1
|
Hrubanová A, Lisický O, Sochor O, Bednařík Z, Joukal M, Burša J. Layer-specific residual strains in human carotid arteries revealed under layer separation. PLoS One 2025; 20:e0308434. [PMID: 40193345 PMCID: PMC11975091 DOI: 10.1371/journal.pone.0308434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/16/2024] [Indexed: 04/09/2025] Open
Abstract
Residual stresses are considered as a significant factor influencing the stress-states in arteries. These stresses are typically observed through opening angle of a radially cut artery segment, often regarded as a primary descriptor of their stress-free state. However, the experimental evidence regarding the stress-free states of different artery layers is scarce. In this study, two experimental protocols, each employing different layer-separating sequences, were performed on 17 human common carotid arteries; the differences between both protocols were found statistically insignificant. While the media exhibited opening behaviour (reduced curvature), a contrasting trend was observed for the adventitia curvature, indicating its closing behaviour. In addition to the different bending effect, length changes of both layers after separation were observed, namely shortening of the adventitia and elongation of the media. The results point out that not all the residual stresses are released after a radial cut but a significant portion of them is released only after the layer separation. Considering the different mechanical properties of layers, this may significantly change the stress distribution in arterial wall and should be considered in its biomechanical models.
Collapse
Affiliation(s)
- Anna Hrubanová
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Ondřej Sochor
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | - Zdeněk Bednařík
- First Department of Pathology, St. Anne’s University Hospital, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
2
|
Guo HB, Wang MF, Yin RQ, Zhi KK. A novel arterial coupler with non-return snap-fit connection approach optimized arterial end-to-end anastomotic technique: An experimental study. Chin J Traumatol 2025; 28:13-21. [PMID: 39396898 PMCID: PMC11840344 DOI: 10.1016/j.cjtee.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/02/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
PURPOSE Hand-sewn anastomosis as the gold standard of vascular anastomosis cannot fully meet the requirements of vascular anastomosis in speed and quality. Various vascular couplers have been developed to ameliorate this situation. Most of them are mainly used for venous anastomosis rather than arterial anastomosis. Although it is generally acknowledged that in almost all operations involving vascular reconstruction, it is the arteries that need to be anastomosed faster and more accurately and not the veins. A dedicated device is needed for creating arterial anastomosis in an easy, timesaving, less damaging but reliable procedure. Therefore, we plan to develop a novel arterial coupler device and test pre-clinical safety and effectiveness. METHODS In this cohort study, the rationality of this novel arterial coupler was preliminarily tested by finite element analysis before it was manufactured. Several factors restrict the use of vascular couplers in arterial anastomosis, such as arterial eversion, fixation, etc. The manufactured arterial couplers underwent in vitro and in vivo experiments. In vitro, isolated arteries of beagles were anastomosed with the assistance of an arterial coupler, and the anastomosed arteries were evaluated through anti-traction tests. In animal experiments, the bilateral femoral arteries of 5 beagles served as a control group. After dissection, the femoral artery on one side was randomly selected to be anastomosed with a quick arterial coupler (QAC) (QAC group), and the femoral artery on the other side was anastomosed by the same person using an end-to-end suture technique with a 6-0 Prolene suture (suture group). The bilateral femoral arteries of 5 beagles were used for coupler-assisted anastomosis and hand-sewn anastomosis in vivo, respectively. Success rate, blood loss, anastomotic time, clamp time, total operation time, and patency rate were recorded. The patency of anastomosed arteries was assessed using vascular Doppler ultrasound, electromagnetic flowmeter, and pathological examination (6 weeks after surgery). RESULTS As a novel arterial coupler, QAC was successfully designed and manufactured by using poly lactic-co-glycolic acid raw materials and 3-dimensions printing technology. Its rationality was preliminarily tested through finite element analysis and related mechanical analysis methods. The isolated arteries were successfully anastomosed with the assistance of QAC in vitro testing, which showed good anti-traction properties. In animal studies, QAC-assisted arterial anastomosis has superior profiles compared to hand-sewn anastomosis in anastomotic time (7.80 ± 1.41 vs. 16.38 ± 1.04 min), clamp time (8.80 ± 1.41 vs. 14.14 ± 1.57 min), and total operation time (46.64 ± 2.38 vs. 51.96 ± 3.65 min). The results of electromagnetic flowmeter, vascular Doppler ultrasound, and pathological examination showed that QAC-assisted anastomotic arteries were superior to hand-sewn arteries in terms of postoperative blood flow (16.86 ± 3.93 vs. 10.36 ± 0.92 mL/min) and vascular patency in 6 weeks after surgery. CONCLUSION QAC is a well-designed and easily maneuverable device specialized for end-to-end arterial anastomosis. Application of this device may decrease thermal ischemia time and improve the patency of anastomotic arteries, thus, improving outcomes.
Collapse
Affiliation(s)
- Hong-Bo Guo
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mo-Fei Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ren-Qi Yin
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Kang-Kang Zhi
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
3
|
Parikh S, Giudici A, Huberts W, Delhaas T, Bidar E, Spronck B, Reesink K. Significance of Dynamic Axial Stretching on Estimating Biomechanical Behavior and Properties of the Human Ascending Aorta. Ann Biomed Eng 2024; 52:2485-2495. [PMID: 38836979 PMCID: PMC11329543 DOI: 10.1007/s10439-024-03537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/02/2024] [Indexed: 06/06/2024]
Abstract
Contrary to most vessels, the ascending thoracic aorta (ATA) not only distends but also elongates in the axial direction. The purpose of this study is to investigate the biomechanical behavior of the ascending thoracic aorta (ATA) in response to dynamic axial stretching during the cardiac cycle. In addition, the implications of neglecting this dynamic axial stretching when estimating the constitutive model parameters of the ATA are investigated. The investigations were performed through in silico simulations by assuming a Gasser-Ogden-Holzapfel (GOH) constitutive model representative of ATA tissue material. The GOH model parameters were obtained from biaxial tests performed on four human ATA tissues in a previous study. Pressure-diameter curves were simulated as synthetic data to assess the effect of neglecting dynamic axial stretching on estimating constitutive model parameters. Our findings reveal a significant increase in axial stress (~ 16%) and stored strain energy (~ 18%) in the vessel when dynamic axial stretching is considered, as opposed to assuming a fixed axial stretch. All but one artery showed increased volume compliance while considering a dynamic axial stretching condition. Furthermore, we observe a notable difference in the estimated constitutive model parameters when dynamic axial stretching of the ATA is neglected, compared to the ground truth model parameters. These results underscore the critical importance of accounting for axial deformations when conducting in vivo biomechanical characterization of the ascending thoracic aorta.
Collapse
Affiliation(s)
- Shaiv Parikh
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Alessandro Giudici
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Wouter Huberts
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Department of Biomedical Engineering, Cardiovascular Biomechanics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Elham Bidar
- Department of Cardiothoracic Surgery, Heart & Vascular Centre, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
- Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Koen Reesink
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
4
|
Wang X, Li K, Yuan Y, Zhang N, Zou Z, Wang Y, Yan S, Li X, Zhao P, Li Q. Nonlinear Elasticity of Blood Vessels and Vascular Grafts. ACS Biomater Sci Eng 2024; 10:3631-3654. [PMID: 38815169 DOI: 10.1021/acsbiomaterials.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The transplantation of vascular grafts has emerged as a prevailing approach to address vascular disorders. However, the development of small-diameter vascular grafts is still in progress, as they serve in a more complicated mechanical environment than their counterparts with larger diameters. The biocompatibility and functional characteristics of small-diameter vascular grafts have been well developed; however, mismatch in mechanical properties between the vascular grafts and native arteries has not been accomplished, which might facilitate the long-term patency of small-diameter vascular grafts. From a point of view in mechanics, mimicking the nonlinear elastic mechanical behavior exhibited by natural blood vessels might be the state-of-the-art in designing vascular grafts. This review centers on elucidating the nonlinear elastic behavior of natural blood vessels and vascular grafts. The biological functionality and limitations associated with as-reported vascular grafts are meticulously reviewed and the future trajectory for fabricating biomimetic small-diameter grafts is discussed. This review might provide a different insight from the traditional design and fabrication of artificial vascular grafts.
