1
|
Herro R, Grimes HL. The diverse roles of neutrophils from protection to pathogenesis. Nat Immunol 2024; 25:2209-2219. [PMID: 39567761 DOI: 10.1038/s41590-024-02006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/07/2024] [Indexed: 11/22/2024]
Abstract
Neutrophil granulocytes are the most abundant leukocytes in the blood and constitute a critical arm of innate immunity. They are generated in the bone marrow, and under homeostatic conditions enter the bloodstream to patrol tissues and scout for potential pathogens that they quickly destroy through phagocytosis, intracellular degradation, release of granules and formation of extracellular traps. Thus, neutrophils are important effector cells involved in antibacterial defense. However, neutrophils can also be pathogenic. Emerging data suggest they have critical functions related to tissue repair and fibrosis. Moreover, similarly to other innate immune cells, neutrophil cell states are affected by their microenvironment. Notably, this includes tumors that co-opt neutrophils. Neutrophils can undergo transcriptional and epigenetic reprogramming, thus causing or modulating inflammation and injury. It is also possible that distinct neutrophil subsets are generated with designated functions in the bone marrow. Understanding neutrophil plasticity and alternative cell states will help resolve their contradictive roles. This Review summarizes the most recent key findings surrounding protective versus pathogenic functions of neutrophils; elaborating on phenotype-specific subsets of neutrophils and their involvement in homeostasis and disease.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| | - H Leighton Grimes
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
2
|
Romay MC, Knutsen RH, Ma F, Mompeón A, Hernandez GE, Salvador J, Mirkov S, Batra A, Sullivan DP, Procissi D, Buchanan S, Kronquist E, Ferrante EA, Muller WA, Walshon J, Steffens A, McCortney K, Horbinski C, Tournier‑Lasserve E, Sonabend AM, Sorond FA, Wang MM, Boehm M, Kozel BA, Iruela-Arispe ML. Age-related loss of Notch3 underlies brain vascular contractility deficiencies, glymphatic dysfunction, and neurodegeneration in mice. J Clin Invest 2024; 134:e166134. [PMID: 38015629 PMCID: PMC10786701 DOI: 10.1172/jci166134] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.
Collapse
Affiliation(s)
- Milagros C. Romay
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Feiyang Ma
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ana Mompeón
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Gloria E. Hernandez
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Jocelynda Salvador
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Snezana Mirkov
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ayush Batra
- Department of Pathology
- Department of Neurology, and
| | | | - Daniele Procissi
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA
| | - Samuel Buchanan
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elise Kronquist
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - Elisa A. Ferrante
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Laboratory of Cardiovascular Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | | | - Jordain Walshon
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Alicia Steffens
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Craig Horbinski
- Department of Pathology
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Elisabeth Tournier‑Lasserve
- Inserm NeuroDiderot, Université Paris Cité, Paris, France
- Service de Génétique Neurovasculaire, Assistance Publique–Hôpitaux de Paris, Hôpital Saint-Louis, Paris, France
| | - Adam M. Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Chicago, Illinois, USA
| | | | - Michael M. Wang
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Manfred Boehm
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
- Laboratory of Cardiovascular Regenerative Medicine, NIH, Bethesda, Maryland, USA
| | - Beth A. Kozel
- National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | - M. Luisa Iruela-Arispe
- Department of Cell and Development Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
3
|
Fu T, Sullivan DP, Gonzalez AM, Haynes ME, Dalal PJ, Rutledge NS, Tierney AL, Yescas JA, Weber EW, Muller WA. Mechanotransduction via endothelial adhesion molecule CD31 initiates transmigration and reveals a role for VEGFR2 in diapedesis. Immunity 2023; 56:2311-2324.e6. [PMID: 37643615 PMCID: PMC11670454 DOI: 10.1016/j.immuni.2023.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 05/04/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Engagement of platelet endothelial cell adhesion molecule 1 (PECAM, PECAM-1, CD31) on the leukocyte pseudopod with PECAM at the endothelial cell border initiates transendothelial migration (TEM, diapedesis). We show, using fluorescence lifetime imaging microscopy (FLIM), that physical traction on endothelial PECAM during TEM initiated the endothelial signaling pathway. In this role, endothelial PECAM acted as part of a mechanotransduction complex with VE-cadherin and vascular endothelial growth factor receptor 2 (VEGFR2), and this predicted that VEGFR2 was required for efficient TEM. We show that TEM required both VEGFR2 and the ability of its Y1175 to be phosphorylated, but not VEGF or VEGFR2 endogenous kinase activity. Using inducible endothelial-specific VEGFR2-deficient mice, we show in three mouse models of inflammation that the absence of endothelial VEGFR2 significantly (by ≥75%) reduced neutrophil extravasation by selectively blocking diapedesis. These findings provide a more complete understanding of the process of transmigration and identify several potential anti-inflammatory targets.
