1
|
Aksakal A, Kerget B, Gülbahar BN, Laloğlu E, Sağlam L. Can apelins guide the diagnosis of coronary artery disease in COPD patients? Heart Lung 2025; 71:90-97. [PMID: 40073766 DOI: 10.1016/j.hrtlng.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/06/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025]
Abstract
BACKGROUND Apelins are adipokines known for their anti-inflammatory, vasodilator, and antiatherosclerotic effects. They are involved in the pathogenesis of chronic diseases like chronic obstructive pulmonary disease (COPD) and coronary artery disease (CAD). OBJECTIVES This study aims to investigate apelin as a potential biomarker for early diagnosis and management of CAD in COPD patients. METHODS The study included 73 stable COPD patients admitted between June 2023 and June 2024 and 35 healthy volunteers matched by age and gender. COPD patients were categorized into two groups: those without CAD (Group 1) and those with CAD (Group 2). Serum levels of apelin 12, 13, 17, and 36 were measured using ELISA. RESULTS Serum apelin levels were significantly lower in COPD patients than in controls (p < 0.001). Among COPD patients, those with CAD showed lower serum apelin levels compared to those without CAD (p = 0.005 for apelin 12, p < 0.001 for apelin 13, 17, and 36). ROC analysis indicated high sensitivity and specificity for apelin 13 and 36 in predicting CAD in COPD patients. Apelin 13 and 36 were positively correlated with ejection fraction (EF) (R = 0.43, p = 0.01; R = 0.4, p = 0.01), and apelin 12 was positively correlated with FEV1 and FVC (R = 0.24, p = 0.04; R = 0.27, p = 0.02). CONCLUSION While CAD worsens the prognosis in COPD patients, it remains underdiagnosed. Serum apelin, especially apelin 13 and 36, may assist in the early diagnosis and management of CAD in COPD patients.
Collapse
Affiliation(s)
- Alperen Aksakal
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey.
| | - Buğra Kerget
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Burcu Nur Gülbahar
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Esra Laloğlu
- Depertment of Biochemistry, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| | - Leyla Sağlam
- Depertment of Pulmonary Diseases, Ataturk University School of Medicine, Yakutiye, Erzurum, Turkey
| |
Collapse
|
2
|
Xu C, Nie X, Xu R, Zhou L, Wang D. Protective effects of Apelin-13 on nicotine-induced H9c2 cardiomyocyte apoptosis and oxidative stress. Tob Induc Dis 2025; 23:TID-23-33. [PMID: 40104400 PMCID: PMC11915093 DOI: 10.18332/tid/201400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 03/20/2025] Open
Abstract
INTRODUCTION We aimed to explore the role of Apelin-13 in resisting oxidation, inflammation as well as apoptosis and its underlying mechanisms of action using a model of nicotine-induced H9c2 cardiomyocyte injury. METHODS H9c2 cardiomyocytes were randomly divided into control, nicotine, nicotine + Apelin-13, and Apelin-13 groups. Cell counting kit-8 assay was conducted to determine the cell viability. Interleukin (IL)-6, superoxide dismutase, tumor necrosis factor-alpha (TNF-α), glutathione peroxidase (GSH-Px), IL-β, catalase (CAT), IL-8, lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined. A 2',7'-dichlorodihydrofluorescein diacetate assay was conducted to measure the intracellular reactive oxygen species (ROS) level. The morphology of apoptotic cardiomyocytes was observed by 4',6-diamidino-2-phenylindole staining. Western blotting was employed to measure the protein expressions of apoptotic factors B-cell lymphoma-2 (Bcl-2) and Bcl-2-associated X (Bax). Apoptosis was quantified using Annexin V/propidium iodide staining. RESULTS Exposure of H9c2 cardiomyocytes to 10 μM nicotine significantly reduced cell viability and increased LDH release, oxidative stress (elevated MDA and ROS levels with decreased superoxide dismutase, GSH-Px, and CAT activities), pro-inflammatory cytokines (IL-6, TNF-α, IL-1β, IL-8), and apoptotic markers (increased Bax with decreased Bcl-2 expression, along with nuclear condensation) (p<0.05). In contrast, treatment with 2 μM Apelin-13 significantly alleviated these deleterious effects, enhancing cell viability, restoring antioxidant enzyme activities, reducing oxidative and inflammatory responses, and inhibiting apoptosis (p<0.05). CONCLUSIONS Nicotine induction increases the oxidative stress and apoptotic capacity of H9c2 cardiomyocytes, but Apelin-13 protects H9c2 cardiomyocytes against nicotine-induced apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Can Xu
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Xinyu Nie
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Ru Xu
- Nanjing University Medical School, Nanjing, People's Republic of China
| | - Luyang Zhou
- Department of Anesthesiology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| | - Dongjin Wang
- Department of Cardiac Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, People's Republic of China
| |
Collapse
|
3
|
Zheng X, Chen D, Wu J, Gao Z, Huang M, Fan C, Chang J, Liu Y, Zeng X, Wang W. Apelin-13 inhibits ischemia-reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy. FASEB J 2025; 39:e70319. [PMID: 39812591 DOI: 10.1096/fj.202402850r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes. Therefore, it is hypothesized that apelin-13 may protect podocytes from IRI by inhibiting podocyte apoptosis through regulation of podocyte autophagy. Our study demonstrates for that podocytes are also involved in renal ischemia-reperfusion (I/R) injury and shows in detail the morphological and functional changes in podocytes during renal I/R. Because podocytes are terminally differentiated cells whose homeostasis require high levels of autophagy, we investigate the cellular mechanisms underlying the effects of apelin-13 on I/R-mediated podocyte injury in terms of autophagy. In addition, our study demonstrates that apelin-13 ameliorates renal I/R injury in podocyte injury, by increasing podocyte autophagy through inhibition of m-TOR phosphorylation, which in turn inhibits apoptosis.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Dongshan Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiyue Wu
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Zihao Gao
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Mingcong Huang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Chunmeng Fan
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
4
|
Girault-Sotias PE, Deloux R, De Mota N, Riché S, Daubeuf F, Iturrioz X, Parlakian A, Berdeaux A, Agbulut O, Bonnet D, Boitard SE, Llorens-Cortes C. The Metabolically Resistant Apelin-17 Analogue LIT01-196 Reduces Cardiac Dysfunction and Remodelling in Heart Failure After Myocardial Infarction. Can J Cardiol 2024:S0828-282X(24)01258-3. [PMID: 39674544 DOI: 10.1016/j.cjca.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 11/20/2024] [Accepted: 11/24/2024] [Indexed: 12/16/2024] Open
Abstract
BACKGROUND To protect patients after myocardial infarction (MI) and preserve cardiac function, the development of new therapeutics remains an important issue. Apelin, a neuro-vasoactive peptide, increases aqueous diuresis and cardiac contractility while reducing vascular resistance. However, its in vivo half-life is very short. We therefore developed a metabolically resistant apelin-17 analogue, LIT01-196 and investigated its effects on cardiac function and remodelling in a murine MI model. METHODS The selectivity of LIT01-196 toward the apelin receptor was checked in vitro. Its in vivo half-life was assessed in male Swiss mice using radioimmunoassay. After permanent coronary artery ligation to induce MI, mice received subcutaneous administration of LIT01-196 (MI + LIT01-196, 9 mg/kg/d) or saline (MI + vehicle) for 4 weeks. Left ventricular (LV) function was assessed using echocardiography and Millar (Houston, TX) catheter, vascular density using immunofluorescence, and cardiac fibrosis using Sirius red staining. Real-time quantitative PCR was used to measure mRNA expression of heart failure (HF) fibrosis biomarkers and sarco/endoplasmic reticulum Ca2+-ATPase-2. RESULTS The in vivo half-life of LIT01-196, a specific and selective apelin receptor agonist, was 2.5 hours. MI + LIT01-196 showed significantly improved LV function, reduced HF biomarkers, and enhanced cardiac contractility and sarco/endoplasmic reticulum Ca2+-ATPase-2 expression compared with MI + vehicle. LIT01-196 treatment almost doubled cardiac vascular density and maintained LV wall thickness post MI. It also significantly reduced cardiac fibrosis and fibrosis biomarkers, without decreasing arterial blood pressure. CONCLUSIONS Chronic LIT01-196 treatment post MI improves LV function without decreasing blood pressure, increases cardiac vascular density, and reduces cardiac remodelling. This suggests that apelin receptor activation by LIT01-196 might constitute an original pharmacological approach for HF treatment after MI.
Collapse
Affiliation(s)
- Pierre-Emmanuel Girault-Sotias
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France. https://twitter.com/PiGirault
| | - Robin Deloux
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Nadia De Mota
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Stephanie Riché
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - François Daubeuf
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Xavier Iturrioz
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France
| | - Ara Parlakian
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Alain Berdeaux
- INSERM U955-IMRB Equipe 03 Université Paris Est Créteil, 94010 Créteil, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8263, Inserm U1345, Development, Adaptation and Ageing, 75005, Paris, France
| | - Dominique Bonnet
- Laboratoire d'Innovation Thérapeutique, UMR7200 CNRS/Université de Strasbourg, Institut du Médicament de Strasbourg, Faculté de Pharmacie, 67401 Illkirch, France
| | - Solène Emmanuelle Boitard
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France
| | - Catherine Llorens-Cortes
- Laboratory of Central Neuropeptides in the Regulation of Water Balance and Cardiovascular Functions, College de France, CIRB, INSERM U1050/CNRS UMR7241, 75005 Paris, France; Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Iliev A, Gaydarski L, Kotov G, Landzhov B, Kirkov V, Stanchev S. The vascular footprint in cardiac homeostasis and hypertensive heart disease-A link between apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase. Anat Rec (Hoboken) 2024; 307:3548-3563. [PMID: 38618880 DOI: 10.1002/ar.25453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/29/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024]
Abstract
Recent studies have suggested a connection between disturbances of the apelin system and various cardiac pathologies, including hypertension, heart failure, and atherosclerosis. Vascular endothelial growth factor is crucial for cardiac homeostasis as a critical molecule in cardiac angiogenesis. Neuronal nitric oxide synthase is an essential enzyme producing nitric oxide, a key regulator of vascular tone. The present study aims to shed light upon the complex interactions between these three vital signaling molecules and examine their changes with the progression of hypertensive heart disease. We used two groups of spontaneously hypertensive rats and age-matched Wistar rats as controls. The expression of the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase were assessed immunohistochemically. We used capillary density and cross-sectional area of the cardiomyocytes as quantitative parameters of cardiac hypertrophy. Immunoreactivity of the molecules was more potent in both ventricles of spontaneously hypertensive rats compared with age-matched controls. However, capillary density was lower in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. In addition, the cross-sectional area of the cardiomyocytes was higher in both ventricles of the two age groups of spontaneously hypertensive rats compared with controls, and the difference was statistically significant. Our study suggests a potential link between the apelin receptor, vascular endothelial growth factor, and neuronal nitric oxide synthase in cardiac homeostasis and the hypertensive myocardium. Nevertheless, further research is required to better comprehend these interactions and their potential therapeutic implications.