Collapse
Affiliation(s)
- Xiaofeng Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Kecheng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Yuan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Ning Zhang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Zifan Zou
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Yun Wang
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Shujie Yan
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaomeng Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Zhao
- The State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Qian Li
- School of Mechanics and Safety Engineering, National Center for International Research of Micro-nano Molding Technology, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
5
|
Altundemir S, Lashkarinia SS, Pekkan K, Uğuz AK. Interstitial flow, pressure and residual stress in the aging carotid artery model in FEBio. Biomech Model Mechanobiol 2024; 23:179-192. [PMID: 37668853 DOI: 10.1007/s10237-023-01766-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Vascular smooth muscle cells (VSMCs) are subject to interstitial flow-induced shear stress, which is a critical parameter in cardiovascular disease progression. Transmural pressure loading and residual stresses alter the hydraulic conductivity of the arterial layers and modulate the interstitial fluid flux through the arterial wall. In this paper, a biphasic multilayer model of a common carotid artery (CCA) with anisotropic fiber-reinforced soft tissue and strain-dependent permeability is developed in FEBio software. After the verification of the numerical predictions, age-related arterial thickening and stiffening effects on arterial deformation and interstitial flow are computed under physiological geometry and physical parameters. We found that circumferential residual stress shifts outward in each layer and its gradient increases up to 6 times with aging. Internally pressurized CCA displays nonlinear deformation. In the aged artery, the circumferential stress becomes greater on the media layer (82-158 kPa) and lower on the intima and adventitia (19-23 kPa and 25-28 kPa, respectively). The radial compression of the intima reduces the total hydraulic conductivity by 48% in the young and 16% in the aged arterial walls. Consequently, the average radial interstitial flux increases with pressure by 14% in the young and 91% in the aged arteries. Accordingly, the flow shear stress experienced by the VSMCs becomes more significant for aged arteries, which may accelerate cardiovascular disease progression compared to young arteries.
Collapse
Affiliation(s)
- Sercan Altundemir
- Department of Chemical Engineering, Boğaziçi University, Istanbul, 34342, Turkey.
| | - S Samaneh Lashkarinia
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, Koç University, Istanbul, 34450, Turkey
| | - Kerem Pekkan
- Department of Mechanical Engineering, Koç University, Istanbul, 34450, Turkey
| | - A Kerem Uğuz
- Department of Chemical Engineering, Boğaziçi University, Istanbul, 34342, Turkey.
| |
Collapse
|
6
|
Nguyen VA, Brooks-Richards TL, Ren J, Woodruff MA, Allenby MC. Quantitative and large-format histochemistry to characterize peripheral artery compositional gradients. Microsc Res Tech 2023; 86:1642-1654. [PMID: 37602569 DOI: 10.1002/jemt.24400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023]
Abstract
The femoropopliteal artery (FPA) is a long, flexible vessel that travels down the anteromedial compartment of the thigh as the femoral artery and then behind the kneecap as the popliteal artery. This artery undergoes various degrees of flexion, extension, and torsion during normal walking movements. The FPA is also the most susceptible peripheral artery to atherosclerosis and is where peripheral artery disease manifests in 80% of cases. The connection between peripheral artery location, its mechanical flexion, and its physiological or pathological biochemistry has been investigated for decades; however, histochemical methods remain poorly leveraged in their ability to spatially correlate normal or abnormal extracellular matrix and cells with regions of mechanical flexion. This study generates new histological image processing pipelines to quantitate tissue composition across high-resolution FPA regions-of-interest or low-resolution whole-section cross-sections in relation to their anatomical locations and flexions during normal movement. Comparing healthy ovine femoral, popliteal, and cranial-tibial artery sections as a pilot, substantial arterial contortion was observed in the distal popliteal and cranial tibial regions of the FPA which correlated with increased vascular smooth muscle cells and decreased elastin content. These methods aim to aid in the quantitative characterization of the spatial distribution of extracellular matrix and cells in large heterogeneous tissue sections such as the FPA. RESEARCH HIGHLIGHTS: Large-format histology preserves artery architecture. Elastin and smooth muscle content is correlated with distance from heart and contortion during flexion. Cell and protein analyses are sensitive to sectioning plane and image magnification.
Collapse
Affiliation(s)
- V A Nguyen
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - T L Brooks-Richards
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - J Ren
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M A Woodruff
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
| | - M C Allenby
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
- School of Chemical Engineering, University of Queensland (UQ), Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Amor M, Bianco V, Buerger M, Lechleitner M, Vujić N, Dobrijević A, Akhmetshina A, Pirchheim A, Schwarz B, Pessentheiner AR, Baumgartner F, Rampitsch K, Schauer S, Klobučar I, Degoricija V, Pregartner G, Kummer D, Svecla M, Sommer G, Kolb D, Holzapfel GA, Hoefler G, Frank S, Norata GD, Kratky D. Genetic deletion of MMP12 ameliorates cardiometabolic disease by improving insulin sensitivity, systemic inflammation, and atherosclerotic features in mice. Cardiovasc Diabetol 2023; 22:327. [PMID: 38017481 PMCID: PMC10685620 DOI: 10.1186/s12933-023-02064-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 12 (MMP12) is a macrophage-secreted protein that is massively upregulated as a pro-inflammatory factor in metabolic and vascular tissues of mice and humans suffering from cardiometabolic diseases (CMDs). However, the molecular mechanisms explaining the contributions of MMP12 to CMDs are still unclear. METHODS We investigated the impact of MMP12 deficiency on CMDs in a mouse model that mimics human disease by simultaneously developing adipose tissue inflammation, insulin resistance, and atherosclerosis. To this end, we generated and characterized low-density lipoprotein receptor (Ldlr)/Mmp12-double knockout (DKO) mice fed a high-fat sucrose- and cholesterol-enriched diet for 16-20 weeks. RESULTS DKO mice showed lower cholesterol and plasma glucose concentrations and improved insulin sensitivity compared with LdlrKO mice. Untargeted proteomic analyses of epididymal white adipose tissue revealed that inflammation- and fibrosis-related pathways were downregulated in DKO mice. In addition, genetic deletion of MMP12 led to alterations in immune cell composition and a reduction in plasma monocyte chemoattractant protein-1 in peripheral blood which indicated decreased low-grade systemic inflammation. Aortic en face analyses and staining of aortic valve sections demonstrated reduced atherosclerotic plaque size and collagen content, which was paralleled by an improved relaxation pattern and endothelial function of the aortic rings and more elastic aortic sections in DKO compared to LdlrKO mice. Shotgun proteomics revealed upregulation of anti-inflammatory and atheroprotective markers in the aortas of DKO mice, further supporting our data. In humans, MMP12 serum concentrations were only weakly associated with clinical and laboratory indicators of CMDs. CONCLUSION We conclude that the genetic deletion of MMP12 ameliorates obesity-induced low-grade inflammation, white adipose tissue dysfunction, biomechanical properties of the aorta, and the development of atherosclerosis. Therefore, therapeutic strategies targeting MMP12 may represent a promising approach to combat CMDs.
Collapse
Affiliation(s)
- Melina Amor
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Valentina Bianco
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Martin Buerger
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Margarete Lechleitner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Nemanja Vujić
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anja Dobrijević
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Vascular Biology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Alena Akhmetshina
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Anita Pirchheim
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Birgit Schwarz
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
| | - Ariane R Pessentheiner
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- Institute for Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | - Silvia Schauer
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Iva Klobučar
- Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Vesna Degoricija
- University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Medicine, Sisters of Charity, University Hospital Centre, Zagreb, Croatia
| | - Gudrun Pregartner
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Daniel Kummer
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Dagmar Kolb
- Gottfried Schatz Research Center, Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
- Core Facility Ultrastructural Analysis, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gerald Hoefler
- Diagnostics and Research Institute of Pathology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Saša Frank
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Dagmar Kratky
- Gottfried Schatz Research Center, Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/4, Graz, 8010, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
8
|
Brooks KA, Lai AY, Tucker SJ, Ramaraju H, Verga A, Shashidharan S, Maher KO, Simon DM, Hollister SJ, Landry AM, Goudy SL. External airway splint placement for severe pediatric tracheobronchomalacia. Int J Pediatr Otorhinolaryngol 2023; 169:111559. [PMID: 37126976 DOI: 10.1016/j.ijporl.2023.111559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
OBJECTIVE To present external airway splinting with bioabsorbable airway supportive devices (ASD) for severe, life-threatening cases of pediatric tracheomalacia (TM) or tracheobronchomalacia (TBM). METHODS A retrospective cohort was performed for 5 pediatric patients with severe TM or TBM who underwent ASD placement. Devices were designed and 3D-printed from a bioabsorbable material, polycaprolactone (PCL). Pre-operative planning included 3-dimensional airway modeling of tracheal collapse and tracheal suture placement using nonlinear finite element (FE) methods. Pre-operative modeling revealed that triads along the ASD open edges and center were the most effective suture locations for optimizing airway patency. Pediatric cardiothoracic surgery and otolaryngology applied the ASDs by suspending the trachea to the ASD with synchronous bronchoscopy. Respiratory needs were trended for all cases. Data from pediatric patients with tracheostomy and diagnosis of TM or TBM, but without ASD, were included for discussion. RESULTS Five patients (2 Females, 3 Males, ages 2-9 months at time of ASD) were included. Three patients were unable to wean from respiratory support after vascular ring division; all three weaned to room air post-ASD. Two patients received tracheostomies prior to ASD placement, but continued to experience apparent life-threatening events (ALTE) and required ventilation with supraphysiologic ventilator settings. One patient weaned respiratory support successfully after ASD placement. The last patient died post-ASD due to significant respiratory co-morbidity. CONCLUSION ASD can significantly benefit patients with severe, unrelenting tracheomalacia or tracheobronchomalacia. Proper multidisciplinary case deliberation and selection are key to success with ASD. Pre-operative airway modeling allows proper suture placement to optimally address the underlying airway collapse.