Collapse
Affiliation(s)
- Tao Fu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette M Gonzalez
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Maureen E Haynes
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prarthana J Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nakisha S Rutledge
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Abigail L Tierney
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julia A Yescas
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
4
|
Nadkarni NA, Arias E, Fang R, Haynes ME, Zhang HF, Muller WA, Batra A, Sullivan DP. Platelet Endothelial Cell Adhesion Molecule (PECAM/CD31) Blockade Modulates Neutrophil Recruitment Patterns and Reduces Infarct Size in Experimental Ischemic Stroke. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1619-1632. [PMID: 35952762 PMCID: PMC9667712 DOI: 10.1016/j.ajpath.2022.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
The infiltration of polymorphonuclear leukocytes (PMNs) in ischemia-reperfusion injury (I/RI) has been implicated as a critical component of inflammatory damage following ischemic stroke. However, successful blockade of PMN transendothelial migration (TEM) in preclinical studies has not translated to meaningful clinical outcomes. To investigate this further, leukocyte infiltration patterns were quantified, and these patterns were modulated by blocking platelet endothelial cell adhesion molecule-1 (PECAM), a key regulator of TEM. LysM-eGFP mice and microscopy were used to visualize all myeloid leukocyte recruitment following ischemia/reperfusion. Visual examination showed heterogeneous leukocyte distribution across the infarct at both 24 and 72 hours after I/RI. A semiautomated process was designed to precisely map PMN position across brain sections. Treatment with PECAM function-blocking antibodies did not significantly affect total leukocyte recruitment but did alter their distribution, with more observed at the cortex at both early and later time points (24 hours: 89% PECAM blocked vs. 72% control; 72 hours: 69% PECAM blocked vs. 51% control). This correlated with a decrease in infarct volume. These findings suggest that TEM, in the setting of I/RI in the cerebrovasculature, occurs primarily at the cortical surface. The reduction of stroke size with PECAM blockade suggests that infiltrating PMNs may exacerbate I/RI and indicate the potential therapeutic benefit of regulating the timing and pattern of leukocyte infiltration after stroke.
Collapse
Affiliation(s)
- Neil A Nadkarni
- Department of Neurology, Northwestern University, Chicago, Illinois
| | - Erika Arias
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - Maureen E Haynes
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Chicago, Illinois
| | - William A Muller
- Department of Pathology, Northwestern University, Chicago, Illinois
| | - Ayush Batra
- Department of Neurology, Northwestern University, Chicago, Illinois; Department of Pathology, Northwestern University, Chicago, Illinois
| | - David P Sullivan
- Department of Pathology, Northwestern University, Chicago, Illinois.