Collapse
Affiliation(s)
- Alexandar Iliev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Lyubomir Gaydarski
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Georgi Kotov
- Clinic of Rheumatology, University Hospital "St. Ivan Rilski", Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Boycho Landzhov
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| | - Vidin Kirkov
- Department of Health Policy and Management, Faculty of Public Health "Prof. Dr. Tzekomir Vodenicharov", Medical University of Sofia, Sofia, Bulgaria
| | - Stancho Stanchev
- Department of Anatomy, Histology and Embryology, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
6
|
Wei X, Luo L, Lu H, Li S, Deng X, Li Z, Gong D, Chen B. Apelin-13's Actions in Controlling Hypertension-Related Cardiac Hypertrophy and the Expressions of Inflammatory Cytokines. Chem Biol Drug Des 2024; 104:e14628. [PMID: 39396917 DOI: 10.1111/cbdd.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/28/2024] [Accepted: 07/23/2024] [Indexed: 10/15/2024]
Abstract
As a key molecule for improving cardiovascular diseases, Apelin-13 was surveyed in this work to explain its actions in controlling inflammation, pyroptosis, and myocardial hypertrophy. First, mouse models with myocardial hypertrophy were established. Then, assessments were made on the pathological variation in the heart of mouse, on the cardiac functions, as well as on the expressions of cardiac hypertrophy markers (β-MHC, ANP, and BNP), inflammatory factors (TNF-α, COX2, IL-6, ICAM-1, and VCAM-1), myocardial cell pyroptosis markers (NLRP3, ASC, c-caspase-1, and GSDMD-N), and Hippo pathway proteins (p-YAP, YAP, LATS1, and p-LATS1) by HE staining, echocardiography scanning, and western blot tests separately. The expressions of such inflammatory factors as in myocardial tissue were acquired by ELISA. After inducing the phenotype of H9c2 cell hypertrophy by noradrenaline, we used CCK-8 kits to know about the activity of H9c2 cells treated with Apelin-13, and performed ɑ-actinin staining to measure the changes in volumes of such cells. As unraveled through this work, Apelin-13 refrained the activation of the Hippo pathway, which in turn attenuated the hypertrophy, inflammation, and pyroptosis of myocardial tissue and H9c2 cells. Hence, Apelin-13 can be considered as a target for hypertension treatment.
Collapse
Affiliation(s)
- Xiaoliang Wei
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Liyun Luo
- Department of Cardiovascular Disease I, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Huifang Lu
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Songbiao Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xinlian Deng
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Zhihui Li
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Dong Gong
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Bairong Chen
- Department of Cardiovascular Disease IV, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| |
Collapse
|
7
|
Hasheminezhad MM, Mirzad M. Early Administration of Apelin Could Prevent Heart Failure Following Myocardial Injury; A Systematic Review and Meta-Analysis. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e4. [PMID: 40093029 PMCID: PMC11417635 DOI: 10.22037/aaem.v13i1.2414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Introduction Heart failure (HF) is a prevalent and advancing cardiovascular disorder that impacts 1-2% of the worldwide population, particularly the elderly. Studies indicate that the intravenous administration of apelin may yield advantageous effects in preventing heart failure subsequent to myocardial injury. This meta-analysis aimed to assess the effects of exogenous apelin administration on heart failure in animal models, in light of the lack of a definitive consensus on the matter. Method An extensive search was performed in the Medline (via PubMed), Web of Science, Embase, and Scopus databases till the end of January 2024. Two independent reviewers screened and summarized the relevant articles. Outcomes related to cardiac function, including ejection fraction (EF), maximum and minimum rate of left ventricle systolic pressure (+dp/dt and -dp/dt, respectively), heart rate, left ventricular end-diastolic pressure (LVEDP), and left ventricular systolic pressure (LVSP) were assessed. Findings were reported as a pooled standardized mean difference (SMD) with a 95% confidence interval (95% CI). Results 12 studies were included. Pooled analysis demonstrated that early treatment with apelin following myocardial injury significantly increases +dp/dt (SMD = 2.36; 95% CI: 1.58 to 3.15; p < 0.001) and decreases -dp/dt (SMD = -3.31; 95% CI: -4.46 to -2.17; p < 0.001). Furthermore, the administration of apelin resulted in a significant increase in EF (SMD = 0.79; 95% CI: 0.15 to 1.44; p = 0.02) and LVSP (SMD = 2.09; 95% CI: 0.82 to 3.36; p < 0.001), while it led to a decrease in LVEDP in the animals (SMD = -1.85; 95% CI: -2.81 to -0.88; p < 0.001). Noteworthy, apelin treatment was shown to have no significant influence on the heart rate of the animals (SMD = -0.12; 95% CI: -0.82 to -0.58; p = 0.73). Conclusion The current study demonstrated that the early administration of apelin has the potential to improve cardiac function and mitigate the onset of heart failure subsequent to myocardial injury. Further, in vivo research is essential to lay the groundwork for the integration of apelin into clinical practice.
Collapse
Affiliation(s)
| | - Mina Mirzad
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Oskuye ZZ, Mehri K, Mokhtari B, Bafadam S, Nemati S, Badalzadeh R. Cardioprotective effect of antioxidant combination therapy: A highlight on MitoQ plus alpha-lipoic acid beneficial impact on myocardial ischemia-reperfusion injury in aged rats. Heliyon 2024; 10:e28158. [PMID: 38524576 PMCID: PMC10957437 DOI: 10.1016/j.heliyon.2024.e28158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Objective (s): Considering the poor prognosis of ischemic heart disease and the diminished effectiveness of cardioprotective interventions in the elderly, it becomes necessary to investigate the interaction of aging with protection during myocardial ischemia/reperfusion injury (IRI). This study was conducted to assess the impact of mitoquinone (MitoQ) and alpha-lipoic acid (ALA) preconditioning on cardioprotection following IRI in aged rats. Methods Fifty aged male Wistar rats (22-24 months old) were divided into five groups including Sham, IR, and treatment groups receiving ALA and/or MitoQ. Treatment groups were received 100 mg/kg/day ALA by oral gavage and/or 10 mg/kg/day MitoQ by intraperitoneal injection for 14 consecutive days. An in vivo model of myocardial IRI was established through ligation of coronary artery for 30 min and it's reopening for 24 h. The left ventricles were removed at the end of reperfusion to assess oxidative stress indicators, mitochondrial function, and expression of mitochondrial dynamic genes. Myocardial infarct size (IS), hemodynamic parameters, and serum lactate dehydrogenase (LDH) level were also measured. Results Combination of MitoQ and ALA reduced oxidative stress, LDH level, and IS in aged hearts subjected to IRI. It also enhanced mitochondrial function and upregulated Mfn1, Mfn2, and Foxo1 and downregulated Drp1 and Fis1 gene expression. Co-administration of MitoQ and ALA partially restored IRI-induced hemodynamic changes to normal state. In all measured parameters, the effect of combined treatment was greater than monotherapies. Conclusion The combination therapy of MitoQ and ALA demonstrated considerable therapeutic potential in protecting the aging heart against IRI by improving oxidative stress, mitochondrial function, and dynamics in aged rats.
Collapse
Affiliation(s)
- Zohreh Zavvari Oskuye
- Drug Applied Research Center, Tabriz University of Medical Sciences, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
| | - Keyvan Mehri
- Student Research Committee, Tabriz University of Medical Sciences, Iran
| | - Behnaz Mokhtari
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| | - Soleyman Bafadam
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Iran
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| | - Samira Nemati
- Physiology Research Center, Semnan University of Medical Sciences, Iran
| | - Reza Badalzadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
9
|
Zeng GG, Tang SS, Jiang WL, Yu J, Nie GY, Tang CK. Apelin-13: A Protective Role in Vascular Diseases. Curr Probl Cardiol 2024; 49:102088. [PMID: 37716542 DOI: 10.1016/j.cpcardiol.2023.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023]
Abstract
Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.
Collapse
Affiliation(s)
- Guang-Gui Zeng
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Shang-Shu Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Wan-Li Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Jiang Yu
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Gui-Ying Nie
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, China; 2020 Grade Excellent Doctor Class of Hengyang Medical College, University of South China, Hengyang, Hunan, China; The Seventh Affiliated Hospital University of South China/ Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China; Departments of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan, People's Republic of China.
| |
Collapse
|
10
|
Gao S, Chen H. Therapeutic potential of apelin and Elabela in cardiovascular disease. Biomed Pharmacother 2023; 166:115268. [PMID: 37562237 DOI: 10.1016/j.biopha.2023.115268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Apelin and Elabela (Ela) are peptides encoded by APLN and APELA, respectively, which act on their receptor APJ and play crucial roles in the body. Recent research has shown that they not only have important effects on the endocrine system, but also promote vascular development and maintain the homeostasis of myocardial cells. From a molecular biology perspective, we explored the roles of Ela and apelin in the cardiovascular system and summarized the mechanisms of apelin-APJ signaling in the progression of myocardial infarction, ischemia-reperfusion injury, atherosclerosis, pulmonary arterial hypertension, preeclampsia, and congenital heart disease. Evidences indicated that apelin and Ela play important roles in cardiovascular diseases, and there are many studies focused on developing apelin, Ela, and their analogues for clinical treatments. However, the literature on the therapeutic potential of apelin, Ela and their analogues and other APJ agonists in the cardiovascular system is still limited. This review summarized the regulatory pathways of apelin/ELA-APJ axis in cardiovascular function and cardiovascular-related diseases, and the therapeutic effects of their analogues in cardiovascular diseases were also included.