Collapse
Affiliation(s)
- Kaitlyn A Brooks
- Department of Otolaryngology- Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.
| | - Annie Y Lai
- Scheller College of Business, Georgia Institute of Technology, Atlanta, GA, USA; Pediatric Intensive Care Unit, Children's Healthcare of Atlanta - Egleston, Atlanta, GA, USA
| | - Sarah J Tucker
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harsha Ramaraju
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Adam Verga
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Subhadra Shashidharan
- Division of Cardiothoracic Surgery, Department of Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin O Maher
- Division of Cardiology, Pediatric Cardiology, Children's Healthcare of Atlanta Heart Center, Emory University School of Medicine Department of Pediatrics, Atlanta, GA, USA
| | - Dawn M Simon
- Division of Pulmonology, Pediatric Pulmonology, Children's Healthcare of Atlanta, Emory University School of Medicine Department of Pediatrics, Atlanta, GA, USA
| | - Scott J Hollister
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - April M Landry
- Department of Otolaryngology- Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven L Goudy
- Department of Otolaryngology- Head and Neck Surgery, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
9
|
He X, Lu J. Modeling planar response of vascular tissues using quadratic functions of effective strain. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3653. [PMID: 36164831 DOI: 10.1002/cnm.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/13/2022] [Accepted: 09/24/2022] [Indexed: 05/12/2023]
Abstract
Simulation-based studies of the cardiovascular structure such as aorta have become increasingly popular for many biomedical problems such as predictions of aneurysm rupture. A critical step in these simulations is the development of constitutive models that accurately describe the tissue's mechanical behavior. In this work, we present a new constitutive model, which explicitly accounts for the gradual recruitment of collagen fibers. The recruitment is considered using an effective stretch, which is a continuum-scale kinematic variable measuring the uncrimped stretch of the tissue in an average sense. The strain energy of a fiber bundle is described by a quadratic function of the effective strain. Constitutive models formulated in this manner are applied to describe the responses of ascending thoracic aortic aneurysm and porcine thoracic aorta tissues. The heterogeneous properties of the ATAA tissue are extracted from bulge inflation test data, and then used in finite element analysis to simulate the inflation test. The descriptive and predictive capabilities are further assessed using planar testing data of porcine thoracic aortic tissues. It is found that the constitutive model can accurately describe the stress-strain relations. In particular, the finite element simulation replicates the displacement, strain, and stress distributions with excellent fidelity.
Collapse
Affiliation(s)
- Xuehuan He
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| | - Jia Lu
- Department of Mechanical Engineering, The University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
10
|
Giudici A, Spronck B, Wilkinson IB, Khir AW. Tri-layered constitutive modelling unveils functional differences between the pig ascending and lower thoracic aorta. J Mech Behav Biomed Mater 2023; 141:105752. [PMID: 36893688 DOI: 10.1016/j.jmbbm.2023.105752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/05/2023]
Abstract
The arterial wall's tri-layered macroscopic and layer-specific microscopic structure determine its mechanical properties, which vary at different arterial locations. Combining layer-specific mechanical data and tri-layered modelling, this study aimed to characterise functional differences between the pig ascending (AA) and lower thoracic aorta (LTA). AA and LTA segments were obtained for n=9 pigs. For each location, circumferentially and axially oriented intact wall and isolated layer strips were tested uniaxially and the layer-specific mechanical response modelled using a hyperelastic strain energy function. Then, layer-specific constitutive relations and intact wall mechanical data were combined to develop a tri-layered model of an AA and LTA cylindrical vessel, accounting for the layer-specific residual stresses. AA and LTA behaviours were then characterised for in vivo pressure ranges while stretched axially to in vivo length. The media dominated the AA response, bearing>2/3 of the circumferential load both at physiological (100 mmHg) and hypertensive pressures (160 mmHg). The LTA media bore most of the circumferential load at physiological pressure only (57±7% at 100 mmHg), while adventitia and media load bearings were comparable at 160 mmHg. Furthermore, increased axial elongation affected the media/adventitia load-bearing only at the LTA. The pig AA and LTA presented strong functional differences, likely reflecting their different roles in the circulation. The media-dominated compliant and anisotropic AA stores large amounts of elastic energy in response to both circumferential and axial deformations, which maximises diastolic recoiling function. This function is reduced at the LTA, where the adventitia shields the artery against supra-physiological circumferential and axial loads.
Collapse
Affiliation(s)
- A Giudici
- Brunel Institute for Bioengineering, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom; Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands
| | - B Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 40, Maastricht, 6229 ER, the Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park, Sydney, NSW, 2109, Australia
| | - I B Wilkinson
- Division of Experimental Medicine and Immunotherapeutics, University of Cambridge, Hills Road, Cambridge, CB2 0QO, United Kingdom
| | - A W Khir
- Brunel Institute for Bioengineering, Brunel University London, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom; Department of Engineering, Durham University, Durham, DH1 3LE, United Kingdom.
| |
Collapse
|
11
|
Dwivedi KK, Lakhani P, Yadav A, Kumar S, Kumar N. Location specific multi-scale characterization and constitutive modeling of pig aorta. J Mech Behav Biomed Mater 2023; 142:105809. [PMID: 37116311 DOI: 10.1016/j.jmbbm.2023.105809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/03/2023]
Abstract
The mechanical and structural behavior of the aorta depend on physiological functions and vary from proximal to distal. Understanding the relation between regionally varying mechanical and multi-scale structural response of aorta can be helpful to assess the disease outcomes. Therefore, this study investigated the variation in mechanical and multi-scale structural properties among the major segments of aorta such as ascending aorta (AA), descending aorta (DA) and abdominal aorta (ABA), and established a relation between mechanical and multi-structural parameters. The obtained results showed significant increase in anisotropy and nonlinearity from proximal to distal aorta. The change in periphery length and radii between load and stress free configuration was also found increasing far from the heart. Opening angle was significantly large for ABA than AA and DA (AA/DA vs ABA; p = 0.001). Mean circumferential residual stretch (ratio of mean periphery length at load and stress free configurations) was found decreasing between AA and DA, and then increasing between DA to ABA and its value was significantly more for ABA (AA vs DA; p = 0.041, AA vs ABA; p = 0.001, DA vs ABA; p = 0.001). The waviness of collagen fibers, collagen fiber content, collagen fibril diameter and total protein content were found significantly increasing from proximal to distal. Pearson correlation test showed a significant linear correlation between variation in mechanical and multi-scale structural parameters over the aortic length. Residual stretch was found positively correlated with collagen fiber content (r = 0.82) whereas opening angel was found positively correlated with total protein content (TPC) (r = 0.76).