| |
Collapse
|
5
|
Rutledge NS, Ogungbe FT, Watson RL, Sullivan DP, Muller WA. Human CD99L2 Regulates a Unique Step in Leukocyte Transmigration. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1001-1012. [PMID: 35914838 PMCID: PMC9492640 DOI: 10.4049/jimmunol.2101091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/22/2022] [Indexed: 01/04/2023]
Abstract
CD99-like 2 (CD99L2 [L2]) is a highly glycosylated 52-kDa type 1 membrane protein that is important for leukocyte transendothelial migration (TEM) in mice. Inhibiting L2 using function-blocking Ab significantly reduces the recruitment of leukocytes to sites of inflammation in vivo. Similarly, L2 knockout mice have an inherent defect in leukocyte transmigration into sites of inflammation. However, the role of L2 in inflammation has only been studied in mice. Furthermore, the mechanism by which it regulates TEM is not known. To study the relevance to human inflammation, we studied the role of L2 on primary human cells in vitro. Our data show that like PECAM and CD99, human L2 is constitutively expressed at the borders of endothelial cells and on the surface of leukocytes. Inhibiting L2 using Ab blockade or genetic knockdown significantly reduces transmigration of human neutrophils and monocytes across endothelial cells. Furthermore, our data also show that L2 regulates a specific, sequential step of TEM between PECAM and CD99, rather than operating in parallel or redundantly with these molecules. Similar to PECAM and CD99, L2 promotes transmigration by recruiting the lateral border recycling compartment to sites of TEM, specifically downstream of PECAM initiation. Collectively, our data identify a novel functional role for human L2 in TEM and elucidate a mechanism that is distinct from PECAM and CD99.
Collapse
Affiliation(s)
- Nakisha S Rutledge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Faith T Ogungbe
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Richard L Watson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
6
|
Dalal PJ, Sullivan DP, Weber EW, Sacks DB, Gunzer M, Grumbach IM, Heller Brown J, Muller WA. Spatiotemporal restriction of endothelial cell calcium signaling is required during leukocyte transmigration. J Exp Med 2021; 218:152118. [PMID: 32970800 PMCID: PMC7953625 DOI: 10.1084/jem.20192378] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/04/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
Endothelial cell calcium flux is critical for leukocyte transendothelial migration (TEM), which in turn is essential for the inflammatory response. Intravital microscopy of endothelial cell calcium dynamics reveals that calcium increases locally and transiently around the transmigration pore during TEM. Endothelial calmodulin (CaM), a key calcium signaling protein, interacts with the IQ domain of IQGAP1, which is localized to endothelial junctions and is required for TEM. In the presence of calcium, CaM binds endothelial calcium/calmodulin kinase IIδ (CaMKIIδ). Disrupting the function of CaM or CaMKII with small-molecule inhibitors, expression of a CaMKII inhibitory peptide, or expression of dominant negative CaMKIIδ significantly reduces TEM by interfering with the delivery of the lateral border recycling compartment (LBRC) to the site of TEM. Endothelial CaMKII is also required for TEM in vivo as shown in two independent mouse models. These findings highlight novel roles for endothelial CaM and CaMKIIδ in transducing the spatiotemporally restricted calcium signaling required for TEM.
Collapse
Affiliation(s)
- Prarthana J Dalal
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Evan W Weber
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Isabella M Grumbach
- Department of Internal Medicine, University of Iowa, Carver College of Medicine, Iowa City, IA
| | - Joan Heller Brown
- Department of Pharmacology, University of California, San Diego, La Jolla, CA
| | - William A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
7
|
Rehring JF, Bui TM, Galán-Enríquez CS, Urbanczyk JM, Ren X, Wiesolek HL, Sullivan DP, Sumagin R. Released Myeloperoxidase Attenuates Neutrophil Migration and Accumulation in Inflamed Tissue. Front Immunol 2021; 12:654259. [PMID: 33959129 PMCID: PMC8093447 DOI: 10.3389/fimmu.2021.654259] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.
