p = 0.003, and p = 0.038, respectively). These associations remained significant, even after grouping for the G allele. After the follow-up period, 42/118 patients died (30/60 with AA genotype, 11/42 with AG genotype, and 1/12 with GG genotype) and 49/118 experienced a new CV event (fatal or nonfatal). The Kaplan-Meier analysis revealed that patients with the AA genotype exhibited a significantly higher mortality risk, compared to patients with AG and GG genotypes (p = 0.006). This association became even stronger, when AG and GG genotypes were grouped (AA vs. AG/GG, p = 0.002). AA homozygotes were strongly associated with all-cause mortality in both univariate (hazard ratio (HR) = 2.74, confidence interval (CI) = 1.40-5.35, p = 0.003) and multivariate Cox regression analysis (HR = 2.61, CI = 1.32-5.17, p = 0.006). In conclusion, our study demonstrated that genetic variations of EPHX2 gene were associated with increased circulating ox-LDL, increased cIMT, and all-cause mortality in diabetic CKD. Since EPHX2 regulates the cholesterol efflux and the oxidation of LDL in foam cells and macrophages, our study suggests that a genetic basis to endothelial dysfunction and OS might be present in diabetic CKD.
Collapse
|
9
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
10
|
Gui Y, Chen J, Hu J, Liao C, Ouyang M, Deng L, Yang J, Xu D. Soluble epoxide hydrolase inhibitors improve angiogenic function of endothelial progenitor cells via ERK/p38-mediated miR-126 upregulation in myocardial infarction mice after exercise. Exp Cell Res 2020; 397:112360. [PMID: 33188851 DOI: 10.1016/j.yexcr.2020.112360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/31/2022]
Abstract
It is well established that exercise could protect against myocardial infarction (MI). Previously, we found that epoxyeicosatrienoic acids (EETs) could be induced by exercise and has been found to protect against MI via promoting angiogenic function of endothelial progenitor cells (EPCs). However, the underling mechanism of EETs in promoting EPC functions is unclear. C57BL/6 mice were fed with a novel soluble epoxide hydrolase inhibitor (sEHi), TPPU, to increase EET levels, for 1 week before undergoing MI surgery. Mice were then subjected to exercise training for 4 weeks. Bone marrow-derived EPCs were isolated and cultured in vitro. Exercise upregulated miR-126 expression but downregulated the protein levels of its target gene, Spred1, in EPCs from MI mice. TPPU further enhanced the effects of exercise on EPCs. Spred1 overexpression abolished the protective effects of TPPU on EPC functions. Downregulation of miR-126 by antagomiR-126 impaired the inhibitor effects of TPPU on Spred1 mRNA and protein expression. Additionally, TPPU upregulated miR-126 is partially mediated through ERK/p38 MAPK pathway. This study showed that sEHi promoted miR-126 expression, which might be related to the beneficial effect of sEHi on EPC functions in MI mice under exercise conditions, by increasing ERK and p38 MAPK phosphorylation and inhibiting Spred1.
Collapse
Affiliation(s)
- Yajun Gui
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China; Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410000, China
| | - Jingyuan Chen
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Jiahui Hu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Caixiu Liao
- Department of Geratology, Internal Medicine, The Third Hospital of Changsha, Changsha, Hunan, 410000, China
| | - Minzhi Ouyang
- Department of Ultrasonics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Limin Deng
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China; Department of Cardiology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410000, China
| | - Jingmin Yang
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China
| | - Danyan Xu
- Department of Cardiology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, Hunan, 410000, China.
| |
Collapse
|
11
|
Imig JD, Jankiewicz WK, Khan AH. Epoxy Fatty Acids: From Salt Regulation to Kidney and Cardiovascular Therapeutics: 2019 Lewis K. Dahl Memorial Lecture. Hypertension 2020; 76:3-15. [PMID: 32475311 PMCID: PMC7448548 DOI: 10.1161/hypertensionaha.120.13898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are epoxy fatty acids that have biological actions that are essential for maintaining water and electrolyte homeostasis. An inability to increase EETs in response to a high-salt diet results in salt-sensitive hypertension. Vasodilation, inhibition of epithelial sodium channel, and inhibition of inflammation are the major EET actions that are beneficial to the heart, resistance arteries, and kidneys. Genetic and pharmacological means to elevate EETs demonstrated antihypertensive, anti-inflammatory, and organ protective actions. Therapeutic approaches to increase EETs were then developed for cardiovascular diseases. sEH (soluble epoxide hydrolase) inhibitors were developed and progressed to clinical trials for hypertension, diabetes mellitus, and other diseases. EET analogs were another therapeutic approach taken and these drugs are entering the early phases of clinical development. Even with the promise for these therapeutic approaches, there are still several challenges, unexplored areas, and opportunities for epoxy fatty acids.
