1
|
Horn AG, White ZJ, Hall SE, Morrison KH, Schulze KM, Muller-Delp J, Poole DC, Behnke BJ. Ageing impairs endothelium-dependent vasodilatation and alters redox signalling in diaphragm arterioles from male and female Fischer-344 rats. J Physiol 2025; 603:1439-1459. [PMID: 40023797 DOI: 10.1113/jp287451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/05/2025] [Indexed: 03/04/2025] Open
Abstract
Diaphragm hyperaemia and regional blood flow distribution are impaired with ageing, potentially consequent to altered vascular structure and/or diminished vasomotor function. Evidence from locomotory skeletal muscle suggests that age-related diaphragm vasomotor dysfunction may be related to a blunted endothelium-mediated vasodilatation, decreased nitric oxide (NO) bioavailability and/or augmented reactive oxygen species (ROS) generation. We hypothesized that, in the medial costal diaphragm with old age, there would be fewer feed arteries (FAs) and impaired vasomotor function, via endothelium-specific mechanisms, in first-order (1A) arterioles. In young (Y) and old (O) Fischer-344 rats, the number of medial costal diaphragm FAs was quantified. 1A arterioles (117-220 µm) were isolated, cannulated and pressurized via hydrostatic reservoirs. Thereafter endothelium-dependent (via ACh) vasodilatory responses were assessed. In a separate set of arterioles, ACh-mediated dilatation was assessed before and after treatment with the superoxide dismutase mimetic Tempol (100 µm) and Tempol plus the hydrogen peroxide (H2O2) scavenger catalase (100 U/ml). The average number of medial costal FAs was lower in the rat diaphragm with old age (p = 0.001). Endothelium- and nitric oxide synthase (NOS)-dependent vasodilatation was 21% lower in medial costal 1A arterioles from O rats (p < 0.001). Tempol decreased ACh-mediated vasodilatation of medial costal 1A arterioles from Y and O rats but did not eliminate age-related differences. Tempol plus catalase further decreased ACh-mediated vasodilatation in O but not Y vessels. In the medial costal diaphragm vasculature, ageing is associated with (1) arterial rarefaction, (2) impaired endothelium-dependent vasodilatation via NOS- and ROS-dependent mechanisms and (3) increased reliance on ROS-mediated vasodilatation. KEY POINTS: Old age blunts the hyperaemic response and alters regional blood flow distribution in the diaphragm. The effect of ageing on vascular structure and function in respiratory skeletal muscle is unknown. In young and old Fischer-344 rats of both sexes, we quantified the number of feed arteries (FAs) and assessed the vasoreactivity of first-order (1A) arterioles in the medial costal diaphragm. The number of medial costal diaphragm FAs was lower in old rats. In 1A arterioles endothelium-dependent vasodilatation was blunted, and reactive oxygen species (ROS)-mediated vasodilatory signalling was greater in old rats. We found no evidence of sex differences in diaphragm macrovascular structure, endothelial function or ROS-mediated signalling in young or old rats. Our findings in the diaphragm vasculature with ageing provide a mechanistic basis for the age-related deficits in diaphragm blood flow capacity. Therapeutic interventions targeting the diaphragm vasculature to improve perfusion and oxygen delivery may reduce the burden of age-related diaphragm dysfunction.
Collapse
Affiliation(s)
- Andrew G Horn
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| | - Zachary J White
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Stephanie E Hall
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | | | - Kiana M Schulze
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| | - Judy Muller-Delp
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - David C Poole
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
- Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas, USA
| | - Brad J Behnke
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
2
|
van Drie RWA, van de Wouw J, Zandbergen LM, Dehairs J, Swinnen JV, Mulder MT, Verhaar MC, MaassenVanDenBrink A, Duncker DJ, Sorop O, Merkus D. Vasodilator reactive oxygen species ameliorate perturbed myocardial oxygen delivery in exercising swine with multiple comorbidities. Basic Res Cardiol 2024; 119:869-887. [PMID: 38796544 PMCID: PMC11461570 DOI: 10.1007/s00395-024-01055-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Multiple common cardiovascular comorbidities produce coronary microvascular dysfunction. We previously observed in swine that a combination of diabetes mellitus (DM), high fat diet (HFD) and chronic kidney disease (CKD) induced systemic inflammation, increased oxidative stress and produced coronary endothelial dysfunction, altering control of coronary microvascular tone via loss of NO bioavailability, which was associated with an increase in circulating endothelin (ET). In the present study, we tested the hypotheses that (1) ROS scavenging and (2) ETA+B-receptor blockade improve myocardial oxygen delivery in the same female swine model. Healthy female swine on normal pig chow served as controls (Normal). Five months after induction of DM (streptozotocin, 3 × 50 mg kg-1 i.v.), hypercholesterolemia (HFD) and CKD (renal embolization), swine were chronically instrumented and studied at rest and during exercise. Sustained hyperglycemia, hypercholesterolemia and renal dysfunction were accompanied by systemic inflammation and oxidative stress. In vivo ROS scavenging (TEMPOL + MPG) reduced myocardial oxygen delivery in DM + HFD + CKD swine, suggestive of a vasodilator influence of endogenous ROS, while it had no effect in Normal swine. In vitro wire myography revealed a vasodilator role for hydrogen peroxide (H2O2) in isolated small coronary artery segments from DM + HFD + CKD, but not Normal swine. Increased catalase activity and ceramide production in left ventricular myocardial tissue of DM + HFD + CKD swine further suggest that increased H2O2 acts as vasodilator ROS in the coronary microvasculature. Despite elevated ET-1 plasma levels in DM + HFD + CKD swine, ETA+B blockade did not affect myocardial oxygen delivery in Normal or DM + HFD + CKD swine. In conclusion, loss of NO bioavailability due to 5 months exposure to multiple comorbidities is partially compensated by increased H2O2-mediated coronary vasodilation.
Collapse
Affiliation(s)
- R W A van Drie
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - L M Zandbergen
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany
| | - J Dehairs
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - J V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, KU Leuven-University of Leuven, Leuven, Belgium
| | - M T Mulder
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - A MaassenVanDenBrink
- Laboratory of Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - D J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - O Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - D Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Walter Brendel Center of Experimental Medicine (WBex), University Clinic Munich, 81377 LMU, Munich, Germany.
- Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Partner Site Munich, 81377, Munich, Germany.
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), University Clinic Munich, LMU, Munich, Germany.
| |
Collapse
|
3
|
Xiang X, Palasuberniam P, Pare R. The Role of Estrogen across Multiple Disease Mechanisms. Curr Issues Mol Biol 2024; 46:8170-8196. [PMID: 39194700 DOI: 10.3390/cimb46080483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Estrogen is a significant hormone that is involved in a multitude of physiological and pathological processes. In addition to its pivotal role in the reproductive system, estrogen is also implicated in the pathogenesis of a multitude of diseases. Nevertheless, previous research on the role of estrogen in a multitude of diseases, including Alzheimer's disease, depression, cardiovascular disease, diabetes, osteoporosis, gastrointestinal diseases, and estrogen-dependent cancers, has concentrated on a single disease area, resulting in a lack of comprehensive understanding of cross-disease mechanisms. This has brought some challenges to the current treatment methods for these diseases, because estrogen as a potential therapeutic tool has not yet fully developed its potential. Therefore, this review aims to comprehensively explore the mechanism of estrogen in these seven types of diseases. The objective of this study is to describe the relationship between each disease and estrogen, including the ways in which estrogen participates in regulating disease mechanisms, and to outline the efficacy of estrogen in treating these diseases in clinical practice. By studying the role of estrogen in a variety of disease mechanisms, it is hoped that a more accurate theoretical basis and clinical guidance for future treatment strategies will be provided, thus promoting the effective management and treatment of these diseases.
Collapse
Affiliation(s)
- Xiuting Xiang
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Praneetha Palasuberniam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| | - Rahmawati Pare
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
4
|
Jensen LJ. Functional, Structural and Proteomic Effects of Ageing in Resistance Arteries. Int J Mol Sci 2024; 25:2601. [PMID: 38473847 DOI: 10.3390/ijms25052601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.
Collapse
Affiliation(s)
- Lars Jørn Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| |
Collapse
|
5
|
Sytha SP, Bray JF, Heaps CL. Exercise induces superoxide and NOX4 contribution in endothelium-dependent dilation in coronary arterioles from a swine model of chronic myocardial ischemia. Microvasc Res 2023; 150:104590. [PMID: 37481160 PMCID: PMC10538397 DOI: 10.1016/j.mvr.2023.104590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Exercise training is an effective, nonpharmacologic therapy and preventative measure for ischemic heart disease. While recent studies have examined reactive oxygen species (ROS) as mediators of exercise training-enhanced coronary blood flow, specific oxidants and their sources have yet to be fully elucidated. We investigated the hypothesis that NADPH oxidase (NOX)-derived superoxide anion would contribute to vasodilation effects in the coronary microcirculation of swine and that these effects would be impaired by chronic ischemia and rescued with exercise training. Adult Yucatan miniature swine were instrumented with an ameroid occluder around the proximal left circumflex coronary artery, resulting in a collateral-dependent myocardial region. Eight weeks post-operatively, swine were randomly assigned to either a sedentary or exercise training (treadmill run; 5 days/week for 14 weeks) protocol. Coronary arterioles were isolated from nonoccluded and collateral-dependent myocardial regions and pressure myography was performed. Exercise training resulted in enhanced endothelium-dependent dilation after occlusion. Scavenging of superoxide via the superoxide dismutase (SOD)-mimetic, tempol, attenuated dilation in both nonoccluded and collateral-dependent arterioles of exercise-trained, but not sedentary swine. NOX1/4 inhibition with GKT136901 attenuated dilation after exercise training but only in collateral-dependent arterioles. High performance liquid chromatography revealed that neither ischemia nor exercise training significantly altered basal or bradykinin-stimulated superoxide levels. Furthermore, superoxide production was not attributable to NOX isoforms nor mitochondria. Immunoblot analyses revealed significantly decreased NOX2 protein after exercise with no differences in NOX1, NOX4, p22phox, SOD proteins. Taken together, these data provide evidence that superoxide and NOX4 independently contribute to enhanced endothelium-dependent dilation following exercise training.