Collapse
Affiliation(s)
- Jacob F Rehring
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Triet M Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | | | - Jessica M Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hannah L Wiesolek
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - David P Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
8
|
Grönloh MLB, Arts JJG, van Buul JD. Neutrophil transendothelial migration hotspots - mechanisms and implications. J Cell Sci 2021; 134:134/7/jcs255653. [PMID: 33795378 DOI: 10.1242/jcs.255653] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
During inflammation, leukocytes circulating in the blood stream exit the vasculature in a process called leukocyte transendothelial migration (TEM). The current paradigm of this process comprises several well-established steps, including rolling, adhesion, crawling, diapedesis and sub-endothelial crawling. Nowadays, the role of the endothelium in transmigration is increasingly appreciated. It has been established that leukocyte exit sites on the endothelium and in the pericyte layer are in fact not random but instead may be specifically recognized by migrating leukocytes. Here, we review the concept of transmigration hotspots, specific sites in the endothelial and pericyte layer where most transmigration events take place. Chemokine cues, adhesion molecules and membrane protrusions as well as physical factors, such as endothelial junction stability, substrate stiffness, the presence of pericytes and basement membrane composition, may all contribute to local hotspot formation to facilitate leukocytes exiting the vasculature. In this Review, we discuss the biological relevance of such hotspots and put forward multiple mechanisms and factors that determine a functional TEM hotspot.
Collapse
Affiliation(s)
- Max L B Grönloh
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Janine J G Arts
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands.,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| | - Jaap D van Buul
- Molecular Cell Biology Lab, Dept. Plasma proteins, Molecular and Cellular Homeostasis, Sanquin Research and Landsteiner Laboratory, University of Amsterdam, Amsterdam 1066CX, The Netherlands .,Leeuwenhoek Centre for Advanced Microscopy (LCAM), Molecular Cytology section at Swammerdam Institute for Life Sciences (SILS) at University of Amsterdam, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
9
|
Platelet endothelial cell adhesion molecule-1 is a gatekeeper of neutrophil transendothelial migration in ischemic stroke. Brain Behav Immun 2021; 93:277-287. [PMID: 33388423 DOI: 10.1016/j.bbi.2020.12.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/24/2020] [Accepted: 12/22/2020] [Indexed: 11/21/2022] Open
Abstract
RATIONALE Adhesion molecules are key elements in stroke-induced brain injury by regulating the migration of effector immune cells from the circulation to the lesion site. Platelet endothelial cell adhesion molecule-1 (PECAM-1) is an adhesion molecule highly expressed on endothelial cells and leukocytes, which controls the final steps of trans-endothelial migration. A functional role for PECAM-1 in post-ischemic brain injury has not yet been demonstrated. OBJECTIVE Using genetic Pecam-1 depletion and PECAM-1 blockade using a neutralizing anti-PECAM-1 antibody, we evaluated the role of PECAM-1 mediated trans-endothelial immune cell migration for ischemic injury, delayed brain atrophy, and brain immune cell infiltrates. Trans-endothelial immune cell migration was furthermore evaluated in cultured human cerebral microvascular endothelial cells. METHODS AND RESULTS Transient middle cerebral artery occlusion (tMCAO) was induced in 10-12-week-old male Pecam-1-/- and Pecam-1+/+ wildtype mice. PECAM-1 levels increased in the ischemic brain tissue due to the infiltration of PECAM-1+ leukocytes. Using magnetic resonance imaging, we observed smaller infarct volume, less edema formation, and less brain atrophy in Pecam-1-/- compared with Pecam-1+/+ wildtype mice. The transmigration of leukocytes, specifical neutrophils, was selectively reduced by Pecam-1-/-, as shown by immune fluorescence and flow cytometry in vivo and transmigration assays in vitro. Importantly, inhibition with an anti-PECAM-1 antibody in wildtype mice decreased neutrophil brain influx and infarct. CONCLUSION PECAM-1 controls the trans-endothelial migration of neutrophils in a mouse model of ischemic stroke. Antibody blockade of PECAM-1 after stroke onset ameliorates stroke severity in mice, making PECAM-1 an interesting target to dampen post-stroke neuroinflammation, reduce ischemic brain injury, and enhance post-ischemic brain remodeling.