Collapse
Affiliation(s)
- Shenghan Gao
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China; Queen Mary School, Medical Department, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Hongping Chen
- Department of Histology and embryology, Medical College of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
11
|
Rossin D, Vanni R, Lo Iacono M, Cristallini C, Giachino C, Rastaldo R. APJ as Promising Therapeutic Target of Peptide Analogues in Myocardial Infarction- and Hypertension-Induced Heart Failure. Pharmaceutics 2023; 15:pharmaceutics15051408. [PMID: 37242650 DOI: 10.3390/pharmaceutics15051408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
The widely expressed G protein-coupled apelin receptor (APJ) is activated by two bioactive endogenous peptides, apelin and ELABELA (ELA). The apelin/ELA-APJ-related pathway has been found involved in the regulation of many physiological and pathological cardiovascular processes. Increasing studies are deepening the role of the APJ pathway in limiting hypertension and myocardial ischaemia, thus reducing cardiac fibrosis and adverse tissue remodelling, outlining APJ regulation as a potential therapeutic target for heart failure prevention. However, the low plasma half-life of native apelin and ELABELA isoforms lowered their potential for pharmacological applications. In recent years, many research groups focused their attention on studying how APJ ligand modifications could affect receptor structure and dynamics as well as its downstream signalling. This review summarises the novel insights regarding the role of APJ-related pathways in myocardial infarction and hypertension. Furthermore, recent progress in designing synthetic compounds or analogues of APJ ligands able to fully activate the apelinergic pathway is reported. Determining how to exogenously regulate the APJ activation could help to outline a promising therapy for cardiac diseases.
Collapse
Affiliation(s)
- Daniela Rossin
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Roberto Vanni
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Marco Lo Iacono
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Caterina Cristallini
- Institute for Chemical and Physical Processes, IPCF ss Pisa, CNR, 56126 Pisa, Italy
| | - Claudia Giachino
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy
| |
Collapse
|
12
|
Zhang Q, Shen Y, Niloy SI, O'Rourke ST, Sun C. Chronic Effects of Apelin on Cardiovascular Regulation and Angiotensin II-Induced Hypertension. Pharmaceuticals (Basel) 2023; 16:ph16040600. [PMID: 37111357 PMCID: PMC10145143 DOI: 10.3390/ph16040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Apelin, by stimulation of APJ receptors, induces transient blood pressure (BP) reduction and positive inotropic effects. APJ receptors share high homology with the Ang II type 1 receptor; thus, apelin was proposed to play a protective role in cardiovascular disease by antagonizing the actions of Ang II. In this regard, apelin and apelin-mimetics are currently being studied in clinical trials. However, the chronic effect of apelin in cardiovascular regulation has not been fully investigated. In the current study, blood pressure (BP) and heart rate (HR) were recorded using a telemetry implantation approach in conscious rats, before and during chronic subcutaneous infusion of apelin-13, using osmotic minipumps. At the end of the recording, the cardiac myocyte morphology was examined using H&E staining, and cardiac fibrosis was evaluated by Sirius Red in each group of rats. The results demonstrated that the chronic infusion of apelin-13 did not change either BP or HR. However, under the same condition, the chronic infusion of Ang II induced significant BP elevation, cardiac hypertrophy, and fibrosis. Co-administration of apelin-13 did not significantly alter the Ang II-induced elevation in BP, changes in cardiac morphology, and fibrosis. Taken together, our experiments showed an unexpected result indicating that the chronic administration of apelin-13 did not alter basal BP, nor did it change Ang II-induced hypertension and cardiac hypertrophy. The findings suggest that an APJ receptor biased agonist could be a better therapeutic alternative for treatment of hypertension.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Yue Shen
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Sayeman Islam Niloy
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Stephen T O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| | - Chengwen Sun
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
13
|
Popov SV, Maslov LN, Mukhomedzyanov AV, Kurbatov BK, Gorbunov AS, Kilin M, Azev VN, Khlestkina MS, Sufianova GZ. Apelin Is a Prototype of Novel Drugs for the Treatment of Acute Myocardial Infarction and Adverse Myocardial Remodeling. Pharmaceutics 2023; 15:pharmaceutics15031029. [PMID: 36986889 PMCID: PMC10056827 DOI: 10.3390/pharmaceutics15031029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
In-hospital mortality in patients with ST-segment elevation myocardial infarction (STEMI) is 5-6%. Consequently, it is necessary to develop fundamentally novel drugs capable of reducing mortality in patients with acute myocardial infarction. Apelins could be the prototype for such drugs. Chronic administration of apelins mitigates adverse myocardial remodeling in animals with myocardial infarction or pressure overload. The cardioprotective effect of apelins is accompanied by blockage of the MPT pore, GSK-3β, and the activation of PI3-kinase, Akt, ERK1/2, NO-synthase, superoxide dismutase, glutathione peroxidase, matrix metalloproteinase, the epidermal growth factor receptor, Src kinase, the mitoKATP channel, guanylyl cyclase, phospholipase C, protein kinase C, the Na+/H+ exchanger, and the Na+/Ca2+ exchanger. The cardioprotective effect of apelins is associated with the inhibition of apoptosis and ferroptosis. Apelins stimulate the autophagy of cardiomyocytes. Synthetic apelin analogues are prospective compounds for the development of novel cardioprotective drugs.
Collapse
Affiliation(s)
- Sergey V Popov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Leonid N Maslov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr V Mukhomedzyanov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Boris K Kurbatov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Alexandr S Gorbunov
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Michail Kilin
- Tomsk National Research Medical Center, Cardiology Research Institute, The Russian Academy of Sciences, Kyevskaya 111A, Tomsk 634012, Russia
| | - Viacheslav N Azev
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, The Russian Academy of Sciences, Pushchino 142290, Russia
| | - Maria S Khlestkina
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| | - Galina Z Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen 625023, Russia
| |
Collapse
|
14
|
Pisarenko OI, Studneva IM. Modified APJ Receptor Peptide Ligands as Postconditioning Drugs in Myocardial Ischaemia/Reperfusion Injury. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
15
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
16
|
Respekta N, Pich K, Dawid M, Mlyczyńska E, Kurowska P, Rak A. The Apelinergic System: Apelin, ELABELA, and APJ Action on Cell Apoptosis: Anti-Apoptotic or Pro-Apoptotic Effect? Cells 2022; 12:cells12010150. [PMID: 36611944 PMCID: PMC9818302 DOI: 10.3390/cells12010150] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022] Open
Abstract
The apelinergic system comprises two peptide ligands, apelin and ELABELA, and their cognate G-protein-coupled receptor, the apelin receptor APJ. Apelin is a peptide that was isolated from bovine stomach extracts; the distribution of the four main active forms, apelin-36, -17, -13, and pyr-apelin-13 differs between tissues. The mature form of ELABELA-32 can be transformed into forms called ELABELA-11 or -21. The biological function of the apelinergic system is multifaceted, and includes the regulation of angiogenesis, body fluid homeostasis, energy metabolism, and functioning of the cardiovascular, nervous, respiratory, digestive, and reproductive systems. This review summarises the mechanism of the apelinergic system in cell apoptosis. Depending on the cell/tissue, the apelinergic system modulates cell apoptosis by activating various signalling pathways, including phosphoinositide 3-kinase (PI3K), extracellular signal-regulated protein kinase (ERK1/2), protein kinase B (AKT), 5'AMP-activated protein kinase(AMPK), and protein kinase A (PKA). Apoptosis is critically important during various developmental processes, and any dysfunction leads to pathological conditions such as cancer, autoimmune diseases, and developmental defects. The purpose of this review is to present data that suggest a significant role of the apelinergic system as a potential agent in various therapies.
Collapse
|
17
|
Rozwadowski J, Borodzicz-Jażdżyk S, Czarzasta K, Cudnoch-Jędrzejewska A. A Review of the Roles of Apelin and ELABELA Peptide Ligands in Cardiovascular Disease, Including Heart Failure and Hypertension. Med Sci Monit 2022; 28:e938112. [PMID: 36523134 PMCID: PMC9764672 DOI: 10.12659/msm.938112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apelin and ELABELA (ELA), which are peptides belonging to the adipokines group, are endogenous peptide ligands of their receptor, APJ, which together constitute the apelinergic system. The apelinergic system is expressed in numerous human tissues and organs, including the heart, blood vessels, adipose tissue, central nervous system, lungs, kidneys, and liver. Apelin, being the most widely studied member of the apelinergic system, plays a key role in the cardiovascular system and exerts a pleiotropic effect in tissues. Under physiological conditions, the peripheral actions of apelin include augmented cardiac contractility, increased left ventricular stroke volume, vasodilation, increased diuresis, and lowered systemic blood pressure. Multiple studies suggest that activation of the apelinergic system exerts beneficial effects on the treatment of cardiovascular diseases (CVD), including hypertension and heart failure, whereas the silencing of the apelin/APJ axis results in attenuation of inflammatory processes and prevents formation of atherosclerotic plaques. As numerous effects of apelin are not entirely explained, further studies of the cardiovascular actions of apelin and ELA are necessary to help establish effective pharmacological treatments of CVDs. This article aims to review the roles of apelin and elabela peptide ligands in cardiovascular diseases, including heart failure and hypertension.
Collapse
|
18
|
Apelin-13 attenuates cerebral ischemia/reperfusion injury through regulating inflammation and targeting the JAK2/STAT3 signaling pathway. J Chem Neuroanat 2022; 126:102171. [DOI: 10.1016/j.jchemneu.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
|
19
|
Javaheri A, Diab A, Zhao L, Qian C, Cohen JB, Zamani P, Kumar A, Wang Z, Ebert C, Maranville J, Kvikstad E, Basso M, van Empel V, Richards AM, Doughty R, Rietzschell E, Kammerhoff K, Gogain J, Schafer P, Seiffert DA, Gordon DA, Ramirez-Valle F, Mann DL, Cappola TP, Chirinos JA. Proteomic Analysis of Effects of Spironolactone in Heart Failure With Preserved Ejection Fraction. Circ Heart Fail 2022; 15:e009693. [PMID: 36126144 PMCID: PMC9504263 DOI: 10.1161/circheartfailure.121.009693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND The TOPCAT trial (Treatment of Preserved Cardiac Function Heart Failure With an Aldosterone Antagonist Trial) suggested clinical benefits of spironolactone treatment among patients with heart failure with preserved ejection fraction enrolled in the Americas. However, a comprehensive assessment of biologic pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction has not been performed. METHODS We conducted aptamer-based proteomic analysis utilizing 5284 modified aptamers to 4928 unique proteins on plasma samples from TOPCAT participants from the Americas (n=164 subjects with paired samples at baseline and 1 year) to identify proteins and pathways impacted by spironolactone therapy in heart failure with preserved ejection fraction. Mean percentage change from baseline was calculated for each protein. Additionally, we conducted pathway analysis of proteins altered by spironolactone. RESULTS Spironolactone therapy was associated with proteome-wide significant changes in 7 proteins. Among these, CARD18 (caspase recruitment domain-containing protein 18), PKD2 (polycystin 2), and PSG2 (pregnancy-specific glycoprotein 2) were upregulated, whereas HGF (hepatic growth factor), PLTP (phospholipid transfer protein), IGF2R (insulin growth factor 2 receptor), and SWP70 (switch-associated protein 70) were downregulated. CARD18, a caspase-1 inhibitor, was the most upregulated protein by spironolactone (-0.5% with placebo versus +66.5% with spironolactone, P<0.0001). The top canonical pathways that were significantly associated with spironolactone were apelin signaling, stellate cell activation, glycoprotein 6 signaling, atherosclerosis signaling, liver X receptor activation, and farnesoid X receptor activation. Among the top pathways, collagens were a consistent theme that increased in patients receiving placebo but decreased in patients randomized to spironolactone. CONCLUSIONS Proteomic analysis in the TOPCAT trial revealed proteins and pathways altered by spironolactone, including the caspase inhibitor CARD18 and multiple pathways that involved collagens. In addition to effects on fibrosis, our studies suggest potential antiapoptotic effects of spironolactone in heart failure with preserved ejection fraction, a hypothesis that merits further exploration.