Collapse
Affiliation(s)
| | - Jeff F Bray
- Department of Physiology and Pharmacology, USA
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, USA; Michael E. DeBakey Institute for Comparative Cardiovascular Science & Biomedical Devices, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
6
|
SenthilKumar G, Katunaric B, Bordas-Murphy H, Sarvaideo J, Freed JK. Estrogen and the Vascular Endothelium: The Unanswered Questions. Endocrinology 2023; 164:bqad079. [PMID: 37207450 PMCID: PMC10230790 DOI: 10.1210/endocr/bqad079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
Premenopausal women have a lower incidence of cardiovascular disease (CVD) compared with their age-matched male counterparts; however, this discrepancy is abolished following the transition to menopause or during low estrogen states. This, combined with a large amount of basic and preclinical data indicating that estrogen is vasculoprotective, supports the concept that hormone therapy could improve cardiovascular health. However, clinical outcomes in individuals undergoing estrogen treatment have been highly variable, challenging the current paradigm regarding the role of estrogen in the fight against heart disease. Increased risk for CVD correlates with long-term oral contraceptive use, hormone replacement therapy in older, postmenopausal cisgender females, and gender affirmation treatment for transgender females. Vascular endothelial dysfunction serves as a nidus for the development of many cardiovascular diseases and is highly predictive of future CVD risk. Despite preclinical studies indicating that estrogen promotes a quiescent, functional endothelium, it still remains unclear why these observations do not translate to improved CVD outcomes. The goal of this review is to explore our current understanding of the effect of estrogen on the vasculature, with a focus on endothelial health. Following a discussion regarding the influence of estrogen on large and small artery function, critical knowledge gaps are identified. Finally, novel mechanisms and hypotheses are presented that may explain the lack of cardiovascular benefit in unique patient populations.
Collapse
Affiliation(s)
- Gopika SenthilKumar
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Boran Katunaric
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Henry Bordas-Murphy
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| | - Jenna Sarvaideo
- Divison of Endocrinology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Julie K Freed
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovasular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee WI 53226, USA
| |
Collapse
|
7
|
Peixoto P, Vieira-Alves I, Couto GK, Lemos VS, Rossoni LV, Bissoli NS, Dos Santos RL. Sex differences in the participation of endothelial mediators and signaling pathways involved in the vasodilator effect of a selective GPER agonist in resistance arteries of gonadectomized Wistar rats. Life Sci 2022; 308:120917. [PMID: 36044974 DOI: 10.1016/j.lfs.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
AIM Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.
Collapse
Affiliation(s)
- Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
8
|
Sabe SA, Feng J, Sellke FW, Abid MR. Mechanisms and clinical implications of endothelium-dependent vasomotor dysfunction in coronary microvasculature. Am J Physiol Heart Circ Physiol 2022; 322:H819-H841. [PMID: 35333122 PMCID: PMC9018047 DOI: 10.1152/ajpheart.00603.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 12/16/2022]
Abstract
Coronary microvascular disease (CMD), which affects the arterioles and capillary endothelium that regulate myocardial perfusion, is an increasingly recognized source of morbidity and mortality, particularly in the setting of metabolic syndrome. The coronary endothelium plays a pivotal role in maintaining homeostasis, though factors such as diabetes, hypertension, hyperlipidemia, and obesity can contribute to endothelial injury and consequently arteriolar vasomotor dysfunction. These disturbances in the coronary microvasculature clinically manifest as diminished coronary flow reserve, which is a known independent risk factor for cardiac death, even in the absence of macrovascular atherosclerotic disease. Therefore, a growing body of literature has examined the molecular mechanisms by which coronary microvascular injury occurs at the level of the endothelium and the consequences on arteriolar vasomotor responses. This review will begin with an overview of normal coronary microvascular physiology, modalities of measuring coronary microvascular function, and clinical implications of CMD. These introductory topics will be followed by a discussion of recent advances in the understanding of the mechanisms by which inflammation, oxidative stress, insulin resistance, hyperlipidemia, hypertension, shear stress, endothelial cell senescence, and tissue ischemia dysregulate coronary endothelial homeostasis and arteriolar vasomotor function.
Collapse
Affiliation(s)
- Sharif A Sabe
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Jun Feng
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Cardiovascular Research Center, Rhode Island Hospital, Providence, Rhode Island
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
9
|
Brandt MM, Cheng C, Merkus D, Duncker DJ, Sorop O. Mechanobiology of Microvascular Function and Structure in Health and Disease: Focus on the Coronary Circulation. Front Physiol 2022; 12:771960. [PMID: 35002759 PMCID: PMC8733629 DOI: 10.3389/fphys.2021.771960] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/19/2022] Open
Abstract
The coronary microvasculature plays a key role in regulating the tight coupling between myocardial perfusion and myocardial oxygen demand across a wide range of cardiac activity. Short-term regulation of coronary blood flow in response to metabolic stimuli is achieved via adjustment of vascular diameter in different segments of the microvasculature in conjunction with mechanical forces eliciting myogenic and flow-mediated vasodilation. In contrast, chronic adjustments in flow regulation also involve microvascular structural modifications, termed remodeling. Vascular remodeling encompasses changes in microvascular diameter and/or density being largely modulated by mechanical forces acting on the endothelium and vascular smooth muscle cells. Whereas in recent years, substantial knowledge has been gathered regarding the molecular mechanisms controlling microvascular tone and how these are altered in various diseases, the structural adaptations in response to pathologic situations are less well understood. In this article, we review the factors involved in coronary microvascular functional and structural alterations in obstructive and non-obstructive coronary artery disease and the molecular mechanisms involved therein with a focus on mechanobiology. Cardiovascular risk factors including metabolic dysregulation, hypercholesterolemia, hypertension and aging have been shown to induce microvascular (endothelial) dysfunction and vascular remodeling. Additionally, alterations in biomechanical forces produced by a coronary artery stenosis are associated with microvascular functional and structural alterations. Future studies should be directed at further unraveling the mechanisms underlying the coronary microvascular functional and structural alterations in disease; a deeper understanding of these mechanisms is critical for the identification of potential new targets for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Maarten M Brandt
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Caroline Cheng
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Division of Internal Medicine and Dermatology, Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.,Walter Brendel Center of Experimental Medicine (WBex), LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), Munich, Germany
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
10
|
Sex steroids receptors, hypertension, and vascular ageing. J Hum Hypertens 2022; 36:120-125. [PMID: 34230581 PMCID: PMC8850193 DOI: 10.1038/s41371-021-00576-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/18/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Sex hormone receptors are expressed throughout the vasculature and play an important role in the modulation of blood pressure in health and disease. The functions of these receptors may be important in the understanding of sexual dimorphism observed in the pathophysiology of both hypertension and vascular ageing. The interconnectivity of these factors can be exemplified in postmenopausal females, who with age and estrogen deprivation, surpass males with regard to hypertension prevalence, despite experiencing significantly less disease burden in their estrogen replete youth. Estrogen and androgen receptors mediate their actions via direct genomic effects or rapid non-genomic signaling, involving a host of mediators. The expression and subtype composition of these receptors changes through the lifespan in response to age, disease and hormonal exposure. These factors may promote sex steroid receptor-mediated alterations to the Renin-Angiotensin-Aldosterone System (RAAS), and increases in oxidative stress and inflammation, thereby contributing to the development of hypertension and vascular injury with age.
Collapse
|
11
|
Tracy EP, Hughes W, Beare JE, Rowe G, Beyer A, LeBlanc AJ. Aging-Induced Impairment of Vascular Function: Mitochondrial Redox Contributions and Physiological/Clinical Implications. Antioxid Redox Signal 2021; 35:974-1015. [PMID: 34314229 PMCID: PMC8905248 DOI: 10.1089/ars.2021.0031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The vasculature responds to the respiratory needs of tissue by modulating luminal diameter through smooth muscle constriction or relaxation. Coronary perfusion, diastolic function, and coronary flow reserve are drastically reduced with aging. This loss of blood flow contributes to and exacerbates pathological processes such as angina pectoris, atherosclerosis, and coronary artery and microvascular disease. Recent Advances: Increased attention has recently been given to defining mechanisms behind aging-mediated loss of vascular function and development of therapeutic strategies to restore youthful vascular responsiveness. The ultimate goal aims at providing new avenues for symptom management, reversal of tissue damage, and preventing or delaying of aging-induced vascular damage and dysfunction in the first place. Critical Issues: Our major objective is to describe how aging-associated mitochondrial dysfunction contributes to endothelial and smooth muscle dysfunction via dysregulated reactive oxygen species production, the clinical impact of this phenomenon, and to discuss emerging therapeutic strategies. Pathological changes in regulation of mitochondrial oxidative and nitrosative balance (Section 1) and mitochondrial dynamics of fission/fusion (Section 2) have widespread effects on the mechanisms underlying the ability of the vasculature to relax, leading to hyperconstriction with aging. We will focus on flow-mediated dilation, endothelial hyperpolarizing factors (Sections 3 and 4), and adrenergic receptors (Section 5), as outlined in Figure 1. The clinical implications of these changes on major adverse cardiac events and mortality are described (Section 6). Future Directions: We discuss antioxidative therapeutic strategies currently in development to restore mitochondrial redox homeostasis and subsequently vascular function and evaluate their potential clinical impact (Section 7). Antioxid. Redox Signal. 35, 974-1015.
Collapse
Affiliation(s)
- Evan Paul Tracy
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - William Hughes
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Gabrielle Rowe
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA
| | - Andreas Beyer
- Department of Medicine and Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Amanda Jo LeBlanc
- Department of Physiology, University of Louisville, Louisville, Kentucky, USA.,Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Selivanova EK, Shvetsova AA, Shilova LD, Tarasova OS, Gaynullina DK. Intrauterine growth restriction weakens anticontractile influence of NO in coronary arteries of adult rats. Sci Rep 2021; 11:14475. [PMID: 34262070 PMCID: PMC8280217 DOI: 10.1038/s41598-021-93491-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is one of the most common pathologies of pregnancy. The cardiovascular consequences of IUGR do not disappear in adulthood and can manifest themselves in pathological alterations of vasomotor control. The hypothesis was tested that IUGR weakens anticontractile influence of NO and augments procontractile influence of Rho-kinase in arteries of adult offspring. To model IUGR in the rat, dams were 50% food restricted starting from the gestational day 11 till delivery. Mesenteric and coronary arteries of male offspring were studied at the age of 3 months using wire myography, qPCR, and Western blotting. Contractile responses of mesenteric arteries to α1-adrenoceptor agonist methoxamine as well as influences of NO and Rho-kinase did not differ between control and IUGR rats. However, coronary arteries of IUGR rats demonstrated elevated contraction to thromboxane A2 receptor agonist U46619 due to weakened anticontractile influence of NO and enhanced role of Rho-kinase in the endothelium. This was accompanied by reduced abundance of SODI protein and elevated content of RhoA protein in coronary arteries of IUGR rats. IUGR considerably changes the regulation of coronary vascular tone in adulthood and, therefore, can serve as a risk factor for the development of cardiac disorders.