Collapse
Affiliation(s)
- John D Imig
- From the Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| | - Wojciech K Jankiewicz
- From the Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| | - Abdul H Khan
- From the Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee
| |
Collapse
|
12
|
Miao G, Zhao X, Wang B, Zhang L, Wang G, Zheng N, Liu J, Xu Z, Zhang L. TLR2/CXCR4 coassociation facilitatesChlamydia pneumoniaeinfection-induced atherosclerosis. Am J Physiol Heart Circ Physiol 2020; 318:H1420-H1435. [DOI: 10.1152/ajpheart.00011.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toll-like receptor 2 (TLR2) and C-X-C motif chemokine receptor 4 (CXCR4) have both been shown to be involved in atherosclerosis. We demonstrate for the first time the presence of TLR2/CXCR4 coassociation during C. pneumoniae infection-induced atherosclerosis. Amazingly, blocking of both TLR2 and CXCR4 significantly retards and even almost reverses this infection-induced atherosclerosis. Our work reveals new mechanisms about C. pneumoniae infection-induced atherosclerosis and identifies potential new therapeutic targets for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Guolin Miao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Beibei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ningbo Zheng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingya Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhelong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
13
|
Peng H, Tang J, Zhao S, Shen L, Xu D. Inhibition of Soluble Epoxide Hydrolase in Macrophages Ameliorates the Formation of Foam Cells - Role of Heme Oxygenase-1. Circ J 2019; 83:2555-2566. [PMID: 31666457 DOI: 10.1253/circj.cj-19-0352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
BACKGROUND Accumulation of foam cells in the neointima represents an early stage of atherosclerosis. 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHi), effectively elevates epoxyeicosatrienoic acid (EET) levels. The effects of EETs on macrophages foam cells formation are poorly understood. METHODS AND RESULTS Incubation of foam cells with TPPU markedly ameliorate cholesterol deposition in oxidized low-density lipoprotein (oxLDL)-loaded macrophages by increasing the levels of EETs. Notably, TPPU treatment significantly inhibits oxLDL internalization and promotes cholesterol efflux. The elevation of EETs results in a decrease of class A scavenger receptor (SR-A) expression via downregulation of activator protein 1 (AP-1) expression. Additionally, TPPU selectively increases protein but not the mRNA level of ATP-binding cassette transporter A1 (ABCA1) through the reduction of calpain activity that stabilizes the protein. Moreover, TPPU treatment reduces the cholesterol content of macrophages and inhibits atherosclerotic plaque formation in apolipoprotein E-deficient mice. These changes induced by TPPU are dependent on heme oxygenase-1 (HO-1) activation. CONCLUSIONS The present study findings elucidate a precise mechanism of regulating cholesterol uptake and efflux in macrophages, which involves the prevention of atherogenesis by increasing the levels of EETs with TPPU.
Collapse
Affiliation(s)
| | - Jianjun Tang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Shuiping Zhao
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Li Shen
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University
| |
Collapse
|
14
|
Liang J, Li Q, Cai W, Zhang X, Yang B, Li X, Jiang S, Tian S, Zhang K, Song H, Ai D, Zhang X, Wang C, Zhu Y. Inhibition of polycomb repressor complex 2 ameliorates neointimal hyperplasia by suppressing trimethylation of H3K27 in vascular smooth muscle cells. Br J Pharmacol 2019; 176:3206-3219. [PMID: 31162630 DOI: 10.1111/bph.14754] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/21/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The increased proliferation and migration of vascular smooth muscle cells (VSMCs) after arterial injury contributes greatly to the pathogenesis of neointimal hyperplasia. As a major component of epigenetics, histone methylation plays an important role in several cardiovascular diseases. However, its role in restenosis is still unclear. EXPERIMENTAL APPROACH Human aortic VSMCs were challenged with PDGF-BB, and total histones were extracted and analysed by HPLC/MS. For the in vivo study, rats were subjected to wire-guided common carotid injury. KEY RESULTS PDGF-BB markedly increased the H3K27me3 level, as demonstrated by use of HPLC/MS and confirmed by western blot analysis. Enhancer of zeste homologue 2 (EZH2), the histone H3K27 methyltransferase component of polycomb repressive complex 2, was also up-regulated by PDGF-BB in VSMCs, and in the neointimal hyperplasia induced by wire injury of the rat carotid artery. Furthermore, inhibiting H3K27me3 by treatment with 3-μM UNC1999, an EZH2/1 inhibitor, significantly suppressed PDGF-BB-induced VSMC proliferation compared with the PDGF-BB-treated group. Consistently, neointimal formation was significantly attenuated by oral or perivascular administration of UNC1999 compared with the sham group. Mechanistically, the increase in H3K27me3 inhibited the transcription of the cyclin-dependent kinase inhibitor p16INK4A and thus promoted VSMC proliferation. CONCLUSIONS AND IMPLICATIONS Vascular injury elevated the expression of EZH2 and the downstream target H3K27me3, which suppressed p16INK4A expression in VSMCs and promoted VSMC proliferation and neointimal hyperplasia. EZH2 inhibition might be a potential therapeutic target for restenosis.