Collapse
Affiliation(s)
- Ali Javaheri
- Washington University School of Medicine, St. Louis, MO
| | - Ahmed Diab
- Washington University School of Medicine, St. Louis, MO
| | - Lei Zhao
- Bristol Myers Squibb Company, Lawrenceville, NJ
| | - Chenao Qian
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Jordana B. Cohen
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Payman Zamani
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Anupam Kumar
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | | | | | | | | | | | - Vanessa van Empel
- Department of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - A. Mark Richards
- Cardiovascular Research Institute, National University of Singapore, Singapore
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Rob Doughty
- Christchurch Heart Institute, University of Otago, Christchurch, New Zealand
| | - Ernst Rietzschell
- Department of Cardiovascular Diseases, Ghent University Hospital, Ghent, Belgium
| | | | | | | | | | | | | | | | - Thomas P. Cappola
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| | - Julio A. Chirinos
- Perelman School of Medicine. University of Pennsylvania School of Medicine/Hospital of the University of Pennsylvania. Philadelphia, PA
| |
Collapse
|
20
|
Chen J, Li Z, Zhao Q, Chen L. Roles of apelin/APJ system in cancer: Biomarker, predictor, and emerging therapeutic target. J Cell Physiol 2022; 237:3734-3751. [DOI: 10.1002/jcp.30845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiawei Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology University of South China Hengyang Hunan China
| | - Zhiyue Li
- Health Management Center, The Third Xiangya Hospital Central South University Changsha Hunan Province China
| | - Qun Zhao
- Department of Orthopedics Third Xiangya Hospital of Central South University Changsha Hunan China
| | - Linxi Chen
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Institute of Pharmacy and Pharmacology University of South China Hengyang Hunan China
| |
Collapse
|
21
|
Zheng Y, Lin J, Liu D, Wan G, Gu X, Ma J. Nogo-B promotes angiogenesis and improves cardiac repair after myocardial infarction via activating Notch1 signaling. Cell Death Dis 2022; 13:306. [PMID: 35383153 PMCID: PMC8983727 DOI: 10.1038/s41419-022-04754-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/26/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
Nogo-B (Reticulon 4B) is reportedly a regulator of angiogenesis during the development and progression of cancer. However, whether Nogo-B regulates angiogenesis and post-myocardial infarction (MI) cardiac repair remains elusive. In the present study, we aimed to explore the role and underlying mechanisms of Nogo-B in cardiac repair during MI. We observed an increased expression level of Nogo-B in the heart of mouse MI models, as well as in isolated cardiac microvascular endothelial cells (CMECs). Moreover, Nogo-B was significantly upregulated in CMECs exposed to oxygen-glucose deprivation (OGD). Nogo-B overexpression in the endothelium via cardiotropic adeno-associated virus serotype 9 (AAV9) with the mouse endothelial-specific promoter Tie2 improved heart function, reduced scar size, and increased angiogenesis. RNA-seq data indicated that Notch signaling is a deregulated pathway in isolated CMECs along the border zone of the infarct with Nogo-B overexpression. Mechanistically, Nogo-B activated Notch1 signaling and upregulated Hes1 in the MI hearts. Inhibition of Notch signaling using a specific siRNA and γ-secretase inhibitor abolished the promotive effects of Nogo-B overexpression on network formation and migration of isolated cardiac microvascular endothelial cells (CMECs). Furthermore, endothelial Notch1 heterozygous deletion inhibited Nogo-B-induced cardioprotection and angiogenesis in the MI model. Collectively, this study demonstrates that Nogo-B is a positive regulator of angiogenesis by activating the Notch signaling pathway, suggesting that Nogo-B is a novel molecular target for ischemic disease.
Collapse
|
22
|
Wan T, Fu M, Jiang Y, Jiang W, Li P, Zhou S. Research Progress on Mechanism of Neuroprotective Roles of Apelin-13 in Prevention and Treatment of Alzheimer's Disease. Neurochem Res 2022; 47:205-217. [PMID: 34518975 PMCID: PMC8436866 DOI: 10.1007/s11064-021-03448-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to increase. Some of the typical pathological changes of AD include amyloid plaque, hyperphosphorylation of tau protein, secretion of inflammatory mediators, and neuronal apoptosis. Apelin is a neuroprotective peptide that is widely expressed in the body. Among members of apelin family, apelin-13 is the most abundant with a high neuroprotective function. Apelin-13/angiotensin domain type 1 receptor-associated proteins (APJ) system regulates several physiological and pathophysiological cell activities, such as apoptosis, autophagy, synaptic plasticity, and neuroinflammation. It has also been shown to prevent AD development. This article reviews the research progress on the relationship between apelin-13 and AD to provide new ideas for prevention and treatment of AD.
Collapse
Affiliation(s)
- Teng Wan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Yan Jiang
- Department of Epidemiology and Health Statistics, School of Public Health, Xiangnan University, Chenzhou, 423043, China
| | - Weiwei Jiang
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Peiling Li
- Department of Physiology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, 541199, Guangxi, China.
- Department of Physiology, Basic Medical College, Guilin, 541199, Guangxi, China.
| |
Collapse
|
23
|
Wu H, Xia C, Li R, Tao C, Tang Q, Hu W. Correlation Between Apelin and Collateral Circulation in Patients with Middle Cerebral Artery Occlusion and Moyamoya Disease. Int J Gen Med 2022; 15:699-709. [PMID: 35082519 PMCID: PMC8784270 DOI: 10.2147/ijgm.s341015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Background and Objectives Moyamoya disease (MMD) is a unique cerebrovascular occlusive disease with abnormal vascular hyperplasia, which causes cerebrovascular accidents like intracranial arteriosclerosis. This study aimed to explore whether plasma apelin levels are related to good collateral circulation in ischemic diseases, which may be higher in patients with MMD than middle cerebral artery (MCA) occlusion or healthy controls, and may have a connection with the MMD grades. Methods We recruited 68 MMD patients and 25 MCA occlusion patients diagnosed by angiography, including 29 patients without cerebrovascular problems as controls. We examined the plasma apelin, serum nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels of all subjects by ELISA kit. We compared the relationship between apelin, NO, and VEGF in the blood of three groups, to explore the relationship. We also investigated whether the plasma apelin-13, apelin-17, and apelin-36 levels correlate with the MMD classification. Results Univariate analyses indicated that the MMD group had the higher plasma apelin-13, apelin-17, apelin-36, and serum NO levels than the MCA occlusion and healthy control groups. Binary logistic regression analyses further showed that the apelin-13 level was substantially higher in MMD patients than in MCA occlusion patients. Patients with MMD were significantly younger than patients with MCA occlusion by their mean ages. Linear regression analyses were performed to compare apelin levels between different grades of the patients with MMD. Apelin-13, apelin-17, and apelin-36 levels increased with the gradual increase of compensation grades level independent of NO and VEGF. Apelin-13 and apelin-36 showed a positive effect on the compensation scores in MMD. Conclusion Our study demonstrated that apelin-13 was significantly increased in patients with MMD than patients with MCA occlusion independent of NO and VEGF. Moreover, plasma apelin-13, apelin-17, and apelin-36 levels increase with the grades of MMD.
Collapse
Affiliation(s)
- Hanlin Wu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chengyu Xia
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Rui Li
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Chunrong Tao
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of USTC, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, People’s Republic of China
| | - Wei Hu
- Stroke Center & Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
- Correspondence: Wei Hu; Qiqiang Tang Email ;
| |
Collapse
|
24
|
Jin L, Li Q, Li J, Pan Y, Zou J, Wu X, Wang Z. Apela inhibits systemic and renal inflammatory reactions in mice with type I cardiorenal syndrome. FASEB J 2021; 35:e21907. [PMID: 34516679 DOI: 10.1096/fj.202101030r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022]
Abstract
This study investigated the effect of apela on renal function and anti-inflammatory effect on whole body and kidney tissue in mice with type I cardiorenal syndrome (CRS). The murine type I CRS model was established and apela was subcutaneously infused for two weeks. Cardiac and renal functions were evaluated by echocardiography and blood biochemistry, respectively. The systemic and renal inflammatory responses were examined with molecular biological and histological methods. Human renal glomerular endothelial cells (RGECs) were used to evaluate the adhesion effect of monocytes in vitro. Compared to mice from the control group (CRS + vehicle), the plasma levels of N-terminal pro-brain natriuretic peptide, blood urea nitrogen and creatinine were significantly decreased, while the mean left ventricular ejection fraction was increased in apela-treated CRS mice at the 4th week. The expression of monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNF-α) in the circulation and kidney was decreased in apela-treated mice compared with control mice, and apela improved cardio-renal pathology in mice with type I CRS. Additionally, Apela significantly suppressed the expression of MCP-1, TNF-α, intercellular adhesion molecule-1 and vascular intercellular adhesion molecule-1 in RGECs induced by angiotensin II (Ang II), and inhibited the promoting effect of Ang II on the adhesion of THP-1 cells to RGECs. Western blot results showed that the expression of phosphorylated nuclear factor kappa B (phospho-NFκB) in CRS mice was increased, but the expression of phospho-NFκB was down-regulated after apela treatment. Furthermore, apela significantly inhibited the Ang II-mediated increase in phospho-NFκB expression in RGECs in vitro, but the administration of an apelin peptide jejunum receptor (APJ) inhibitor blocked the inhibitory effect of apela. This study revealed that apela improves cardiorenal function and reduces systemic and renal inflammatory response in type I CRS mice and the apela/APJ system may alleviate renal inflammatory responses by inhibiting the NFκB signalling pathway.
