1
|
Deflers C, Donate Puertas R, Lechene P, Mateo P, Lefebvre F, Fischmeister R, Pidoux G. A Closed Circulation Langendorff Heart Perfusion Method for Cardiac Drug Screening. Physiol Res 2024; 73:951-961. [PMID: 39903886 PMCID: PMC11835219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/09/2024] [Indexed: 02/06/2025] Open
Abstract
Cardiovascular diseases represent an economic burden for health systems accounting for substantial morbidity and mortality worldwide. Despite timely and costly efforts in drug development, the cardiovascular safety and efficacy of the drugs are not always fully achieved. These lead to the drugs' withdrawal with adverse cardiac effects from the market or in the late stages of drug development. There is a growing need for a cost-effective drug screening assay to rapidly detect potential acute drug cardiotoxicity. The Langendorff isolated heart perfusion technique, which provides cardiac hemodynamic parameters (e.g., contractile function and heart rate), has become a powerful approach in the early drug discovery phase to overcome drawbacks in the drug candidate's identification. However, traditional ex vivo retrograde heart perfusion methods consume a large volume of perfusate, which increases the cost and limits compound screening. An elegant and cost-effective alternative mode for ex vivo retrograde heart perfusion is the constant-flow with a recirculating circuit (CFCC), which allows assessment of cardiac function using a reduced perfusion volume while limiting adverse effects on the heart. Here, we provide evidence for cardiac parameters stability over time in this mode. Next, we demonstrate that our recycled ex vivo perfusion system and the traditional open one yield similar outputs on cardiac function under basal conditions and upon ?-adrenergic stimulation with isoproterenol. Subsequently, we validate the proof of concept of therapeutic agent screening using this efficient method. ?-blocker (i.e., propranolol) infusion in closed circulation countered the positive effects induced by isoproterenol stimulation on cardiac function. Keywords: Drug development, Drug screening, Cardiovascular safety, Langendorff method, Closed circulation.
Collapse
Affiliation(s)
- C Deflers
- Université Paris-Saclay, INSERM, Signaling and Cardiovascular Pathophysiology, Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
2
|
Behrmann A, Cayton J, Hayden MR, Lambert MD, Nourian Z, Nyanyo K, Godbee B, Hanft LM, Krenz M, McDonald KS, Domeier TL. Right ventricular preload and afterload challenge induces contractile dysfunction and arrhythmia in isolated hearts of dystrophin-deficient male mice. Physiol Rep 2024; 12:e16004. [PMID: 38658324 PMCID: PMC11043033 DOI: 10.14814/phy2.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.
Collapse
MESH Headings
- Animals
- Male
- Dystrophin/genetics
- Dystrophin/deficiency
- Mice
- Myocardial Contraction
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/etiology
- Arrhythmias, Cardiac/genetics
- Ventricular Dysfunction, Right/physiopathology
- Ventricular Dysfunction, Right/genetics
- Ventricular Dysfunction, Right/metabolism
- Muscular Dystrophy, Duchenne/physiopathology
- Muscular Dystrophy, Duchenne/genetics
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/metabolism
- Mice, Inbred mdx
- Mice, Inbred C57BL
Collapse
Affiliation(s)
- Andrew Behrmann
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Jessica Cayton
- Department of Veterinary PathobiologyUniversity of MissouriColumbiaMissouriUSA
| | - Matthew R. Hayden
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Michelle D. Lambert
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Zahra Nourian
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Keith Nyanyo
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Brooke Godbee
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Laurin M. Hanft
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Maike Krenz
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
- Dalton Cardiovascular Research CenterUniversity of MissouriColumbiaMissouriUSA
| | - Kerry S. McDonald
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| | - Timothy L. Domeier
- Medical Pharmacology and PhysiologyUniversity of MissouriColumbiaMissouriUSA
| |
Collapse
|
3
|
Vlasblom R, van Thiel J, Bittenbinder MA, van Rhijn JR, Drost R, Muis L, Slagboom J, Salvatori D, Kool J, Veldman RJ. Distinct cardiotoxic effects by venoms of a spitting cobra (Naja pallida) and a rattlesnake (Crotalus atrox) revealed using an ex vivo Langendorff heart model. Toxicon 2024; 240:107637. [PMID: 38331109 DOI: 10.1016/j.toxicon.2024.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Here we describe the acute myocardial effects of an elapid (red spitting cobra, Naja pallida) and a viper (western diamondback rattlesnake, Crotalus atrox) venom using an ex vivo heart model. Our results reveal two different pathophysiological trajectories that influence heart function and morphology. While cobra venom causes a drop in contractile force, rattlesnake venom causes enhanced contractility and frequency that coincides with differences in myocellular morphology. This highlights the medical complexity of snake venom-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ronald Vlasblom
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences, 3584 CS, Utrecht, the Netherlands.
| | - Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | - Matyas A Bittenbinder
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Jon-Ruben van Rhijn
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences, 3584 CS, Utrecht, the Netherlands
| | - Rinske Drost
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences, 3584 CS, Utrecht, the Netherlands
| | - Lotte Muis
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences, 3584 CS, Utrecht, the Netherlands
| | - Julien Slagboom
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Daniela Salvatori
- Anatomy and Physiology, Department Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, the Netherlands
| | - Jeroen Kool
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Robert Jan Veldman
- Institute of Life Sciences and Chemistry, HU University of Applied Sciences, 3584 CS, Utrecht, the Netherlands
| |
Collapse
|
4
|
Wang L, Zheng M, Tang Y, Yin Y, Liu Y, Liu G. Impact of various periods of perfusion-pause and reperfusion on the severity of myocardial injury in the langenodorff model. Perfusion 2023; 38:1609-1616. [PMID: 36059244 DOI: 10.1177/02676591221122349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND To explore impact of various periods of ischemia and reperfusion on the severity of myocardial injury. METHODS Langendorff model of isolated cardiac perfusion system was established in 56 rat hearts. They were randomly assigned into four groups with four different ischemia (perfusion-pause) time and reperfusion time. The levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), and creatine kinase-MB (CK-MB) were measured and the size of myocardial infarction was assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. RESULTS The levels of AST, ALT, LDH, and CK-MB in the heart tissues and perfusate were lowest in the group I (shortest time of perfusion-pause and reperfusion) followed by the groups II, III, and IV (longest time of perfusion-pause and reperfusion) (p < 0.05). The myocardial infarction size was smallest in the group I (6.63 ± 0.47) followed by group II (15.12 ± 1.03), group III (20.32 ± 2.18), and group IV (32.29 ± 5.42) (p < 0.05). Two-way ANOVA analysis revealed that period of perfusion-pause and reperfusion independently and significantly affected the levels of AST and ALT in both heart tissues and perfusate (p < 0.001). The interaction of pausing period and reperfusion significantly affected the level of AST (p = 0.046) and CK-MB (p = 0.001) in the perfusate. In addition, perfusion-pause period significantly affected levels of LDH and CK-MB only in the perfusate (p < 0.001). Neither perfusate nor heart tissue LDH level was significantly affected by the interaction of perfusion-pause and reperfusion period (p > 0.05). CONCLUSION The severity of myocardial injury in the Langendorff model was affected by the period of perfusion-pause and reperfusion. The longer period of perfusion-pause followed by the longer the period of reperfusion, the severe myocardial injury was found.
Collapse
Affiliation(s)
- Le Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| | - Yida Tang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Cardiology, Peking University Third Hospital, Beijing, China
| | - Yajuan Yin
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuecheng Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, Hebei, China
- Hebei International Joint Research Center for Structural Heart Disease, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Wu Q, Zou S, Liu W, Liang M, Chen Y, Chang J, Liu Y, Yu X. A novel onco-cardiological mouse model of lung cancer-induced cardiac dysfunction and its application in identifying potential roles of tRNA-derived small RNAs. Biomed Pharmacother 2023; 165:115117. [PMID: 37406509 DOI: 10.1016/j.biopha.2023.115117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023] Open
Abstract
An increasing body of research suggests cancer-induced cardiovascular diseases, leading to the appearance of an interdisciplinary study known as onco-cardiology. Lung cancer has the highest incidence and mortality. Cardiac dysfunction constitutes a major cause of death in lung cancer patients. However, its mechanism has not been elucidated because suitable animal models that adequately mimic clinical features are lacking. Here, we established a novel chemically induced lung cancer mouse model using benzo[a]pyrene and urethane to recapitulate the general characteristics of cardiac dysfunction caused by lung cancer, the cardiac disorders in the context of the progression of lung cancer were evaluated using echocardiographic and histological approaches. The pathological changes included myocardial ischaemia, pericarditis, cardiac pre-cachexia, and pulmonary artery hypertension. We performed sequencing to detect the tRNA-derived fragments and tRNA-derived stress-induced RNAs (tRFs/tiRNAs) expressions in mouse heart tissue. 22 upregulated and 16 downregulated tRFs/tiRNAs were identified. Subsequently, the top 10 significant results of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were presented. The in vitro model was established by exposing neonatal rat cardiomyocytes and myocardial fibroblasts to lung tumour cell-conditioned medium, respectively. Western blotting revealed significant changes in cardiac failure markers (atrial natriuretic peptide and α-myosin heavy chain) and cardiac fibrosis markers (Collagen-1 and Collagen-3). Our model adequately reflects the pathological features of lung cancer-induced cardiac dysfunction. Furthermore, the altered tRF/tiRNA profiles showed great promise as novel targets for therapies. These results might pave the way for research on therapeutic targets in onco-cardiology.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Shiting Zou
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Wanjie Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Miao Liang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yuling Chen
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jishuo Chang
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Yinghua Liu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xiyong Yu
- Department of Pharmacology, the Municipal & Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, National Medical Products Administration & State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, PR China.
| |
Collapse
|
6
|
Yassaghi Y, Jeddi S, Yousefzadeh N, Kashfi K, Ghasemi A. Long-term inorganic nitrate administration protects against myocardial ischemia-reperfusion injury in female rats. BMC Cardiovasc Disord 2023; 23:411. [PMID: 37605135 PMCID: PMC10441752 DOI: 10.1186/s12872-023-03425-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND The favorable effects of nitrate against myocardial ischemia-reperfusion injury (MIRI) have primarily focused on male rats and in short term. Here we determine the impact of long-term nitrate intervention on baseline cardiac function and the resistance to MIRI in female rats. METHODS Female Wistar rats were randomly divided into untreated and nitrate-treated (100 mg/L sodium nitrate in drinking water for 9 months) groups (n = 14/group). At intervention end, levels of serum progesterone, nitric oxide metabolites (NOx), heart NOx concentration, and mRNA expressions of NO synthase isoforms (NOS), i.e., endothelial (eNOS), neuronal (nNOS), and inducible (iNOS), were measured. Isolated hearts were exposed to ischemia, and cardiac function indices (CFI) recorded. When the ischemia-reperfusion (IR) period ended, infarct size, NO metabolites, eNOS, nNOS, and iNOS expression were measured. RESULTS Nitrate-treated rats had higher serum progesterone (29.8%, P = 0.013), NOx (31.6%, P = 0.035), and higher heart NOx (60.2%, P = 0.067), nitrite (131%, P = 0.018), and eNOS expression (200%, P = 0.005). Nitrate had no significant effects on baseline CFI but it increased recovery of left ventricular developed pressure (LVDP, 19%, P = 0.020), peak rate of positive (+ dp/dt, 16%, P = 0.006) and negative (-dp/dt, 14%, P = 0.014) changes in left ventricular pressure and decreased left ventricular end-diastolic pressure (LVEDP, 17%, P < 0.001) and infarct size (34%, P < 0.001). After the IR, the two groups had significantly different heart nitrite, nitrate, NOx, and eNOS and iNOS mRNA expressions. CONCLUSIONS Long-term nitrate intervention increased the resistance to MIRI in female rats; this was associated with increased heart eNOS expression and circulating progesterone before ischemia and blunting ischemia-induced increased iNOS and decreased eNOS after MIRI.