Collapse
Affiliation(s)
- Jing Liang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenbin Cai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xuejiao Zhang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Bing Yang
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Pharmacology, Tianjin Medical University, Tianjin, China
| | - Shuai Jiang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Shanshan Tian
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Kai Zhang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
| | - Hao Song
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ding Ai
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
15
|
Li B, He J, Lv H, Liu Y, Lv X, Zhang C, Zhu Y, Ai D. c-Abl regulates YAPY357 phosphorylation to activate endothelial atherogenic responses to disturbed flow. J Clin Invest 2019; 129:1167-1179. [PMID: 30629551 DOI: 10.1172/jci122440] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/03/2019] [Indexed: 12/26/2022] Open
Abstract
Local flow patterns determine the uneven distribution of atherosclerotic lesions. This research aims to elucidate the mechanism of regulation of nuclear translocation of Yes-associated protein (YAP) under oscillatory shear stress (OSS) in the atheroprone phenotype of endothelial cells (ECs). We report here that OSS led to tyrosine phosphorylation and strong, continuous nuclear translocation of YAP in ECs that is dependent on integrin α5β1 activation. YAP overexpression in ECs blunted the anti-atheroprone effect of an integrin α5β1-blocking peptide (ATN161) in Apoe-/- mice. Activation of integrin α5β1 induced tyrosine, but not serine, phosphorylation of YAP in ECs. Blockage of integrin α5β1 with ATN161 abolished the phosphorylation of YAP at Y357 induced by OSS. Mechanistic studies showed that c-Abl inhibitor attenuated the integrin α5β1-induced YAP tyrosine phosphorylation. Furthermore, the phosphorylation of c-Abl and YAPY357 was significantly increased in ECs in atherosclerotic vessels of mice and in human plaques versus normal vessels. Finally, bosutinib, a tyrosine kinase inhibitor, markedly reduced the level of YAPY357 and the development of atherosclerosis in Apoe-/- mice. The c-Abl/YAPY357 pathway serves as a mechanism for the activation of integrin α5β1 and the atherogenic phenotype of ECs in response to OSS, and provides a potential therapeutic strategy for atherogenesis.
Collapse
|
16
|
Liu X, Qin Z, Liu C, Song M, Luo X, Zhao H, Qian D, Chen J, Huang L. Nox4 and soluble epoxide hydrolase synergistically mediate homocysteine-induced inflammation in vascular smooth muscle cells. Vascul Pharmacol 2019; 120:106544. [PMID: 30610956 DOI: 10.1016/j.vph.2019.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/05/2018] [Accepted: 01/01/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Hyperhomocysteinemia leads to a vascular smooth muscle cell (VSMC) inflammatory response. Meanwhile, Nox4 dependent reactive oxygen species (ROS) signaling and soluble epoxide hydrolase (sEH)/epoxyeicosatrienoic acids (EETs) are both involved in vascular inflammation. Herein, we hypothesized that Nox4 and soluble epoxide hydrolase cross regulated during homocysteine-induced VSMC inflammation. METHODS AND RESULTS In cultured VSMCs, the expression of the inflammatory factors VCAM1 and ICAM1 was measured by real-time PCR and Western blotting, while supernatant MCP1 was measured by ELISA. Upon VSMC stimulation with 50 μΜ homocysteine, we observed the VCAM1 and ICAM1 mRNA levels were increased by 1.15 and 1.0 folds, respectively. The MCP1 levels in the supernatant of cultured VSMCs treated with 100 μΜ increased to 1.76 folds. As expected, homocysteine induced Nox4 expression and Nox4-dependent ROS generation. The sEH expression was also upregulated in the presence of homocysteine in a dose-dependent manner. Furthermore, we knocked down Nox4 with siRNA. Knockdown of Nox4 decreased ROS generation and homocysteine-induced sEH expression. Overexpression of Nox4 with an adenovirus stimulated sEH expression. Similarly, knockdown or chemical inhibition of sEH blunted the upregulation of Nox4 by homocysteine. In vivo, in homocysteine-fed mice, concomitant upregulation of Nox4 and sEH was associated with increased VCAM1 and ICAM1 expression in the aortic wall. CONCLUSIONS The inflammatory response induced by homocysteine in VSMCs was accompanied by Nox4 and sEH upregulation. Nox4 and soluble epoxide hydrolase synergistically contribute to homocysteine-induced inflammation.