Collapse
Affiliation(s)
| | | | - Ashu Yadav
- Department of Automobile Engineering, Manipal University Jaipur, Jaipur, India
| | - Sachin Kumar
- Department of Mechanical Engineering, IIT Ropar, India.
| | - Navin Kumar
- Department of Biomedical Engineering, IIT Ropar, India; Department of Mechanical Engineering, IIT Ropar, India.
| |
Collapse
|
12
|
Johnston RD, Ghasemi M, Lally C. Inverse material parameter estimation of patient-specific finite element models at the carotid bifurcation: The impact of excluding the zero-pressure configuration and residual stress. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2023; 39:e3663. [PMID: 36443952 PMCID: PMC10078390 DOI: 10.1002/cnm.3663] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 09/17/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The carotid bifurcation experiences a complex loading environment due to its anatomical structure. Previous in-vivo material parameter estimation methods often use simplified model geometries, isotropic hyperelastic constitutive equations or neglect key aspects of the vessel, such as the zero-pressure configuration or residual stress, all of which have independently been shown to alter the stress environment of the vessel wall. Characterizing the location of high stress in the vessel wall has often been proposed as a potential indicator of structural weakness. However, excluding the afore-mentioned zero-pressure configuration, residual stress and patient-specific material parameters can lead to an incorrect estimation of the true stress values observed, meaning that stress alone as a risk indicator of rupture is insufficient. In this study, we investigate how the estimated material parameters and overall stress distributions in geometries of carotid bifurcations, extracted from in-vivo MR images, alter with the inclusion of the zero-pressure configuration and residual stress. This approach consists of the following steps: (1) geometry segmentation and hexahedral meshing from in-vivo magnetic resonance images (MRI) at two known phases; (2) computation of the zero-pressure configuration and the associated residual stresses; (3) minimization of an objective function built on the difference between the stress states of an "almost true" stress field at two known phases and a "deformed" stress field by altering the input material parameters to determine patient-specific material properties; and (4) comparison of the stress distributions throughout these carotid bifurcations for all cases with estimated material parameters. This numerical approach provides insights into the need for estimation of both the zero-pressure configuration and residual stress for accurate material property estimation and stress analysis for the carotid bifurcation, establishing the reliability of stress as a rupture risk metric.
Collapse
Affiliation(s)
- Robert D. Johnston
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Milad Ghasemi
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical EngineeringTrinity College DublinDublin 2Ireland
- Department of Mechanical, Manufacturing and Biomedical EngineeringSchool of Engineering, Trinity College DublinDublin 2Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER)Royal College of Surgeons in Ireland, Trinity College DublinDublinIreland
| |
Collapse
|
13
|
Hejazi M, Phani AS. On growth, buckling, and rupture of aneurysms in cylindrical tubes. J Biomech 2022; 144:111313. [DOI: 10.1016/j.jbiomech.2022.111313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 07/20/2022] [Accepted: 09/18/2022] [Indexed: 11/29/2022]
|
14
|
Corti A, Shameen T, Sharma S, De Paolis A, Cardoso L. Tunable elastomer materials with vascular tissue-like rupture mechanics behavior. Biomed Phys Eng Express 2022; 8. [PMID: 35863160 DOI: 10.1088/2057-1976/ac82f6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Purpose:Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature.Methods:We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson's ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250mmHg.Results:Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains (µ184=0.52-0.88MPa, σ184=15.90-16.54MPa, ε184=0.72-0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues (µ170=0.33-0.7MPa σ170=2.61-3.67MPa, ε170=0.69-0.81; µdow=0.02-0.09MPa σdow=0.83-2.05MPa, εdow=0.91-1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18MPa. Conclusion: Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al. 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading.
Collapse
Affiliation(s)
- Andrea Corti
- The City College of New York, 275 Convent Ave, New York, New York, 10031-9101, UNITED STATES
| | - Tariq Shameen
- The City College of New York, 275 Convent Ave, New York, New York, 10031-9101, UNITED STATES
| | - Shivang Sharma
- The City College of New York, 275 Convent Ave, New York, New York, 10031-9101, UNITED STATES
| | - Annalisa De Paolis
- The City College of New York, 275 Convent Ave, New York, New York, 10031-9101, UNITED STATES
| | - Luis Cardoso
- Biomedical Engineering, The City College of New York, 275 Convent Ave, New York, New York, New York, 10031-9101, UNITED STATES
| |
Collapse
|
15
|
Jakka VVSV, Bursa J. Impact of physiological loads of arterial wall on nucleus deformation in endothelial cells: A computational study. Comput Biol Med 2022; 143:105266. [PMID: 35092882 DOI: 10.1016/j.compbiomed.2022.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Computational modeling can enhance the understanding of cell mechanics. To achieve this, finite element models of endothelial cells were proposed with shapes mimicking their natural state inside the endothelium within the cardiovascular system. Implementing the recently proposed bendo-tensegrity concept, these models consider flexural (buckling) as well as tensional/compressional behavior of microtubules and also incorporate the waviness of intermediate filaments. MATERIALS AND METHODS Four different models were created (flat and domed hexagons, both regular and elongated in the direction of blood flow) and loaded by biaxial deformation, blood pressure, and shear load from blood flow - natural physiological conditions of the arterial endothelium - aiming to investigate the "in situ" mechanical response of the cell. RESULTS The impact of individual components of loads on the nucleus deformation (more specifically on the first principal strain) potentially influencing mechanotransduction was investigated and the role of the cytoskeleton and its constituents in the mechanical response of the endothelial cell was assessed. The results show (i) the impact of pulsating blood pressure on cyclic deformations of the nucleus, which increase substantially with decreasing axial pre-stretch of the cell, (ii) the importance of relatively low shear stresses in the cell response and nucleus deformation. CONCLUSION Not only the pulsatile blood pressure but also the wall shear stress may induce significant deformation of the nucleus and thus trigger remodelation processes in endothelial cells.
Collapse
Affiliation(s)
- Veera Venkata Satya Varaprasad Jakka
- Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Faculty of Mechanical Engineering (FME), Brno University of Technology (BUT), Technicka 2896/2, 61669, Brno, Czech Republic.
| | - Jiri Bursa
- Institute of Solid Mechanics, Mechatronics and Biomechanics (ISMMB), Faculty of Mechanical Engineering (FME), Brno University of Technology (BUT), Technicka 2896/2, 61669, Brno, Czech Republic
| |
Collapse
|
16
|
Zhang W, Sommer G, Niestrawska JA, Holzapfel GA, Nordsletten D. The effects of viscoelasticity on residual strain in aortic soft tissues. Acta Biomater 2022; 140:398-411. [PMID: 34823042 DOI: 10.1016/j.actbio.2021.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022]
Abstract
Residual stress is thought to play a critical role in modulating stress distributions in soft biological tissues and in maintaining the mechanobiological stress environment of cells. Residual stresses in arteries and other tissues are classically assessed through opening angle experiments, which demonstrate the continuous release of residual stresses over hours. These results are then assessed through nonlinear biomechanical models to provide estimates of the residual stresses in the intact state. Although well studied, these analyses typically focus on hyperelastic material models despite significant evidence of viscoelastic phenomena over both short and long timescales. In this work, we extended the state-of-the-art structural tensor model for arterial tissues from Holzapfel and Ogden for fractional viscoelasticity. Models were tuned to capture consistent levels of hysteresis observed in biaxial experiments, while also minimizing the fractional viscoelastic weighting and opening angles to correctly capture opening angle dynamics. Results suggest that a substantial portion of the human abdominal aorta is viscoelastic, but exhibits a low fractional order (i.e. more elastically). Additionally, a significantly larger opening angle in the fully unloaded state is necessary to produce comparable hysteresis in biaxial testing. As a consequence, conventional estimates of residual stress using hyperelastic approaches over-estimate their viscoelastic counterparts by a factor of 2. Thus, a viscoelastic approach, such as the one illustrated in this study, in combination with an additional source of rate-controlled viscoelastic data is necessary to accurately analyze the residual stress distribution in soft biological tissues. STATEMENT OF SIGNIFICANCE: Residual stress plays a crucial role in achieving a homeostatic stress environment in soft biological tissues. However, the analysis of residual stress typically focuses on hyperelastic material models despite evidence of viscoelastic behavior. This work is the first attempt at analyzing the effects of viscoelasticity on residual stress. The application of viscoelasticity was crucial for producing realistic opening dynamics in arteries. The overall residual stresses were estimated to be 50% less than those from using hyperelastic material models, while the opening angles were projected to be 25% more than those measured after 16 hours, suggesting underestimated residual strain. This study highlights the importance viscoelasticity in the analysis of residual stress even in weakly dissipative materials like the human aorta.
Collapse
Affiliation(s)
- Will Zhang
- Department of Biomedical Engineering, University of Michigan, North Campus Research Center, Building 20, 2800 Plymouth Rd, Ann Arbor 48109, USA.