Collapse
Affiliation(s)
- Younes Yassaghi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Nasibeh Yousefzadeh
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular, and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, No. 24, Parvaneh Street, Yaman Street, P.O. Box: 19395-4763, Velenjak, Tehran, Iran.
| |
Collapse
|
7
|
Berkowicz P, Totoń-Żurańska J, Kwiatkowski G, Jasztal A, Csípő T, Kus K, Tyrankiewicz U, Orzyłowska A, Wołkow P, Tóth A, Chlopicki S. Accelerated ageing and coronary microvascular dysfunction in chronic heart failure in Tgαq*44 mice. GeroScience 2023; 45:1619-1648. [PMID: 36692592 PMCID: PMC10400753 DOI: 10.1007/s11357-022-00716-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/12/2022] [Indexed: 01/25/2023] Open
Abstract
Age represents a major risk factor in heart failure (HF). However, the mechanisms linking ageing and HF are not clear. We aimed to identify the functional, morphological and transcriptomic changes that could be attributed to cardiac ageing in a model of slowly progressing HF in Tgαq*44 mice in reference to the cardiac ageing process in FVB mice. In FVB mice, ageing resulted in the impairment of diastolic cardiac function and in basal coronary flow (CF), perivascular and interstitial fibrosis without changes in the cardiac activity of angiotensin-converting enzyme (ACE) or aldosterone plasma concentration. In Tgαq*44 mice, HF progression was featured by the impairment of systolic and diastolic cardiac function and in basal CF that was associated with a distinct rearrangement of the capillary architecture, pronounced perivascular and interstitial fibrosis, progressive activation of cardiac ACE and systemic angiotensin-aldosterone-dependent pathways. Interestingly, cardiac ageing genes and processes were represented in Tgαq*44 mice not only in late but also in early phases of HF, as evidenced by cardiac transcriptome analysis. Thirty-four genes and 8 biological processes, identified as being ageing related, occurred early and persisted along HF progression in Tgαq*44 mice and were mostly associated with extracellular matrix remodelling and fibrosis compatible with perivascular fibrosis resulting in coronary microvascular dysfunction (CMD) in Tgαq*44 mice. In conclusion, accelerated and persistent cardiac ageing contributes to the pathophysiology of chronic HF in Tgαq*44 mice. In particular, prominent perivascular fibrosis of microcirculation resulting in CMD represents an accelerated cardiac ageing phenotype that requires targeted treatment in chronic HF.
Collapse
Affiliation(s)
- Piotr Berkowicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Justyna Totoń-Żurańska
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Kwiatkowski
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Agnieszka Jasztal
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Tamás Csípő
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Public Health, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Kamil Kus
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Urszula Tyrankiewicz
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland
| | - Anna Orzyłowska
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Paweł Wołkow
- Centre for Medical Genomics OMICRON, Jagiellonian University Medical College, Krakow, Poland
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Stefan Chlopicki
- Jagiellonian Centre for Experimental Therapeutics (JCET), Jagiellonian University, Krakow, Poland.
- Faculty of Medicine, Chair of Pharmacology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
8
|
Kronsteiner B, Haberbusch M, Aigner P, Kramer AM, Pilz PM, Podesser BK, Kiss A, Moscato F. A novel ex-vivo isolated rabbit heart preparation to explore the cardiac effects of cervical and cardiac vagus nerve stimulation. Sci Rep 2023; 13:4214. [PMID: 36918673 PMCID: PMC10014867 DOI: 10.1038/s41598-023-31135-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The cardiac responses to vagus nerve stimulation (VNS) are still not fully understood, partly due to uncontrollable confounders in the in-vivo experimental condition. Therefore, an ex-vivo Langendorff-perfused rabbit heart with intact vagal innervation is proposed to study VNS in absence of cofounding anesthetic or autonomic influences. The feasibility to evoke chronotropic responses through electrical stimulation ex-vivo was studied in innervated isolated rabbit hearts (n = 6). The general nerve excitability was assessed through the ability to evoke a heart rate (HR) reduction of at least 5 bpm (physiological threshold). The excitability was quantified as the charge needed for a 10-bpm HR reduction. The results were compared to a series of in-vivo experiments rabbits (n = 5). In the ex-vivo isolated heart, the baseline HR was about 20 bpm lower than in-vivo (158 ± 11 bpm vs 181 ± 19 bpm). Overall, the nerve remained excitable for about 5 h ex-vivo. The charges required to reduce HR by 5 bpm were 9 ± 6 µC and 549 ± 370 µC, ex-vivo and in-vivo, respectively. The charges needed for a 10-bpm HR reduction, normalized to the physiological threshold were 1.78 ± 0.8 and 1.22 ± 0.1, in-vivo and ex-vivo, respectively. Overall, the viability of this ex-vivo model to study the acute cardiac effects of VNS was demonstrated.
Collapse
Affiliation(s)
- Bettina Kronsteiner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria.
| | - Max Haberbusch
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Philipp Aigner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
| | - Anne-Margarethe Kramer
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Patrick M Pilz
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Francesco Moscato
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Vienna, Austria
- Austrian Cluster for Tissue Engineering, Vienna, Austria
| |
Collapse
|
9
|
Ocaña-Ortega A, Pérez-Flores G, Torres-Tirado D, Pérez-García LA. O-Linked Glycans of Candida albicans Interact with Specific GPCRs in the Coronary Endothelium and Inhibit the Cardiac Response to Agonists. J Fungi (Basel) 2023; 9:jof9020141. [PMID: 36836256 PMCID: PMC9960525 DOI: 10.3390/jof9020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen that may cause invasive infections in immunocompromised patients, disseminating through the bloodstream to other organs. In the heart, the initial step prior to invasion is the adhesion of the fungus to endothelial cells. Being the fungal cell wall's outermost structure and the first to come in contact with host cells, it greatly modulates the interplay that later will derive in the colonization of the host tissue. In this work, we studied the functional contribution of N-linked and O-linked mannans of the cell wall of C. albicans to the interaction with the coronary endothelium. An isolated rat heart model was used to assess cardiac parameters related to vascular and inotropic effects in response to phenylephrine (Phe), acetylcholine (aCh) and angiotensin II (Ang II) when treatments consisting of: (1) live and heat-killed (HK) C. albicans wild-type yeasts; (2) live C. albicans pmr1Δ yeasts (displaying shorter N-linked and O-linked mannans); (3) live C. albicans without N-linked and O-linked mannans; and (4) isolated N-linked and O-linked mannans were administered to the heart. Our results showed that C. albicans WT alters heart coronary perfusion pressure (vascular effect) and left ventricular pressure (inotropic effect) parameters in response to Phe and Ang II but not aCh, and these effects can be reversed by mannose. Similar results were observed when isolated cell walls, live C. albicans without N-linked mannans or isolated O-linked mannans were perfused into the heart. In contrast, C. albicans HK, C. albicans pmr1Δ, C. albicans without O-linked mannans or isolated N-linked mannans were not able to alter the CPP and LVP in response to the same agonists. Taken together, our data suggest that C. albicans interaction occurs with specific receptors on coronary endothelium and that O-linked mannan contributes to a greater extent to this interaction. Further studies are necessary to elucidate why specific receptors preferentially interact with this fungal cell wall structure.
Collapse
|
10
|
Ripplinger CM, Glukhov AV, Kay MW, Boukens BJ, Chiamvimonvat N, Delisle BP, Fabritz L, Hund TJ, Knollmann BC, Li N, Murray KT, Poelzing S, Quinn TA, Remme CA, Rentschler SL, Rose RA, Posnack NG. Guidelines for assessment of cardiac electrophysiology and arrhythmias in small animals. Am J Physiol Heart Circ Physiol 2022; 323:H1137-H1166. [PMID: 36269644 PMCID: PMC9678409 DOI: 10.1152/ajpheart.00439.2022] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 01/09/2023]
Abstract
Cardiac arrhythmias are a major cause of morbidity and mortality worldwide. Although recent advances in cell-based models, including human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM), are contributing to our understanding of electrophysiology and arrhythmia mechanisms, preclinical animal studies of cardiovascular disease remain a mainstay. Over the past several decades, animal models of cardiovascular disease have advanced our understanding of pathological remodeling, arrhythmia mechanisms, and drug effects and have led to major improvements in pacing and defibrillation therapies. There exist a variety of methodological approaches for the assessment of cardiac electrophysiology and a plethora of parameters may be assessed with each approach. This guidelines article will provide an overview of the strengths and limitations of several common techniques used to assess electrophysiology and arrhythmia mechanisms at the whole animal, whole heart, and tissue level with a focus on small animal models. We also define key electrophysiological parameters that should be assessed, along with their physiological underpinnings, and the best methods with which to assess these parameters.
Collapse
Affiliation(s)
- Crystal M Ripplinger
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
| | - Alexey V Glukhov
- Department of Medicine, Cardiovascular Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Bastiaan J Boukens
- Department Physiology, University Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Biology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Nipavan Chiamvimonvat
- Department of Pharmacology, University of California Davis School of Medicine, Davis, California
- Department of Internal Medicine, University of California Davis School of Medicine, Davis, California
- Veterans Affairs Northern California Healthcare System, Mather, California
| | - Brian P Delisle
- Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Larissa Fabritz
- University Center of Cardiovascular Science, University Heart and Vascular Center, University Hospital Hamburg-Eppendorf with DZHK Hamburg/Kiel/Luebeck, Germany
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Thomas J Hund
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Bjorn C Knollmann
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Na Li
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Katherine T Murray
- Departments of Medicine and Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Steven Poelzing
- Virginia Tech Carilon School of Medicine, Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech, Roanoke, Virginia
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carol Ann Remme
- Department of Experimental Cardiology, Heart Centre, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
| | - Stacey L Rentschler
- Cardiovascular Division, Department of Medicine, Washington University in Saint Louis, School of Medicine, Saint Louis, Missouri
| | - Robert A Rose
- Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Nikki G Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
- Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia
| |
Collapse
|
11
|
Stüdemann T, Rössinger J, Manthey C, Geertz B, Srikantharajah R, von Bibra C, Shibamiya A, Köhne M, Wiehler A, Wiegert JS, Eschenhagen T, Weinberger F. Contractile Force of Transplanted Cardiomyocytes Actively Supports Heart Function After Injury. Circulation 2022; 146:1159-1169. [PMID: 36073365 PMCID: PMC9555755 DOI: 10.1161/circulationaha.122.060124] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Transplantation of pluripotent stem cell-derived cardiomyocytes represents a promising therapeutic strategy for cardiac regeneration, and the first clinical studies in patients with heart failure have commenced. Yet, little is known about the mechanism of action underlying graft-induced benefits. Here, we explored whether transplanted cardiomyocytes actively contribute to heart function. METHODS We injected cardiomyocytes with an optogenetic off-on switch in a guinea pig cardiac injury model. RESULTS Light-induced inhibition of engrafted cardiomyocyte contractility resulted in a rapid decrease of left ventricular function in ≈50% (7/13) animals that was fully reversible with the offset of photostimulation. CONCLUSIONS Our optogenetic approach demonstrates that transplanted cardiomyocytes can actively participate in heart function, supporting the hypothesis that the delivery of new force-generating myocardium can serve as a regenerative therapeutic strategy.
Collapse
Affiliation(s)
- Tim Stüdemann
- German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Judith Rössinger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Christoph Manthey
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Birgit Geertz
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Rajiven Srikantharajah
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Constantin von Bibra
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Aya Shibamiya
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Maria Köhne
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,Surgery for Congenital Heart Disease, University Heart & Vascular Center Hamburg, Germany (M.K.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Antonius Wiehler
- Department of Psychiatry, Service Hospitalo-Universitaire, Groupe Hospitalier Universitaire Paris Psychiatrie & Neurosciences, Universite de Paris, France (A.W.)
| | - J. Simon Wiegert
- Research Group Synaptic Wiring and Information Processing, Centre for Molecular Neurobiology Hamburg, Germany (J.S.W.)