Collapse
Affiliation(s)
- Xi Liu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Zhexue Qin
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Chuan Liu
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Mingbao Song
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Xiaolin Luo
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Hongqing Zhao
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Dehui Qian
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Jianfei Chen
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China
| | - Lan Huang
- Department of Cardiology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing 400037, China.
| |
Collapse
|
17
|
Vasconez AE, Janetzko P, Oo JA, Pflüger-Müller B, Ratiu C, Gu L, Helin K, Geisslinger G, Fleming I, Schröder K, Fork C, Brandes RP, Leisegang MS. The histone demethylase Jarid1b mediates angiotensin II-induced endothelial dysfunction by controlling the 3'UTR of soluble epoxide hydrolase. Acta Physiol (Oxf) 2019; 225:e13168. [PMID: 30076673 DOI: 10.1111/apha.13168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 01/25/2023]
Abstract
AIM The histone demethylase Jarid1b limits gene expression by removing the active methyl mark from histone3 lysine4 at gene promoter regions. A vascular function of Jarid1b is unknown, but a vasoprotective function to inflammatory and hypertrophic stimuli, like angiotensin II (AngII) could be inferred. This hypothesis was tested using Jarid1b knockout mice and the inhibitor PBIT. METHODS Mice or aortic segments were treated with AngII to induce endothelial dysfunction. Aortae from WT and Jarid1b knockout were studied in organ chambers and endothelium-dependent dilator responses to acetylcholine and endothelium-independent responses to DetaNONOate were recorded after pre-constriction with phenylephrine in the presence or absence of the NO-synthase inhibitor nitro-L-arginine. Molecular mechanisms were investigated with chromatin immunoprecipitation, RNA-Seq, RNA-3'-adaptor-ligation, actinomycin D and RNA-immunoprecipitation. RESULTS Knockout or inhibition of Jarid1b prevented the development of endothelial dysfunction in response to AngII. This effect was not a consequence of altered nitrite oxide availability but accompanied by a loss of the inflammatory response to AngII. As Jarid1b mainly inhibits gene expression, an indirect effect should account for this observation. AngII induced the soluble epoxide hydrolase (sEH), which degrades anti-inflammatory lipids, and thus promotes inflammation. Knockout or inhibition of Jarid1b prevented the AngII-mediated sEH induction. Mechanistically, Jarid1b maintained the length of the 3'untranslated region of the sEH mRNA, thereby increasing its stability and thus sEH protein expression. Loss of Jarid1b activity therefore resulted in sEH mRNA destabilization. CONCLUSION Jarid1b contributes to the pro-inflammatory effects of AngII by stabilizing sEH expression. Jarid1b inhibition might be an option for future therapeutics against cardiovascular dysfunction.
Collapse
Affiliation(s)
- Andrea E. Vasconez
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Patrick Janetzko
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - James A. Oo
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Beatrice Pflüger-Müller
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Corina Ratiu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- Department of Functional Sciences - Pathophysiology; “Victor Babes” University of Medicine and Pharmacy Timisoara; Timisoara Romania
| | - Lunda Gu
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC); University of Copenhagen; Copenhagen Denmark
- Centre for Epigenetics; University of Copenhagen; Copenhagen Denmark
| | - Gerd Geisslinger
- Pharmazentrum Frankfurt; Institute of Clinical Pharmacology; Goethe-University; Frankfurt Germany
| | - Ingrid Fleming
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
- Institute for Vascular Signalling; Centre for Molecular Medicine; Goethe-University; Frankfurt Germany
| | - Katrin Schröder
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Christian Fork
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Ralf P. Brandes
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| | - Matthias S. Leisegang
- Institute for Cardiovascular Physiology; Goethe-University; Frankfurt am Main Germany
- German Center of Cardiovascular Research (DZHK); Partner site RheinMain, Frankfurt Germany
| |
Collapse
|
18
|