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, AT, Austria
| | - Justyna A Niestrawska
- Gottfried Schatz Research Center, Division of Macroscopic and Clinical Anatomy, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, AT, Austria; Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim, NO, Norway
| | - David Nordsletten
- Division of Biomedical Engineering and Imaging Sciences, Department of Biomedical Engineering, King's College London, UK; Departments of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, USA
| |
Collapse
|
17
|
Athaide CE, Spronck B, Au JS. Physiological basis for longitudinal motion of the arterial wall. Am J Physiol Heart Circ Physiol 2022; 322:H689-H701. [PMID: 35213244 DOI: 10.1152/ajpheart.00567.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As opposed to arterial distension in the radial plane, longitudinal wall motion (LWM) is a multiphasic and bidirectional displacement of the arterial wall in the anterograde (i.e., in the direction of blood flow) and retrograde (i.e., opposing direction of blood flow) directions. While initially disregarded as imaging artifact, LWM has been consistently reported in ultrasound investigations in the last decade and is reproducible beat-to-beat, albeit with large inter-individual variability across healthy and diseased populations. Emerging literature has sought to examine the mechanistic control of LWM to explain the shape and variability of the motion pattern but lacks considerations for key foundational vascular principles at the level of the arterial wall ultrastructure. The purpose of this review is to summarize the potential factors that underpin the causes and control of arterial LWM, spanning considerations from the arterial extracellular matrix to systems-level integrative theories. First, an overview of LWM and relevant aspects wall composition will be discussed, including major features of the multiphasic pattern, arterial wall extracellular components, tunica fiber orientations, and arterial longitudinal pre-stretch. Second, current theories on the systems-level physiological mechanisms driving LWM will be discussed in the context of available evidence including experimental human research, porcine studies, and mathematical models. Throughout, we discuss implications of these observations with suggestions for future priority research areas.
Collapse
Affiliation(s)
- Chloe E Athaide
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Bart Spronck
- Department of Biomedical Engineering, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Jason S Au
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
18
|
Ghadie NM, St-Pierre JP, Labrosse MR. Intramural Distributions of GAGs and Collagen vs. Opening Angle of the Intact Porcine Aortic Wall. Ann Biomed Eng 2022; 50:157-168. [PMID: 35028784 DOI: 10.1007/s10439-022-02901-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/01/2022] [Indexed: 11/28/2022]
Abstract
The heterogeneity and contribution of collagen and elastin to residual stresses have been thoroughly studied, but more recently, glycosaminoglycans (GAGs) also emerged as potential regulators. In this study, the opening angle of aortic rings (an indicator of circumferential residual stresses) and the mural distributions of sulfated GAGs (sGAG), collagen, and elastin were quantified in the ascending, aortic arch and descending thoracic regions of 5- to 6-month-old pigs. The opening angle correlated positively with the aortic ring's mean radius and thickness, with good and moderate correlations respectively. The correlations between the sGAG, collagen, elastin, and collagen:sGAG ratio and the opening angle were evaluated to identify aortic compositional factors that could play roles in regulating circumferential residual stresses. The total collagen:sGAG ratio displayed the strongest correlation with the opening angle (r = - 0.715, p < 0.001), followed by the total sGAG content which demonstrated a good correlation (r = 0.623, p < 0.001). Additionally, the intramural gradients of collagen, sGAG and collagen:sGAG correlated moderately with the opening angle. We propose that, in addition to the individual role sGAG play through their content and intramural gradient, the interaction between collagen and sGAG should be considered when evaluating circumferential residual stresses in the aorta.
Collapse
Affiliation(s)
- Noor M Ghadie
- Mechanical Engineering Department, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| | - Jean-Philippe St-Pierre
- Chemical and Biological Engineering Department, University of Ottawa, Ottawa, ON, K1N6N5, Canada
| | - Michel R Labrosse
- Mechanical Engineering Department, University of Ottawa, Ottawa, ON, K1N6N5, Canada. .,Department of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, K1Y4W7, Canada.
| |
Collapse
|
19
|
Peña JA, Cilla M, Martínez MA, Peña E. Biomechanical characterization and constitutive modeling of the layer-dissected residual strains and mechanical properties of abdominal porcine aorta. J Biomech 2022; 132:110909. [PMID: 35032837 DOI: 10.1016/j.jbiomech.2021.110909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 10/19/2022]
Abstract
We analyze the residual stresses and mechanical properties of layer-dissected infrarenal abdominal aorta (IAA). We measured the axial pre-stretch and opening angle and performed uniaxial tests to study and compare the mechanical behavior of both intact and layer-dissected porcine IAA samples under physiological loads. Finally, some of the most popular anisotropic hyperelastic constitutive models (GOH and microfiber models) were proposed to estimate the mechanical properties of the abdominal aorta by least-square fitting of the recorded in-vitro uniaxial test results. The results show that the residual stresses are layer dependent. In all cases, we found that the OA in the media layer is lower than in the whole artery, the intima and the adventitia. For the axial pre-stretch, we found that the adventitia and the media were slightly stretched in the environment of the intact arterial strip, whereas the intima appears to be compressed. Regarding the mechanical properties, the media seems to be the softest layer over the whole deformation domain showing high anisotropy, while the intima and adventitia exhibit considerable stiffness and a lower anisotropy response. Finally, all the hyperelastic anisotropic models considered in this study provided a reasonable approximation of the experimental data. The GOH model showed the best fitting.
Collapse
Affiliation(s)
- Juan A Peña
- Department of Management and Manufacturing Engineering, Faculty of Engineering and Architecture, University of Zaragoza, Spain; Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
| | - M Cilla
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Miguel A Martínez
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; Department of Mechanical Engineering, University of Zaragoza, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
20
|
Genovese K, Badel P, Cavinato C, Pierrat B, Bersi M, Avril S, Humphrey J. Multi-view digital image correlation systems for in vitro testing of arteries from mice to humans. EXPERIMENTAL MECHANICS 2021; 61:1455-1472. [PMID: 35370297 PMCID: PMC8972080 DOI: 10.1007/s11340-021-00746-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/08/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Digital image correlation (DIC) methods are increasingly used for non-contact optical assessment of geometry and deformation in soft tissue biomechanics, thus providing the full-field strain estimates needed for robust inverse material characterization. Despite the well-known flexibility and ease of use of DIC, issues related to spatial resolution and depth-of-field remain challenging in studies of quasi-cylindrical biological samples such as arteries. OBJECTIVE After demonstrating that standard surrounding multi-view DIC systems are inappropriate for such usage, we submit that both the optical setup and the data analysis need to be specifically designed with respect to the size of the arterial sample of interest. Accordingly, we propose novel and optimized DIC systems for two distinct ranges of arterial diameters: less than 2.5 mm (murine arteries) and greater than 10 mm (human arteries). METHODS We designed, set up, and validated a four-camera panoramic-DIC system for testing murine arteries and a multi-biprism DIC system for testing human arteries. Both systems enable dynamic 360-deg measurements with refraction correction over the entire surface of submerged samples in their native geometries. RESULTS Illustrative results for 3D shape and full-surface deformation fields were obtained for a mouse infrarenal aorta and a latex cylinder of size similar to the human infrarenal aorta. CONCLUSION Results demonstrated the feasibility and accuracy of both proposed methods in providing quantitative information on the regional behavior of arterial samples tested in vitro under physiologically relevant loading.
Collapse
Affiliation(s)
- K. Genovese
- School of Engineering, University of Basilicata, Italy
| | - P. Badel
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - C. Cavinato
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - B. Pierrat
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - M.R. Bersi
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, MO, USA
| | - S. Avril
- Mines Saint-Etienne, Univ. Lyon, Univ. Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, Saint-Etienne, France
| | - J.D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| |
Collapse
|
21
|
Ghasemi M, Johnston RD, Lally C. Development of a Collagen Fibre Remodelling Rupture Risk Metric for Potentially Vulnerable Carotid Artery Atherosclerotic Plaques. Front Physiol 2021; 12:718470. [PMID: 34776999 PMCID: PMC8586512 DOI: 10.3389/fphys.2021.718470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022] Open
Abstract
Atherosclerotic plaque rupture in carotid arteries can lead to stroke which is one of the leading causes of death or disability worldwide. The accumulation of atherosclerotic plaque in an artery changes the mechanical properties of the vessel. Whilst healthy arteries can continuously adapt to mechanical loads by remodelling their internal structure, particularly the load-bearing collagen fibres, diseased vessels may have limited remodelling capabilities. In this study, a local stress modulated remodelling algorithm is proposed to explore the mechanical response of arterial tissue to the remodelling of collagen fibres. This stress driven remodelling algorithm is used to predict the optimum distribution of fibres in healthy and diseased human carotid bifurcations obtained using Magnetic Resonance Imaging (MRI). In the models, healthy geometries were segmented into two layers: media and adventitia and diseased into four components: adventitia, media, plaque atheroma and lipid pool (when present in the MRI images). A novel meshing technique for hexahedral meshing of these geometries is also demonstrated. Using the remodelling algorithm, the optimum fibre patterns in various patient specific plaques are identified and the role that deviations from these fibre configurations in plaque vulnerability is shown. This study provides critical insights into the collagen fibre patterns required in carotid artery and plaque tissue to maintain plaque stability.