Collapse
Affiliation(s)
- Ekaterina K Selivanova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia A Shvetsova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Lyubov D Shilova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
| | - Olga S Tarasova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia
- Institute for Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Dina K Gaynullina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Moscow, Russia.
- Russian National Research Medical University, Moscow, Russia.
| |
Collapse
|
13
|
Merkus D, Muller-Delp J, Heaps CL. Coronary microvascular adaptations distal to epicardial artery stenosis. Am J Physiol Heart Circ Physiol 2021; 320:H2351-H2370. [PMID: 33961506 DOI: 10.1152/ajpheart.00992.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Until recently, epicardial coronary stenosis has been considered the primary outcome of coronary heart disease, and clinical interventions have been dedicated primarily to the identification and removal of flow-limiting stenoses. However, a growing body of literature indicates that both epicardial stenosis and microvascular dysfunction contribute to damaging myocardial ischemia. In this review, we discuss the coexistence of macro- and microvascular disease, and how the structure and function of the distal microcirculation is impacted by the hemodynamic consequences of an epicardial, flow-limiting stenosis. Mechanisms of endothelial dysfunction as well as alterations of smooth muscle function in the coronary microcirculation distal to stenosis are discussed. Risk factors including diabetes, metabolic syndrome, and aging exacerbate microvascular dysfunction in the myocardium distal to a stenosis, and our current understanding of the role of these factors in limiting collateralization and angiogenesis of the ischemic myocardium is presented. Importantly, exercise training has been shown to promote collateral growth and improve microvascular function distal to stenosis; thus, the current literature reporting the mechanisms that underlie the beneficial effects of exercise training in the microcirculation distal to epicardial stenosis is reviewed. We also discuss recent studies of therapeutic interventions designed to improve microvascular function and stimulate angiogenesis in clinically relevant animal models of epicardial stenosis and microvascular disease. Finally, microvascular adaptation to removal of epicardial stenosis is considered.
Collapse
Affiliation(s)
- Daphne Merkus
- Institute for Surgical Research, Walter Brendel Center of Experimental Medicine (WBex), University Clinic, LMU Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Munich Heart Alliance (MHA), Munich, Germany.,Department of Cardiology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Judy Muller-Delp
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Cristine L Heaps
- Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas.,Michael E. DeBakey Institute for Comparative Cardiovascular Science and Biomedical Devices, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
14
|
Lv Y, Zhao W, Yu L, Yu JG, Zhao L. Angiotensin-Converting Enzyme Gene D/I Polymorphism in Relation to Endothelial Function and Endothelial-Released Factors in Chinese Women. Front Physiol 2020; 11:951. [PMID: 33041838 PMCID: PMC7526498 DOI: 10.3389/fphys.2020.00951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022] Open
Abstract
Many studies have investigated the relationship between angiotensin-converting enzyme (ACE) D/I polymorphism and cardiovascular disease or endothelial dysfunction; however, hardly any of these studies has taken aging or menopause into consideration. Furthermore, despite that many studies have examined the regulatory effects of endothelial-released factors (ERFs) on endothelial function, no study has evaluated the relationship between ERFs and endothelial function with respect to ACE D/I polymorphism and menopause status. To answer these questions, 391 healthy Chinese women over a wide range of ages (22-75 years) were enrolled and divided into pre-menopause group and post-menopause group. After ACE D/I genotype being identified, the women were then classified into either DI/II or DD genotype. Flow-mediated dilatation (FMD) of brachial endothelium and plasma levels of ERFs: nitric oxide (NO), endothelin-1 (ET-1), and angiotensin II (Ang II) were measured. The results showed that frequencies of ACE D/I genotypes were in accordance with the Hardy-Weinberg equilibrium, and the frequency of I allele was higher than D allele. In pre-menopause group, FMD was significantly higher in women of DI/II than DD (P = 0.032), and age-dependent in both genotypes (DD, P = 0.0472; DI/II, P < 0.0001). In post-menopause group, FMD was similar between women of DI/II and DD, and age-dependent only in women of DI/II (P < 0.0001). In pre-menopause group, Ang II level was significantly higher in women of DD than DI/II (P = 0.029), and FMD was significantly correlated with all ERFs in women of DD (NO, P = 0.032; ET-1, P = 0.017; Ang II, P = 0.002), but only with Ang II in women of DI/II (P = 0.026). In post-menopause group, no significant difference was observed in any ERF between women of DI/II and DD, and FMD was only significantly correlated with ET-1 in women of DD (P = 0.010). In summary, FMD in women of DI/II was superior to DD in pre-menopause and more age-dependent than DD in post-menopause, and FMD was closely associated with ERFs. In conclusion, Chinese women of DI/II seem to have lower risk than DD in pre-menopause, but similar risk as DD in post-menopause in developing cardiovascular disease.
Collapse
Affiliation(s)
- Yuanyuan Lv
- China Institute of Sport and Health Science, Beijing Sport University, Beijing, China
| | | | - Laikang Yu
- Department of Strength and Conditioning Training, Beijing Sport University, Beijing, China
| | - Ji-Guo Yu
- Department of Community Medicine and Rehabilitation, Section of Sports Medicine, Umeå University, Umeå, Sweden
| | - Li Zhao
- Department of Exercise Physiology, Beijing Sport University, Beijing, China
| |
Collapse
|
15
|
Roumeliotis S, Mallamaci F, Zoccali C. Endothelial Dysfunction in Chronic Kidney Disease, from Biology to Clinical Outcomes: A 2020 Update. J Clin Med 2020; 9:jcm9082359. [PMID: 32718053 PMCID: PMC7465707 DOI: 10.3390/jcm9082359] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
The vascular endothelium is a dynamic, functionally complex organ, modulating multiple biological processes, including vascular tone and permeability, inflammatory responses, thrombosis, and angiogenesis. Endothelial dysfunction is a threat to the integrity of the vascular system, and it is pivotal in the pathogenesis of atherosclerosis and cardiovascular disease. Reduced nitric oxide (NO) bioavailability is a hallmark of chronic kidney disease (CKD), with this disturbance being almost universal in patients who reach the most advanced phase of CKD, end-stage kidney disease (ESKD). Low NO bioavailability in CKD depends on several mechanisms affecting the expression and the activity of endothelial NO synthase (eNOS). Accumulation of endogenous inhibitors of eNOS, inflammation and oxidative stress, advanced glycosylation products (AGEs), bone mineral balance disorders encompassing hyperphosphatemia, high levels of the phosphaturic hormone fibroblast growth factor 23 (FGF23), and low levels of the active form of vitamin D (1,25 vitamin D) and the anti-ageing vasculoprotective factor Klotho all impinge upon NO bioavailability and are critical to endothelial dysfunction in CKD. Wide-ranging multivariate interventions are needed to counter endothelial dysfunction in CKD, an alteration triggering arterial disease and cardiovascular complications in this high-risk population.
Collapse
Affiliation(s)
- Stefanos Roumeliotis
- Division of Nephrology and Hypertension, 1st Department of Internal Medicine, School of Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
| | - Francesca Mallamaci
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
| | - Carmine Zoccali
- CNR-IFC (National Research Council of Italy, Centre of Clinical Physiology, Clinical Epidemiology of Renal Diseases and Hypertension Unit, Reggio Cal., c/o Ospedali Riuniti, 89124 Reggio Cal, Italy;
- Correspondence: ; Tel.: +39-340-73540-62
| |
Collapse
|
16
|
Ramandika E, Kurisu S, Nitta K, Hidaka T, Utsunomiya H, Ishibashi K, Ikenaga H, Fukuda Y, Kihara Y, Nakano Y. Effects of aging on coronary flow reserve in patients with no evidence of myocardial perfusion abnormality. Heart Vessels 2020; 35:1633-1639. [PMID: 32524236 DOI: 10.1007/s00380-020-01643-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 11/27/2022]
Abstract
Coronary flow reserve (CFR) reflects the functional capacity of microcirculation to adapt to blood demand during increased cardiac work. We tested the hypothesis that aging had impacts on coronary flow velocities and CFR in patients with no evidence of myocardial perfusion abnormality on single photon emission computed tomography (SPECT). Seventy-six patients undergoing transthoracic Doppler echocardiography with no evidence of myocardial perfusion abnormality on SPECT were enrolled in this study. CFR was defined as the ratio of hyperemic to resting peak diastolic coronary flow velocity. Patients were divided into the three groups based on age: 17 patients aged less than 70 years (Group I), 38 patients aged 70-79 years (Group II), and 21 patients aged 80 years or more (Group III). Compared with Group I, CFR was significantly lower in Group II (p < 0.01) and Group III (p < 0.01). Multivariate linear regression analysis showed that female (β = - 0.26, p = 0.03), cigarette smoking (β = - 0.32, p = 0.004), hemoglobin level (β = - 0.40, p = 0.001) and LV mass index (β = 0.24, p = 0.03) were determinants for resting coronary flow velocity. On the other hand, age (β = -0.30, p = 0.008), hemoglobin level (β = -0.47, p < 0.001) and LV mass index (β = 0.24, p = 0.04) were determinants for hyperemic coronary flow velocity. Age was only determinant for CFR (β = -0.48, p < 0.001). Our data suggested that that aging had a decreased effect on hyperemic coronary flow velocity rather than resting coronary flow velocity, and was further associated with impaired CFR in patients with no evidence of myocardial perfusion abnormality.