Collapse
|
10
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
11
|
Understanding Molecules that Mediate Leukocyte Extravasation. CURRENT PATHOBIOLOGY REPORTS 2020. [DOI: 10.1007/s40139-020-00207-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Sullivan DP, Dalal PJ, Jaulin F, Sacks DB, Kreitzer G, Muller WA. Endothelial IQGAP1 regulates leukocyte transmigration by directing the LBRC to the site of diapedesis. J Exp Med 2019; 216:2582-2601. [PMID: 31395618 PMCID: PMC6829592 DOI: 10.1084/jem.20190008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/10/2019] [Accepted: 07/03/2019] [Indexed: 01/09/2023] Open
Abstract
The function of endothelial cell IQGAP1 during diapedesis requires its actin-binding domain and IQ motifs to recruit the lateral border recycling compartment. Genetic ablation of endothelial cell IQGAP1 expression in vivo causes significant disruption of diapedesis in two models of inflammation. Transendothelial migration (TEM) of leukocytes across the endothelium is critical for inflammation. In the endothelium, TEM requires the coordination of membrane movements and cytoskeletal interactions, including, prominently, recruitment of the lateral border recycling compartment (LBRC). The scaffold protein IQGAP1 was recently identified in a screen for LBRC-interacting proteins. Knockdown of endothelial IQGAP1 disrupted the directed movement of the LBRC and substantially reduced leukocyte TEM. Expression of truncated IQGAP1 constructs demonstrated that the calponin homology domain is required for IQGAP1 localization to endothelial borders and that the IQ domain, on the same IQGAP1 polypeptide, is required for its function in TEM. This is the first reported function of IQGAP1 requiring two domains to be present on the same polypeptide. Additionally, we show for the first time that IQGAP1 in the endothelium is required for efficient TEM in vivo. These findings reveal a novel function for IQGAP1 and demonstrate that IQGAP1 in endothelial cells facilitates TEM by directing the LBRC to the site of TEM.
Collapse
Affiliation(s)
- David P Sullivan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Prarthana J Dalal
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - David B Sacks
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD
| | - Geri Kreitzer
- Department of Molecular, Cellular and Biomedical Sciences, City University of New York School of Medicine, The City College of New York, New York, NY
| | - William A Muller
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
13
|
Vaikari VP, Du Y, Wu S, Zhang T, Metzeler K, Batcha AMN, Herold T, Hiddemann W, Akhtari M, Alachkar H. Clinical and preclinical characterization of CD99 isoforms in acute myeloid leukemia. Haematologica 2019; 105:999-1012. [PMID: 31371417 PMCID: PMC7109747 DOI: 10.3324/haematol.2018.207001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 07/25/2019] [Indexed: 12/19/2022] Open
Abstract
In an effort to identify target genes in acute myeloid leukemia (AML), we compared gene expression profiles between normal and AML cells from various publicly available datasets. We identified CD99, a gene that is up-regulated in AML patients. In 186 patients from The Cancer Genome Atlas AML dataset, CD99 was over-expressed in patients with FLT3-ITD and was down-regulated in patients with TP53 mutations. CD99 is a trans-membrane protein expressed on leukocytes and plays a role in cell adhesion, trans-endothelial migration, and T-cell differentiation. The CD99 gene encodes two isoforms with distinct expression and functional profiles in both normal and malignant tissues. Here we report that, although the CD99 long isoform initially induces an increase in cell proliferation, it also induces higher levels of reactive oxygen species, DNA damage, apoptosis and a subsequent decrease in cell viability. In several leukemia murine models, the CD99 long isoform delayed disease progression and resulted in lower leukemia engraftment in the bone marrow. Furthermore, the CD99 monoclonal antibody reduced cell viability, colony formation, and cell migration, and induced cell differentiation and apoptosis in leukemia cell lines and primary blasts. Mechanistically, CD99 long isoform resulted in transient induction followed by a dramatic decrease in both ERK and SRC phosphorylation. Altogether, our study provides new insights into the role of CD99 isoforms in AML that could potentially be relevant for the preclinical development of CD99 targeted therapy.