Collapse
Affiliation(s)
- Milad Ghasemi
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Robert D. Johnston
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin, Ireland
- Department of Mechanical, Manufacturing and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
22
|
Stretch and stress distributions in the human artery based on two-layer model considering residual stresses. Biomech Model Mechanobiol 2021; 21:135-146. [PMID: 34622379 DOI: 10.1007/s10237-021-01523-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
The objective is to know the stress distributions in the arterial walls under residual stresses based on two-layer model. Human common carotid arteries were analysed to show stress distributions at physiological and supraphysiological intraluminal pressures. The analyses for the loaded states were performed with stretch ratios with reference to a Riemannian stress-free configuration which is a 3D non-Euclidean manifold due to the nonzero Riemann curvature tensor. The experimental data obtained by other literature were used for the common carotid arteries to analyse the stretch and stress distributions in the arterial wall although kinematics is different from the literature. The stretches and stresses were calculated for the unloaded state, i.e. the residual stretches and stresses. And those at the axial stretch ratio 1.1 with reference to the unloaded state were calculated at the intraluminal pressures 16, 50, and 100 kPa. The stresses increased from the inner surface to the outer surface at all pressures analysed. These results suggest that in the human arteries the mechanical loads are mainly supported with the adventitia even though the media and intima play an important role to control of physiological functions.
Collapse
|
23
|
Coccarelli A, Carson JM, Aggarwal A, Pant S. A framework for incorporating 3D hyperelastic vascular wall models in 1D blood flow simulations. Biomech Model Mechanobiol 2021; 20:1231-1249. [PMID: 33683514 PMCID: PMC8298378 DOI: 10.1007/s10237-021-01437-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 02/12/2021] [Indexed: 12/02/2022]
Abstract
We present a novel framework for investigating the role of vascular structure on arterial haemodynamics in large vessels, with a special focus on the human common carotid artery (CCA). The analysis is carried out by adopting a three-dimensional (3D) derived, fibre-reinforced, hyperelastic structural model, which is coupled with an axisymmetric, reduced order model describing blood flow. The vessel transmural pressure and lumen area are related via a Holzapfel-Ogden type of law, and the residual stresses along the thickness and length of the vessel are also accounted for. After a structural characterization of the adopted hyperelastic model, we investigate the link underlying the vascular wall response and blood-flow dynamics by comparing the proposed framework results against a popular tube law. The comparison shows that the behaviour of the model can be captured by the simpler linear surrogate only if a representative value of compliance is applied. Sobol's multi-variable sensitivity analysis is then carried out in order to identify the extent to which the structural parameters have an impact on the CCA haemodynamics. In this case, the local pulse wave velocity (PWV) is used as index for representing the arterial transmission capacity of blood pressure waveforms. The sensitivity analysis suggests that some geometrical factors, such as the stress-free inner radius and opening angle, play a major role on the system's haemodynamics. Subsequently, we quantified the differences in haemodynamic variables obtained from different virtual CCAs, tube laws and flow conditions. Although each artery presents a distinct vascular response, the differences obtained across different flow regimes are not significant. As expected, the linear tube law is unable to accurately capture all the haemodynamic features characterizing the current model. The findings from the sensitivity analysis are further confirmed by investigating the axial stretching effect on the CCA fluid dynamics. This factor does not seem to alter the pressure and flow waveforms. On the contrary, it is shown that, for an axially stretched vessel, the vascular wall exhibits an attenuation in absolute distension and an increase in circumferential stress, corroborating the findings of previous studies. This analysis shows that the new model offers a good balance between computational complexity and physics captured, making it an ideal framework for studies aiming to investigate the profound link between vascular mechanobiology and blood flow.
Collapse
Affiliation(s)
- Alberto Coccarelli
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK.
| | - Jason M Carson
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
- Data Science Building, Swansea University Medical School, Swansea University, Swansea, UK
- HDR-UK Wales and Northern Ireland, Health Data Research UK, London, UK
| | - Ankush Aggarwal
- Glasgow Computational Engineering Centre, James Watt School of Engineering, University of Glasgow, Glasgow, UK
| | - Sanjay Pant
- Zienkiewicz Centre for Computational Engineering, College of Engineering, Swansea University, Swansea, UK
| |
Collapse
|
24
|
Mishani S, Belhoul-Fakir H, Lagat C, Jansen S, Evans B, Lawrence-Brown M. Stress distribution in the walls of major arteries: implications for atherogenesis. Quant Imaging Med Surg 2021; 11:3494-3505. [PMID: 34341726 DOI: 10.21037/qims-20-614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 03/19/2021] [Indexed: 11/06/2022]
Abstract
Background There is a correlation between the sites of atheroma development and stress points in the arterial system. Generally, pulse pressure results in stresses acting on the vascular vessel, including longitudinal stress, radial or normal stress, tangential stress or hoop stress and shear stress. This paper explores the relationship between arterial wall shear stress and pulsatile blood pressure with the aim of furthering the understanding of atherogenesis and plaque progression. Methods We computed the magnitude of the shear stresses within the carotid bifurcation geometry of a patient and calculated the increase in shear stress levels that would occur when the blood pressure and pulse pressures rise during exertion. We also determined in which layer of the artery wall the maximum shear stress is located, and computed the shear stress at different levels within the media. We used the theory of laminate analysis, (Classical Laminate Plate Theory), to analyse the stress distribution on the carotid artery wall. Computational Fluid Dynamics (CFD) analysis was used on anatomy based on a CT angiogram of the carotid bifurcation of a patient with a 90% stenosis on the right side and 10% on the left. The pulsatile non-Newtonian blood flow with a resting blood pressure of 120/80 mmHg and an exertion pressure of 200/100 mmHg was simulated and the resultant forces were transferred to an ANSYS Composite PrepPost (ACP) model for wall shear stress analysis. A multilayer elastic, anisotropic, and inhomogeneous arterial wall (intima, internal elastic lamina, media, external elastic lamina, and adventitial layers) was modelled and the shear stress magnitudes and change over time between the layers was calculated. Results Shear stress in the individual composite layers is far greater than that acting on the endothelium (less than 5 Pa). At rest, the maximum variation of shear stress in the arterial wall occurs in the intima (138 Pa) and adventitia (135 Pa). The medial layer has the lowest variation of shear stress. Under severe exertion, the maximum shear stress magnitude in the intimal layer and the adjacent medial layer is near the ultimate stress level. The maximum/minimum shear stress ratios during the cardiac cycle vary most widely in the innermost part of the media, adjacent to the intima, with a four-fold ratio increase. This compares with a less than two-fold increase in all the other layers including the intima and adventitia, making the inner media the most vulnerable layer to mechanical injury. Conclusions This study showed that the magnitude of exertion-induced shear stress approaches the ultimate stress limit in the intima and the immediate adjacent medial layer. The variation in stress is maximal in the inner layer of the media. These findings correlate the site of atheroma development with the most vulnerable site for injury in the media and emphasise the impact of pulse pressure. Further biological studies are required to ascertain whether this leads to injury that initiates atheroma that then precipitates an injury/healing cycle.
Collapse
Affiliation(s)
- Siamak Mishani
- WA School of Mines: MECE, Faculty of Science & Engineering, Curtin University, Kensington, WA, Australia
| | - Hanane Belhoul-Fakir
- School of Public Health, Faculty of Health Sciences, Curtin University, Nedlands, WA, Australia
| | - Chris Lagat
- WA School of Mines: MECE, Faculty of Science & Engineering, Curtin University, Kensington, WA, Australia
| | - Shirley Jansen
- Vascular Surgery Curtin Medical School, Curtin University, Perth, WA, Australia.,Department of Vascular and Endovascular Surgery, Sir Charles Gairdner Hospital, Perth, WA, Australia.,Heart and Vascular Research Institute, Harry Perkins Institute for Medical Research, Perth, WA, Australia.,University of Western Australia, Crawley, WA, Australia
| | - Brian Evans
- WA School of Mines: MECE, Faculty of Science & Engineering, Curtin University, Kensington, WA, Australia
| | - Michael Lawrence-Brown
- School of Public Health, Faculty of Health Sciences, Curtin University, Nedlands, WA, Australia
| |
Collapse
|
25
|
Feng Y, Wang X, Zhao Y, Li L, Niu P, Huang Y, Han Y, Tan W, Huo Y. A comparison of passive and active wall mechanics between elastic and muscular arteries of juvenile and adult rats. J Biomech 2021; 126:110642. [PMID: 34325121 DOI: 10.1016/j.jbiomech.2021.110642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
The elastic abdominal aorta and muscular femoral artery are susceptible to aneurysm and atherosclerosis, respectively. The vessel wall mechanics should be an important element for the difference. The objective of the study is to demonstrate a comparison of vessel wall mechanics between elastic and muscular arteries of juvenile and adult rats to show the changes of mechanical properties relevant to aging. The passive and active mechanical tests, theoretical analysis, and histological evaluation were carried out to investigate mechanical properties of vessel walls in the abdominal aorta and carotid and femoral arteries of young and adult rats. There are stiffening femoral artery, unchanged carotid artery, and distensible abdominal aorta in adult rats as compared with the young. The opening angle has values of 54 ± 13°, 82 ± 13°, and 94 ± 13° in the abdominal aorta and carotid and femoral arteries of adult rats, respectively, as well as 80 ± 22°, 93 ± 19°, and 100 ± 23° in the young. The findings are explained by the significantly reduced width of collagen fibers in the abdominal aorta, relatively unchanged width in the carotid artery, and significantly increased width in the femoral artery of adult rats as compared with the young. In conjunction with available literatures, we concluded that inconsistency for nonlinear age-related changes of artery wall mechanics occurs between arteries of different types, which may be a risk factor for the occurrence of abdominal aorta aneurysm and femoral artery atherosclerosis.