Collapse
Affiliation(s)
- Erasta Ramandika
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Satoshi Kurisu
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan.
| | - Kazuhiro Nitta
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Takayuki Hidaka
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Hiroto Utsunomiya
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Ken Ishibashi
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Hiroki Ikenaga
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Yukihiro Fukuda
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Yasuki Kihara
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| | - Yukiko Nakano
- Department of Cardiovascular Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3 Kasumi-cho, Minami-ku, Hiroshima, Japan
| |
Collapse
|
17
|
Kelm NQ, Beare JE, Weber GJ, LeBlanc AJ. Thrombospondin-1 mediates Drp-1 signaling following ischemia reperfusion in the aging heart. FASEB Bioadv 2020; 2:304-314. [PMID: 32395703 PMCID: PMC7211039 DOI: 10.1096/fba.2019-00090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/07/2019] [Accepted: 02/19/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Ischemia reperfusion (IR) injury leads to activation of dynamin-related protein (Drp-1), causing mitochondrial fission and generation of reactive oxygen species (ROS), but the molecular mechanisms that activate Drp-1 are not known. The purpose of this study was to establish a link between Thbs-1 and fission protein (Drp-1) through Pgc-1α following IR in advancing age. METHODS Female Fischer-344 rats were divided into four groups: Young Control, Young + IR, Old Control, and Old + IR. Heart function and coronary flow were evaluated at baseline and 72 hours after IR, hearts were explanted and mitochondrial ROS generation was measured using MitoPY1, as well as protein levels of Thbs-1, Pgc-1α, and Drp-1. In vitro, rat aortic endothelial cells (RAEC) were treated with siRNA or plasmid for Pgc-1α to evaluate Pgc-1α effect on Drp-1. RESULTS Mitochondrial ROS generation in heart tissue increased in both age groups following IR. Old animals exhibited diastolic dysfunction at baseline; after IR they displayed reduced systolic function and exacerbated diastolic dysfunction compared to young controls. IR increased Thbs-1 and Drp-1 expression in young and old hearts compared to control. siRNA to Pgc-1α enhanced levels of Drp-1 in RAECs and increased ROS generation after hypoxia, while Pgc-1α plasmid ameliorates Drp-1 expression in the presence of exogenous Thbs-1. CONCLUSION These results highlight a novel signaling pathway by which Thbs-1 regulates mitochondrial fission protein (Drp-1) and ROS generation during hypoxia, and presumably, following IR. Inhibiting Thbs-1 immediately after IR may prevent Drp-1-mediated mitochondrial fission and is likely to improve the diastolic function of the heart by reducing ROS-mediated cardiomyocyte damage in the aged population.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
| | - Jason E. Beare
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
- Kentucky Spinal Cord Injury Research CenterUniversity of LouisvilleLouisvilleKYUSA
| | | | - Amanda J. LeBlanc
- Cardiovascular Innovation InstituteUniversity of LouisvilleLouisvilleKYUSA
- Department of PhysiologyUniversity of LouisvilleLouisvilleKYUSA
| |
Collapse
|
18
|
Cunha TRD, Giesen JAS, Rouver WN, Costa ED, Grando MD, Lemos VS, Bendhack LM, Santos RLD. Effects of progesterone treatment on endothelium-dependent coronary relaxation in ovariectomized rats. Life Sci 2020; 247:117391. [PMID: 32017871 DOI: 10.1016/j.lfs.2020.117391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/22/2020] [Accepted: 01/30/2020] [Indexed: 12/24/2022]
Abstract
AIM Although progesterone (P4) has a beneficial effect on the cardiovascular system, P4 actions on the coronary bed have not yet been fully elucidated. This study evaluated the effect of progesterone treatment on endothelium-dependent coronary vascular reactivity in Wistar rats. MAIN METHODS Eight-week-old adult rats were divided into Sham, Ovariectomized (OVX), Ovariectomized and progesterone treated (OVX P4). The OVX P4 group received daily doses of progesterone (2 mg/kg/day). Vascular reactivity was assessed by a modified Langendorff technique. The intensity of eNOS, Akt, and gp91phox protein expression was quantified by Western blotting. Superoxide anion (O2●-) and hydrogen peroxide (H2O2) production was measured by dihydroethidium and 2',7'-dichlorofluorescein, respectively. KEY FINDINGS Treatment with P4 was able to prevent the reduction in baseline coronary perfusion pressure induced by ovariectomy. We observed that endothelium-dependent coronary vasodilation was reduced in the OVX group and potentiated in the OVX P4 group. Following the inhibition of the nitric oxide (NO) pathway, the bradykinin-induced relaxing response was potentiated in the OVX P4 group. With regard to the combined inhibition of NO and prostanoids pathways, the OVX P4 group showed a greater relaxing response, similar to what was found upon individual inhibition of NO. After the combined inhibition of NO, prostanoids and epoxyeicosatrienoic acids' pathways, the vasodilatory response induced by BK was abolished in all groups. SIGNIFICANCE Treatment with P4 prevented oxidative stress induced by ovariectomy. These results suggest that progesterone has a beneficial action on the coronary vascular bed.
Collapse
Affiliation(s)
- Tagana Rosa da Cunha
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | | | - Wender Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil
| | - Eduardo Damasceno Costa
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcella Daruge Grando
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lusiane Maria Bendhack
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
19
|
Felix ACS, Gastaldi AC, Dutra SG, de Freitas ACS, Philbois SV, de Paula Facioli T, Da Silva VJ, Fares TH, de Souza HCD. Early ovarian hormone deprivation increases cardiac contractility in old female rats—Role of physical training. Auton Neurosci 2019; 218:1-9. [DOI: 10.1016/j.autneu.2019.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/29/2022]
|
20
|
Hein TW, Xu X, Ren Y, Xu W, Tsai SH, Thengchaisri N, Kuo L. Requisite roles of LOX-1, JNK, and arginase in diabetes-induced endothelial vasodilator dysfunction of porcine coronary arterioles. J Mol Cell Cardiol 2019; 131:82-90. [PMID: 31015037 DOI: 10.1016/j.yjmcc.2019.04.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/12/2019] [Accepted: 04/16/2019] [Indexed: 01/05/2023]
Abstract
Diabetes is associated with cardiac inflammation and impaired endothelium-dependent coronary vasodilation, but molecular mechanisms involved in this dysfunction remain unclear. We examined contributions of inflammatory molecules lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), stress-activated kinases (c-Jun N-terminal kinase [JNK] and p38), arginase, and reactive oxygen species to coronary arteriolar dysfunction in a porcine model of type 1 diabetes. Coronary arterioles were isolated from streptozocin-induced diabetic pigs and control pigs for vasoreactivity and molecular/biochemical studies. Endothelium-dependent nitric oxide (NO)-mediated vasodilation to serotonin was diminished after 2 weeks of diabetes, without altering endothelium-independent vasodilation to sodium nitroprusside. Superoxide scavenger TEMPOL, NO precursor L-arginine, arginase inhibitor nor-NOHA, anti-LOX-1 antibody or JNK inhibitors SP600125 and BI-78D3 improved dilation of diabetic vessels to serotonin. However, hydrogen peroxide scavenger catalase, anti-IgG antibody or p38 kinase inhibitor SB203580 had no effect. Combined inhibition of arginase and superoxide levels did not further improve vasodilation. Arginase-I mRNA expression, LOX-1 and JNK protein expression, and superoxide levels were elevated in diabetic arterioles. In conclusion, sequential activation of LOX-1, JNK, and L-arginine consuming enzyme arginase-I in diabetes elicits superoxide-dependent oxidative stress and impairs endothelial NO-mediated dilation in coronary arterioles. Therapeutic targeting of these adverse vascular molecules may improve coronary arteriolar function during diabetes.
Collapse
Affiliation(s)
- Travis W Hein
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States.
| | - Xin Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Yi Ren
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Wenjuan Xu
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Shu-Huai Tsai
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Naris Thengchaisri
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| | - Lih Kuo
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, TX, United States
| |
Collapse
|
21
|
Role of miRNA in the Regulatory Mechanisms of Estrogens in Cardiovascular Ageing. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6082387. [PMID: 30671171 PMCID: PMC6317101 DOI: 10.1155/2018/6082387] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022]
Abstract
Cardiovascular diseases are a worldwide health problem and are the leading cause of mortality in developed countries. Together with experimental data, the lower incidence of cardiovascular diseases in women than in men of reproductive age points to the influence of sex hormones at the cardiovascular level and suggests that estrogens play a protective role against cardiovascular disease and that this role is also modified by ageing. Estrogens affect cardiovascular function via their specific estrogen receptors to trigger gene expression changes at the transcriptional level. In addition, emerging studies have proposed a role for microRNAs in the vascular effects mediated by estrogens. miRNAs regulate gene expression by repressing translational processes and have been estimated to be involved in the regulation of approximately 30% of all protein-coding genes in mammals. In this review, we highlight the current knowledge of the role of estrogen-sensitive miRNAs, and their influence in regulating vascular ageing.
Collapse
|
22
|
Stanhewicz AE, Wenner MM, Stachenfeld NS. Sex differences in endothelial function important to vascular health and overall cardiovascular disease risk across the lifespan. Am J Physiol Heart Circ Physiol 2018; 315:H1569-H1588. [PMID: 30216121 PMCID: PMC6734083 DOI: 10.1152/ajpheart.00396.2018] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 02/07/2023]
Abstract
Diseases of the cardiovascular system are the leading cause of morbidity and mortality in men and women in developed countries, and cardiovascular disease (CVD) is becoming more prevalent in developing countries. The prevalence of atherosclerotic CVD in men is greater than in women until menopause, when the prevalence of CVD increases in women until it exceeds that of men. Endothelial function is a barometer of vascular health and a predictor of atherosclerosis that may provide insights into sex differences in CVD as well as how and why the CVD risk drastically changes with menopause. Studies of sex differences in endothelial function are conflicting, with some studies showing earlier decrements in endothelial function in men compared with women, whereas others show similar age-related declines between the sexes. Because the increase in CVD risk coincides with menopause, it is generally thought that female hormones, estrogens in particular, are cardioprotective. Moreover, it is often proposed that androgens are detrimental. In truth, the relationships are more complex. This review first addresses female and male sex hormones and their receptors and how these interact with the cardiovascular system, particularly the endothelium, in healthy young women and men. Second, we address sex differences in sex steroid receptor-independent mechanisms controlling endothelial function, focusing on vascular endothelin and the renin-angiotensin systems, in healthy young women and men. Finally, we discuss sex differences in age-associated endothelial dysfunction, focusing on the role of attenuated circulating sex hormones in these effects.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, Pennsylvania State University , University Park, Pennsylvania
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Nina S Stachenfeld
- The John B. Pierce Laboratory, New Haven, Connecticut
- Department of Obstetrics, Gynecology and Reproductive Sciences and Yale School of Public Health, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
23
|
Abstract
Advancing age promotes cardiovascular disease (CVD), the leading cause of death in the United States and many developed nations. Two major age-related arterial phenotypes, large elastic artery stiffening and endothelial dysfunction, are independent predictors of future CVD diagnosis and likely are responsible for the development of CVD in older adults. Not limited to traditional CVD, these age-related changes in the vasculature also contribute to other age-related diseases that influence mammalian health span and potential life span. This review explores mechanisms that influence age-related large elastic artery stiffening and endothelial dysfunction at the tissue level via inflammation and oxidative stress and at the cellular level via Klotho and energy-sensing pathways (AMPK [AMP-activated protein kinase], SIRT [sirtuins], and mTOR [mammalian target of rapamycin]). We also discuss how long-term calorie restriction-a health span- and life span-extending intervention-can prevent many of these age-related vascular phenotypes through the prevention of deleterious alterations in these mechanisms. Lastly, we discuss emerging novel mechanisms of vascular aging, including senescence and genomic instability within cells of the vasculature. As the population of older adults steadily expands, elucidating the cellular and molecular mechanisms of vascular dysfunction with age is critical to better direct appropriate and measured strategies that use pharmacological and lifestyle interventions to reduce risk of CVD within this population.