Tang L, Wang G, Jiang L, Chen P, Wang W, Chen J, Wang L. Role of sEH R287Q in LDLR expression, LDL binding to LDLR and LDL internalization in BEL-7402 cells. Gene 2018; 667:95-100. [PMID: 29665449 DOI: 10.1016/j.gene.2018.04.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 03/20/2018] [Accepted: 04/13/2018] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Familial hypercholesterolemia (FH) is an autosomal dominant disorder of cholesterol metabolism. Three recognized genes (LDLR, APOB and PCSK9) present in only 20-30% of patients with possible FH cases. Additional FH-causing genes need to be explored. The present study found an isolated gene change, sEH R287Q, in a core family of FH. In this study, we aimed to investigate the roles of R287Q on sEH expression and on LDLR expression, LDL binding to LDLR and LDL internalization. MATERIALS AND METHODS 167 lipid-related genes of a core FH family were sequenced using a gene-capture chip. Through carrier dependent protein expression, the expression level (western blot), hydrolase activity (fluorescent chemistry) and intracellular localization (immunofluorescence and Confocal Laser Scanning Microscope) of recombinant sEH R287Q in cultured BEL-7402 cells were conducted. The effect of wild type and R287Q of sEH on LDLR expression, LDL binding to LDLR and LDL internalization were also conducted through Flow Cytometry. RESULTS sEH R287Q was the only gene changes among 167 lipid-related genes in the FH core family. Both expression level and hydrolase activity of recombinant sEH R287Q in cultured cells were significantly declined compared with that of the wild type sEH. sEH R287Q also decreased the binding of LDL to LDLR and LDL internalization and had no effect on cell-surface LDLR protein level. CONCLUSION Our results suggest that sEH R287Q may have a role in the elevation of blood LDL in FH. The exactly role of sEH R287Q on FH deserves further study.
Collapse
Affiliation(s)
- Ling Tang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Guoliang Wang
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, China
| | - Long Jiang
- Department of Cardiology, the Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi Province, China
| | - Panpan Chen
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; University of South China, Hengyang 421001, China
| | - Wei Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China; The Affiliated Hospital of North China University of Science and Technology, North China University of Science and Technology, Tangshan 063000, Hebei Province, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Qiaokou District, Wuhan 430030, China
| | - Luya Wang
- Department of Atherosclerosis, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital Affiliated with Capital Medical University, Beijing, China.
| |
Collapse
|
19
|
Araújo AC, Wheelock CE, Haeggström JZ. The Eicosanoids, Redox-Regulated Lipid Mediators in Immunometabolic Disorders. Antioxid Redox Signal 2018; 29:275-296. [PMID: 28978222 DOI: 10.1089/ars.2017.7332] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE The oxidation of arachidonic acid via cyclooxygenase (COX) and lipoxygenase (LOX) activity to produce eicosanoids during inflammation is a well-known biosynthetic pathway. These lipid mediators are involved in fever, pain, and thrombosis and are produced from multiple cells as well as cell/cell interactions, for example, immune cells and epithelial/endothelial cells. Metabolic disorders, including hyperlipidemia, hypertension, and diabetes, are linked with chronic low-grade inflammation, impacting the immune system and promoting a variety of chronic diseases. Recent Advances: Multiple studies have corroborated the important function of eicosanoids and their receptors in (non)-inflammatory cells in immunometabolic disorders (e.g., insulin resistance, obesity, and cardiovascular and nonalcoholic fatty liver diseases). In this context, LOX and COX products are involved in both pro- and anti-inflammatory responses. In addition, recent work has elucidated the potent function of specialized proresolving mediators (i.e., lipoxins and resolvins) in resolving inflammation, protecting organs, and stimulating tissue repair and remodeling. CRITICAL ISSUES Inhibiting/stimulating selected eicosanoid pathways may result in anti-inflammatory and proresolution responses leading to multiple beneficial effects, including the abrogation of reactive oxygen species production, increased speed of resolution, and overall improvement of diseases related to immunometabolic perturbations. FUTURE DIRECTIONS Despite many achievements, it is crucial to understand the molecular and cellular mechanisms underlying immunological/metabolic cross talk to offer substantial therapeutic promise. Antioxid. Redox Signal. 29, 275-296.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Craig E Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Jesper Z Haeggström
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
20
|
|
21
|
Guo Y, Luo F, Zhang X, Chen J, Shen L, Zhu Y, Xu D. TPPU enhanced exercise-induced epoxyeicosatrienoic acid concentrations to exert cardioprotection in mice after myocardial infarction. J Cell Mol Med 2018; 22:1489-1500. [PMID: 29265525 PMCID: PMC5824362 DOI: 10.1111/jcmm.13412] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/26/2017] [Indexed: 12/14/2022] Open
Abstract