Collapse
Affiliation(s)
- Yundi Feng
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Xuan Wang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yiyang Zhao
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Li Li
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Pei Niu
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China
| | - Yufan Huang
- College of Medicine, Hebei University, Baoding, China
| | - Yue Han
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Wenchang Tan
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, China; Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yunlong Huo
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
26
|
Hernández-López P, Cilla M, Martínez M, Peña E. Effects of the Haemodynamic Stimulus on the Location of Carotid Plaques Based on a Patient-Specific Mechanobiological Plaque Atheroma Formation Model. Front Bioeng Biotechnol 2021; 9:690685. [PMID: 34195181 PMCID: PMC8236601 DOI: 10.3389/fbioe.2021.690685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
In this work, we propose a mechanobiological atheroma growth model modulated by a new haemodynamic stimulus. To test this model, we analyse the development of atheroma plaques in patient-specific bifurcations of carotid arteries for a total time of 30 years. In particular, eight geometries (left or right carotid arteries) were segmented from clinical images and compared with the solutions obtained computationally to validate the model. The influence of some haemodynamical stimuli on the location and size of plaques is also studied. Plaques predicted by the mechanobiological models using the time average wall shear stress (TAWSS), the oscillatory shear index (OSI) and a new index proposed in this work are compared. The new index predicts the shape index of the endothelial cells as a combination of TAWSS and OSI values and was fitted using data from the literature. The mechanobiological model represents an evolution of the one previously proposed by the authors. This model uses Navier-Stokes equations to simulate blood flow along the lumen in the transient mode. It also employs Darcy's law and Kedem-Katchalsky equations for plasma and substance flow across the endothelium using the three-pore model. The mass balances of all the substances that have been considered in the model are implemented by convection-diffusion-reaction equations, and finally the growth of the plaques has been computed. The results show that by using the new mechanical stimulus proposed in this study, prediction of plaques is, in most cases, better than only using TAWSS or OSI with a minimal and maximal errors on stenosis ratio of 2.77 and 32.89 %, respectively. However, there are a few geometries in which haemodynamics cannot predict the location of plaques, and other biological or genetic factors would be more relevant than haemodynamics. In particular, the model predicts correctly eleven of the fourteen plaques presented in all the geometries considered. Additionally, a healthy geometry has been computed to check that plaque is not developed with the model in this case.
Collapse
Affiliation(s)
| | - Myriam Cilla
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Centro Universitario de la Defensa, Academia General Militar, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Miguel Martínez
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicina (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|
27
|
Carlini NA, Harber MP, Fleenor BS. Age-related carotid extra-media thickening is associated with increased blood pressure and arterial stiffness. Clin Physiol Funct Imaging 2021; 41:461-466. [PMID: 34051051 DOI: 10.1111/cpf.12705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 12/01/2022]
Abstract
Ageing results in higher blood pressure and arterial stiffening leading to increased cardiovascular disease (CVD) risk. The extra-media thickness (EMT) is a composite measure of the arterial adventitia, perivascular adipose tissue (PVAT) and the jugular vein, but the association among EMT and ageing, blood pressure and arterial stiffness is largely unknown. We hypothesized that EMT is associated with ageing, blood pressure and arterial stiffness. Fifty (18M/32F, age range 20-79 years.) individuals underwent measures of EMT (media-adventitia border to jugular lumen interface) via ultrasonography, blood pressure (brachial; carotid), arterial stiffness (carotid beta-stiffness, distensibility and Young's modulus) and body composition (dual X-ray absorptiometry). Independent two-tailed t-tests compared characteristics between young and middle-aged/older adults (MA/O). Bivariate correlations assessed the relation between EMT, ageing, blood pressure and arterial stiffness endpoints. Partial correlations were used to adjust for age, sex, body mass index (BMI) and body fat percentage. Compared to young, MA/O adults had higher EMT, blood pressure, arterial stiffness, BMI and BF% (all, p ≤ 0.05). Carotid EMT was positively correlated with age (r = 0.46), brachial SBP (r = 0.32), carotid SBP (r = 0.42), PP (r = 0.42), beta-stiffness (r = 0.37) and Young's elastic modulus (r = 0.43) (all, p ≤ 0.05), and negatively correlated with carotid distensibility (r = -0.34, p ≤ 0.05). All endpoints correlated with EMT remained after adjusting for BMI, BF% and sex (p ≤ 0.05). These data suggest EMT is a clinically relevant target that may be associated with age-related CVD risk in humans, yet further investigation is required to elucidate the role of EMT in age-related increases in blood pressure and arterial stiffness.
Collapse
Affiliation(s)
- Nicholas A Carlini
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Matthew P Harber
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, IN, USA
| | - Bradley S Fleenor
- Clinical Exercise Physiology, Human Performance Laboratory, Ball State University, Muncie, IN, USA
| |
Collapse
|
28
|
Wang Y, Gharahi H, Grobbel MR, Rao A, Roccabianca S, Baek S. Potential damage in pulmonary arterial hypertension: An experimental study of pressure-induced damage of pulmonary artery. J Biomed Mater Res A 2021; 109:579-589. [PMID: 32589778 DOI: 10.1002/jbm.a.37042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 05/11/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Pulmonary arterial hypertension (PAH) is associated with elevated pulmonary arterial pressure. PAH prognosis remains poor with a 15% mortality rate within 1 year, even with modern clinical management. Previous clinical studies proposed wall shear stress (WSS) to be an important hemodynamic factor affecting cell mechanotransduction, growth and remodeling, and disease progress in PAH. However, WSS in vivo is typically at most 2.5 Pa and a doubt has been cast whether WSS alone can drive disease progress. Furthermore, our current understanding of PAH pathology largely comes from small animals' studies in which caliber enlargement, a hallmark of PAH in humans, is rarely reported. Therefore, a large-animal experiment on pulmonary arteries (PAs) is needed to validate whether increased pressure can induce enlargement of PAs caliber. In this study, we use an inflation testing device to characterize the mechanical behavior, both nonlinear elastic behavior and irreversible damage of porcine arteries. The parameters of elastic behavior are estimated from the inflation test at a low-pressure range before and after over-pressurization. Then, histological images are qualitatively examined for medial and adventitial layers. This study sheds light on the relevance of pressure-induced damage mechanism in human PAH.