Collapse
Affiliation(s)
- Liangli Jin
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Quanyi Li
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jing Li
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jue Zou
- Department of Pathology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaoyuan Wu
- Department of Central Laboratory, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
25
|
Jin L, Pan Y, Li Q, Li J, Wang Z. Elabela gene therapy promotes angiogenesis after myocardial infarction. J Cell Mol Med 2021; 25:8537-8545. [PMID: 34291565 PMCID: PMC8419192 DOI: 10.1111/jcmm.16814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
This study was aimed at investigating whether Elabela (ELA) gene therapy can promote angiogenesis in the treatment of myocardial infarction (MI). The fusion expression plasmid pAAV-3 × Flag/ELA-32 was successfully constructed using molecular cloning technique. The model of acute MI was established by ligating the left anterior descending coronary artery in mice. Adeno-associated virus serotype 9 (AAV9) was injected into the surrounding myocardium and tail vein immediately after the model was established. AAV was injected again from the tail vein one week later. Compared with the MI+PBS (control) group, the serum N-terminal pro-brain natriuretic peptide (NT-proBNP) concentration, and the values of left ventricular end-diastolic diameter (LVDd) and left ventricular end-systolic diameter (LVDs) of the MI+AAV-ELA (gene therapy) group were significantly decreased, while the value of left ventricular ejection fraction was significantly increased at 2 and 4 weeks after operation. Compared with the control group, the expression of CD105 and vWF and the percentage of CD31- and Ki67-co-positive cells were significantly increased in the gene therapy group. Moreover, the expressions of apelin peptide jejunum (APJ) receptor, vascular endothelial growth factor (VEGF), VEGFR2, Jagged1 and Notch3 in the heart tissue around the infarction were up-regulated in mice with gene therapy. The results suggest that ELA activates VEFG/VEGFR2 and Jagged1/Notch3 pathways through APJ to promote angiogenesis after myocardial infarction. ELA gene therapy may be used in the treatment of ischaemic cardiomyopathy in future.
Collapse
Affiliation(s)
- Liangli Jin
- Department of Cardiovascular MedicineAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Yang Pan
- Department of Cardiovascular MedicineAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Quanyi Li
- Department of Cardiovascular MedicineAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Jing Li
- Department of Cardiovascular MedicineAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| | - Zhi Wang
- Department of Cardiovascular MedicineAffiliated Nanjing Brain HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
26
|
A network map of apelin-mediated signaling. J Cell Commun Signal 2021; 16:137-143. [PMID: 33797707 DOI: 10.1007/s12079-021-00614-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
The apelin receptor (APLNR) is a class A (rhodopsin-like) G-protein coupled receptor with a wide distribution throughout the human body. Activation of the apelin/APLNR system regulates AMPK/PI3K/AKT/mTOR and RAF/ERK1/2 mediated signaling pathways. APLNR activation orchestrates several downstream signaling cascades, which play diverse roles in physiological effects, including effects upon vasoconstriction, heart muscle contractility, energy metabolism regulation, and fluid homeostasis angiogenesis. We consolidated a network map of the APLNR signaling map owing to its biomedical importance. The curation of literature data pertaining to the APLNR system was performed manually by the NetPath criteria. The described apelin receptor signaling map comprises 35 activation/inhibition events, 38 catalysis events, 4 molecular associations, 62 gene regulation events, 113 protein expression types, and 4 protein translocation events. The APLNR signaling pathway map data is made freely accessible through the WikiPathways Database ( https://www.wikipathways.org/index.php/Pathway:WP5067 ).
Collapse
|
27
|
Li Y, Lu H, Xu W, Shang Y, Zhao C, Wang Y, Yang R, Jin S, Wu Y, Wang X, Teng X. Apelin ameliorated acute heart failure via inhibiting endoplasmic reticulum stress in rabbits. Amino Acids 2021; 53:417-427. [PMID: 33609179 DOI: 10.1007/s00726-021-02955-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to investigate whether inhibition of endoplasmic reticulum stress (ERS) mediated the ameliorative effect of apelin on acute heart failure (AHF). Rabbit model of AHF was induced by sodium pentobarbital. Cardiac dysfunction and injury were detected in the rabbit models of AHF, including impaired hemodynamic parameters and increased levels of CK-MB and cTnI. Apelin treatment dramatically improved cardiac impairment caused by AHF. ERS, indexed by increased GRP78, CHOP, and cleaved-caspase12 protein levels, was simultaneously attenuated by apelin. Apelin also could ameliorate increased protein levels of cleaved-caspase3 and Bax, and improved decreased protein levels of Bcl-2. Two common ERS stimulators, tunicamycin (Tm) and dithiothreitol (DTT) blocked the ameliorative effect of apelin on AHF. Phosphorylated Akt levels increased after apelin treatment in the rabbit models of AHF. The Akt signaling inhibitors wortmannin and LY294002 could block the cardioprotective effect of apelin, which could be relieved by ERS inhibitor 4-phenyl butyric acid (4-PBA). The aforementioned beneficial effects of apelin could all be blocked by APJ receptor antagonist F13A. 4-PBA and SC79, an Akt activator, can restore the ameliorative effect of apelin on AHF blocked by F13A. Apelin treatment dramatically ameliorated cardiac impairment caused by AHF, which might be mediated by APJ/Akt/ERS signaling pathway. These results will shed new light on AHF therapy.
Collapse
Affiliation(s)
- Yanqing Li
- Hebei Provincial Hospital of Chinese Medicine, Hebei University of Chines Medicine, Shijiazhuang, 050011, China
| | - Haohan Lu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Wenyuan Xu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuxuan Shang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Cece Zhao
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yipu Wang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Rui Yang
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang, 050017, China
| | - Xiaoning Wang
- The Second Hospital, Hebei Medical University, Heping West Road No. 215, Shijiazhuang, 050000, China.
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Zhongshan East Road No. 361, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Laboratory Animal Science, Shijiazhuang, 050017, China.
| |
Collapse
|
28
|
Vural E, Hazar L, Karakukçu C, Arslan ME, Sirem MR, Sirakaya E, Ozsaygılı C, Çiçek A. Apelin-13: A Promising Biomarker for Age-Related Macular Degeneration? Ophthalmologica 2020; 244:102-109. [PMID: 33197910 DOI: 10.1159/000513050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/13/2020] [Indexed: 11/19/2022]
Abstract
PURPOSE To investigate the value of serum apelin-13 levels in patients with age-related macular degeneration (AMD). METHODS Patients with dry-type AMD, patients with treatment-naïve neovascular-type AMD, and healthy controls were included in this study. Diagnoses were confirmed on detailed fundus examination, optical coherence tomography (OCT), and fundus fluorescein angiography (FFA). Central foveal thickness and subfoveal choroidal thickness were evaluated. Both serum apelin-13 and vascular endothelial growth factor (VEGF) levels were measured by a competitive enzyme-linked immunosorbent assay (ELISA) principle. RESULTS A total of 84 subjects, i.e., 24 in the dry-type AMD group (group 1), 27 in the neovascular-type AMD group (group 2), and 33 in the control group (group 3) were included in the study. Mean best-corrected visual acuity (BCVA) was 76 ± 4.5, 48.4 ± 16.3, and 83.4 ± 3.09 ETDRS letters in group 1, 2, and 3, respectively. The level of serum VEGF was 44.11 ± 26.14, 56.53 ± 53.77, and 61.47 ± 41.62 pg/mL in groups 1, 2, and 3, respectively (p = 0.553, p = 0.286, and p = 0.896, respectively). The level of serum apelin-13 was 586.47 ± 167.56, 622.18 ± 324.52, and 379.31 ± 171.96 pg/mL in groups 1, 2, and 3, respectively (p = 0.847, p = 0.04, and p ≤ 0.001, respectively). There was a negative correlation between the level of serum apelin and visual acuity (VA) and choroidal thickness. CONCLUSION Serum apelin-13 levels were higher in both dry-type and neovascular-type AMD patients than in controls. Further studies demonstrating the relationship of the level of serum apelin-13 and AMD are needed.
Collapse
Affiliation(s)
- Esra Vural
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey,
| | - Leyla Hazar
- Clinic of Ophthalmology, Kızıltepe State Hospital, Mardin, Turkey
| | - Cigdem Karakukçu
- Department of Biochemistry, Kayseri City Hospital, Kayseri, Turkey
| | - M Erkam Arslan
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - M Raşit Sirem
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Ender Sirakaya
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Cemal Ozsaygılı
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| | - Ayşe Çiçek
- Department of Ophthalmology, Kayseri City Hospital, Kayseri, Turkey
| |
Collapse
|
29
|
Bellis A, Mauro C, Barbato E, Di Gioia G, Sorriento D, Trimarco B, Morisco C. The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction. Cells 2020; 9:cells9092134. [PMID: 32967374 PMCID: PMC7565478 DOI: 10.3390/cells9092134] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
During the last three decades, timely myocardial reperfusion using either thrombolytic therapy or primary percutaneous intervention (pPCI) has allowed amazing improvements in outcomes with a more than halving in 1-year ST-elevation myocardial infarction (STEMI) mortality. However, mortality and left ventricle (LV) remodeling remain substantial in these patients. As such, novel therapeutic interventions are required to reduce myocardial infarction size, preserve LV systolic function, and improve survival in reperfused-STEMI patients. Myocardial ischemia-reperfusion injury (MIRI) prevention represents the main goal to reach in order to reduce STEMI mortality. There is currently no effective therapy for MIRI prevention in STEMI patients. A significant reason for the weak and inconsistent results obtained in this field may be the presence of multiple, partially redundant, mechanisms of cell death during ischemia-reperfusion, whose relative importance may depend on the conditions. Therefore, it is always more recognized that it is important to consider a "multi-targeted cardioprotective therapy", defined as an additive or synergistic cardioprotective agents or interventions directed to distinct targets with different timing of application (before, during, or after pPCI). Given that some neprilysin (NEP) substrates (natriuretic peptides, angiotensin II, bradykinin, apelins, substance P, and adrenomedullin) exert a cardioprotective effect against ischemia-reperfusion injury, it is conceivable that antagonism of proteolytic activity by this enzyme may be considered in a multi-targeted strategy for MIRI prevention. In this review, by starting from main pathophysiological mechanisms promoting MIRI, we discuss cardioprotective effects of NEP substrates and the potential benefit of NEP pharmacological inhibition in MIRI prevention.