Collapse
Affiliation(s)
- Vijaya Pooja Vaikari
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Yang Du
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Sharon Wu
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Tian Zhang
- Medical Biology Program, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Klaus Metzeler
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Aarif M N Batcha
- Institute of Medical Data Processing, Biometrics and Epidemiology (IBE), Faculty of Medicine, LMU Munich, Munich, Germany.,Data Integration for Future Medicine (DiFuture, www.difuture.de), LMU Munich, Germany
| | - Tobias Herold
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany.,Research Unit Apoptosis in Hematopoietic Stem Cells, Helmholtz Zentrum München, German Center for Environmental Health (HMGU), Munich Germany
| | - Wolfgang Hiddemann
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Akhtari
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles Southern California, Los Angeles, CA, USA
| | - Houda Alachkar
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, USA .,USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles Southern California, Los Angeles, CA, USA
| |
Collapse
|
14
|
Lou J, Hu Y, Wu MD, Che LQ, Wu YF, Zhao Y, Tian BP, Bao ZQ, Zhu C, Wu YP, He LL, Bai CX, Zhou J, Ying SM, Li W, Chen ZH, Chen DX, Dorling A, Shen HH. Endothelial cell-specific anticoagulation reduces inflammation in a mouse model of acute lung injury. Acta Pharmacol Sin 2019; 40:769-780. [PMID: 30446733 DOI: 10.1038/s41401-018-0175-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023]
Abstract
Tissue factor (TF)-dependent coagulation contributes to lung inflammation and the pathogenesis of acute lung injury (ALI). In this study, we explored the roles of targeted endothelial anticoagulation in ALI using two strains of transgenic mice expressing either a membrane-tethered human tissue factor pathway inhibitor (hTFPI) or hirudin fusion protein on CD31+ cells, including vascular endothelial cells (ECs). ALI was induced by intratracheal injection of LPS, and after 24 h the expression of TF and protease-activated receptors (PARs) on EC in lungs were assessed, alongside the extent of inflammation and injury. The expression of TF and PARs on the EC in lungs was upregulated after ALI. In the two strains of transgenic mice, expression of either of hTFPI or hirudin by EC was associated with significant reduction of inflammation, as assessed by the extent of leukocyte infiltration or the levels of proinflammatory cytokines, and promoted survival after LPS-induced ALI. The beneficial outcomes were associated with inhibition of the expression of chemokine CCL2 in lung tissues. The protection observed in the CD31-TFPI-transgenic strain was abolished by injection of an anti-hTFPI antibody, but not by prior engraftment of the transgenic strains with WT bone marrow, confirming that the changes observed were a specific transgenic expression of anticoagulants by EC. These results demonstrate that the inflammation in ALI is TF and thrombin dependent, and that expression of anticoagulants by EC significantly inhibits the development of ALI via repression of leukocyte infiltration, most likely via inhibition of chemokine gradients. These data enhance our understanding of the pathology of ALI and suggest a novel therapeutic strategy for treatment.
Collapse
|
15
|
Wimmer I, Tietz S, Nishihara H, Deutsch U, Sallusto F, Gosselet F, Lyck R, Muller WA, Lassmann H, Engelhardt B. PECAM-1 Stabilizes Blood-Brain Barrier Integrity and Favors Paracellular T-Cell Diapedesis Across the Blood-Brain Barrier During Neuroinflammation. Front Immunol 2019; 10:711. [PMID: 31024547 PMCID: PMC6460670 DOI: 10.3389/fimmu.2019.00711] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 03/15/2019] [Indexed: 01/13/2023] Open
Abstract
Breakdown of the blood-brain barrier (BBB) and increased immune cell trafficking into the central nervous system (CNS) are hallmarks of the pathogenesis of multiple sclerosis (MS). Platelet endothelial cell adhesion molecule-1 (PECAM-1; CD31) is expressed on cells of the vascular compartment and regulates vascular integrity and immune cell trafficking. Involvement of PECAM-1 in MS pathogenesis has been suggested by the detection of increased levels of soluble PECAM-1 (sPECAM-1) in the serum and CSF of MS patients. Here, we report profound upregulation of cell-bound PECAM-1 in initial (pre-phagocytic) white matter as well as active cortical gray matter MS lesions. Using a human in vitro BBB model we observed that