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| | - Florian Weinberger
- Department of Experimental Pharmacology and Toxicology, University Medical Centre Hamburg-Eppendorf, Germany (T.S., J.R., C.M., B.G., R.S., C.v.B., A.S., M.K., T.E., F.W.).,German Centre for Cardiovascular Research (DZHK), partner site Hamburg/Kiel/Lubeck, Germany (T.S., J.R., C.M., R.S., C.v.B., A.S., M.K., T.E., F.W.)
| |
Collapse
|
12
|
Barone A, Grieco D, Gizzi A, Molinari L, Zaltieri M, Massaroni C, Loppini A, Schena E, Bressi E, de Ruvo E, Caló L, Filippi S. A Simulation Study of the Effects of His Bundle Pacing in Left Bundle Branch Block. Med Eng Phys 2022; 107:103847. [DOI: 10.1016/j.medengphy.2022.103847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/30/2022] [Accepted: 07/09/2022] [Indexed: 11/28/2022]
|
13
|
Wyant GA, Yu W, Doulamis IIP, Nomoto RS, Saeed MY, Duignan T, McCully JD, Kaelin WG. Mitochondrial remodeling and ischemic protection by G protein-coupled receptor 35 agonists. Science 2022; 377:621-629. [PMID: 35926043 DOI: 10.1126/science.abm1638] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Kynurenic acid (KynA) is tissue protective in cardiac, cerebral, renal, and retinal ischemia models, but the mechanism is unknown. KynA can bind to multiple receptors, including the aryl hydrocarbon receptor, the a7 nicotinic acetylcholine receptor (a7nAChR), multiple ionotropic glutamate receptors, and the orphan G protein-coupled receptor GPR35. Here, we show that GPR35 activation was necessary and sufficient for ischemic protection by KynA. When bound by KynA, GPR35 activated Gi- and G12/13-coupled signaling and trafficked to the outer mitochondria membrane, where it bound, apparantly indirectly, to ATP synthase inhibitory factor subunit 1 (ATPIF1). Activated GPR35, in an ATPIF1-dependent and pertussis toxin-sensitive manner, induced ATP synthase dimerization, which prevented ATP loss upon ischemia. These findings provide a rationale for the development of specific GPR35 agonists for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Gregory A Wyant
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Wenyu Yu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - IIias P Doulamis
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Rio S Nomoto
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Mossab Y Saeed
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - Thomas Duignan
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - James D McCully
- Department of Cardiac Surgery, Boston Children's Hospital, Department of Surgery, Harvard Medical School, Boston, MA 02215, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
14
|
Barajas MB, Wang A, Griffiths KK, Sun L, Yang G, Levy RJ. Modeling propofol-induced cardiotoxicity in the isolated-perfused newborn mouse heart. Physiol Rep 2022; 10:e15402. [PMID: 35923108 PMCID: PMC9350423 DOI: 10.14814/phy2.15402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023] Open
Abstract
Infants and children are vulnerable to developing propofol infusion syndrome (PRIS) and young age is a risk factor. Cardiac involvement is often prominent and associated with death. However, the mechanisms of pediatric PRIS are poorly understood because of the paucity of investigation and lack of a gold standard animal model. Unfortunately, in vivo modeling of PRIS in a newborn mouse is not feasible and would be complicated by confounders. Thus, we focused on propofol-induced cardiotoxicity and aimed to develop an ex-vivo model in the isolated-perfused newborn mouse heart. We hypothesized that the model would recapitulate the key cardiac features of PRIS seen in infants and children and would corroborate prior in vitro observations. Isolated perfused newborn mouse hearts were exposed to a toxic dose of propofol or intralipid for 30-min. Surface electrocardiogram, ventricular contractile force, and oxygen extraction were measured over time. Real-time multiphoton laser imaging was utilized to quantify calcein and tetramethylrhodamine ethyl ester fluorescence. Propidium iodide uptake was assessed following drug exposure. A toxic dose of propofol rapidly induced dysrhythmias, depressed ventricular contractile function, impaired the mitochondrial membrane potential, and increased open probability of the permeability transition pore in propofol-exposed hearts without causing cell death. These features mimicked the hallmarks of pediatric PRIS and corroborated prior observations made in isolated newborn cardiomyocyte mitochondria. Thus, acute propofol-induced cardiotoxicity in the isolated-perfused developing mouse heart may serve as a relevant ex-vivo model for pediatric PRIS.
Collapse
Affiliation(s)
- Matthew B. Barajas
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Aili Wang
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Keren K. Griffiths
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Linlin Sun
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Guang Yang
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| | - Richard J. Levy
- Department of AnesthesiologyColumbia University Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
15
|
Dong X, Tse G, Hao G, Du Y. Heterogeneities in Ventricular Conduction Following Treatment with Heptanol: A Multi-Electrode Array Study in Langendorff-Perfused Mouse Hearts. Life (Basel) 2022; 12:life12070996. [PMID: 35888085 PMCID: PMC9321110 DOI: 10.3390/life12070996] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Previous studies have associated slowed ventricular conduction with the arrhythmogenesis mediated by the gap junction and sodium channel inhibitor heptanol in mouse hearts. However, they did not study the propagation patterns that might contribute to the arrhythmic substrate. This study used a multi-electrode array mapping technique to further investigate different conduction abnormalities in Langendorff-perfused mouse hearts exposed to 0.1 or 2 mM heptanol. Methods: Recordings were made from the left ventricular epicardium using multi-electrode arrays in spontaneously beating hearts during right ventricular 8 Hz pacing or S1S2 pacing. Results: In spontaneously beating hearts, heptanol at 0.1 and 2 mM significantly reduced the heart rate from 314 ± 25 to 189 ± 24 and 157 ± 7 bpm, respectively (ANOVA, p < 0.05 and p < 0.001). During regular 8 Hz pacing, the mean LATs were increased by 0.1 and 2 mM heptanol from 7.1 ± 2.2 ms to 19.9 ± 5.0 ms (p < 0.05) and 18.4 ± 5.7 ms (p < 0.05). The standard deviation of the mean LATs was increased from 2.5 ± 0.8 ms to 10.3 ± 4.0 ms and 8.0 ± 2.5 ms (p < 0.05), and the median of phase differences was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms and 12.1 ± 5.0 ms by 0.1 and 2 mM heptanol (p < 0.05). P5 took a value of 0.2 ± 0.1 ms and was not significantly altered by heptanol at 0.1 or 2 mM (1.1 ± 0.9 ms and 0.9 ± 0.5 ms, p > 0.05). P50 was increased from 7.3 ± 2.7 ms to 24.0 ± 12.0 ms by 0.1 mM heptanol and then to 22.5 ± 7.5 ms by 2 mM heptanol (p < 0.05). P95 was increased from 1.7 ± 1.1 ms to 13.9 ± 7.8 ms by 0.1 mM heptanol and to 12.1 ± 5.0 ms by 2 mM heptanol (p < 0.05). These changes led to increases in the absolute inhomogeneity in conduction (P5−95) from 7.1 ± 2.6 ms to 31.4 ± 11.3 ms, 2 mM: 21.6 ± 7.2 ms, respectively (p < 0.05). The inhomogeneity index (P5−95/P50) was significantly reduced from 3.7 ± 1.2 to 3.1 ± 0.8 by 0.1 mM and then to 3.3 ± 0.9 by 2 mM heptanol (p < 0.05). Conclusion: Increased activation latencies, reduced CVs, and the increased inhomogeneity index of conduction were associated with both spontaneous and induced ventricular arrhythmias.
Collapse
Affiliation(s)
- Xiuming Dong
- Henan SCOPE Research Institute of Electrophysiology Co., Ltd., Kaifeng 475000, China; (X.D.); (G.H.)
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, Hong Kong, China;
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Kent and Medway Medical School, Canterbury CT2 7FS, UK
| | - Guoliang Hao
- Henan SCOPE Research Institute of Electrophysiology Co., Ltd., Kaifeng 475000, China; (X.D.); (G.H.)
- Burdon Sanderson Cardiac Science Centre, BHF Centre of Research Excellence, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Yimei Du
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence:
| |
Collapse
|
16
|
Scott AD, Jackson T, Khalique Z, Gorodezky M, Pardoe B, Begum L, Bruno VD, Chowdhury RA, Ferreira PF, Nielles‐Vallespin S, Roehl M, McCarthy KP, Sarathchandra P, Rose JN, Doorly DJ, Pennell DJ, Ascione R, de Silva R, Firmin DN. Development of a cardiovascular magnetic resonance-compatible large animal isolated heart model for direct comparison of beating and arrested hearts. NMR IN BIOMEDICINE 2022; 35:e4692. [PMID: 35040195 PMCID: PMC9286060 DOI: 10.1002/nbm.4692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 06/02/2023]
Abstract
Cardiac motion results in image artefacts and quantification errors in many cardiovascular magnetic resonance (CMR) techniques, including microstructural assessment using diffusion tensor cardiovascular magnetic resonance (DT-CMR). Here, we develop a CMR-compatible isolated perfused porcine heart model that allows comparison of data obtained in beating and arrested states. Ten porcine hearts (8/10 for protocol optimisation) were harvested using a donor heart retrieval protocol and transported to the remote CMR facility. Langendorff perfusion in a 3D-printed chamber and perfusion circuit re-established contraction. Hearts were imaged using cine, parametric mapping and STEAM DT-CMR at cardiac phases with the minimum and maximum wall thickness. High potassium and lithium perfusates were then used to arrest the heart in a slack and contracted state, respectively. Imaging was repeated in both arrested states. After imaging, tissue was removed for subsequent histology in a location matched to the DT-CMR data using fiducial markers. Regular sustained contraction was successfully established in six out of 10 hearts, including the final five hearts. Imaging was performed in four hearts and one underwent the full protocol, including colocalised histology. The image quality was good and there was good agreement between DT-CMR data in equivalent beating and arrested states. Despite the use of autologous blood and dextran within the perfusate, T2 mapping results, DT-CMR measures and an increase in mass were consistent with development of myocardial oedema, resulting in failure to achieve a true diastolic-like state. A contiguous stack of 313 5-μm histological sections at and a 100-μm thick section showing cell morphology on 3D fluorescent confocal microscopy colocalised to DT-CMR data were obtained. A CMR-compatible isolated perfused beating heart setup for large animal hearts allows direct comparisons of beating and arrested heart data with subsequent colocalised histology, without the need for onsite preclinical facilities.
Collapse
Affiliation(s)
- Andrew D. Scott
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Tim Jackson
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Margarita Gorodezky
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Ben Pardoe
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - Lale Begum
- Department of PerfusionRoyal Brompton HospitalLondonUK
| | - V. Domenico Bruno
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Rasheda A. Chowdhury
- National Heart and Lung InstituteImperial CollegeLondonUK
- Imperial Centre for Cardiac EngineeringImperial CollegeLondonUK
| | - Pedro F. Ferreira
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Sonia Nielles‐Vallespin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Malte Roehl
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | | | - Padmini Sarathchandra
- National Heart and Lung InstituteImperial CollegeLondonUK
- Magdi Yacoub Institute, National Heart and Lung InstituteImperial CollegeLondonUK
| | - Jan N. Rose
- Department of AeronauticsImperial CollegeLondonUK
| | | | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - Raimondo Ascione
- Translational Biomedical Research CentreUniversity of BristolBristolUK
- Bristol Heart InstituteUniversity Hospital Bristol NHS Foundation TrustBristolUK
| | - Ranil de Silva
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| | - David N. Firmin
- Cardiovascular Magnetic Resonance UnitRoyal Brompton HospitalLondonUK
- National Heart and Lung InstituteImperial CollegeLondonUK
| |
Collapse
|
17
|
Wiggs MP, Beaudry AG, Law ML. Cardiac Remodeling in Cancer-Induced Cachexia: Functional, Structural, and Metabolic Contributors. Cells 2022; 11:cells11121931. [PMID: 35741060 PMCID: PMC9221803 DOI: 10.3390/cells11121931] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer cachexia is a syndrome of progressive weight loss and muscle wasting occurring in many advanced cancer patients. Cachexia significantly impairs quality of life and increases mortality. Cardiac atrophy and dysfunction have been observed in patients with cachexia, which may contribute to cachexia pathophysiology. However, relative to skeletal muscle, little research has been carried out to understand the mechanisms of cardiomyopathy in cachexia. Here, we review what is known clinically about the cardiac changes occurring in cachexia, followed by further discussion of underlying physiological and molecular mechanisms contributing to cachexia-induced cardiomyopathy. Impaired cardiac contractility and relaxation may be explained by a complex interplay of significant heart muscle atrophy and metabolic remodeling, including mitochondrial dysfunction. Because cardiac muscle has fundamental differences compared to skeletal muscle, understanding cardiac-specific effects of cachexia may bring light to unique therapeutic targets and ultimately improve clinical management for patients with cancer cachexia.