Collapse
Affiliation(s)
- Anthony J. Donato
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Daniel R. Machin
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| | - Lisa A. Lesniewski
- University of Utah, Department of Internal Medicine, Division of Geriatrics, Salt Lake City, Utah
- Veterans Affairs Medical Center-Salt Lake City, Geriatrics Research Education and Clinical Center, Salt Lake City, Utah
| |
Collapse
|
24
|
Kelm NQ, Beare JE, Yuan F, George M, Shofner CM, Keller BB, Hoying JB, LeBlanc AJ. Adipose-derived cells improve left ventricular diastolic function and increase microvascular perfusion in advanced age. PLoS One 2018; 13:e0202934. [PMID: 30142193 PMCID: PMC6108481 DOI: 10.1371/journal.pone.0202934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/10/2018] [Indexed: 12/20/2022] Open
Abstract
An early manifestation of coronary artery disease in advanced age is the development of microvascular dysfunction leading to deficits in diastolic function. Our lab has previously shown that epicardial treatment with adipose-derived stromal vascular fraction (SVF) preserves microvascular function following coronary ischemia in a young rodent model. Follow-up studies showed intravenous (i.v.) delivery of SVF allows the cells to migrate to the walls of small vessels and reset vasomotor tone. Therefore we tested the hypothesis that the i.v. cell injection of SVF would reverse the coronary microvascular dysfunction associated with aging in a rodent model. Fischer 344 rats were divided into 4 groups: young control (YC), old control (OC), old + rat aortic endothelial cells (O+EC) and old + GFP+ SVF cells (O+SVF). After four weeks, cardiac function and coronary flow reserve (CFR) were measured via echocardiography, and hearts were explanted either for histology or isolation of coronary arterioles for vessel reactivity studies. In a subgroup of animals, microspheres were injected during resting and dobutamine-stimulated conditions to measure coronary blood flow. GFP+ SVF cells engrafted and persisted in the myocardium and coronary vasculature four weeks following i.v. injection. Echocardiography showed age-related diastolic dysfunction without accompanying systolic dysfunction; diastolic function was improved in old rats after SVF treatment. Ultrasound and microsphere data both showed increased stimulated coronary blood flow in O+SVF rats compared to OC and O+EC, while isolated vessel reactivity was mostly unchanged. I.v.-injected SVF cells were capable of incorporating into the vasculature of the aging heart and are shown in this study to improve CFR and diastolic function in a model of advanced age. Importantly, SVF injection did not lead to arrhythmias or increased mortality in aged rats. SVF cells provide an autologous cell therapy option for treatment of microvascular and cardiac dysfunction in aged populations.
Collapse
Affiliation(s)
- Natia Q. Kelm
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Jason E. Beare
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States of America
| | - Fangping Yuan
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
| | - Monika George
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Charles M. Shofner
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Bradley B. Keller
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Pediatrics, University of Louisville, Louisville, Kentucky, United States of America
| | - James B. Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| | - Amanda J. LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky, United States of America
- Department of Physiology, University of Louisville, Louisville, Kentucky, United States of America
| |
Collapse
|
25
|
Gogulamudi VR, Cai J, Lesniewski LA. Reversing age-associated arterial dysfunction: insight from preclinical models. J Appl Physiol (1985) 2018; 125:1860-1870. [PMID: 29745797 DOI: 10.1152/japplphysiol.00086.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain the leading causes of death in the United States, and advancing age is a primary risk factor. Impaired endothelium-dependent dilation and increased stiffening of the arteries with aging are independent predictors of CVD. Increased tissue and systemic oxidative stress and inflammation underlie this age-associated arterial dysfunction. Calorie restriction (CR) is the most powerful intervention known to increase life span and improve age-related phenotypes, including arterial dysfunction. However, the translatability of long-term CR to clinical populations is limited, stimulating interest in the pursuit of pharmacological CR mimetics to reproduce the beneficial effects of CR. The energy-sensing pathways, mammalian target of rapamycin, AMPK, and sirtuin-1 have all been implicated in the beneficial effects of CR on longevity and/or physiological function and, as such, have emerged as potential targets for therapeutic intervention as CR mimetics. Although manipulation of each of these pathways has CR-like benefits on arterial function, the magnitude and/or mechanisms can be disparate from that of CR. Nevertheless, targeting these pathways in older individuals may provide some benefits against arterial dysfunction and CVD. The goal of this review is to provide a brief discussion of the mechanisms and pathways underlying age-associated dysfunction in large arteries, explain how these are impacted by CR, and to present the available evidence, suggesting that targets for energy-sensing pathways may act as vascular CR mimetics.
Collapse
Affiliation(s)
| | - Jinjin Cai
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah
| | - Lisa A Lesniewski
- Department of Internal Medicine-Division of Geriatrics, University of Utah , Salt Lake City, Utah.,Geriatrics Research Education and Clinical Center, Veteran's Affairs Medical Center-Salt Lake City, Salt Lake City, Utah.,Department of Nutrition and Integrative Physiology, University of Utah , Salt Lake City, Utah
| |
Collapse
|
26
|
Xu Y, Pang B, Hu L, Feng X, Hu L, Wang J, Zhang C, Wang S. Dietary nitrate protects submandibular gland from hyposalivation in ovariectomized rats via suppressing cell apoptosis. Biochem Biophys Res Commun 2018; 497:272-278. [DOI: 10.1016/j.bbrc.2018.02.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 01/28/2023]
|
27
|
LeBlanc AJ, Kelm NQ. Thrombospondin-1, Free Radicals, and the Coronary Microcirculation: The Aging Conundrum. Antioxid Redox Signal 2017; 27:785-801. [PMID: 28762749 PMCID: PMC5647494 DOI: 10.1089/ars.2017.7292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
SIGNIFICANCE Successful matching of cardiac metabolism to perfusion is accomplished primarily through vasodilation of the coronary resistance arterioles, but the mechanism that achieves this effect changes significantly as aging progresses and involves the contribution of reactive oxygen species (ROS). Recent Advances: A matricellular protein, thrombospondin-1 (Thbs-1), has been shown to be a prolific contributor to the production and modulation of ROS in large conductance vessels and in the peripheral circulation. Recently, the presence of physiologically relevant circulating Thbs-1 levels was proven to also disrupt vasodilation to nitric oxide (NO) in coronary arterioles from aged animals, negatively impacting coronary blood flow reserve. CRITICAL ISSUES This review seeks to reconcile how ROS can be successfully utilized as a substrate to mediate vasoreactivity in the coronary microcirculation as "normal" aging progresses, but will also examine how Thbs-1-induced ROS production leads to dysfunctional perfusion and eventual ischemia and why this is more of a concern in advancing age. FUTURE DIRECTIONS Current therapies that may effectively disrupt Thbs-1 and its receptor CD47 in the vascular wall and areas for future exploration will be discussed. Antioxid. Redox Signal. 27, 785-801.
Collapse
Affiliation(s)
- Amanda J LeBlanc
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| | - Natia Q Kelm
- Department of Physiology, Cardiovascular Innovation Institute, University of Louisville , Louisville, Kentucky
| |
Collapse
|
28
|
Muller-Delp JM, Hotta K, Chen B, Behnke BJ, Maraj JJ, Delp MD, Lucero TR, Bramy JA, Alarcon DB, Morgan HE, Cowan MR, Haynes AD. Effects of age and exercise training on coronary microvascular smooth muscle phenotype and function. J Appl Physiol (1985) 2017; 124:140-149. [PMID: 29025901 DOI: 10.1152/japplphysiol.00459.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Coronary microvascular function and blood flow responses during acute exercise are impaired in the aged heart but can be restored by exercise training. Coronary microvascular resistance is directly dependent on vascular smooth muscle function in coronary resistance arterioles; therefore, we hypothesized that age impairs contractile function and alters the phenotype of vascular smooth muscle in coronary arterioles. We further hypothesized that exercise training restores contractile function and reverses age-induced phenotypic alterations of arteriolar smooth muscle. Young and old Fischer 344 rats underwent 10 wk of treadmill exercise training or remained sedentary. At the end of training or cage confinement, contractile responses, vascular smooth muscle proliferation, and expression of contractile proteins were assessed in isolated coronary arterioles. Both receptor- and non-receptor-mediated contractile function were impaired in coronary arterioles from aged rats. Vascular smooth muscle shifted from a differentiated, contractile phenotype to a secretory phenotype with associated proliferation of smooth muscle in the arteriolar wall. Expression of smooth muscle myosin heavy chain 1 (SM1) was decreased in arterioles from aged rats, whereas expression of phospho-histone H3 and of the synthetic protein ribosomal protein S6 (rpS6) were increased. Exercise training improved contractile responses, reduced smooth muscle proliferation and expression of rpS6, and increased expression of SM1 in arterioles from old rats. Thus age-induced contractile dysfunction of coronary arterioles and emergence of a secretory smooth muscle phenotype may contribute to impaired coronary blood flow responses, but arteriolar contractile responsiveness and a younger smooth muscle phenotype can be restored with late-life exercise training. NEW & NOTEWORTHY Aging impairs contractile function of coronary arterioles and induces a shift of the vascular smooth muscle toward a proliferative, noncontractile phenotype. Late-life exercise training reverses contractile dysfunction of coronary arterioles and restores a young phenotype to the vascular smooth muscle.