PECAM-1 is not essential for the transmigration of human CD4+ T-cell subsets (Th1, Th1*, Th2, and Th17) across the BBB. Employing an additional in vitro BBB model based on primary mouse brain microvascular endothelial cells (pMBMECs) we show that the lack of endothelial PECAM-1 impairs BBB properties as shown by reduced transendothelial electrical resistance (TEER) and increases permeability for small molecular tracers. Investigating T-cell migration across the BBB under physiological flow by in vitro live cell imaging revealed that absence of PECAM-1 in pMBMECs did not influence arrest, polarization, and crawling of effector/memory CD4+ T cells on the pMBMECs. Absence of endothelial PECAM-1 also did not affect the number of T cells able to cross the pMBMEC monolayer under flow, but surprisingly favored transcellular over paracellular T-cell diapedesis. Taken together, our data demonstrate that PECAM-1 is critically involved in regulating BBB permeability and although not required for T-cell diapedesis itself, its presence or absence influences the cellular route of T-cell diapedesis across the BBB. Upregulated expression of cell-bound PECAM-1 in human MS lesions may thus reflect vascular repair mechanisms aiming to restore BBB integrity and paracellular T-cell migration across the BBB as it occurs during CNS immune surveillance.
Collapse
Affiliation(s)
- Isabella Wimmer
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Tietz
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | | | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zürich,, Zurich, Switzerland
| | - Fabien Gosselet
- Blood-Brain Barrier Laboratory, Université d'Artois, Lens, France
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - William A. Muller
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
16
|
Neutrophil transendothelial migration: updates and new perspectives. Blood 2019; 133:2149-2158. [PMID: 30898863 DOI: 10.1182/blood-2018-12-844605] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/14/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophils represent the first line of cellular defense against invading microorganism by rapidly moving across the blood-endothelial cell (EC) barrier and exerting effector cell functions. The neutrophil recruitment cascade to inflamed tissues involves elements of neutrophil rolling, firm adhesion, and crawling onto the EC surface before extravasating by breaching the EC barrier. The interaction between neutrophils and ECs occurs via various adhesive modules and is a critical event determining the mode of neutrophil transmigration, either at the EC junction (paracellular) or directly through the EC body (transcellular). Once thought to be a homogenous entity, new evidence clearly points to the plasticity of neutrophil functions. This review will focus on recent advances in our understanding of the mechanism of the neutrophil transmigration process. It will discuss how neutrophil-EC interactions and the subsequent mode of diapedesis, junctional or nonjunctional, can be context dependent and how this plasticity may be exploited clinically.
Collapse
|
17
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
In vivo imaging reveals unique neutrophil transendothelial migration patterns in inflamed intestines. Mucosal Immunol 2018; 11:1571-1581. [PMID: 30104624 PMCID: PMC6279495 DOI: 10.1038/s41385-018-0069-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 02/04/2023]
Abstract
Neutrophil (PMN) infiltration of the intestinal mucosa is a hallmark of gastrointestinal inflammation, with significant implications for host defense, injury and repair. However, phenotypic and mechanistic aspects of PMN recruitment in inflamed intestines have not been explored in vivo. Using novel epithelial/PMN fluorescence reporter mice, advanced intravital imaging and 3D reconstruction analysis, we mapped the microvasculature architecture across the intestinal layers and determined that in response to Salmonella/endotoxin-induced inflammation, PMN transendothelial migration (TEM) was restricted to submucosal vessels. PMN TEM was not observed in villus or crypt vessels, proximal to the epithelium that underlies the intestinal lumen, and was partially dependent on (C-X-C motif) ligands 1 (CXCL1) and 2 (CXCL2) expression, which was found to be elevated in the submucosa layer. Restricted PMN extravasation at the submucosa and subsequent PMN interstitial migration may serve as a novel regulatory step of PMN effector function and recruitment to the luminal space in inflamed intestines.
Collapse
|