Collapse
Affiliation(s)
- Michael P. Wiggs
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Anna G. Beaudry
- Department of Health, Human Performance, and Recreation, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA; (M.P.W.); (A.G.B.)
| | - Michelle L. Law
- Department of Human Sciences and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX 76706, USA
- Correspondence: ; Tel.: +1-(254)-710-6003
| |
Collapse
|
18
|
Hatami S, Hefler J, Freed DH. Inflammation and Oxidative Stress in the Context of Extracorporeal Cardiac and Pulmonary Support. Front Immunol 2022; 13:831930. [PMID: 35309362 PMCID: PMC8931031 DOI: 10.3389/fimmu.2022.831930] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Extracorporeal circulation (ECC) systems, including cardiopulmonary bypass, and extracorporeal membrane oxygenation have been an irreplaceable part of the cardiothoracic surgeries, and treatment of critically ill patients with respiratory and/or cardiac failure for more than half a century. During the recent decades, the concept of extracorporeal circulation has been extended to isolated machine perfusion of the donor organ including thoracic organs (ex-situ organ perfusion, ESOP) as a method for dynamic, semi-physiologic preservation, and potential improvement of the donor organs. The extracorporeal life support systems (ECLS) have been lifesaving and facilitating complex cardiothoracic surgeries, and the ESOP technology has the potential to increase the number of the transplantable donor organs, and to improve the outcomes of transplantation. However, these artificial circulation systems in general have been associated with activation of the inflammatory and oxidative stress responses in patients and/or in the exposed tissues and organs. The activation of these responses can negatively affect patient outcomes in ECLS, and may as well jeopardize the reliability of the organ viability assessment, and the outcomes of thoracic organ preservation and transplantation in ESOP. Both ECLS and ESOP consist of artificial circuit materials and components, which play a key role in the induction of these responses. However, while ECLS can lead to systemic inflammatory and oxidative stress responses negatively affecting various organs/systems of the body, in ESOP, the absence of the organs that play an important role in oxidant scavenging/antioxidative replenishment of the body, such as liver, may make the perfused organ more susceptible to inflammation and oxidative stress during extracorporeal circulation. In the present manuscript, we will review the activation of the inflammatory and oxidative stress responses during ECLP and ESOP, mechanisms involved, clinical implications, and the interventions for attenuating these responses in ECC.
Collapse
Affiliation(s)
- Sanaz Hatami
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
| | - Joshua Hefler
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Darren H. Freed
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Canadian National Transplant Research Program, Edmonton, AB, Canada
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
- Alberta Transplant Institute, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Darren H. Freed,
| |
Collapse
|
19
|
Yang D, Dai X, Xing Y, Tang X, Yang G, Harrison AG, Cahoon J, Li H, Lv X, Yu X, Wang P, Wang H. Intrinsic cardiac adrenergic cells contribute to LPS-induced myocardial dysfunction. Commun Biol 2022; 5:96. [PMID: 35079095 PMCID: PMC8789803 DOI: 10.1038/s42003-022-03007-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/23/2021] [Indexed: 02/08/2023] Open
Abstract
Intrinsic cardiac adrenergic (ICA) cells regulate both developing and adult cardiac physiological and pathological processes. However, the role of ICA cells in septic cardiomyopathy is unknown. Here we show that norepinephrine (NE) secretion from ICA cells is increased through activation of Toll-like receptor 4 (TLR4) to aggravate myocardial TNF-α production and dysfunction by lipopolysaccharide (LPS). In ICA cells, LPS activated TLR4-MyD88/TRIF-AP-1 signaling that promoted NE biosynthesis through expression of tyrosine hydroxylase, but did not trigger TNF-α production due to impairment of p65 translocation. In a co-culture consisting of LPS-treated ICA cells and cardiomyocytes, the upregulation and secretion of NE from ICA cells activated cardiomyocyte β1-adrenergic receptor driving Ca2+/calmodulin-dependent protein kinase II (CaMKII) to crosstalk with NF-κB and mitogen-activated protein kinase pathways. Importantly, blockade of ICA cell-derived NE prevented LPS-induced myocardial dysfunction. Our findings suggest that ICA cells may be a potential therapeutic target for septic cardiomyopathy.
Collapse
Affiliation(s)
- Duomeng Yang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaomeng Dai
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yun Xing
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiangxu Tang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Guang Yang
- Department of Pathogen biology, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Andrew G Harrison
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Jason Cahoon
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Hongmei Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiuxiu Lv
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaohui Yu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Penghua Wang
- Department of Immunology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine of the People's Republic of China, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
20
|
Swift LM, Kay MW, Ripplinger CM, Posnack NG. Stop the beat to see the rhythm: excitation-contraction uncoupling in cardiac research. Am J Physiol Heart Circ Physiol 2021; 321:H1005-H1013. [PMID: 34623183 DOI: 10.1152/ajpheart.00477.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optical mapping is an imaging technique that is extensively used in cardiovascular research, wherein parameter-sensitive fluorescent indicators are used to study the electrophysiology and excitation-contraction coupling of cardiac tissues. Despite many benefits of optical mapping, eliminating motion artifacts within the optical signals is a major challenge, as myocardial contraction interferes with the faithful acquisition of action potentials and intracellular calcium transients. As such, excitation-contraction uncoupling agents are frequently used to reduce signal distortion by suppressing contraction. When compared with other uncoupling agents, blebbistatin is the most frequently used, as it offers increased potency with minimal direct effects on cardiac electrophysiology. Nevertheless, blebbistatin may exert secondary effects on electrical activity, metabolism, and coronary flow, and the incorrect administration of blebbistatin to cardiac tissue can prove detrimental, resulting in erroneous interpretation of optical mapping results. In this "Getting It Right" perspective, we briefly review the literature regarding the use of blebbistatin in cardiac optical mapping experiments, highlight potential secondary effects of blebbistatin on cardiac electrical activity and metabolic demand, and conclude with the consensus of the authors on best practices for effectively using blebbistatin in optical mapping studies of cardiac tissue.
Collapse
Affiliation(s)
- Luther M Swift
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia
| | - Matthew W Kay
- Department of Biomedical Engineering, George Washington University, Washington, District of Columbia
| | | | - Nikki Gillum Posnack
- Children's National Heart Institute, Children's National Hospital, Washington, District of Columbia.,Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, District of Columbia.,Department of Pediatrics, George Washington University, Washington, District of Columbia.,Department of Pharmacology and Physiology, George Washington University, Washington, District of Columbia
| |
Collapse
|
21
|
Tse G, Hao G, Lee S, Zhou J, Zhang Q, Du Y, Liu T, Cheng SH, Wong WT. Measures of repolarization variability predict ventricular arrhythmogenesis in heptanol-treated Langendorff-perfused mouse hearts. Curr Res Physiol 2021; 4:125-134. [PMID: 34746832 PMCID: PMC8562203 DOI: 10.1016/j.crphys.2021.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Time-domain and non-linear methods can be used to quantify beat-to-beat repolarization variability but whether measures of repolarization variability can predict ventricular arrhythmogenesis in mice have never been explored. METHODS Left ventricular monophasic action potentials (MAPs) were recorded during constant right ventricular 8 Hz pacing in Langendorff-perfused mouse hearts, in the presence or absence of the gap junction and sodium channel inhibitor heptanol (0.1, 0.5, 1 or 2 mM). RESULTS Under control conditions, mean action potential duration (APD) was 39.4 ± 8.1 ms. Standard deviation (SD) of APDs was 0.3 ± 0.2 ms, coefficient of variation was 0.9 ± 0.8% and the root mean square (RMS) of successive differences in APDs was 0.15 ± 0.14 ms. Poincaré plots of APDn+1 against APDn revealed ellipsoid morphologies with a SD along the line-of-identity (SD2) to SD perpendicular to the line-of-identity (SD1) ratio of 4.6 ± 2.1. Approximate and sample entropy were 0.61 ± 0.12 and 0.76 ± 0.26, respectively. Detrended fluctuation analysis revealed short- and long-term fluctuation slopes of 1.49 ± 0.27 and 0.81 ± 0.36, respectively. Heptanol at 2 mM induced ventricular tachycardia in five out of six hearts. None of the above parameters were altered by heptanol during which reproducible electrical activity was observed (KW-ANOVA, P > 0.05). Contrastingly, SD2/SD1 decreased to 2.03 ± 0.41, approximate and sample entropy increased to 0.82 ± 0.12 and 1.45 ± 0.34, and short-term fluctuation slope decreased to 0.82 ± 0.19 during the 20-s period preceding spontaneous ventricular tachy-arrhythmias (n = 6, KW-ANOVA, P < 0.05). CONCLUSION Measures of repolarization variability, such as SD2/SD1, entropy, and fluctuation slope are altered preceding the occurrence of ventricular arrhythmogenesis in mouse hearts. Changes in these variables may allow detection of impending arrhythmias for early intervention.
Collapse
Affiliation(s)
- Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
- Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China
| | - Guoliang Hao
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Sharen Lee
- Cardiovascular Analytics Group, Laboratory of Cardiovascular Physiology, Hong Kong, China
| | - Jiandong Zhou
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Yimei Du
- Research Center of Ion Channelopathy, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shuk Han Cheng
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
22
|
Sharma P, Wang X, Ming CLC, Vettori L, Figtree G, Boyle A, Gentile C. Considerations for the Bioengineering of Advanced Cardiac In Vitro Models of Myocardial Infarction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2003765. [PMID: 33464713 DOI: 10.1002/smll.202003765] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Despite the latest advances in cardiovascular biology and medicine, myocardial infarction (MI) remains one of the major causes of deaths worldwide. While reperfusion of the myocardium is critical to limit the ischemic damage typical of a MI event, it causes detrimental morphological and functional changes known as "reperfusion injury." This complex scenario is poorly represented in currently available models of ischemia/reperfusion injury, leading to a poor translation of findings from the bench to the bedside. However, more recent bioengineered in vitro models of the human heart represent more clinically relevant tools to prevent and treat MI in patients. These include 3D cultures of cardiac cells, the use of patient-derived stem cells, and 3D bioprinting technology. This review aims at highlighting the major features typical of a heart attack while comparing current in vitro, ex vivo, and in vivo models. This information has the potential to further guide in developing novel advanced in vitro cardiac models of ischemia/reperfusion injury. It may pave the way for the generation of advanced pathophysiological cardiac models with the potential to develop personalized therapies.
Collapse
Affiliation(s)
- Poonam Sharma
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Xiaowei Wang
- Molecular Imaging and Theranostics Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia
| | - Clara Liu Chung Ming
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Laura Vettori
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| | - Gemma Figtree
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Andrew Boyle
- Faculty of Medicine and Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carmine Gentile
- School of Medicine and Public Health, University of Sydney, Sydney, NSW, 2000, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, Sydney, NSW, 2065, Australia
- School of Biomedical Engineering/FEIT, University of Technology Sydney, Building 11, Level 10, Room 115, 81 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
23
|
Gesper M, Nonnast ABH, Kumowski N, Stoehr R, Schuett K, Marx N, Kappel BA. Gut-Derived Metabolite Indole-3-Propionic Acid Modulates Mitochondrial Function in Cardiomyocytes and Alters Cardiac Function. Front Med (Lausanne) 2021; 8:648259. [PMID: 33829028 PMCID: PMC8019752 DOI: 10.3389/fmed.2021.648259] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/19/2021] [Indexed: 12/11/2022] Open
Abstract
Background: The gut microbiome has been linked to the onset of cardiometabolic diseases, in part facilitated through gut microbiota-dependent metabolites such as trimethylamine-N-oxide. However, molecular pathways associated to heart failure mediated by microbial metabolites remain largely elusive. Mitochondria play a pivotal role in cellular energy metabolism and mitochondrial dysfunction has been associated to heart failure pathogenesis. Aim of the current study was to evaluate the impact of gut-derived metabolites on mitochondrial function in cardiomyocytes via an in vitro screening approach. Methods: Based on a systematic Medline research, 25 microbial metabolites were identified and screened for their metabolic impact with a focus on mitochondrial respiration in HL-1 cardiomyocytes. Oxygen consumption rate in response to different modulators of the respiratory chain were measured by a live-cell metabolic assay platform. For one of the identified metabolites, indole-3-propionic acid, studies on specific mitochondrial complexes, cytochrome c, fatty acid oxidation, mitochondrial membrane potential, and reactive oxygen species production were performed. Mitochondrial function in response to this metabolite was further tested in human hepatic and endothelial cells. Additionally, the effect of indole-3-propionic acid on cardiac function was studied in isolated perfused hearts of C57BL/6J mice. Results: Among the metabolites examined, microbial tryptophan derivative indole-3-propionic acid could be identified as a modulator of mitochondrial function in cardiomyocytes. While acute treatment induced enhancement of maximal mitochondrial respiration (+21.5 ± 7.8%, p < 0.05), chronic exposure led to mitochondrial dysfunction (-18.9 ± 9.1%; p < 0.001) in cardiomyocytes. The latter effect of indole-3-propionic acids could also be observed in human hepatic and endothelial cells. In isolated perfused mouse hearts, indole-3-propionic acid was dose-dependently able to improve cardiac contractility from +26.8 ± 11.6% (p < 0.05) at 1 μM up to +93.6 ± 14.4% (p < 0.001) at 100 μM. Our mechanistic studies on indole-3-propionic acids suggest potential involvement of fatty acid oxidation in HL-1 cardiomyocytes. Conclusion: Our data indicate a direct impact of microbial metabolites on cardiac physiology. Gut-derived metabolite indole-3-propionic acid was identified as mitochondrial modulator in cardiomyocytes and altered cardiac function in an ex vivo mouse model.