Exercise training (ET) is a safe and efficacious therapeutic approach for myocardial infarction (MI). Given the numerous benefits of exercise, exercise-induced mediators may be promising treatment targets for MI. C57BL/6 mice were fed 1-trifluoromethoxyphenyl-3-(1-propionylpiperidine-4-yl) urea (TPPU), a novel soluble epoxide hydrolase inhibitor (sEHI), to increase epoxyeicosatrienoic acid (EET) levels, for 1 week before undergoing MI surgery. After 1-week recovery, the mice followed a prescribed exercise programme. Bone marrow-derived endothelial progenitor cells (EPCs) were isolated from the mice after 4 weeks of exercise and cultured for 7 days. Angiogenesis around the ischaemic area, EPC functions, and the expression of microRNA-126 (miR-126) and its target gene Spred1 were measured. The results were confirmed in vitro by adding TPPU to EPC culture medium. ET significantly increased serum EET levels and promoted angiogenesis after MI. TPPU enhanced the effects of ET to reduce the infarct area and improve cardiac function after MI. ET increased EPC function and miR-126 expression, which were further enhanced by TPPU, while Spred1 expression was significantly down-regulated. Additionally, the protein kinase B/glycogen synthase kinase 3β (AKT/GSK3β) signalling pathway was activated after the administration of TPPU. EETs are a potential mediator of exercise-induced cardioprotection in mice after MI. TPPU enhances exercise-induced cardiac recovery in mice after MI by increasing EET levels and promoting angiogenesis around the ischaemic area.
Collapse
MESH Headings
- 8,11,14-Eicosatrienoic Acid/analogs & derivatives
- 8,11,14-Eicosatrienoic Acid/metabolism
- 8,11,14-Eicosatrienoic Acid/pharmacology
- Adaptor Proteins, Signal Transducing
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/metabolism
- Cardiotonic Agents/metabolism
- Cardiotonic Agents/pharmacology
- Coronary Vessels/surgery
- Disease Models, Animal
- Endothelial Progenitor Cells/cytology
- Endothelial Progenitor Cells/drug effects
- Endothelial Progenitor Cells/metabolism
- Enzyme Inhibitors/pharmacology
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxide Hydrolases/genetics
- Epoxide Hydrolases/metabolism
- Gene Expression Regulation
- Glycogen Synthase Kinase 3 beta/genetics
- Glycogen Synthase Kinase 3 beta/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/physiopathology
- Myocardial Infarction/therapy
- Neovascularization, Physiologic
- Phenylurea Compounds/pharmacology
- Physical Conditioning, Animal
- Piperidines/pharmacology
- Primary Cell Culture
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Yuan Guo
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fei Luo
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xv Zhang
- Department of Physiology and PathophysiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Jingyuan Chen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Li Shen
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yi Zhu
- Department of Physiology and PathophysiologyCollaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Medical UniversityTianjinChina
| | - Danyan Xu
- Department of Cardiovascular MedicineThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
22
|
Swardfager W, Hennebelle M, Yu D, Hammock BD, Levitt AJ, Hashimoto K, Taha AY. Metabolic/inflammatory/vascular comorbidity in psychiatric disorders; soluble epoxide hydrolase (sEH) as a possible new target. Neurosci Biobehav Rev 2018; 87:56-66. [PMID: 29407524 DOI: 10.1016/j.neubiorev.2018.01.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/17/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
The common and severe psychiatric disorders, including major depressive disorder (MDD) and bipolar disorder (BD), are associated with inflammation, oxidative stress and changes in peripheral and brain lipid metabolism. Those pathways are implicated in the premature development of vascular and metabolic comorbidities, which account for considerable morbidity and mortality, including increased dementia risk. During endoplasmic reticulum stress, the soluble epoxide hydrolase (sEH) enzyme converts anti-inflammatory fatty acid epoxides generated by cytochrome p450 enzymes into their corresponding and generally less anti-inflammatory, or even pro-inflammatory, diols, slowing the resolution of inflammation. The sEH enzyme and its oxylipin products are elevated post-mortem in MDD, BD and schizophrenia. Preliminary clinical data suggest that oxylipins increase with symptoms in seasonal MDD and anorexia nervosa, requiring confirmation in larger studies and other cohorts. In rats, a soluble sEH inhibitor mitigated the development of depressive-like behaviors. We discuss sEH inhibitors under development for cardiovascular diseases, post-ischemic brain injury, neuropathic pain and diabetes, suggesting new possibilities to address the mood and cognitive symptoms of psychiatric disorders, and their most common comorbidities.