Collapse
Affiliation(s)
- Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Kazuki Hotta
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Bei Chen
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Bradley J Behnke
- Department of Kinesiology and Johnson Cancer Research Center, Kansas State University , Manhattan, Kansas
| | - Joshua J Maraj
- Department of Physiology and Functional Genomics, University of Florida , Gainesville, Florida
| | - Michael D Delp
- Department of Nutrition, Food & Exercise Sciences, Florida State University , Tallahassee, Florida
| | - Tiffani R Lucero
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Jeremy A Bramy
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - David B Alarcon
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Hannah E Morgan
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Morgan R Cowan
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| | - Anthony D Haynes
- Department of Biomedical Sciences, Florida State University , Tallahassee, Florida
| |
Collapse
|
29
|
Hotta K, Chen B, Behnke BJ, Ghosh P, Stabley JN, Bramy JA, Sepulveda JL, Delp MD, Muller-Delp JM. Exercise training reverses age-induced diastolic dysfunction and restores coronary microvascular function. J Physiol 2017; 595:3703-3719. [PMID: 28295341 PMCID: PMC5471361 DOI: 10.1113/jp274172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 02/20/2017] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS In a rat model of ageing that is free of atherosclerosis or hypertension, E/A, a diagnostic measure of diastolic filling, decreases, and isovolumic relaxation time increases, indicating that both active and passive ventricular relaxation are impaired with advancing age. Resting coronary blood flow and coronary functional hyperaemia are reduced with age, and endothelium-dependent vasodilatation declines with age in coronary resistance arterioles. Exercise training reverses age-induced declines in diastolic and coronary microvascular function. Thus, microvascular dysfunction and inadequate coronary perfusion are likely mechanisms of diastolic dysfunction in aged rats. Exercise training, initiated at an advanced age, reverses age-related diastolic and microvascular dysfunction; these data suggest that late-life exercise training can be implemented to improve coronary perfusion and diastolic function in the elderly. ABSTRACT The risk for diastolic dysfunction increases with advancing age. Regular exercise training ameliorates age-related diastolic dysfunction; however, the underlying mechanisms have not been identified. We investigated whether (1) microvascular dysfunction contributes to the development of age-related diastolic dysfunction, and (2) initiation of late-life exercise training reverses age-related diastolic and microvascular dysfunction. Young and old rats underwent 10 weeks of exercise training or remained as sedentary, cage-controls. Isovolumic relaxation time (IVRT), early diastolic filling (E/A), myocardial performance index (MPI) and aortic stiffness (pulse wave velocity; PWV) were evaluated before and after exercise training or cage confinement. Coronary blood flow and vasodilatory responses of coronary arterioles were evaluated in all groups at the end of training. In aged sedentary rats, compared to young sedentary rats, a 42% increase in IVRT, a 64% decrease in E/A, and increased aortic stiffness (PWV: 6.36 ± 0.47 vs.4.89 ± 0.41, OSED vs. YSED, P < 0.05) was accompanied by impaired coronary blood flow at rest and during exercise. Endothelium-dependent vasodilatation was impaired in coronary arterioles from aged rats (maximal relaxation to bradykinin: 56.4 ± 5.1% vs. 75.3 ± 5.2%, OSED vs. YSED, P < 0.05). After exercise training, IVRT, a measure of active ventricular relaxation, did not differ between old and young rats. In old rats, exercise training reversed the reduction in E/A, reduced aortic stiffness, and eliminated impairment of coronary blood flow responses and endothelium-dependent vasodilatation. Thus, age-related diastolic and microvascular dysfunction are reversed by late-life exercise training. The restorative effect of exercise training on coronary microvascular function may result from improved endothelial function.
Collapse
Affiliation(s)
- Kazuki Hotta
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Bei Chen
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL, USA
| | - Bradley J Behnke
- Department of Kinesiology & Johnson Cancer Research Center, Kansas State University, Manhattan, KS, USA
| | - Payal Ghosh
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - John N Stabley
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jeremy A Bramy
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Jaime L Sepulveda
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| | - Michael D Delp
- Department of Nutrition, Food and Exercise Sciences, Florida State University, Tallahassee, FL, USA
| | - Judy M Muller-Delp
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
30
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 628] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
31
|
Nevitt C, McKenzie G, Christian K, Austin J, Hencke S, Hoying J, LeBlanc A. Physiological levels of thrombospondin-1 decrease NO-dependent vasodilation in coronary microvessels from aged rats. Am J Physiol Heart Circ Physiol 2016; 310:H1842-50. [PMID: 27199114 DOI: 10.1152/ajpheart.00086.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/21/2016] [Indexed: 11/22/2022]
Abstract
Aging and cardiovascular disease are associated with the loss of nitric oxide (NO) signaling and a decline in the ability to increase coronary blood flow reserve (CFR). Thrombospondin-1 (Thbs-1), through binding of CD47, has been shown to limit NO-dependent vasodilation in peripheral vascular beds via formation of superoxide (O2 (-)). The present study tests the hypothesis that, similar to the peripheral vasculature, blocking CD47 will improve NO-mediated vasoreactivity in coronary arterioles from aged individuals, resulting in improved CFR. Isolated coronary arterioles from young (4 mo) or old (24 mo) female Fischer 344 rats were challenged with the NO donor, DEA-NONO-ate (1 × 10(-7) to 1 × 10(-4) M), and vessel relaxation and O2 (-) production was measured before and after Thbs-1, αCD47, and/or Tempol and catalase exposure. In vivo CFR was determined in anesthetized rats (1-3% isoflurane-balance O2) via injected microspheres following control IgG or αCD47 treatment (45 min). Isolated coronary arterioles from young and old rats relax similarly to exogenous NO, but addition of 2.2 nM Thbs-1 inhibited NO-mediated vasodilation by 24% in old rats, whereas young vessels were unaffected. Thbs-1 increased O2 (-) production in coronary arterioles from rats of both ages, but this was exaggerated in old rats. The addition of CD47 blocking antibody completely restored NO-dependent vasodilation in isolated arterioles from aged rats and attenuated O2 (-) production. Furthermore, αCD47 treatment increased CFR from 9.6 ± 9.3 (IgG) to 84.0 ± 23% in the left ventricle in intact, aged animals. These findings suggest that the influence of Thbs-1 and CD47 on coronary perfusion increases with aging and may be therapeutically targeted to reverse coronary microvascular dysfunction.
Collapse
Affiliation(s)
- Chris Nevitt
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, Kentucky; and
| | - Grant McKenzie
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Katelyn Christian
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Jeff Austin
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - Sarah Hencke
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky
| | - James Hoying
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| | - Amanda LeBlanc
- Cardiovascular Innovation Institute, University of Louisville, Louisville, Kentucky; Department of Physiology, University of Louisville, Louisville, Kentucky
| |
Collapse
|
32
|
LeBlanc AJ, Hoying JB. Adaptation of the Coronary Microcirculation in Aging. Microcirculation 2016; 23:157-67. [DOI: 10.1111/micc.12264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/08/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Amanda J. LeBlanc
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| | - James B. Hoying
- Department of Physiology; Cardiovascular Innovation Institute; University of Louisville; Louisville Kentucky USA
| |
Collapse
|
33
|
Bentov I, Reed MJ. The effect of aging on the cutaneous microvasculature. Microvasc Res 2015; 100:25-31. [PMID: 25917013 PMCID: PMC4461519 DOI: 10.1016/j.mvr.2015.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 01/12/2023]
Abstract
Aging is associated with a progressive loss of function in all organs. Under normal conditions the physiologic compensation for age-related deficits is sufficient, but during times of stress the limitations of this reserve become evident. Explanations for this reduction in reserve include the changes in the microcirculation that occur during the normal aging process. The microcirculation is defined as the blood flow through arterioles, capillaries and venules, which are the smallest vessels in the vasculature and are embedded within organs and tissues. Optimal strategies to maintain the microvasculature following surgery and other stressors must use multifactorial approaches. Using skin as the model organ, we will review the anatomical and functional changes in the microcirculation with aging, and some of the available clinical strategies to potentially mitigate the effect of these changes on important clinical outcomes.
Collapse
Affiliation(s)
- Itay Bentov
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, USA.
| | - May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, USA
| |
Collapse
|
34
|
Hill-Eubanks DC, Gonzales AL, Sonkusare SK, Nelson MT. Vascular TRP channels: performing under pressure and going with the flow. Physiology (Bethesda) 2015; 29:343-60. [PMID: 25180264 DOI: 10.1152/physiol.00009.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Endothelial cells and smooth muscle cells of resistance arteries mediate opposing responses to mechanical forces acting on the vasculature, promoting dilation in response to flow and constriction in response to pressure, respectively. In this review, we explore the role of TRP channels, particularly endothelial TRPV4 and smooth muscle TRPC6 and TRPM4 channels, in vascular mechanosensing circuits, placing their putative mechanosensitivity in context with other proposed upstream and downstream signaling pathways.
Collapse
Affiliation(s)
| | - Albert L Gonzales
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Mark T Nelson
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
35
|
Alterations in adhesion molecules, pro-inflammatory cytokines and cell-derived microparticles contribute to intima-media thickness and symptoms in postmenopausal women. PLoS One 2015; 10:e0120990. [PMID: 25993480 PMCID: PMC4438064 DOI: 10.1371/journal.pone.0120990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 02/09/2015] [Indexed: 12/14/2022] Open
Abstract
Menopause, the cessation of menses, occurs with estrogens decline, low-grade inflammation, and impaired endothelial function, contributing to atherosclerotic risk. Intima-media thickness (IMT) is an early subclinical biomarker of atherosclerosis. Inflammation may have a role on symptoms: hot flashes, anxiety, and depressive mood, which also are related to endothelial dysfunction, increased IMT and cardiovascular risk. In this study we compared several inflammatory markers in early vs. late postmenopausal women and studied the association of IMT and symptoms with these markers in the full sample. In a cross-sectional design including 60 women (53.1 ± 4.4 years old) at early and late postmenopause, we evaluated the expression of CD62L, ICAM-1, PSGL-1, CD11b, CD11c, and IL-8R on PBMC by flow cytometry. Serum soluble ICAM-1, sVCAM-1, sCD62E, sCD62P, CXCL8, IL-1β, IL-6, and TNF-α levels were quantified by ELISA. Plasma levels of microparticles (MPs) were determined by FACS. Finally, carotid intima-media thickness (IMT) was measured by ultrasound. We observed that ICAM-1 expression by lymphocytes and serum sVCAM-1 levels were augmented at late postmenopause. Late postmenopause women with severe hot flashes had increased expression of CD62L and IL-8R on neutrophils. By multivariate analysis, the carotid IMT was strongly associated with membrane-bound TNF-α, CD11b expression, Annexin V(+) CD3(+) MPs, LPS-induced NO production, HDL-cholesterol and age. Depressive mood was associated negatively with PSGL-1 and positively with LPS-induced NO. Finally, Log(AMH) levels were associated with carotid IMT, IL-8R expression and time since menopause. IMT and depressive mood were the main clinical features related to vascular inflammation. Aging, hormonal changes and obesity were also related to endothelial dysfunction. These findings provide further evidence for a link between estrogen deficiency and low-grade inflammation in endothelial impairment in mature women.