Collapse
Affiliation(s)
- Alessandro Bellis
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Ciro Mauro
- Unità Operativa Complessa Cardiologia con UTIC ed Emodinamica—Dipartimento Emergenza Accettazione, Azienda Ospedaliera “Antonio Cardarelli”, 80131 Napoli, Italy;
| | - Emanuele Barbato
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Giuseppe Di Gioia
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Cardiac Catheterization Laboratory, Montevergine Clinic, 83013 Mercogliano (AV), Italy
| | - Daniela Sorriento
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Bruno Trimarco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
| | - Carmine Morisco
- Dipartimento di Scienze Biomediche Avanzate, Università FEDERICO II, 80131 Napoli, Italy; (A.B.); (E.B.); (G.D.G.); (D.S.); (B.T.)
- Correspondence: ; Tel.: +39-081-746-2253; Fax: +39-081-746-2256
| |
Collapse
|
30
|
Association of genetic defects in the apelin-AGTRL1 system with myocardial infarction risk in Han Chinese. Gene 2020; 766:145143. [PMID: 32911028 DOI: 10.1016/j.gene.2020.145143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 11/21/2022]
Abstract
We aimed to test the hypothesis that apelin (APLN) and its receptor AGTRL1 (APLNR) genes may contribute to the pathogenesis of myocardial infarction in Han Chinese. This is a hospital-based, case-control association study, involving 1067 patients with myocardial infarction and 942 healthy controls. Myocardial infarction is diagnosed by electrocardiogram or anatomopathological examination. Eight polymorphisms in APLN gene and 5 in APLNR gene were genotyped using the TaqMan assay. Risk was summarized as odds ratio (OR) and 95% confidence interval (CI). In males, rs56204867-G allele (adjusted OR, 95% CI, p: 0.21, 0.08-0.55, 0.002) and rs2235309-T allele (0.60, 0.42-0.84, 0.004) was associated with a significantly reduced risk of myocardial infarction, and the mutations of rs2235310 was associated with an increased risk (1.41, 1.06-2.52, 0.021), as well as for rs948847-GG genotype (1.85, 1.23-2.91, 0.007). In females, the presence of rs56204867-AG and -GG genotypes was significantly associated with 44% and 50% reduced risk (0.56 and 0.50, 0.40-8.04 and 0.29-0.86, 0.007 and 0.036), respectively; for rs2235310, CC genotype was associated with 72% increased risk (1.72, 1.09-3.22, 0.016), and the odds of myocardial infarction was 3.47 for rs9943582-TT genotype (95% CI: 1.53-7.57, 0.009). The gender-specific association of APLN and APLNR genes with myocardial infarction was reinforced by further linkage and haplotype analyses. Finally, nomograms based on significant polymorphisms are satisfactory, with the C-indexes over 80% for both genders. Taken together, our findings indicate that APLN and APLNR genes are potential candidates in the pathogenesis of myocardial infarction in Han Chinese, and importantly their contribution is gender-dependent.
Collapse
|
31
|
Yu P, Ma S, Dai X, Cao F. Elabela alleviates myocardial ischemia reperfusion-induced apoptosis, fibrosis and mitochondrial dysfunction through PI3K/AKT signaling. Am J Transl Res 2020; 12:4467-4477. [PMID: 32913520 PMCID: PMC7476165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a common cardiovascular disease with high morbidity and mortality globally, which derives from acute myocardial infarction and coronary artery disease. Elabela has been proved to bind to apelin receptors in the heart. The present study aimed to investigate the protective effects of Elabela in myocardial I/R injury and illustrating the potential mechanisms. In this study, the rat I/R model was established in vivo. Following treatment with Elabela, the histopathological changes of heart tissue were evaluated by the hematoxylin and eosin- or Masson's trichrome staining. Apoptosis of heart tissue was examined using TUNEL staining. The expression of type I or III collagen and apoptosis-associated proteins was measured using western blotting. Moreover, myocardial ultrastructure in myocardium was detected via electron microscopy analysis. H9c2 cells were treated with hypoxia/reoxygenation (H/R) to mimic the myocardial I/R injury in vitro. After treatment with Elabela or Elabela combined with LY294002, the levels of oxidative stress and apoptosis were examined. The results revealed that Elabela significantly improved the pathological changes of rat myocardial tissues induced by I/R. Additionally, Elabela treatment reduced cardiomyocyte I/R induced fibrosis and apoptosis as well as ameliorated mitochondrial dysfunction in animal and cells. Within inhibition of PI3K pathway, the protective effects of Elabela was reversed. Taken together, these findings demonstrated that Elabela could protect against fibrosis, apoptosis and oxidative stress via PI3K/ATK signaling pathway in cardiac ischemia reperfusion.
Collapse
Affiliation(s)
- Peng Yu
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Sicong Ma
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Xinchun Dai
- Department of Cardiology, Xijing Hospital, Air Force Medical UniversityXi’an 710032, China
| | - Feng Cao
- National Clinical Research Center for Geriatric Diseases, 2nd Medical Center, Chinese PLA General HospitalBeijing 100853, China
| |
Collapse
|
32
|
Pan Y, Li Q, Yan H, Huang J, Wang Z. Apela improves cardiac and renal function in mice with acute myocardial infarction. J Cell Mol Med 2020; 24:10382-10390. [PMID: 32686917 PMCID: PMC7521152 DOI: 10.1111/jcmm.15651] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Apela was recently identified as a new ligand of the apelin peptide jejunum (APJ) receptor. The purpose of this study was to investigate the role of apela in post-myocardial infarction (post-MI) recovery from cardiorenal damage. A murine MI model was established, and apela was then infused subcutaneously for two weeks. Echocardiographs were performed before and after infarction at the indicated times. Renal function was evaluated by serum and urine biochemistry. Immunohistochemistry of heart and kidney tissue was performed by in situ terminal deoxynucleotidyl transferase-mediated dUPT nick end-labelling reaction. Compared to the control group (MI/vehicle), the average value of the left ventricular ejection fraction in apela-treated mice increased by 32% and 39% at 2- and 4-week post-MI, respectively. The mean levels of serum blood urea nitrogen,creatinine, N-terminal pro-brain natriuretic peptide and 24-hour urine protein were significantly decreased at 4-week post-MI in apela-treated mice relative to that of control animals. At the cellular level, we found that apela treatment significantly reduced myocardial fibrosis and cellular apoptosis in heart and kidney tissue. These data suggest that apela improves cardiac and renal function in mice with acute MI. The peptide may be potential therapeutic agent for heart failure.
Collapse
Affiliation(s)
- Yang Pan
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Quanyi Li
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Hong Yan
- Department of Clinical Laboratory, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Clinical Laboratory, Nanjing Chest Hospital, Nanjing, China
| | - Jin Huang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| | - Zhi Wang
- Department of Cardiovascular Medicine, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.,Department of Cardiovascular Medicine, Nanjing Chest Hospital, Nanjing, China
| |
Collapse
|
33
|
Ason B, Chen Y, Guo Q, Hoagland KM, Chui RW, Fielden M, Sutherland W, Chen R, Zhang Y, Mihardja S, Ma X, Li X, Sun Y, Liu D, Nguyen K, Wang J, Li N, Rajamani S, Qu Y, Gao B, Boden A, Chintalgattu V, Turk JR, Chan J, Hu LA, Dransfield P, Houze J, Wong J, Ma J, Pattaropong V, Véniant MM, Vargas HM, Swaminath G, Khakoo AY. Cardiovascular response to small-molecule APJ activation. JCI Insight 2020; 5:132898. [PMID: 32208384 DOI: 10.1172/jci.insight.132898] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 03/18/2020] [Indexed: 12/29/2022] Open
Abstract
Heart failure (HF) remains a grievous illness with poor prognosis even with optimal care. The apelin receptor (APJ) counteracts the pressor effect of angiotensin II, attenuates ischemic injury, and has the potential to be a novel target to treat HF. Intravenous administration of apelin improves cardiac function acutely in patients with HF. However, its short half-life restricts its use to infusion therapy. To identify a longer acting APJ agonist, we conducted a medicinal chemistry campaign, leading to the discovery of potent small-molecule APJ agonists with comparable activity to apelin by mimicking the C-terminal portion of apelin-13. Acute infusion increased systolic function and reduced systemic vascular resistance in 2 rat models of impaired cardiac function. Similar results were obtained in an anesthetized but not a conscious canine HF model. Chronic oral dosing in a rat myocardial infarction model reduced myocardial collagen content and improved diastolic function to a similar extent as losartan, a RAS antagonist standard-of-care therapy, but lacked additivity with coadministration. Collectively, this work demonstrates the feasibility of developing clinical, viable, potent small-molecule agonists that mimic the endogenous APJ ligand with more favorable drug-like properties and highlights potential limitations for APJ agonism for this indication.