Collapse
Affiliation(s)
- W Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada; University Health Network Toronto Rehabilitation Institute, Toronto, Canada.
| | - M Hennebelle
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - D Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada; Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, Toronto, Canada; Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
| | - B D Hammock
- Department of Entomology and Nematology and Comprehensive Cancer Center UCDMC, University of California, Davis, CA, USA
| | - A J Levitt
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada; Department of Psychiatry, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - K Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - A Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| |
Collapse
|
23
|
Kim HS, Kim SK, Kang KW. Differential Effects of sEH Inhibitors on the Proliferation and Migration of Vascular Smooth Muscle Cells. Int J Mol Sci 2017; 18:ijms18122683. [PMID: 29232926 PMCID: PMC5751285 DOI: 10.3390/ijms18122683] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023] Open
Abstract
Epoxyeicosatrienoic acid (EET) is a cardioprotective metabolite of arachidonic acid. It is known that soluble epoxide hydrolase (sEH) is involved in the metabolic degradation of EET. The abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) play important roles in the pathogenesis of atherosclerosis and restenosis. Thus, the present study investigated the effects of the sEH inhibitor 12-(((tricyclo(3.3.1.13,7)dec-1-ylamino)carbonyl)amino)-dodecanoic acid (AUDA) on platelet-derived growth factor (PDGF)-induced proliferation and migration in rat VSMCs. AUDA significantly inhibited PDGF-induced rat VSMC proliferation, which coincided with Pin1 suppression and heme oxygenase-1 (HO-1) upregulation. However, exogenous 8,9-EET, 11,12-EET, and 14,15-EET treatments did not alter Pin1 or HO-1 levels and had little effect on the proliferation of rat VSMCs. On the other hand, AUDA enhanced the PDGF-stimulated cell migration of rat VSMCs. Furthermore, AUDA-induced activation of cyclooxygenase-2 (COX-2) and subsequent thromboxane A2 (TXA2) production were required for the enhanced migration. Additionally, EETs increased COX-2 expression but inhibited the migration of rat VSMCs. In conclusion, the present study showed that AUDA exerted differential effects on the proliferation and migration of PDGF-stimulated rat VSMCs and that these results may not depend on EET stabilization.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Enzyme Inhibitors/pharmacology
- Epoxide Hydrolases/antagonists & inhibitors
- Epoxy Compounds/metabolism
- Gene Expression Regulation/drug effects
- Heme Oxygenase-1/metabolism
- Lauric Acids/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Rats
Collapse
Affiliation(s)
- Hyo Seon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea.
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
24
|
Jamieson KL, Endo T, Darwesh AM, Samokhvalov V, Seubert JM. Cytochrome P450-derived eicosanoids and heart function. Pharmacol Ther 2017; 179:47-83. [PMID: 28551025 DOI: 10.1016/j.pharmthera.2017.05.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
25
|
Redina OE, Abramova TO, Klimov LO, Ryazanova MA, Fedoseeva LA, Smolenskaya SE, Ershov NI, Dubinina AD, Markel AL. Soluble epoxide hydrolase (sEH) as a potential target for arterial hypertension therapy. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417080063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Fang J, Little PJ, Xu S. Atheroprotective Effects and Molecular Targets of Tanshinones Derived From Herbal Medicine Danshen. Med Res Rev 2017; 38:201-228. [PMID: 28295428 DOI: 10.1002/med.21438] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/01/2016] [Accepted: 12/17/2016] [Indexed: 01/07/2023]
Abstract
Medicinal plant-derived bioactive compounds modulate multiple therapeutic targets in cardiovascular diseases (CVDs), rendering herb-derived phytochemicals effective against one of the major CVDs-atherosclerosis. Danshen (Salvia milthiorriza Bunge) is a Chinese medicine that has been used in cardio- and cerebro-vascular therapeutic remedies in Asian countries for many years. Emerging evidence from cellular, animal, and clinical studies suggests that major lipophilic tanshinones from Danshen can treat atherosclerotic CVDs. In this review, we highlight recent advances in understanding the molecular mechanisms of tanshinones in treating atherosclerosis, ranging from endothelial dysfunction to chronic inflammation. We also overview new molecular targets of tanshinones, including endothelial nitric oxide synthase, AMP-activated protein kinase, ABC transporter A1, heme oxygenase 1, soluble epoxide hydrolase, 11β-hydroxysteroid dehydrogenase, estrogen receptor, and proprotein convertase subtilisin/kexin type 9. Thus, this review provides a new perspective for advancing our understanding of the "ancient" herb Danshen from "modern" biomedical perspectives, supporting the possibility of exploiting tanshinones and derivatives as effective therapeutics against atherosclerosis-related cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