Collapse
Affiliation(s)
- Maren Gesper
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Alena B H Nonnast
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nina Kumowski
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Robert Stoehr
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Katharina Schuett
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Nikolaus Marx
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ben A Kappel
- Department of Internal Medicine 1, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| |
Collapse
|
24
|
Knight WE, Ali HR, Nakano SJ, Wilson CE, Walker LA, Woulfe KC. Ex vivo Methods for Measuring Cardiac Muscle Mechanical Properties. Front Physiol 2021; 11:616996. [PMID: 33488406 PMCID: PMC7820907 DOI: 10.3389/fphys.2020.616996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/10/2020] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular disease continues to be the leading cause of morbidity and mortality in the United States and thousands of manuscripts each year are aimed at elucidating mechanisms underlying cardiac disease. The methods for quantifying cardiac performance are quite varied, with each technique assessing unique features of cardiac muscle mechanical properties. Accordingly, in this review, we discuss current ex vivo methods for quantifying cardiac muscle performance, highlighting what can be learned from each method, and how each technique can be used in conjunction to complement others for a more comprehensive understanding of cardiac function. Importantly, cardiac function can be assessed at several different levels, from the whole organ down to individual protein-protein interactions. Here, we take a reductionist view of methods that are commonly used to measure the distinct aspects of cardiac mechanical function, beginning with whole heart preparations and finishing with the in vitro motility assay. While each of the techniques are individually well-documented in the literature, there is a significant need for a comparison of the techniques, delineating the mechanical parameters that can are best measured with each technique, as well as the strengths and weaknesses inherent to each method. Additionally, we will consider complementary techniques and how these methods can be used in combination to improve our understanding of cardiac mechanical function. By presenting each of these methods, with their strengths and limitations, in a single manuscript, this review will assist cardiovascular biologists in understanding the existing literature on cardiac mechanical function, as well as designing future experiments.
Collapse
Affiliation(s)
- Walter E Knight
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Hadi R Ali
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Stephanie J Nakano
- Department of Pediatrics, Division of Cardiology, Children's Hospital, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cortney E Wilson
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kathleen C Woulfe
- Department of Medicine, Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
25
|
Samidurai A, Roh SK, Prakash M, Durrant D, Salloum FN, Kukreja RC, Das A. STAT3-miR-17/20 signalling axis plays a critical role in attenuating myocardial infarction following rapamycin treatment in diabetic mice. Cardiovasc Res 2020; 116:2103-2115. [PMID: 31738412 PMCID: PMC8463091 DOI: 10.1093/cvr/cvz315] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Deregulation of mTOR (mammalian target of rapamycin) signalling occurs in diabetes, which exacerbates injury following myocardial infarction (MI). We therefore investigated the infarct-limiting effect of chronic treatment with rapamycin (RAPA, mTOR inhibitor) in diabetic mice following myocardial ischaemia/reperfusion (I/R) injury and delineated the potential protective mechanism. METHODS AND RESULTS Adult male diabetic (db/db) or wild-type (WT) (C57) mice were treated with RAPA (0.25 mg/kg/day, intraperitoneal) or vehicle (5% DMSO) for 28 days. The hearts from treated mice were subjected to global I/R in Langendorff mode. Cardiomyocytes, isolated from treated mice, were subjected to simulated ischaemia/reoxygenation (SI/RO) to assess necrosis and apoptosis. Myocardial infarct size was increased in diabetic heart following I/R as compared to WT. Likewise, enhanced necrosis and apoptosis were observed in isolated cardiomyocytes of diabetic mice following SI/RO. Treatment with RAPA reduced infarct size as well as cardiomyocyte necrosis and apoptosis of diabetes and WT mice. RAPA increased STAT3 phosphorylation and miRNA-17/20a expression in diabetic hearts. In addition, RAPA restored AKT phosphorylation (target of mTORC2) but suppressed S6 phosphorylation (target of mTORC1) following I/R injury. RAPA-induced cardioprotection against I/R injury as well as the induction of miR-17/20a and AKT phosphorylation were abolished in cardiac-specific STAT3-deficient diabetic mice, without alteration of S6 phosphorylation. The infarct-limiting effect of RAPA was obliterated in cardiac-specific miRNA-17-92-deficient diabetic mice. The post-I/R restoration of phosphorylation of STAT3 and AKT with RAPA were also abolished in miRNA-17-92-deficient diabetic mice. Additionally, RAPA suppressed the pro-apoptotic prolyl hydroxylase (Egln3/PHD3), a target of miRNA-17/20a in diabetic hearts, which was abrogated in miRNA-17-92-deficient diabetic mice. CONCLUSION Induction of STAT3-miRNA-17-92 signalling axis plays a critical role in attenuating MI in RAPA-treated diabetic mice. Our study indicates that chronic treatment with RAPA might be a promising pharmacological intervention for attenuating MI and improving prognosis in diabetic patients.
Collapse
Affiliation(s)
- Arun Samidurai
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Sean K Roh
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Meeta Prakash
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - David Durrant
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Fadi N Salloum
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Rakesh C Kukreja
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| | - Anindita Das
- Division of Cardiology, Pauley Heart Center, Department of Internal Medicine, Virginia Commonwealth University, 1101 East Marshall Street, Room 7020B, Richmond, VA 23298-0204, USA
| |
Collapse
|
26
|
Primed Left Ventricle Heart Perfusion Creates Physiological Aortic Pressure in Porcine Hearts. ASAIO J 2020; 66:55-63. [PMID: 30893130 DOI: 10.1097/mat.0000000000000947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
This article presents a primed left ventricle heart perfusion method to generate physiologic aortic pressure (AoP) and perform functional assessment. Isolated hearts of male Yorkshire pigs were used to study the hemodynamic behaviors of AoPs generated in the primed left ventricle heart perfusion (n = 6) and conventional (zero-loaded left ventricle) Langendorff perfusion (n = 6). The measurement results show that left ventricular pressure generated in the primed left ventricle heart perfusion is a determinant of physiologic AoP (i.e. systolic and diastolic pressures within physiologic range). The aortic pulse pressure (systolic pressure = 124.5 ± 1.7 mm Hg, diastolic pressure = 87.8 ± 0.9 mm Hg, aortic pulse pressure = 36.7 ± 2.6 mm Hg) from the primed left ventricle heart perfusion represents close match with the in vivo physiologic data. The volume in the left ventricle remains constant throughout the primed left ventricle heart perfusion, which allows us to perform isovolumetric left ventricular pressure measurement in ex vivo heart perfusion (EVHP). Left ventricular contractility measurements (maximum and minimum rates of left ventricular pressure change) were derived for cardiac assessment. In summary, the proposed primed left ventricle heart perfusion method is able to create physiologic AoP and enables left ventricular functional assessment in EVHP in porcine hearts.
Collapse
|
27
|
An isolated retrograde-perfused newborn mouse heart preparation. MethodsX 2020; 7:101058. [PMID: 32983923 PMCID: PMC7492986 DOI: 10.1016/j.mex.2020.101058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/02/2020] [Indexed: 11/24/2022] Open
Abstract
The Langendorff-perfused model is a powerful tool to study biological responses in the isolated heart in the absence of confounders. The model has been adapted recently to enable study of the isolated mouse heart and the effects of genetic manipulation. Unfortunately, the small size and fragility of the mouse heart pose significant challenges, limiting application of the Langendorff model to the study of adult mice. Cardiac development is a complex and dynamic process that is incompletely understood. Thus, establishing an isolated-perfused heart model in the newborn mouse would be an important and necessary advance. Here we present a method to successfully cannulate and perfuse the isolated newborn murine heart. We describe the basic and fundamental physiological characteristics of the ex-vivo retrograde-perfused beating neonatal heart in wild-type C57Bl/6 male mice. Our approach will enable future study of the physiological and pharmacological responses of the isolated immature murine heart to enhance knowledge of how developmental cardiac biology impacts health and disease.The Langendorff model is a powerful tool to study the heart without confounders. An isolated-perfused newborn murine heart model has yet to be established. We demonstrate the first successful isolated neonatal murine heart preparation.
Collapse
|
28
|
Rusiecka OM, Montgomery J, Morel S, Batista-Almeida D, Van Campenhout R, Vinken M, Girao H, Kwak BR. Canonical and Non-Canonical Roles of Connexin43 in Cardioprotection. Biomolecules 2020; 10:biom10091225. [PMID: 32842488 PMCID: PMC7563275 DOI: 10.3390/biom10091225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 12/15/2022] Open
Abstract
Since the mid-20th century, ischemic heart disease has been the world’s leading cause of death. Developing effective clinical cardioprotection strategies would make a significant impact in improving both quality of life and longevity in the worldwide population. Both ex vivo and in vivo animal models of cardiac ischemia/reperfusion (I/R) injury are robustly used in research. Connexin43 (Cx43), the predominant gap junction channel-forming protein in cardiomyocytes, has emerged as a cardioprotective target. Cx43 posttranslational modifications as well as cellular distribution are altered during cardiac reperfusion injury, inducing phosphorylation states and localization detrimental to maintaining intercellular communication and cardiac conduction. Pre- (before ischemia) and post- (after ischemia but before reperfusion) conditioning can abrogate this injury process, preserving Cx43 and reducing cell death. Pre-/post-conditioning has been shown to largely rely on the presence of Cx43, including mitochondrial Cx43, which is implicated to play a major role in pre-conditioning. Posttranslational modifications of Cx43 after injury alter the protein interactome, inducing negative protein cascades and altering protein trafficking, which then causes further damage post-I/R injury. Recently, several peptides based on the Cx43 sequence have been found to successfully diminish cardiac injury in pre-clinical studies.
Collapse
Affiliation(s)
- Olga M. Rusiecka
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Jade Montgomery
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Sandrine Morel
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
| | - Daniela Batista-Almeida
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (R.V.C.); (M.V.)
| | - Henrique Girao
- Univ Coimbra, Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, 3000-548 Coimbra, Portugal; (D.B.-A.); (H.G.)
- Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Brenda R. Kwak
- Department of Pathology and Immunology, University of Geneva, CH-1211 Geneva, Switzerland; (O.M.R.); (J.M.); (S.M.)