Collapse
Affiliation(s)
- Brandon Ason
- Amgen Research, South San Francisco, California, USA
| | - Yinhong Chen
- Amgen Research, South San Francisco, California, USA
| | - Qi Guo
- Amgen Research, South San Francisco, California, USA
| | | | - Ray W Chui
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Rhonda Chen
- Amgen Research, South San Francisco, California, USA
| | - Ying Zhang
- Amgen Research, South San Francisco, California, USA
| | | | - Xiaochuan Ma
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Xun Li
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Yaping Sun
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | - Dongming Liu
- Amgen Research, South San Francisco, California, USA
| | - Khanh Nguyen
- Amgen Research, South San Francisco, California, USA
| | - Jinghong Wang
- Amgen Research, South San Francisco, California, USA
| | - Ning Li
- Amgen Research, South San Francisco, California, USA
| | | | - Yusheng Qu
- Amgen Research, Thousand Oaks, California, USA
| | - BaoXi Gao
- Amgen Research, Thousand Oaks, California, USA
| | | | | | - Jim R Turk
- Amgen Research, Thousand Oaks, California, USA
| | - Joyce Chan
- Amgen Research, South San Francisco, California, USA
| | - Liaoyuan A Hu
- Amgen Research, Amgen Asia R&D Center, Shanghai, China
| | | | | | - Jingman Wong
- Amgen Research, South San Francisco, California, USA
| | - Ji Ma
- Amgen Research, South San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
34
|
Xu Z, Li Z. Experimental Study on the Role of Apelin-13 in Alleviating Spinal Cord Ischemia Reperfusion Injury Through Suppressing Autophagy. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:1571-1581. [PMID: 32368015 PMCID: PMC7183780 DOI: 10.2147/dddt.s241066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 12/16/2022]
Abstract
Background This study aimed to explore the effect of Apelin-13 in protecting rats against spinal cord ischemia reperfusion injury (SCIR), as well as the related molecular mechanisms. Methods One week prior to the experiment, experimental Sprague–Dawley rats were injected with Apelin-13 and the autophagy activator rapamycin through the tail vein once a day for 7 consecutive days. The SCIR rat model was prepared through the abdominal aorta clamping method. At 72 h after injury, the spinal cord tissue water content, infarct volume, and normal neuron count were determined to evaluate the degree of spinal cord tissue injury in the rats. The Basso–Beattie–Bresnahan scoring standard was adopted for functional scoring of the rat hind leg, to reflect the post-injury motor function. At 72 h after injury, changes in mitochondrial membrane potential, reactive oxygen species content, and mitochondrial ATP were detected. ELISA was carried out to detect the malonaldehyde content, as well as catalase, superoxide dismutase, and glutathione catalase activities in spinal cord tissues at 72 h after injury. Quantitative chemistry was conducted to examine the contents of nitric oxide (NO) and endothelial nitric oxide synthase (eNOS) in spinal cord tissues. Finally, the expression of autophagy-related proteins, Beclin1, ATG5, and LC3, in spinal cord tissues was detected through the Western blotting assay. Results Apelin-13 pretreatment alleviated SCIR, promoted motor function recovery, suppressed mitochondrial dysfunction, resisted oxidative stress, and inhibited autophagy in spinal cord tissues following ischemia reperfusion injury. Conclusion Apelin-3 exerts protection against SCIR by suppressing autophagy.
Collapse
Affiliation(s)
- Zhewei Xu
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Zhiyue Li
- Department of Orthopedics, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
35
|
Masoumi J, Jafarzadeh A, Khorramdelazad H, Abbasloui M, Abdolalizadeh J, Jamali N. Role of Apelin/APJ axis in cancer development and progression. Adv Med Sci 2020; 65:202-213. [PMID: 32087570 DOI: 10.1016/j.advms.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/26/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023]
Abstract
Apelin is an endogenous peptide, which is expressed in a vast board of organs such as the brain, placenta, heart, lungs, kidneys, pancreas, testis, prostate and adipose tissues. The apelin receptor, called angiotensin-like-receptor 1 (APJ), is also expressed in the brain, spleen, placenta, heart, liver, intestine, prostate, thymus, testis, ovary, lungs, kidneys, stomach, and adipose tissue. The apelin/APJ axis is involved in a number of physiological and pathological processes. The apelin expression is increased in various kinds of cancer and the apelin/APJ axis plays a key role in the development of tumors through enhancing angiogenesis, metastasis, cell proliferation and also through the development of cancer stem cells and drug resistance. The apelin also stops the apoptosis of cancer cells. The apelin/APJ axis was considered in this review as an attractive therapeutic target for cancer treatment.
Collapse
|
36
|
Liu W, Yan J, Pan W, Tang M. Apelin/Elabela-APJ: a novel therapeutic target in the cardiovascular system. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:243. [PMID: 32309390 PMCID: PMC7154429 DOI: 10.21037/atm.2020.02.07] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apelin and Elabela (ELA) are endogenous ligands of angiotensin domain type 1 receptor-associated proteins (APJ). Apelin/ELA-APJ signal is widely distributed in the cardiovascular system of fetuse and adult. The signal is involved in the development of the fetal heart and blood vessels and regulating vascular tension in adults. This review described the effects of apelin/ELA-APJ on fetal (vasculogenesis and angiogenesis) and adult cardiovascular function [vascular smooth muscle cell (VSMC) proliferation, vasodilation, positive myodynamia], and relative diseases [eclampsia, hypertension, pulmonary hypertension, heart failure (HF), myocardial infarction (MI), atherosclerosis, etc.] in detail. The pathways of apelin/ELA-APJ regulating cardiovascular function and cardiovascular-related diseases are summarized. The drugs developed based on apelin and ELA suggests APJ is a prospective strategy for cardiovascular disease therapy.
Collapse
Affiliation(s)
- Wei Liu
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China.,Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jialong Yan
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421001, China
| | - Weinan Pan
- Hunan Food and Drug Vocational College, Changsha 410208, China
| | - Mengjie Tang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, China
| |
Collapse
|
37
|
Mohammadi C, Sameri S, Najafi R. Insight into adipokines to optimize therapeutic effects of stem cell for tissue regeneration. Cytokine 2020; 128:155003. [PMID: 32000014 DOI: 10.1016/j.cyto.2020.155003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 11/29/2022]
Abstract
Stem cell therapy is considered as a promising regenerative medicine for repairing and treating damaged tissues and/or preventing various diseases. But there are still some obstacles such as low cell migration, poor stem cell engraftment and decreased cell survival that need to be overcome before transplantation. Therefore, a large body of studies has focused on improving the efficiency of stem cell therapy. For instance, preconditioning of stem cells has emerged as an effective strategy to reinforce therapeutic efficacy. Adipokines are signaling molecules, secreted by adipose tissue, which regulate a variety of biological processes in adipose tissue and other organs including the brain, liver, and muscle. In this review article, we shed light on the biological effects of some adipokines including apelin, oncostatin M, omentin-1 and vaspin on stem cell therapy and the most recent preclinical advances in our understanding of how these functions ameliorate stem cell therapy outcome.
Collapse
Affiliation(s)
- Chiman Mohammadi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Sameri
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
38
|
Abbasloo E, Najafipour H, Vakili A. Chronic treatment with apelin, losartan and their combination reduces myocardial infarct size and improves cardiac mechanical function. Clin Exp Pharmacol Physiol 2019; 47:393-402. [PMID: 31630435 DOI: 10.1111/1440-1681.13195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/24/2019] [Accepted: 10/17/2019] [Indexed: 01/15/2023]
Abstract
The renin-angiotensin system (RAS) has a deleterious and apelin/APJ system has protective effect on the ischaemic heart. The collaboration between these systems in the pathophysiology of myocardial infarction is not clear. We determined the effect of chronic pretreatment with apelin, losartan and their combination on ischaemia-reperfusion (IR) injury in the isolated perfused rat heart and on the expression of apelin-13 receptor (APJ) and angiotensin type 1 receptor (AT1R) in the myocardium. During 5 days before the induction of IR, saline (vehicle), apelin-13 (Apl), F13A (apelin antagonist), losartan (Los, AT1R antagonist) and the combination of Apl and Los were administered intraperitoneally in rats. Ischaemia was induced by left anterior descending (LAD) artery occlusion for 30 minutes followed by reperfusion for 55 minutes in the Langendorff isolated heart perfusion system. Pretreatment with Apl, Los and the combination of Apl + Los significantly reduced infarct size by about 30, 33 and 48 percent respectively; and significantly improved the left ventricular function indices such as left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure (LVEDP) and rate pressure product (RPP). IR increased AT1R protein level but it did not change APJ significantly. AT1R expression was reduced in groups treated with Apl, Los and Apl + Los. Findings showed that chronic pretreatment with apelin along with AT1R antagonist had more protective effects against IR injury. Combination therapy may diminish the risk of IR-induced heart damage, by reducing AT1R expression, in the heart of patients with coronary artery disease that are at the risk of MI and reperfusion injury.
Collapse
Affiliation(s)
- Elham Abbasloo
- Physiology, Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Najafipour
- Physiology, Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Abedin Vakili
- Physiology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
39
|
Marsault E, Llorens-Cortes C, Iturrioz X, Chun HJ, Lesur O, Oudit GY, Auger-Messier M. The apelinergic system: a perspective on challenges and opportunities in cardiovascular and metabolic disorders. Ann N Y Acad Sci 2019; 1455:12-33. [PMID: 31236974 PMCID: PMC6834863 DOI: 10.1111/nyas.14123] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/11/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022]
Abstract
The apelinergic pathway has been generating increasing interest in the past few years for its potential as a therapeutic target in several conditions associated with the cardiovascular and metabolic systems. Indeed, preclinical and, more recently, clinical evidence both point to this G protein-coupled receptor as a target of interest in the treatment of not only cardiovascular disorders such as heart failure, pulmonary arterial hypertension, atherosclerosis, or septic shock, but also of additional conditions such as water retention/hyponatremic disorders, type 2 diabetes, and preeclampsia. While it is a peculiar system with its two classes of endogenous ligand, the apelins and Elabela, its intricacies are a matter of continuing investigation to finely pinpoint its potential and how it enables crosstalk between the vasculature and organ systems of interest. In this perspective article, we first review the current knowledge on the role of the apelinergic pathway in the above systems, as well as the associated therapeutic indications and existing pharmacological tools. We also offer a perspective on the challenges and potential ahead to advance the apelinergic system as a target for therapeutic intervention in several key areas.
Collapse
Affiliation(s)
- Eric Marsault
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Catherine Llorens-Cortes
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Xavier Iturrioz
- Collège de France, Center for Interdisciplinary Research in Biology, INSERM U1050, CNRS UMR7241, Paris, France
| | - Hyung J. Chun
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Departments of Internal Medicine and Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Olivier Lesur
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Intensive Care Units, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Mannix Auger-Messier
- Department of Pharmacology and Physiology, Institut de Pharmacologie de Sherbrooke, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Department of Medicine – Division of Cardiology, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
40
|
Read C, Nyimanu D, Williams TL, Huggins DJ, Sulentic P, Macrae RGC, Yang P, Glen RC, Maguire JJ, Davenport AP. International Union of Basic and Clinical Pharmacology. CVII. Structure and Pharmacology of the Apelin Receptor with a Recommendation that Elabela/Toddler Is a Second Endogenous Peptide Ligand. Pharmacol Rev 2019; 71:467-502. [PMID: 31492821 PMCID: PMC6731456 DOI: 10.1124/pr.119.017533] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.