Collapse
|
36
|
Morris ME, Beare JE, Reed RM, Dale JR, LeBlanc AJ, Kaufman CL, Zheng H, Ng CK, Williams SK, Hoying JB. Systemically delivered adipose stromal vascular fraction cells disseminate to peripheral artery walls and reduce vasomotor tone through a CD11b+ cell-dependent mechanism. Stem Cells Transl Med 2015; 4:369-80. [PMID: 25722428 PMCID: PMC4367510 DOI: 10.5966/sctm.2014-0252] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/19/2015] [Indexed: 12/14/2022] Open
Abstract
Vasoactivity, an important aspect of tissue healing, is often compromised in disease and tissue injury. Dysfunction in the smaller vasoactive arteries is most impactful, given the role of these vessels in controlling downstream tissue perfusion. The adipose stromal vascular fraction (SVF) is a mix of homeostatic cells shown to promote tissue healing. Our objective was to test the hypothesis that autologous SVF cells therapeutically modulate peripheral artery vasoactivity in syngeneic mouse models of small artery function. Analysis of vasoactivity of saphenous arteries isolated from normal mice 1 week after intravenous injection of freshly isolated SVF cells revealed that pressure-dependent artery vasomotor tone was decreased by the SVF cell isolate, but not one depleted of CD11b(+) cells. Scavenging hydrogen peroxide in the vessel wall abrogated the artery relaxation promoted by the SVF cell isolate. Consistent with a CD11b(+) cell being the relevant cell type, SVF-derived F4/80-positive macrophages were present within the adventitia of the artery wall coincident with vasorelaxation. In a model of artery inflammation mimicking a common disease condition inducing vasoactive dysfunction, the SVF cells potentiated relaxation of saphenous arteries without structurally remodeling the artery via a CD11b(+) cell-dependent manner. Our findings demonstrate that freshly isolated, adipose SVF cells promote vasomotor relaxation in vasoactive arteries via a hydrogen peroxide-dependent mechanism that required CD11b(+) cells (most likely macrophages). Given the significant impact of small artery dysfunction in disease, we predict that the intravenous delivery of this therapeutic cell preparation would significantly improve tissue perfusion, particularly in diseases with diffuse vascular involvement.
Collapse
Affiliation(s)
- Marvin E Morris
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Jason E Beare
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Robert M Reed
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Jacob R Dale
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Amanda J LeBlanc
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Christina L Kaufman
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Huaiyu Zheng
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Chin K Ng
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - Stuart K Williams
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| | - James B Hoying
- Cardiovascular Innovation Institute, Department of Surgery, Department of Physiology and Biophysics, and Department of Radiology, University of Louisville, Louisville, Kentucky, USA; Christina M. Kleinert Institute, Louisville, Kentucky, USA
| |
Collapse
|
37
|
Da Y, Niu K, Wang K, Cui G, Wang W, Jin B, Sun Y, Jia J, Qin L, Bai W. A comparison of the effects of estrogen and Cimicifuga racemosa on the lacrimal gland and submandibular gland in ovariectomized rats. PLoS One 2015; 10:e0121470. [PMID: 25793872 PMCID: PMC4368816 DOI: 10.1371/journal.pone.0121470] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 02/07/2015] [Indexed: 11/18/2022] Open
Abstract
This study aims to observe the effects of estradiol and Cimicifuga racemosa on the lacrimal gland and submandibular gland of ovariectomized rats. We randomly divided 20 adult female SD rats into four groups-a sham-operated group (SHAM), ovariectomized (OVX) group, ovariectomized group treated with estradiol (OVX+ E), and ovariectomized group treated with the isopropanolic extract of Cimicifuga racemosa (OVX+ iCR). The SHAM group and OVX group used distilled water to instead the drugs. Two weeks after ovariectomy, the estradiol and iCR were administered for 4 weeks. Next, we used H&E staining and electron microscopy to observe any histological changes in the lacrimal and submandibular glands and immunohistochemical staining to observe the expressions of cleaved caspase-3 (Casp-3) and Cu-Zn SOD (superoxide dismutase). The H&E staining find that both drugs can prevent the cells of area from shrinkage in the two kinds of gland. But under the electron microscopy, estradiol and iCR have different efficacy. Estradiol is more effective at protecting mitochondria in lacrimal gland acinar cells than iCR, and iCR is more effective at suppressing endoplasmic reticulum expansion than estradiol. Both estradiol and iCR have a similar protective function on mitochondria in the submandibular gland. The protective function of the two glands may inhibit apoptosis by suppressing the expression of Casp-3. In addition, iCR increases the expression of Cu-Zn SOD in duct system of submandibular gland. The results suggest that both estradiol and iCR confer a protective effect on the lacrimal and submandibular glands of ovariectomized rats via different mechanisms.
Collapse
Affiliation(s)
- Yunmeng Da
- Department of Stomatology, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Kaiyu Niu
- Department of Stomatology, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Ke Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Guangxia Cui
- Department of Obstetrics and Gynecology, Civil Aviation General Hospital, Beijing, China
| | - Wenjuan Wang
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Biao Jin
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
| | - Yu Sun
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
| | - Jing Jia
- Department of Stomatology, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
- * E-mail: (JJ); (LQ); (WB)
| | - Lihua Qin
- Department of Anatomy and Embryology, Peking University Health Science Center, Beijing, China
- * E-mail: (JJ); (LQ); (WB)
| | - Wenpei Bai
- Department of Obstetrics and Gynecology, Peking University First Hospital, Beijing, China
- * E-mail: (JJ); (LQ); (WB)
| |
Collapse
|
38
|
Walker AE, Henson GD, Reihl KD, Nielson EI, Morgan RG, Lesniewski LA, Donato AJ. Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. AGE (DORDRECHT, NETHERLANDS) 2014; 36:559-569. [PMID: 24065292 PMCID: PMC4039283 DOI: 10.1007/s11357-013-9585-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/04/2013] [Indexed: 06/02/2023]
Abstract
Endothelial dysfunction occurs in conduit and cerebral resistance arteries with advancing age. Lifelong caloric restriction (CR) can prevent the onset of age-related dysfunction in many tissues, but its effects on cerebral resistance artery function, as compared with conduit artery function, have not been determined. We measured endothelium-dependent dilation (EDD) in the carotid artery and middle cerebral artery (MCA) from young (5-7 months), old ad libitum fed (AL, 29-32 months), and old lifelong CR (CR, 40 % CR, 29-32 months) B6D2F1 mice. Compared with young, EDD for old AL was 24 % lower in the carotid and 47 % lower in the MCA (p < 0.05). For old CR, EDD was not different from young in the carotid artery (p > 0.05), but was 25 % lower than young in the MCA (p < 0.05). EDD was not different between groups after NO synthase inhibition with N(ω)-nitro-L-arginine methyl ester in the carotid artery or MCA. Superoxide production by the carotid artery and MCA was greater in old AL compared with young and old CR (p < 0.05). In the carotid, incubation with the superoxide scavenger TEMPOL improved EDD for old AL (p > 0.05), with no effect in young or old CR (p > 0.05). In the MCA, incubation with TEMPOL or the NADPH oxidase inhibitor apocynin augmented EDD in old AL (p < 0.05), but reduced EDD in young and old CR (p < 0.05). Thus, age-related endothelial dysfunction is prevented by lifelong CR completely in conduit arteries, but only partially in cerebral resistance arteries. These benefits of lifelong CR on EDD result from lower oxidative stress and greater NO bioavailability.
Collapse
Affiliation(s)
- Ashley E. Walker
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
| | - Grant D. Henson
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
- />Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT USA
| | - Kelly D. Reihl
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
| | - Elizabeth I. Nielson
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
| | - R. Garrett Morgan
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
| | - Lisa A. Lesniewski
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
- />Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT USA
- />Geriatrics Research Education and Clinical Center, Veteran’s Affairs Medical Center—Salt Lake City, Salt Lake City, UT USA
| | - Anthony J. Donato
- />Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT 84109 USA
- />Department of Exercise and Sports Science, University of Utah, Salt Lake City, UT USA
- />Geriatrics Research Education and Clinical Center, Veteran’s Affairs Medical Center—Salt Lake City, Salt Lake City, UT USA
| |
Collapse
|
39
|
Leblanc AJ, Chen B, Dougherty PJ, Reyes RA, Shipley RD, Korzick DH, Muller-Delp JM. Divergent effects of aging and sex on vasoconstriction to endothelin in coronary arterioles. Microcirculation 2014. [PMID: 23198990 DOI: 10.1111/micc.12028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE The risk for cardiovascular disease increases with advancing age; however, the chronological development of heart disease differs in males and females. The purpose of this study was to determine whether age-induced alterations in responses of coronary arterioles to the endogenous vasoconstrictor, endothelin, are sex-specific. METHODS Coronary arterioles were isolated from young and old male and female rats to assess vasoconstrictor responses to endothelin (ET), and ETa and ETb receptor inhibitors were used to assess receptor-specific signaling. RESULTS In intact arterioles from males, ET-induced vasoconstriction was reduced with age, whereas age increased vasoconstrictor responses to ET in intact arterioles from female rats. In intact arterioles from both sexes, blockade of either ETa or ETb eliminated age-related differences in responses to ET; however, denudation of arterioles from both sexes revealed age-related differences in ETa-mediated vasoconstriction. In arterioles from male rats, ETa receptor protein decreased, whereas ETb receptor protein increased with age. In coronary arterioles from females, neither ETa nor ETb receptor protein changed with age, suggesting age-related changes in ET signaling occur downstream of ET receptors. CONCLUSIONS Thus, aging-induced alterations in responsiveness of the coronary resistance vasculature to endothelin are sex-specific, possibly contributing to sexual dimorphism in the risk of cardiovascular disease with advancing age.
Collapse
Affiliation(s)
- Amanda J Leblanc
- Center for Cardiovascular and Respiratory Sciences, School of Medicine, West Virginia University, Morgantown, WV, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Caliman IF, Lamas AZ, Dalpiaz PLM, Medeiros ARS, Abreu GR, Gomes Figueiredo S, Nascimento Gusmão L, Uggere Andrade T, Souza Bissoli N. Endothelial relaxation mechanisms and oxidative stress are restored by atorvastatin therapy in ovariectomized rats. PLoS One 2013; 8:e80892. [PMID: 24278341 PMCID: PMC3836761 DOI: 10.1371/journal.pone.0080892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Abstract
The studies on hormone replacement therapy (HRT) in females with estrogen deficiency are not conclusive. Thus, non-estrogen therapies, such as atorvastatin (ATO), could be new strategies to substitute or complement HRT. This study evaluated the effects of ATO on mesenteric vascular bed (MVB) function from ovariectomized (OVX) female rats. Female rats were divided into control SHAM, OVX, and OVX treated with 17β-estradiol (EST) or ATO groups. The MVB reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine staining, and the expression of target proteins by western blot. The reduction in acetylcholine-induced relaxation in OVX rats was restored by ATO or EST treatment. The endothelium-dependent nitric oxide (NO) component was reduced in OVX rats, whereas the endothelium-derived hyperpolarizing factor (EDHF) component or prostanoids were not altered in the MVBs. Endothelial dysfunction in OVX rats was associated with oxidative stress, an up-regulation of iNOS and NADPH oxidase expression and a down-regulation of eNOS expression. Treatment with ATO or EST improved the NO component of the relaxation and normalized oxidative stress and the expression of those signaling pathways enzymes. Thus, the protective effect of ATO on endothelial dysfunction caused by estrogen deficiency highlights a significant therapeutic benefit for statins independent of its effects on cholesterol, thus providing evidence that non-estrogen therapy could be used for cardiovascular benefit in an estrogen-deficient state, such as menopause.