- Correspondence:
| |
Collapse
|
29
|
Morales JA, López RM, López JS, Lozano J, Jarillo RA, Flores H, Castillo EF. Left ventricular phosphorylation patterns of Akt and ERK1/2 after triiodothyronine intracoronary perfusion in isolated hearts and short-term in vivo treatment in Wistar rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1091-1099. [PMID: 32952957 PMCID: PMC7478259 DOI: 10.22038/ijbms.2020.44776.10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVES To determine the effects of triiodothyronine (T3) intracoronary perfusion in isolated hearts and short-term administration in rats on the left ventricular (LV) phosphorylation patterns of Akt and ERK1/2. MATERIALS AND METHODS Cardiodynamic and hemodynamic parameters were evaluated in Langendorff-perfused hearts. Left ventricles were used for histomorphometric and Western blot analyses. Short-term hyperthyroidism was established by T3 (500 μg.kg-1.d-1; subcutaneous injection) for 1 (T31d), 3 (T33d), and 10 (T310d) days. RESULTS Isolated hearts receiving T3 perfusion did not modify LV developed pressure, +dP/dtmax, -dP/dtmin, heart rate, and coronary perfusion pressure compared with vehicle-perfused hearts. P-ERK1/2 and p-Akt levels in LV tissues after 5, 15, or 60 min of T3 or vehicle perfusion were similar. Compared with their time-matched controls, isolated hearts of T33d and T310d rats exhibited LV hypertrophy and increased absolute values of +dP/dtmax and -dP/dtmin (i.e., positive inotropic and lusitropic effects). P-ERK1/2 decreased in LV tissues of T31d and T310d but not in those of T33d rats, and p-Akt levels augmented in left ventricles of T33d and stayed unaltered in those of T31d and T310d rats. CONCLUSION T3 intracoronary perfusion did not alter cardiodynamics and hemodynamics nor influence the activation of Akt and ERK of normal hearts. Accordingly, the rapid non-genomic effects of T3 were not evident. Short-term T3 treatment provoked cardiac hypertrophy coincidental with increased LV function and associated with transient Akt activation and cyclic ERK1/2 inhibition; which implies activation of physiological hypertrophy signaling and deactivation of pathological hypertrophy signaling, respectively.
Collapse
Affiliation(s)
- José A. Morales
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ruth M. López
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Jorge S. López
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - Jair Lozano
- Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México
| | - Rosa A. Jarillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Héctor Flores
- Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología, Ciudad de México, México
| | - Enrique F. Castillo
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México,Corresponding author: Enrique F. Castillo. Sección de Estudios de Posgrado e Investigación. Escuela Superior de Medicina, Instituto Politécnico Nacional. Plan de San Luis y Díaz Mirón s/n. Casco de Santo Tomás, CP 11340. Ciudad de México, México. Tel: 52 55 5729 6300 ext. 62821;
| |
Collapse
|
30
|
Santer D, Nagel F, Gonçalves IF, Kaun C, Wojta J, Fagyas M, Krššák M, Balogh Á, Papp Z, Tóth A, Bánhegyi V, Trescher K, Kiss A, Podesser BK. Tenascin-C aggravates ventricular dilatation and angiotensin-converting enzyme activity after myocardial infarction in mice. ESC Heart Fail 2020; 7:2113-2122. [PMID: 32639674 PMCID: PMC7524253 DOI: 10.1002/ehf2.12794] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
AIMS Tenascin-C (TN-C) is suggested to be detrimental in cardiac remodelling after myocardial infarction (MI). The aim of this study is to reveal the effects of TN-C on extracellular matrix organization and its haemodynamic influence in an experimental mouse model of MI and in myocardial cell culture during hypoxic conditions. METHODS AND RESULTS Myocardial infarction was induced in TN-C knockout (TN-C KO) and wild-type mice. Six weeks later, cardiac function was studied by magnetic resonance imaging and under isolated working heart conditions. Myocardial mRNA levels and immunoreactivity of TN-C, TIMP-1, TIMP-3, and matrix metalloproteinase (MMP)-9, as well as serum and tissue activities of angiotensin-converting enzyme (ACE), were determined at 1 and 6 weeks after infarction. Cardiac output and external heart work were higher, while left ventricular wall stress and collagen expression were decreased (P < 0.05) in TN-C KO mice as compared with age-matched controls at 6 weeks after infarction. TIMP-1 expression was down-regulated at 1 and 6 weeks, and TIMP-3 expression was up-regulated at 1 week (P < 0.01) after infarction in knockout mice. MMP-9 level was lower in TN-C KO at 6 weeks after infarction (P < 0.05). TIMP-3/MMP-9 ratio was higher in knockout mice at 1 and 6 weeks after infarction (P < 0.01). ACE activity in the myocardial border zone (i.e. between scar and free wall) was significantly lower in knockout than in wild-type mice 1 week after MI (P < 0.05). CONCLUSIONS Tenascin-C expression is induced by hypoxia in association with ACE activity and MMP-2 and MMP-9 elevations, thereby promoting left ventricular dilatation after MI.
Collapse
Affiliation(s)
- David Santer
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, University Hospital of Basel, Basel, Switzerland
| | - Felix Nagel
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Inês Fonseca Gonçalves
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Christoph Kaun
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johann Wojta
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Miklós Fagyas
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Martin Krššák
- Department of Internal Medicine III, Division of Endocrinology and Metabolism, Medical University of Vienna, Vienna, Austria
| | - Ágnes Balogh
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Attila Tóth
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Viktor Bánhegyi
- Division of Clinical Physiology, Department of Cardiology, Research Centre for Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Karola Trescher
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of Vienna, Waehringer Guertel 18-20, 1Q, Vienna, 1090, Austria.,Center for Biomedical Research, Medical University of Vienna, Vienna, Austria.,Department of Cardiac Surgery, Karl Landsteiner Private University for Health Sciences, St. Pölten, Austria
| |
Collapse
|
31
|
Holmes JB, Doh CY, Mamidi R, Li J, Stelzer JE. Strategies for targeting the cardiac sarcomere: avenues for novel drug discovery. Expert Opin Drug Discov 2020; 15:457-469. [PMID: 32067508 PMCID: PMC7065952 DOI: 10.1080/17460441.2020.1722637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/24/2020] [Indexed: 01/10/2023]
Abstract
Introduction: Heart failure remains one of the largest clinical challenges in the United States. Researchers have continually searched for more effective heart failure treatments that target the cardiac sarcomere but have found few successes despite numerous expensive cardiovascular clinical trials. Among many reasons, the high failure rate of cardiovascular clinical trials may be partly due to incomplete characterization of a drug candidate's complex interaction with cardiac physiology.Areas covered: In this review, the authors address the issue of preclinical cardiovascular studies of sarcomere-targeting heart failure therapies. The authors consider inherent tradeoffs made between mechanistic transparency and physiological fidelity for several relevant preclinical techniques at the atomic, molecular, heart muscle fiber, whole heart, and whole-organism levels. Thus, the authors suggest a comprehensive, bottom-up approach to preclinical cardiovascular studies that fosters scientific rigor and hypothesis-driven drug discovery.Expert opinion: In the authors' opinion, the implementation of hypothesis-driven drug discovery practices, such as the bottom-up approach to preclinical cardiovascular studies, will be imperative for the successful development of novel heart failure treatments. However, additional changes to clinical definitions of heart failure and current drug discovery culture must accompany the bottom-up approach to maximize the effectiveness of hypothesis-driven drug discovery.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Chang Yoon Doh
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ranganath Mamidi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Jiayang Li
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Julian E Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
32
|
Xin JZ, Wu JM, Hu GM, Gu HJ, Feng YN, Wang SX, Cong WW, Li MZ, Xu WL, Song Y, Xiao H, Zhang YY, Wang L. α 1-AR overactivation induces cardiac inflammation through NLRP3 inflammasome activation. Acta Pharmacol Sin 2020; 41:311-318. [PMID: 31530901 PMCID: PMC7468364 DOI: 10.1038/s41401-019-0305-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023]
Abstract
Acute sympathetic stress causes excessive secretion of catecholamines and induces cardiac injuries, which are mainly mediated by β-adrenergic receptors (β-ARs). However, α1-adrenergic receptors (α1-ARs) are also expressed in the heart and are activated upon acute sympathetic stress. In the present study, we investigated whether α1-AR activation induced cardiac inflammation and the underlying mechanisms. Male C57BL/6 mice were injected with a single dose of α1-AR agonist phenylephrine (PE, 5 or 10 mg/kg, s.c.) with or without pretreatment with α-AR antagonist prazosin (5 mg/kg, s.c.). PE injection caused cardiac dysfunction and cardiac inflammation, evidenced by the increased expression of inflammatory cytokine IL-6 and chemokines MCP-1 and MCP-5, as well as macrophage infiltration in myocardium. These effects were blocked by prazosin pretreatment. Furthermore, PE injection significantly increased the expression of NOD-like receptor protein 3 (NLRP3) and the cleavage of caspase-1 (p20) and interleukin-18 in the heart; similar results were observed in both Langendorff-perfused hearts and cultured cardiomyocytes following the treatment with PE (10 μM). Moreover, PE-induced NLRP3 inflammasome activation and cardiac inflammation was blocked in Nlrp3-/- mice compared with wild-type mice. In conclusion, α1-AR overactivation induces cardiac inflammation by activating NLRP3 inflammasomes.
Collapse
|
33
|
Bauer TM, Giles AV, Sun J, Femnou A, Covian R, Murphy E, Balaban RS. Perfused murine heart optical transmission spectroscopy using optical catheter and integrating sphere: Effects of ischemia/reperfusion. Anal Biochem 2019; 586:113443. [PMID: 31539522 DOI: 10.1016/j.ab.2019.113443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/16/2019] [Indexed: 11/18/2022]
Abstract
Tissue transmission optical absorption spectroscopy provides dynamic information on metabolism and function. Murine genetic malleability makes it a major model for heart research. The diminutive size of the mouse heart makes optical transmission studies challenging. Using a perfused murine heart center mounted in an integrating sphere for light collection with a ventricular cavity optical catheter as an internal light source provided an effective method of optical data collection in this model. This approach provided high signal to noise optical spectra which when fit with model spectra provided information on tissue oxygenation and redox state. This technique was applied to the study of cardiac ischemia and ischemia reperfusion which generates extreme heart motion, especially during the ischemic contracture. The integrating sphere reduced motion artifacts associated with a fixed optical pickup and methods were developed to compensate for changes in tissue thickness. During ischemia, rapid decreases in myoglobin oxygenation occurred along with increases in cytochrome reduction levels. Surprisingly, when ischemic contracture occurred, myoglobin remained fully deoxygenated, while the cytochromes became more reduced consistent with a further, and critical, reduction of mitochondrial oxygen tension during ischemic contraction. This optical arrangement is an effective method of monitoring murine heart metabolism.
Collapse
Affiliation(s)
- Tyler M Bauer
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Abigail V Giles
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Junhui Sun
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Armel Femnou
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Raul Covian
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Elizabeth Murphy
- Laboratory of Cardiac Physiology, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| | - Robert S Balaban
- Laboratory of Cardiac Energetics, National Heart, Lung and Blood Institute, Bethesda, MD, USA.
| |
Collapse
|
34
|
Kavanagh DPJ, Kalia N. Live Intravital Imaging of Cellular Trafficking in the Cardiac Microvasculature-Beating the Odds. Front Immunol 2019; 10:2782. [PMID: 31849965 PMCID: PMC6901937 DOI: 10.3389/fimmu.2019.02782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Although mortality rates from cardiovascular disease in the developed world are falling, the prevalence of cardiovascular disease (CVD) is not. Each year, the number of people either being diagnosed as suffering with CVD or undergoing a surgical procedure related to it, such as percutaneous coronary intervention, continues to increase. In order to ensure that we can effectively manage these diseases in the future, it is critical that we fully understand their basic physiology and their underlying causative factors. Over recent years, the important role of the cardiac microcirculation in both acute and chronic disorders of the heart has become clear. The recruitment of inflammatory cells into the cardiac microcirculation and their subsequent activation may contribute significantly to tissue damage, adverse remodeling, and poor outcomes during recovery. However, our basic understanding of the cardiac microcirculation is hampered by an historic inability to image the microvessels of the beating heart-something we have been able to achieve in other organs for over 100 years. This stems from a couple of clear and obvious difficulties related to imaging the heart-firstly, it has significant inherent contractile motion and is affected considerably by the movement of lungs. Secondly, it is located in an anatomically challenging position for microscopy. However, recent microscopic and technological developments have allowed us to overcome some of these challenges and to begin to answer some of the basic outstanding questions in cardiac microvascular physiology, particularly in relation to inflammatory cell recruitment. In this review, we will discuss some of the historic work that took place in the latter part of last century toward cardiac intravital, before moving onto the advanced work that has been performed since. This work, which has utilized technology such as spinning-disk confocal and multiphoton microscopy, has-along with some significant advancements in algorithms and software-unlocked our ability to image the "business end" of the cardiac vascular tree. This review will provide an overview of these techniques, as well as some practical pointers toward software and other tools that may be useful for other researchers who are considering utilizing this technique themselves.