- Jian Fang
- Department of Pharmacy, Huadu District People's Hospital,Southern Medical University, 48 Xinhua Road, Guangzhou, 510800, China
| | - Peter J Little
- Pharmacy Australia Centre of Excellence (PACE), School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.,Xinhua College, Sun Yat-sen University, Guangzhou, 510520, China
| | - Suowen Xu
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642
| |
Collapse
|
27
|
Vascular endothelial over-expression of soluble epoxide hydrolase (Tie2-sEH) enhances adenosine A 1 receptor-dependent contraction in mouse mesenteric arteries: role of ATP-sensitive K + channels. Mol Cell Biochem 2016; 422:197-206. [PMID: 27629787 DOI: 10.1007/s11010-016-2821-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
Soluble epoxide hydrolase (sEH) converts epoxyeicosatrienoic acids that are endothelium-derived hyperpolarizing factors into less active dihydroxyeicosatrienoic acids. Previously, we reported a decrease in adenosine A1 receptor (A1AR) protein levels in sEH knockout (sEH-/-) and an increase in sEH and A1AR protein levels in A2AAR-/- mice. Additionally, KATP channels are involved in adenosine receptor (AR)-dependent vascular relaxation. Thus, we hypothesize that a potential relationship may exist among sEH over-expression, A1AR upregulation, inactivation of KATP channels, and increased in vascular tone. We performed DMT myograph muscle tension measurements and western blot analysis in isolated mouse mesenteric arteries (MAs) from wild-type (WT) and endothelial over-expression of sEH (Tie2-sEH Tr) mice. Our data revealed that NECA (a non-selective adenosine receptors agonist)-induced relaxation was significantly reduced in Tie2-sEH Tr mice, and CCPA (A1AR agonist)-induced contraction was increased in Tie2-sEH Tr mice. A1AR-dependent contraction in Tie2-sEH Tr mice was significantly attenuated by pharmacological inhibition of CYP4A (HET0016, 10 µM), PKCα (GO6976, 1 µM), and ERK1/2 (PD58059, 1 µM). Our western blot analysis revealed significantly higher basal protein expression of CYP4A, A1AR, and reduced p-ERK in MAs of Tie2-sEH Tr mice. Notably, pinacidil (KATP channel opener)-induced relaxation was also significantly reduced in MAs of Tie2-sEH Tr mice. Furthermore, KATP channel-dependent relaxation in MAs was enhanced by inhibition of PKCα and ERK1/2 in WT but not Tie2-sEH Tr mice. In conclusion, our data suggest that over-expression of sEH enhances A1AR-dependent contraction and reduces KATP channel-dependent relaxation in MAs. These results suggest a possible interaction between sEH, A1AR, and KATP channels in regulating vascular tone.
Collapse
|
28
|
Functional and Proteomic Investigations Reveal Major Royal Jelly Protein 1 Associated with Anti-hypertension Activity in Mouse Vascular Smooth Muscle Cells. Sci Rep 2016; 6:30230. [PMID: 27444336 PMCID: PMC4957218 DOI: 10.1038/srep30230] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 07/01/2016] [Indexed: 12/14/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) are a major cell type of the arterial wall and their functionality is associated with blood pressure regulation. Although royal jelly (RJ) has reported effects on anti-hypertension, the mechanism of blood pressure regulation by major royal jelly protein 1 (MRJP1), the most abundant RJ protein, is still unknown. The mrjp1 gene was inserted into mouse VSMCs to investigate how MRJP1 influences VSMC functionality by functional and proteomic analysis. The expression of MRJP1 in VSMCs significantly reduced cell contraction, migration, and proliferation, suggesting a potential role in decreasing hypertension via action on VSMCs. These anti-hypertension activities were further observed in the changes of the proteome setting of mouse VSMCs. Among 675 different proteins after MRJP1 expression, 646 were down-regulated and significantly enriched in pathways implicated in VSMC contraction and migration, which suggest MRJP1 lowers VSMC contraction and migration by inhibiting muscle filament movement. The down-regulated proteins also enriched pathways in proliferation, indicating that MRJP1 hinders VSMC proliferation by reducing the supply of energy and genetic material. This is the first report integrating MRJP1 into VSMC, revealing the function and mechanism correlated with anti-hypertensive activity. This offers a therapeutic potential to control hypertension by gene-therapy using bee-products.
Collapse
|
29
|
Presa N, Gomez-Larrauri A, Rivera IG, Ordoñez M, Trueba M, Gomez-Muñoz A. Regulation of cell migration and inflammation by ceramide 1-phosphate. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:402-9. [DOI: 10.1016/j.bbalip.2016.02.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/13/2022]
|