Collapse
Affiliation(s)
- Izabela Facco Caliman
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Aline Zandonadi Lamas
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | | | | | - Glaucia Rodrigues Abreu
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Suely Gomes Figueiredo
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Lara Nascimento Gusmão
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
| | - Tadeu Uggere Andrade
- Department of Pharmacy, University Center of Vila Velha, Vila Velha, Espirito Santo, Brazil
| | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil
- * E-mail:
| |
Collapse
|
41
|
Endlich PW, Claudio ERG, da Silva Gonçalves WL, Gouvêa SA, Moysés MR, de Abreu GR. Swimming training prevents fat deposition and decreases angiotensin II-induced coronary vasoconstriction in ovariectomized rats. Peptides 2013; 47:29-35. [PMID: 23792185 DOI: 10.1016/j.peptides.2013.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 11/20/2022]
Abstract
We investigated the effects of chronic swimming training (ST) on the deposition of abdominal fat and vasoconstriction in response to angiotensin II (ANG II) in the coronary arterial bed of estrogen deficient rats. Twenty-eight 3-month old Wistar female rats were divided into 4 groups: sedentary sham (SS), sedentary-ovariectomized (SO), swimming-trained sham (STS) and swimming-trained ovariectomized (STO). ST protocol consisted of a continuous 60-min session, with a 5% BW load attached to the tail, completed 5 days/week for 8-weeks. The retroperitoneal, parametrial, perirenal and inguinal fat pads were measured. The intrinsic heart rate (IHR), coronary perfusion pressure (CPP) and a concentration-response curve to ANG II in the coronary bed was constructed using the Langendorff preparation. Ovariectomy (OVX) significantly reduced 17-β-estradiol plasma levels in SO and STO groups (p<0.05). The STO group had a significantly reduced retroperitoneal and parametrial fat pad compared with the SO group (p<0.05). IHR values were similar in all groups; however, baseline CPP was significantly reduced in the SO, STS and STO groups compared with the SS group (p<0.05). ANG II caused vasoconstriction in the coronary bed in a concentration-dependent manner. The SO group had an increased response to ANG II when compared with all other experimental groups (p<0.05), which was prevented by 8-weeks of ST in the STO group (p<0.05). OVX increased ANG II-induced vasoconstriction in the coronary vascular bed and abdominal fat pad deposition. Eight weeks of swimming training improved these vasoconstrictor effects and decreased abdominal fat deposition in ovariectomized rats.
Collapse
Affiliation(s)
- Patrick Wander Endlich
- Department of Physiological Sciences, Health Sciences Center, Federal University of the Espírito Santo, Vitória, Espírito Santo, Brazil.
| | | | | | | | | | | |
Collapse
|
42
|
Lima-Mendoza LA, Colado-Velázquez J, Mailloux-Salinas P, Espinosa-Juárez JV, Gómez-Viquez NL, Molina-Muñoz T, Huang F, Bravo G. Vascular damage in obese female rats with hypoestrogenism. J Physiol Biochem 2013; 70:81-91. [DOI: 10.1007/s13105-013-0283-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 08/12/2013] [Indexed: 12/20/2022]
|
43
|
Claudio ERG, Endlich PW, Santos RL, Moysés MR, Bissoli NS, Gouvêa SA, Silva JF, Lemos VS, Abreu GR. Effects of chronic swimming training and oestrogen therapy on coronary vascular reactivity and expression of antioxidant enzymes in ovariectomized rats. PLoS One 2013; 8:e64806. [PMID: 23755145 PMCID: PMC3670897 DOI: 10.1371/journal.pone.0064806] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 04/19/2013] [Indexed: 01/14/2023] Open
Abstract
The aim of this study was to evaluate the effects of swimming training (SW) and oestrogen replacement therapy (ERT) on coronary vascular reactivity and the expression of antioxidant enzymes in ovariectomized rats. Animals were randomly assigned to one of five groups: sham (SH), ovariectomized (OVX), ovariectomized with E2 (OE2), ovariectomized with exercise (OSW), and ovariectomized with E2 plus exercise (OE2+SW). The SW protocol (5×/week, 60 min/day) and/or ERT were conducted for 8 weeks; the vasodilator response to bradykinin was analysed (Langendorff Method), and the expression of antioxidant enzymes (SOD-1 and 2, catalase) and eNOS and iNOS were evaluated by Western blotting. SW and ERT improved the vasodilator response to the highest dose of bradykinin (1000 ng). However, in the OSW group, this response was improved at 100, 300 and 1000 ng when compared to OVX (p<0,05). The SOD-1 expression was increased in all treated/trained groups compared to the OVX group (p<0,05), and catalase expression increased in the OSW group only. In the trained group, eNOS increased vs. OE2, and iNOS decreased vs. SHAM (p<0,05). SW may represent an alternative to ERT by improving coronary vasodilation, most likely by increasing antioxidant enzyme and eNOS expression and augmenting NO bioavailability.
Collapse
Affiliation(s)
- Erick R G Claudio
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espírito Santo, Vitória-ES, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Sindler AL, Reyes R, Chen B, Ghosh P, Gurovich AN, Kang LS, Cardounel AJ, Delp MD, Muller-Delp JM. Age and exercise training alter signaling through reactive oxygen species in the endothelium of skeletal muscle arterioles. J Appl Physiol (1985) 2013; 114:681-93. [PMID: 23288555 DOI: 10.1152/japplphysiol.00341.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise training ameliorates age-related impairments in endothelium-dependent vasodilation in skeletal muscle arterioles. Additionally, exercise training is associated with increased superoxide production. The purpose of this study was to determine the role of superoxide and superoxide-derived reactive oxygen species (ROS) signaling in mediating endothelium-dependent vasodilation of soleus muscle resistance arterioles from young and old, sedentary and exercise-trained rats. Young (3 mo) and old (22 mo) male rats were either exercise trained or remained sedentary for 10 wk. To determine the impact of ROS signaling on endothelium-dependent vasodilation, responses to acetylcholine were studied under control conditions and during the scavenging of superoxide and/or hydrogen peroxide. To determine the impact of NADPH oxidase-derived ROS, endothelium-dependent vasodilation was determined following NADPH oxidase inhibition. Reactivity to superoxide and hydrogen peroxide was also determined. Tempol, a scavenger of superoxide, and inhibitors of NADPH oxidase reduced endothelium-dependent vasodilation in all groups. Similarly, treatment with catalase and simultaneous treatment with tempol and catalase reduced endothelium-dependent vasodilation in all groups. Decomposition of peroxynitrite also reduced endothelium-dependent vasodilation. Aging had no effect on arteriolar protein content of SOD-1, catalase, or glutathione peroxidase-1; however, exercise training increased protein content of SOD-1 in young and old rats, catalase in young rats, and glutathione peroxidase-1 in old rats. These data indicate that ROS signaling is necessary for endothelium-dependent vasodilation in soleus muscle arterioles, and that exercise training-induced enhancement of endothelial function occurs, in part, through an increase in ROS signaling.
Collapse
Affiliation(s)
- Amy L Sindler
- Department of Physiology and Pharmacology, and the Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Stapleton PA, Minarchick VC, McCawley M, Knuckles TL, Nurkiewicz TR. Xenobiotic particle exposure and microvascular endpoints: a call to arms. Microcirculation 2012; 19:126-42. [PMID: 21951337 DOI: 10.1111/j.1549-8719.2011.00137.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Xenobiotic particles can be considered in two genres: air pollution particulate matter and engineered nanoparticles. Particle exposures can occur in the greater environment, the workplace, and our homes. The majority of research in this field has, justifiably, focused on pulmonary reactions and outcomes. More recent investigations indicate that cardiovascular effects are capable of correlating with established mortality and morbidity epidemiological data following particle exposures. While the preliminary and general cardiovascular toxicology has been defined, the mechanisms behind these effects, specifically within the microcirculation, are largely unexplored. Therefore, the purpose of this review is several fold: first, a historical background on toxicological aspects of particle research is presented. Second, essential definitions, terminology, and techniques that may be unfamiliar to the microvascular scientist will be discussed. Third, the most current concepts and hypotheses driving cardiovascular research in this field will be reviewed. Lastly, potential future directions for the microvascular scientist will be suggested. Collectively speaking, microvascular research in the particle exposure field represents far more than a "niche." The immediate demand for basic, translational, and clinical studies is high and diverse. Microvascular scientists at all career stages are strongly encouraged to expand their research interests to include investigations associated with particle exposures.
Collapse
|
46
|
Muller-Delp JM, Gurovich AN, Christou DD, Leeuwenburgh C. Redox balance in the aging microcirculation: new friends, new foes, and new clinical directions. Microcirculation 2012; 19:19-28. [PMID: 21954960 DOI: 10.1111/j.1549-8719.2011.00139.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cardiovascular aging is associated with a decline in the function of the vascular endothelium. Considerable evidence indicates that age-induced impairment of endothelium-dependent vasodilation results from a reduction in the availability of nitric oxide (NO(•) ). NO(•) can be scavenged by reactive oxygen species (ROS), in particular by superoxide radical (O(2) (•-) ), and age-related increases in ROS have been demonstrated to contribute to reduced endothelium-dependent vasodilation in numerous large artery preparations. In contrast, emerging data suggest that ROS may play a compensatory role in endothelial function of the aging microvasculature. The primary goal of this review is to discuss reports in the literature which indicate that ROS function as important signaling molecules in the aging microvasculature. Emphasis is placed upon discussion of the emerging roles of hydrogen peroxide (H(2) O(2) ) and peroxynitrite (ONOO(•-) ) in the aging microcirculation. Overall, existing data in animal models suggest that maintenance in the balance of ROS is critical to successful microvascular aging. The limited work that has been performed to investigate the role of ROS in human microvascular aging is also discussed, and the need for future investigations of ROS signaling in older humans is considered.
Collapse
Affiliation(s)
- Judy M Muller-Delp
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|