Collapse
Affiliation(s)
- Dean Philip John Kavanagh
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Neena Kalia
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
35
|
Swift LM, Jaimes R, McCullough D, Burke M, Reilly M, Maeda T, Zhang H, Ishibashi N, Rogers JM, Posnack NG. Optocardiography and Electrophysiology Studies of Ex Vivo Langendorff-perfused Hearts. J Vis Exp 2019. [PMID: 31762469 DOI: 10.3791/60472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Small animal models are most commonly used in cardiovascular research due to the availability of genetically modified species and lower cost compared to larger animals. Yet, larger mammals are better suited for translational research questions related to normal cardiac physiology, pathophysiology, and preclinical testing of therapeutic agents. To overcome the technical barriers associated with employing a larger animal model in cardiac research, we describe an approach to measure physiological parameters in an isolated, Langendorff-perfused piglet heart. This approach combines two powerful experimental tools to evaluate the state of the heart: electrophysiology (EP) study and simultaneous optical mapping of transmembrane voltage and intracellular calcium using parameter sensitive dyes (RH237, Rhod2-AM). The described methodologies are well suited for translational studies investigating the cardiac conduction system, alterations in action potential morphology, calcium handling, excitation-contraction coupling and the incidence of cardiac alternans or arrhythmias.
Collapse
Affiliation(s)
- Luther M Swift
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Rafael Jaimes
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Damon McCullough
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Morgan Burke
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Marissa Reilly
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital
| | - Takuya Maeda
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Center for Neuroscience Research, Children's National Hospital
| | - Hanyu Zhang
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham
| | - Nobuyuki Ishibashi
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Center for Neuroscience Research, Children's National Hospital
| | - Jack M Rogers
- Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital; Children's National Heart Institute, Children's National Hospital; Department of Pediatrics, Department of Pharmacology & Physiology, School of Medicine and Health Sciences, George Washington University;
| |
Collapse
|
36
|
Kolwicz SC, Hall JK, Moussavi-Harami F, Chen X, Hauschka SD, Chamberlain JS, Regnier M, Odom GL. Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular Dystrophy Mice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate. JACC Basic Transl Sci 2019; 4:778-791. [PMID: 31998848 PMCID: PMC6978556 DOI: 10.1016/j.jacbts.2019.06.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/13/2023]
Abstract
Mutations in the gene encoding for dystrophin leads to structural and functional deterioration of cardiomyocytes and is a hallmark of cardiomyopathy in Duchenne muscular dystrophy (DMD) patients. Administration of recombinant adeno-associated viral vectors delivering microdystrophin or ribonucleotide reductase (RNR), under muscle-specific regulatory control, rescues both baseline and high workload-challenged hearts in an aged, DMD mouse model. However, only RNR treatments improved both systolic and diastolic function under those conditions. Cardiac-specific recombinant adeno-associated viral treatment of RNR holds therapeutic promise for improvement of cardiomyopathy in DMD patients.
Collapse
Key Words
- CK8, miniaturized murine creatine kinase regulatory cassette
- CMV, cytomegalovirus
- DMD, Duchenne muscular dystrophy
- RNR, ribonucleotide reductase
- cTnT, cardiac troponin T
- cardiomyopathy
- dADP, deoxy-adenosine diphosphate
- dATP, deoxy-adenosine triphosphate
- diastolic dysfunction
- dystrophin
- mdx, mouse muscular dystrophy model
- rAAV, recombinant adeno-associated viral vector
- recombinant adeno-associated virus vectors
- ribonucleotide reductase
- μDys, microdystrophin
Collapse
Affiliation(s)
- Stephen C. Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - John K. Hall
- Department of Neurology, University of Washington, Seattle, Washington
| | - Farid Moussavi-Harami
- Division of Cardiology, Department of Medicine, University of Washington, Seattle, Washington
| | - Xiolan Chen
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Stephen D. Hauschka
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Jeffrey S. Chamberlain
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Biochemistry, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
| | - Michael Regnier
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Department of Bioengineering, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington
- Wellstone Muscular Dystrophy Specialized Research Center, University of Washington, Seattle, Washington
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington
| |
Collapse
|
37
|
Zhu PC, Tong Q, Zhuang Z, Wang ZH, Deng LH, Zheng GQ, Wang Y. Ginkgolide B for Myocardial Ischemia/Reperfusion Injury: A Preclinical Systematic Review and Meta-Analysis. Front Physiol 2019; 10:1292. [PMID: 31681006 PMCID: PMC6807679 DOI: 10.3389/fphys.2019.01292] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/25/2019] [Indexed: 12/09/2022] Open
Abstract
Ginkgolide B (GB) is an extract of dried Ginkgo biloba leaves and possesses various pharmacological activities in the cardiovascular system. Herein, we aim to assess the available preclinical evidence and possible mechanisms of GB for myocardial ischemia/reperfusion injury. The study quality score was assessed using the CAMARADES 10-item checklist. Rev-Man 5.3 software was used for data analyses. Nineteen studies with total 437 animals were included for analysis. Meta-analyses indicated that GB interventions significantly reduce myocardial infarct size and cardiac markers when compared with control (P < 0.05). The possible mechanisms via which GB exerts cardioprotective effects are mainly associated with anti-oxidation, anti-inflammation, anti-apoptosis, and improvement of energy metabolism. Our study indicates that GB might be a promising cardioprotective agent for myocardial ischemia/reperfusion injury and may contribute to future clinical trial design.
Collapse
Affiliation(s)
- Peng-Chong Zhu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiang Tong
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhuang Zhuang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zi-Hao Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Li-Hui Deng
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Qing Zheng
- Department of Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Wang
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Ribeiro AJS, Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Brock M, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Drug-Induced Inotropic Effects in Early Drug Development. Part 2: Designing and Fabricating Microsystems for Assaying Cardiac Contractility With Physiological Relevance Using Human iPSC-Cardiomyocytes. Front Pharmacol 2019; 10:934. [PMID: 31555128 PMCID: PMC6727630 DOI: 10.3389/fphar.2019.00934] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022] Open
Abstract
Contractility of the myocardium engines the pumping function of the heart and is enabled by the collective contractile activity of its muscle cells: cardiomyocytes. The effects of drugs on the contractility of human cardiomyocytes in vitro can provide mechanistic insight that can support the prediction of clinical cardiac drug effects early in drug development. Cardiomyocytes differentiated from human-induced pluripotent stem cells have high potential for overcoming the current limitations of contractility assays because they attach easily to extracellular materials and last long in culture, while having human- and patient-specific properties. Under these conditions, contractility measurements can be non-destructive and minimally invasive, which allow assaying sub-chronic effects of drugs. For this purpose, the function of cardiomyocytes in vitro must reflect physiological settings, which is not observed in cultured cardiomyocytes derived from induced pluripotent stem cells because of the fetal-like properties of their contractile machinery. Primary cardiomyocytes or tissues of human origin fully represent physiological cellular properties, but are not easily available, do not last long in culture, and do not attach easily to force sensors or mechanical actuators. Microengineered cellular systems with a more mature contractile function have been developed in the last 5 years to overcome this limitation of stem cell-derived cardiomyocytes, while simultaneously measuring contractile endpoints with integrated force sensors/actuators and image-based techniques. Known effects of engineered microenvironments on the maturity of cardiomyocyte contractility have also been discovered in the development of these systems. Based on these discoveries, we review here design criteria of microengineered platforms of cardiomyocytes derived from pluripotent stem cells for measuring contractility with higher physiological relevance. These criteria involve the use of electromechanical, chemical and morphological cues, co-culture of different cell types, and three-dimensional cellular microenvironments. We further discuss the use and the current challenges for developing and improving these novel technologies for predicting clinical effects of drugs based on contractility measurements with cardiomyocytes differentiated from induced pluripotent stem cells. Future research should establish contexts of use in drug development for novel contractility assays with stem cell-derived cardiomyocytes.
Collapse
Affiliation(s)
- Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Mathew Brock
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, United States
| |
Collapse
|
39
|
Vico TA, Marchini T, Ginart S, Lorenzetti MA, Adán Areán JS, Calabró V, Garcés M, Ferrero MC, Mazo T, D’Annunzio V, Gelpi RJ, Corach D, Evelson P, Vanasco V, Alvarez S. Mitochondrial bioenergetics links inflammation and cardiac contractility in endotoxemia. Basic Res Cardiol 2019; 114:38. [DOI: 10.1007/s00395-019-0745-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
|
40
|
Guth BD, Engwall M, Eldridge S, Foley CM, Guo L, Gintant G, Koerner J, Parish ST, Pierson JB, Ribeiro AJS, Zabka T, Chaudhary KW, Kanda Y, Berridge B. Considerations for an In Vitro, Cell-Based Testing Platform for Detection of Adverse Drug-Induced Inotropic Effects in Early Drug Development. Part 1: General Considerations for Development of Novel Testing Platforms. Front Pharmacol 2019; 10:884. [PMID: 31447679 PMCID: PMC6697071 DOI: 10.3389/fphar.2019.00884] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023] Open
Abstract
Drug-induced effects on cardiac contractility can be assessed through the measurement of the maximal rate of pressure increase in the left ventricle (LVdP/dtmax) in conscious animals, and such studies are often conducted at the late stage of preclinical drug development. Detection of such effects earlier in drug research using simpler, in vitro test systems would be a valuable addition to our strategies for identifying the best possible drug development candidates. Thus, testing platforms with reasonably high throughput, and affordable costs would be helpful for early screening purposes. There may also be utility for testing platforms that provide mechanistic information about how a given drug affects cardiac contractility. Finally, there could be in vitro testing platforms that could ultimately contribute to the regulatory safety package of a new drug. The characteristics needed for a successful cell or tissue-based testing platform for cardiac contractility will be dictated by its intended use. In this article, general considerations are presented with the intent of guiding the development of new testing platforms that will find utility in drug research and development. In the following article (part 2), specific aspects of using human-induced stem cell-derived cardiomyocytes for this purpose are addressed.
Collapse
Affiliation(s)
- Brian D Guth
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach an der Riss, Germany.,PreClinical Drug Development Platform (PCDDP), North-West University, Potchefstroom, South Africa
| | - Michael Engwall
- Safety Pharmacology and Animal Research Center, Amgen Research, Thousand Oaks, CA, United States
| | - Sandy Eldridge
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - C Michael Foley
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - Liang Guo
- Laboratory of Investigative Toxicology, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Gary Gintant
- Department of Integrative Pharmacology, Integrated Sciences and Technology, AbbVie, North Chicago, IL, United States
| | - John Koerner
- Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Stanley T Parish
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Jennifer B Pierson
- Health and Environmental Sciences Institute, Washington, DC, United States
| | - Alexandre J S Ribeiro
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Office of Translation Sciences, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, United States
| | - Tanja Zabka
- Department of Safety Assessment, Genentech, South San Francisco, CA, United States
| | - Khuram W Chaudhary
- Global Safety Pharmacology, GlaxoSmithKline plc, Collegeville, PA, United States
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, Japan
| | - Brian Berridge
- National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
41
|
|
42
|
Yang DY, Zhu Y, Kong JQ, Gong XJ, Xie ZH, Mei WY, Luo CF, Du ZM, Zhuang XD, Liao XX. “Light in and Sound Out”: Review of Photoacoustic Imaging in Cardiovascular Medicine. IEEE ACCESS 2019; 7:38890-38901. [DOI: 10.1109/access.2019.2902543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
|
43
|
Chowdhury MA, Sholl HK, Sharrett MS, Haller ST, Cooper CC, Gupta R, Liu LC. Exercise and Cardioprotection: A Natural Defense Against Lethal Myocardial Ischemia-Reperfusion Injury and Potential Guide to Cardiovascular Prophylaxis. J Cardiovasc Pharmacol Ther 2019; 24:18-30. [PMID: 30041547 PMCID: PMC7236859 DOI: 10.1177/1074248418788575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Similar to ischemic preconditioning, high-intensity exercise has been shown to decrease infarct size following myocardial infarction. In this article, we review the literature on beneficial effects of exercise, exercise requirements for cardioprotection, common methods utilized in laboratories to study this phenomenon, and discuss possible mechanisms for exercise-mediated cardioprotection.