Collapse
Affiliation(s)
- Cai Read
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Duuamene Nyimanu
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - David J Huggins
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Petra Sulentic
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Peiran Yang
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Robert C Glen
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, United Kingdom (C.R., D.N., T.L.W., D.J.H., P.S., R.G.C.M., P.Y., J.J.M., A.P.D.); The Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom (D.J.H., R.C.G.); and Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom (R.C.G.)
| |
Collapse
|
41
|
Rekhi U, Piche JE, Immaraj L, Febbraio M. Neointimal hyperplasia: are fatty acid transport proteins a new therapeutic target? Curr Opin Lipidol 2019; 30:377-382. [PMID: 31348024 DOI: 10.1097/mol.0000000000000627] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW High-fat diets contribute to hyperlipidemia and dysregulated metabolism underlying insulin resistant states and cardiovascular diseases. Neointimal hyperplasia is a significant resulting morbidity. Increased fatty acid (FA) levels lead to dysfunctional endothelium, defined as activated, proinflammatory and prothrombotic. The purpose of this review is to assess the recent literature on the emerging concept that uptake of FA into many tissues is regulated at the endothelial level, and this in turn contributes to endothelial dysfunction, an initiating factor in insulin resistant states, atherosclerosis and neointimal hyperplasia. RECENT FINDINGS Studies support the role of endothelial FA uptake proteins as an additional level of regulation in tissue FA uptake. These proteins include CD36, FA transport proteins, FA-binding proteins and caveolin-1. In many cases, inappropriate expression of these proteins can result in a change in FA and glucose uptake, storage and utilization. Accumulation of plasma FA is one mechanism by which alterations in expression of FA uptake proteins can lead to endothelial dysfunction; changes in tissue substrate metabolism leading to inflammation are also implicated. SUMMARY Identification of the critical players and regulators can lead to therapeutic targeting to reduce endothelial dysfunction and sequela such as insulin resistance and neointimal hyperplasia.
Collapse
Affiliation(s)
- Umar Rekhi
- Department of Dentistry, Faculty of Medicine & Dentistry, University of Alberta, 7020M Katz Group Centre for Pharmacy & Health Research, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
42
|
Xi Y, Yu D, Yang R, Zhao Q, Wang J, Zhang H, Qian K, Shi Z, Wang W, Brown R, Li Y, Tian Z, Gong DW. Recombinant Fc-Elabela fusion protein has extended plasma half-life andmitigates post-infarct heart dysfunction in rats. Int J Cardiol 2019; 292:180-187. [DOI: 10.1016/j.ijcard.2019.04.089] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 04/05/2019] [Accepted: 04/28/2019] [Indexed: 12/22/2022]
|
43
|
Yalçınkaya Kara ZM, Serin E, Dağ İ, Serin Ö. Pre-diyabetik ve yeni tanı almış tip 2 diyabetli hastalarda serum apelin-36 düzeyleri. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.504415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
44
|
Systemic Outcomes of (Pyr 1)-Apelin-13 Infusion at Mid-Late Pregnancy in a Rat Model with Preeclamptic Features. Sci Rep 2019; 9:8579. [PMID: 31189936 PMCID: PMC6561917 DOI: 10.1038/s41598-019-44971-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/29/2019] [Indexed: 01/27/2023] Open
Abstract
Preeclampsia is a syndrome with diverse clinical presentation that currently has no cure. The apelin receptor system is a pleiotropic pathway with a potential for therapeutic targeting in preeclampsia. We established the systemic outcomes of (Pyr1)-apelin-13 administration in rats with preeclamptic features (TGA-PE, female transgenic for human angiotensinogen mated to male transgenic for human renin). (Pyr1)-apelin-13 (2 mg/kg/day) or saline was infused in TGA-PE rats via osmotic minipumps starting at day 13 of gestation (GD). At GD20, TGA-PE rats had higher blood pressure, proteinuria, lower maternal and pup weights, lower pup number, renal injury, and a larger heart compared to a control group (pregnant Sprague-Dawley rats administered vehicle). (Pyr1)-apelin-13 did not affect maternal or fetal weights in TGA-PE. The administration of (Pyr1)-apelin-13 reduced blood pressure, and normalized heart rate variability and baroreflex sensitivity in TGA-PE rats compared to controls. (Pyr1)-apelin-13 increased ejection fraction in TGA-PE rats. (Pyr1)-apelin-13 normalized proteinuria in association with lower renal cortical collagen deposition, improved renal pathology and lower immunostaining of oxidative stress markers (4-HNE and NOX-4) in TGA-PE. This study demonstrates improved hemodynamic responses and renal injury without fetal toxicity following apelin administration suggesting a role for apelin in the regulation of maternal outcomes in preeclampsia.
Collapse
|
45
|
Tang M, Huang Z, Luo X, Liu M, Wang L, Qi Z, Huang S, Zhong J, Chen JX, Li L, Wu D, Chen L. Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic Biol Med 2019; 134:445-457. [PMID: 30731113 DOI: 10.1016/j.freeradbiomed.2019.01.052] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 01/18/2023]
Abstract
Excess iron accumulation and cardiac oxidative stress have been shown as important mediators of cardiac hypertrophy, whereas it remains largely elusive about the occurrence of mitochondrial iron overload and its significance during cardiac hypertrophy. In the present study, we aim to investigate the role of NCOA4-mediated ferritinophagy and SFXN1-dependent mitochondria iron overload in apelin-13-induced cardiomyocytes hypertrophy. Apelin-13 significantly promotes ferric citrate (FAC)-induced total cellular and mitochondria ion production, as well as mitochondria ROS contents. Mechanistically, apelin-13 effectively induces the expression of SFXN1, a mitochondria iron transporting protein and NCOA4, a cargo receptor of ferritinophagy in dose and time-dependent manner. Conversely, blockade of APJ by F13A abolishes these stimulatory effects. In addition, apelin-13-triggered mitochondria iron overload is reversed by the genetic inhibition of SFXN1 and NCOA4. NCOA4 deficiency via its silencing also interferes with the enhanced expression of SFXN1 evoked by apelin-13. In apelin-13-treated H9c2 cells, the promotion in cell diameter, volume as well as protein contents are obviously suppressed by the knockdown of NCOA4 and SFXN1 with their corresponding siRNAs. Remarkably, the human and murine hypertrophic hearts models, as well as apelin-13-injected mice models, present evident cardiac mitochondrial iron deposition and raised expressions of NCOA4 and SFXN1. Taken together, these results provide experimental evidences that NCOA4-mediated ferritinophagy might be defined as an essential mechanism leading to apelin-13-cardiomyocytes hypertrophy in SFXN1-dependent mitochondria iron overload manners.
Collapse
Affiliation(s)
- Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Meiqing Liu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Lingzhi Wang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Zhihao Qi
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Shifang Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital Affiliated to Capital Medical University, Beijing, 100020, China
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Lanfang Li
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Di Wu
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Learning Key Laboratory for Pharmacoproteomics, University of South China, Hengyang, 421001, China.
| |
Collapse
|
46
|
Luo J, Liu H, Zheng X, Lin B, Ye Q, Deng Y, Wu L. Inhibitory Effect of Apelin on Cardiomyocyte Hypertrophy induced by Resistin in H9c2 Cells. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.311.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Cardioprotective apelin effects and the cardiac-renal axis: review of existing science and potential therapeutic applications of synthetic and native regulated apelin. J Hum Hypertens 2019; 33:429-435. [PMID: 30659278 DOI: 10.1038/s41371-019-0163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/28/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
First described in 1998, apelin is one of the endogenous ligands of the apelinergic receptor. Since its discovery, its possible role in human physiology and disease has been intensively studied. Apelin is a native cardioprotective agent that the body synthesizes to create atheroprotective, antihypertensive, and regenerative effects in the body. By antagonizing the RAA system, apelin could play an important role in heart failure and hypertension. It is also involved in myocardial protection against ischemia/reperfusion injury, post-ischemic remodeling, and myocardial fibrosis. A small number of studies even suggest that serum apelin levels may be involved the development of life-threatening arrhythmias. All this information generated excitement about potential therapeutic effects in patients with heart failure and myocardial infarction. The therapeutic index of apelin is unknown but is anticipated to be favorable based on the small number of studies. In this review, we summarize the mechanisms by which apelin exerts its cardioprotective effects and its connection with the cardiorenal axis. Also, we report the potential therapeutic applications of synthetic and native regulated apelin. If larger studies can be performed, it is possible that apelin-mediated drug treatment may play a major role for a large number of patients worldwide in the future.
Collapse
|
48
|
Liu Y, Wang L, Shi H. The biological function of ELABELA and APJ signaling in the cardiovascular system and pre-eclampsia. Hypertens Res 2019; 42:928-934. [PMID: 30626933 DOI: 10.1038/s41440-018-0193-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 12/02/2018] [Indexed: 01/12/2023]
Abstract
Pre-eclampsia (PE) is a pregnancy-specific syndrome that is characterized by hypertension and proteinuria. The etiology of PE is not completely understood but is believed to involve placental insufficiency and maternal vascular damage. Growing evidence supports an important role for the apelin receptor (APJ) system in regulating cardiovascular physiology. There are two vertebrate APJ ligands, APELIN and ELABELA, both of which mediate vasodilatory functions. A recent study linked deficient ELABELA signaling and the development of PE, though the molecular mechanism remains largely unknown. In this review, we summarize the biological function of the ELABELA and APJ system in cardiovascular homeostasis and discuss the potential mechanisms by which ELABELA and APJ regulate placenta trophoblast invasion and vascular functions and participate in the development of PE.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liquan Wang
- Department of Obstetrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongjun Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
49
|
Cheng J, Luo X, Huang Z, Chen L. Apelin/APJ system: A potential therapeutic target for endothelial dysfunction‐related diseases. J Cell Physiol 2018; 234:12149-12160. [DOI: 10.1002/jcp.27942] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/16/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Jun Cheng
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| | - Xuling Luo
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
- Department of Pharmacy The First Affiliated Hospital, University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study, Hengyang Medical College, University of South China Hengyang China
| |
Collapse
|
50
|
Mihanfar A, Nejabati HR, Fattahi A, latifi Z, Faridvand Y, Pezeshkian M, Jodati AR, Safaie N, Afrasiabi A, Nouri M. SIRT3-mediated cardiac remodeling/repair following myocardial infarction. Biomed Pharmacother 2018; 108:367-373. [DOI: 10.1016/j.biopha.2018.09.079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/14/2022] Open
|