Collapse
Affiliation(s)
- Mohammed Andaleeb Chowdhury
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Haden K Sholl
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- * Mohammed Andaleeb Chowdhury, Haden K. Sholl, and Megan S. Sharrett contributed equally to this work
| | - Megan S Sharrett
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Steven T Haller
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Christopher C Cooper
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Rajesh Gupta
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Lijun C Liu
- 1 Department of Medicine, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
44
|
Rowan SC, Rochfort KD, Piouceau L, Cummins PM, O’Rourke M, McLoughlin P. Pulmonary endothelial permeability and tissue fluid balance depend on the viscosity of the perfusion solution. Am J Physiol Lung Cell Mol Physiol 2018; 315:L476-L484. [DOI: 10.1152/ajplung.00437.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Fluid filtration in the pulmonary microcirculation depends on the hydrostatic and oncotic pressure gradients across the endothelium and the selective permeability of the endothelial barrier. Maintaining normal fluid balance depends both on specific properties of the endothelium and of the perfusing blood. Although some of the essential properties of blood needed to prevent excessive fluid leak have been identified and characterized, our understanding of these remains incomplete. The role of perfusate viscosity in maintaining normal fluid exchange has not previously been examined. We prepared a high-viscosity perfusion solution (HVS) with a relative viscosity of 2.5, i.e., within the range displayed by blood flowing in vessels of different diameters in vivo (1.5–4.0). Perfusion of isolated murine lungs with HVS significantly reduced the rate of edema formation compared with perfusion with a standard solution (SS), which had a lower viscosity similar to plasma (relative viscosity 1.5). HVS did not alter capillary filtration pressure. Increased endothelial shear stress produced by increasing flow rates of SS, to mimic the increased shear stress produced by HVS, did not reduce edema formation. HVS significantly reduced extravasation of Evans blue-labeled albumin compared with SS, indicating that it attenuated endothelial leak. These findings demonstrate for the first time that the viscosity of the solution perfusing the pulmonary microcirculation is an important physiological property contributing to the maintenance of normal fluid exchange. This has significant implications for our understanding of fluid homeostasis in the healthy lung, edema formation in disease, and reconditioning of donor organs for transplantation.
Collapse
Affiliation(s)
- Simon C. Rowan
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Keith D. Rochfort
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Lucie Piouceau
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Philip M. Cummins
- National Institute of Cellular Biotechnology, School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Malachy O’Rourke
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
| | - Paul McLoughlin
- University College Dublin School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| |
Collapse
|
45
|
Zhang H, Dvornikov AV, Huttner IG, Ma X, Santiago CF, Fatkin D, Xu X. A Langendorff-like system to quantify cardiac pump function in adult zebrafish. Dis Model Mech 2018; 11:dmm.034819. [PMID: 30012855 PMCID: PMC6177000 DOI: 10.1242/dmm.034819] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Zebrafish are increasingly used as a vertebrate model to study human cardiovascular disorders. Although heart structure and function are readily visualized in zebrafish embryos because of their optical transparency, the lack of effective tools for evaluating the hearts of older, nontransparent fish has been a major limiting factor. The recent development of high-frequency echocardiography has been an important advance for in vivo cardiac assessment, but it necessitates anesthesia and has limited ability to study acute interventions. We report the development of an alternative experimental ex vivo technique for quantifying heart size and function that resembles the Langendorff heart preparations that have been widely used in mammalian models. Dissected adult zebrafish hearts were perfused with a calcium-containing buffer, and a beat frequency was maintained with electrical stimulation. The impact of pacing frequency, flow rate and perfusate calcium concentration on ventricular performance (including end-diastolic and end-systolic volumes, ejection fraction, radial strain, and maximal velocities of shortening and relaxation) were evaluated and optimal conditions defined. We determined the effects of age on heart function in wild-type male and female zebrafish, and successfully detected hypercontractile and hypocontractile responses after adrenergic stimulation or doxorubicin treatment, respectively. Good correlations were found between indices of cardiac contractility obtained with high-frequency echocardiography and with the ex vivo technique in a subset of fish studied with both methods. The ex vivo beating heart preparation is a valuable addition to the cardiac function tool kit that will expand the use of adult zebrafish for cardiovascular research.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Cardiovascular Surgery Department, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiao Ma
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA.,Clinical and Translational Sciences Track, Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN 55092, USA
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia.,Cardiology Department, St. Vincent's Hospital, Sydney, NSW 2010, Australia
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55902, USA
| |
Collapse
|
46
|
Mendoza-Torres E, Riquelme JA, Vielma A, Sagredo AR, Gabrielli L, Bravo-Sagua R, Jalil JE, Rothermel BA, Sanchez G, Ocaranza MP, Lavandero S. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol Res 2018; 135:112-121. [DOI: 10.1016/j.phrs.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023]
|
47
|
Ruiz M, Comtois P. The heart in lack of oxygen? A revisited method to improve cardiac performance ex vivo. Am J Physiol Heart Circ Physiol 2018; 314:H776-H779. [PMID: 29351474 DOI: 10.1152/ajpheart.00699.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Matthieu Ruiz
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada.,Department of Nutrition, Université de Montréal , Montreal, Quebec , Canada
| | - Philippe Comtois
- Research Centre, Montreal Heart Institute , Montreal, Quebec , Canada.,Department of Pharmacology and Physiology, Université de Montréal , Montreal, Quebec , Canada.,Institute of Biomedical Engineering, Université de Montréal , Montreal, Quebec , Canada
| |
Collapse
|
48
|
Yeo JM, Tse V, Kung J, Lin HY, Lee YT, Kwan J, Yan BP, Tse G. Isolated heart models for studying cardiac electrophysiology: a historical perspective and recent advances. J Basic Clin Physiol Pharmacol 2018; 28:191-200. [PMID: 28063261 DOI: 10.1515/jbcpp-2016-0110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/12/2016] [Indexed: 01/25/2023]
Abstract
Experimental models used in cardiovascular research range from cellular to whole heart preparations. Isolated whole hearts show higher levels of structural and functional integration than lower level models such as tissues or cellular fragments. Cardiovascular diseases are multi-factorial problems that are dependent on highly organized structures rather than on molecular or cellular components alone. This article first provides a general introduction on the animal models of cardiovascular diseases. It is followed by a detailed overview and a historical perspective of the different isolated heart systems with a particular focus on the Langendorff perfusion method for the study of cardiac arrhythmias. The choice of species, perfusion method, and perfusate composition are discussed in further detail with particular considerations of the theoretical and practical aspects of experimental settings.
Collapse
Affiliation(s)
- Jie Ming Yeo
- School of Medicine, Imperial College London, London
| | - Vivian Tse
- Department of Physiology, McGill University, Montreal, Quebec
| | - Judy Kung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Joseph Kwan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR, P.R
| | - Bryan P Yan
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R
| |
Collapse
|
49
|
Lindsey ML, Bolli R, Canty JM, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, Lefer DJ, Liao R, Murphy E, Ping P, Przyklenk K, Recchia FA, Schwartz Longacre L, Ripplinger CM, Van Eyk JE, Heusch G. Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol 2018; 314:H812-H838. [PMID: 29351451 PMCID: PMC5966768 DOI: 10.1152/ajpheart.00335.2017] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myocardial infarction is a prevalent major cardiovascular event that arises from myocardial ischemia with or without reperfusion, and basic and translational research is needed to better understand its underlying mechanisms and consequences for cardiac structure and function. Ischemia underlies a broad range of clinical scenarios ranging from angina to hibernation to permanent occlusion, and while reperfusion is mandatory for salvage from ischemic injury, reperfusion also inflicts injury on its own. In this consensus statement, we present recommendations for animal models of myocardial ischemia and infarction. With increasing awareness of the need for rigor and reproducibility in designing and performing scientific research to ensure validation of results, the goal of this review is to provide best practice information regarding myocardial ischemia-reperfusion and infarction models. Listen to this article’s corresponding podcast at ajpheart.podbean.com/e/guidelines-for-experimental-models-of-myocardial-ischemia-and-infarction/.
Collapse
Affiliation(s)
- Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi.,Research Service, G. V. (Sonny) Montgomery Veterans Affairs Medical Center , Jackson, Mississippi
| | - Roberto Bolli
- Division of Cardiovascular Medicine and Institute of Molecular Cardiology, University of Louisville , Louisville, Kentucky
| | - John M Canty
- Division of Cardiovascular Medicine, Departments of Biomedical Engineering and Physiology and Biophysics, The Veterans Affairs Western New York Health Care System and Clinical and Translational Science Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo , Buffalo, New York
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital , Würzburg , Germany
| | - Robert G Gourdie
- Center for Heart and Regenerative Medicine Research, Virginia Tech Carilion Research Institute , Roanoke, Virginia
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia Health System , Charlottesville, Virginia
| | - Steven P Jones
- Department of Medicine, Institute of Molecular Cardiology, Diabetes and Obesity Center, University of Louisville , Louisville, Kentucky
| | - Robert A Kloner
- HMRI Cardiovascular Research Institute, Huntington Medical Research Institutes , Pasadena, California.,Division of Cardiovascular Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| | - David J Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Science Center , New Orleans, Louisiana
| | - Ronglih Liao
- Harvard Medical School , Boston, Massachusetts.,Division of Genetics and Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital , Boston, Massachusetts
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Peipei Ping
- National Institutes of Health BD2KBig Data to Knowledge (BD2K) Center of Excellence and Department of Physiology, Medicine and Bioinformatics, University of California , Los Angeles, California
| | - Karin Przyklenk
- Cardiovascular Research Institute and Departments of Physiology and Emergency Medicine, Wayne State University School of Medicine , Detroit, Michigan
| | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Fondazione G. Monasterio, Pisa , Italy.,Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University , Philadelphia, Pennsylvania
| | - Lisa Schwartz Longacre
- Heart Failure and Arrhythmias Branch, Division of Cardiovascular Sciences, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | - Crystal M Ripplinger
- Department of Pharmacology, School of Medicine, University of California , Davis, California
| | - Jennifer E Van Eyk
- The Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center , Los Angeles, California
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School , Essen , Germany
| |
Collapse
|
50
|
Berzabá-Evoli E, Zazueta C, Cruz Hernández JH, Gómez-Crisóstomo NP, Juárez-Rojop IE, De la Cruz-Hernández EN, Martínez-Abundis E. Leptin Modifies the Rat Heart Performance Associated with Mitochondrial Dysfunction Independently of Its Prohypertrophic Effects. Int J Endocrinol 2018; 2018:6081415. [PMID: 30154842 PMCID: PMC6093050 DOI: 10.1155/2018/6081415] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/15/2018] [Accepted: 07/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Functional receptors for leptin were described on the surface of cardiomyocytes, and there was a prohypertrophic effect with high concentrations of the cytokine. Therefore, leptin could be a link between obesity and the prevalence of cardiovascular diseases. On the other hand, a deleterious effect of leptin on mitochondrial performance was described, which was also associated with the evolution of cardiac hypertrophy to heart failure. The goal of our study was to analyze the effect of the exposure of rat hearts to a high concentration of leptin on cardiac and mitochondrial function. METHODS Rat hearts were perfused continuously with or without 3.1 nM leptin for 1, 2, 3, or 4 hours. Homogenates and mitochondria were prepared by centrifugation and analyzed for cardiac actin, STAT3, and pSTAT3 by Western blotting, as well as for mitochondrial oxidative phosphorylation, membrane potential, swelling, calcium transport, and content of oxidized lipids. RESULTS In our results, leptin induced an increased rate-pressure product as a result of increased heart rate and contraction force, as well oxidative stress. In addition, mitochondrial dysfunction expressed as a loss of membrane potential, decreased ability for calcium transport and retention, faster swelling, and less respiratory control was observed. CONCLUSIONS Our results support the role of leptin as a deleterious factor for cardiac function and indicates that mitochondrial dysfunction could be a trigger for cardiac hypertrophy and failure.
Collapse
Affiliation(s)
- Edna Berzabá-Evoli
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología (I. Ch.), 14080 Tlalpan, MEX, Mexico
| | - Jarumi Hishel Cruz Hernández
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| | - Nancy Patricia Gómez-Crisóstomo
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| | - Isela Esther Juárez-Rojop
- Research Center, Academic Division of Health Sciences (DACS), Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| | - Erick Natividad De la Cruz-Hernández
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| | - Eduardo Martínez-Abundis
- Laboratory of Research in Metabolic and Infectious Diseases, Multidisciplinary Academic Division of Comalcalco, Juarez Autonomous University of Tabasco, Villahermosa, TAB, Mexico
| |
Collapse
|