Collapse
Affiliation(s)
- Yuheng Wang
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Hamidreza Gharahi
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Marissa R Grobbel
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Akshay Rao
- Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA
| | - Sara Roccabianca
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Seungik Baek
- Department of Mechanical Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
29
|
Jadidi M, Razian SA, Anttila E, Doan T, Adamson J, Pipinos M, Kamenskiy A. Comparison of morphometric, structural, mechanical, and physiologic characteristics of human superficial femoral and popliteal arteries. Acta Biomater 2021; 121:431-443. [PMID: 33227490 PMCID: PMC7855696 DOI: 10.1016/j.actbio.2020.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023]
Abstract
Peripheral arterial disease differentially affects the superficial femoral (SFA) and the popliteal (PA) arteries, but their morphometric, structural, mechanical, and physiologic differences are poorly understood. SFAs and PAs from 125 human subjects (age 13-92, average 52±17 years) were compared in terms of radii, wall thickness, and opening angles. Structure and vascular disease were quantified using histology, mechanical properties were determined with planar biaxial extension, and constitutive modeling was used to calculate the physiologic stress-stretch state, elastic energy, and the circumferential physiologic stiffness. SFAs had larger radii than PAs, and both segments widened with age. Young SFAs were 5% thicker, but in old subjects the PAs were thicker. Circumferential (SFA: 96→193°, PA: 105→139°) and longitudinal (SFA: 139→306°, PA: 133→320°) opening angles increased with age in both segments. PAs were more diseased than SFAs and had 11% thicker intima. With age, intimal thickness increased 8.5-fold, but medial thickness remained unchanged (620μm) in both arteries. SFAs had 30% more elastin than the PAs, and its density decreased ~50% with age. SFAs were more compliant than PAs circumferentially, but there was no difference longitudinally. Physiologic circumferential stress and stiffness were 21% and 11% higher in the SFA than in the PA across all ages. The stored elastic energy decreased with age (SFA: 1.4→0.4kPa, PA: 2.5→0.3kPa). While the SFA and PA demonstrate appreciable differences, most of them are due to vascular disease. When pathology is the same, so are the mechanical properties, but not the physiologic characteristics that remain distinct due to geometrical differences.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sayed Ahmadreza Razian
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tyler Doan
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Josiah Adamson
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Margarita Pipinos
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, Biomechanics Research Building, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
30
|
Jadidi M, Sherifova S, Sommer G, Kamenskiy A, Holzapfel GA. Constitutive modeling using structural information on collagen fiber direction and dispersion in human superficial femoral artery specimens of different ages. Acta Biomater 2021; 121:461-474. [PMID: 33279711 PMCID: PMC8464405 DOI: 10.1016/j.actbio.2020.11.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 12/29/2022]
Abstract
Arterial mechanics plays an important role in vascular pathophysiology and repair, and advanced imaging can inform constitutive models of vascular behavior. We have measured the mechanical properties of 14 human superficial femoral arteries (SFAs) (age 12-70, mean 48±19 years) using planar biaxial extension, and determined the preferred collagen fiber direction and dispersion using multiphoton microscopy. The collagen fiber direction and dispersion were evaluated using second-harmonic generation imaging and modeled using bivariate von Mises distributions. The microstructures of elastin and collagen were assessed using two-photon fluorescence imaging and conventional bidirectional histology. The mechanical and structural data were used to describe the SFA mechanical behavior using two- and four-fiber family invariant-based constitutive models. Older SFAs were stiffer and mechanically more nonlinear than younger specimens. In the adventitia, collagen fibers were undulated and diagonally-oriented, while in the media, they were straight and circumferentially-oriented. The media was rich in collagen that surrounded the circumferentially-oriented smooth muscle cells, and the elastin was present primarily in the internal and external elastic laminae. Older SFAs had a more circumferential collagen fiber alignment, a decreased circumferential-radial fiber dispersion, but the same circumferential-longitudinal fiber dispersion as younger specimens. Both the two- and the four-fiber family constitutive models were able to capture the experimental data, and the fits were better for the four-fiber family formulation. Our data provide additional details on the SFA intramural structure and inform structurally-based constitutive models.
Collapse
|
31
|
Iglesias-Echevarria M, Johnson R, Rafuse M, Ding Y, Tan W. Vascular Grafts with Tailored Stiffness and a Ligand Environment via Multiarmed Polymer Sheath for Expeditious Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:545-558. [PMID: 34458689 DOI: 10.1021/acsabm.0c01114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bypass graft is the mainstream of surgical intervention to treat vascular diseases. Ideal bypass materials, yet to be developed, require mechanical properties, availability, clinically feasible manufacturing logistics, and bioactivities with precise physicochemical cues defined to guide cell activities for arterial regeneration. Such needs instigated our fabrication of vascular grafts, which consist of coaxial, nanostructured fibers exhibiting a polycaprolactone (PCL) core and a photoclickable, 4-arm thiolated polyethylene glycol-norbornene (PEG-NB) sheath. The graft strength and bioactivity were modulated by the PCL concentration and the peptides (RGD, transforming growth factor β-1 or TGF-β1) conjugated to thiol-ene of PEG-NB, respectively. Structural, physical, and mechanical characterizations demonstrated that the fibrous grafts mimicked the key features of the native extracellular matrix, including a crosslinked fiber network for structural stability, viscoelasticity emulating arteries, hydration property, and high porosity for cell infiltration. Meanwhile, these grafts displayed strength and toughness exceeding or meeting surgical criteria. Furthermore, the grafts with higher PCL concentration (3 vs 1.8%) showed thicker fibers, lower porosity and pore size, and increased elastic and storage moduli. Graft bioactivity was determined by the mesenchymal stem cell (MSC) behaviors on the grafts and arterial regeneration in vivo using interposition grafting. Results showed that the cell adhesion and proliferation increased with the RGD density (25 vs 5 mM). After 1 week implantation, all peptide-functionalized PCL/PEG-NB grafts with or without MSC preseeding, as opposed to PCL grafts, showed expeditious endothelial lining, abundant vascular cell infiltration, and matrix production. Compared to RGD grafts, RGD/TGF-β1 grafts enhanced MSC differentiation into smooth muscle cells in vitro and developed thicker smooth muscle cell layers in vivo. Overall, the versatile porous vascular grafts offer superior properties and tunability for future translation.
Collapse
Affiliation(s)
- Monica Iglesias-Echevarria
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Richard Johnson
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Michael Rafuse
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Yonghui Ding
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| | - Wei Tan
- Department of Mechanical Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Jadidi M, Razian SA, Habibnezhad M, Anttila E, Kamenskiy A. Mechanical, structural, and physiologic differences in human elastic and muscular arteries of different ages: Comparison of the descending thoracic aorta to the superficial femoral artery. Acta Biomater 2021; 119:268-283. [PMID: 33127484 PMCID: PMC7738395 DOI: 10.1016/j.actbio.2020.10.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/28/2020] [Accepted: 10/22/2020] [Indexed: 12/23/2022]
Abstract
Elastic and muscular arteries differ in structure, function, and mechanical properties, and may adapt differently to aging. We compared the descending thoracic aortas (TA) and the superficial femoral arteries (SFA) of 27 tissue donors (average 41±18 years, range 13-73 years) using planar biaxial testing, constitutive modeling, and bidirectional histology. Both TAs and SFAs increased in size with age, with the outer radius increasing more than the inner radius, but the TAs thickened 6-fold and widened 3-fold faster than the SFAs. The circumferential opening angle did not change in the TA, but increased 2.4-fold in the SFA. Young TAs were relatively isotropic, but the anisotropy increased with age due to longitudinal stiffening. SFAs were 51% more compliant longitudinally irrespective of age. Older TAs and SFAs were stiffer, but the SFA stiffened 5.6-fold faster circumferentially than the TA. Physiologic stresses decreased with age in both arteries, with greater changes occurring longitudinally. TAs had larger circumferential, but smaller longitudinal stresses than the SFAs, larger cardiac cycle stretch, 36% lower circumferential stiffness, and 8-fold more elastic energy available for pulsation. TAs contained elastin sheets separated by smooth muscle cells (SMCs), collagen, and glycosaminoglycans, while the SFAs had SMCs, collagen, and longitudinal elastic fibers. With age, densities of elastin and SMCs decreased, collagen remained constant due to medial thickening, and the glycosaminoglycans increased. Elastic and muscular arteries demonstrate different morphological, mechanical, physiologic, and structural characteristics and adapt differently to aging. While the aortas remodel to preserve the Windkessel function, the SFAs maintain higher longitudinal compliance.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Mahmoud Habibnezhad
- Department of Computer Science, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Eric Anttila
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alexey Kamenskiy
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
33
|
Gavardinas ID, Spyrou LA, Zervaki A, Spanos K, Giannoukas AD, Giannakopoulos AE. Fatigue of textiles used in vascular surgery: Application to carotid endarterectomy. J Mech Behav Biomed Mater 2020; 113:104121. [PMID: 33186812 DOI: 10.1016/j.jmbbm.2020.104121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/05/2020] [Accepted: 09/28/2020] [Indexed: 11/24/2022]
Abstract
Fatigue is a material-based phenomenon playing a significant role in the mechanical behavior of components and structures. Although fatigue has been well studied for traditional materials, such as metals, its underlying mechanisms are not thoroughly understood in novel applications such as the case of textiles used as patches to close the arteriotomy in carotid endarterectomy. The latter is a type of vascular surgery for the treatment of carotid artery disease in which after an arteriotomy and removal of atherosclerotic plaque closure is made with a patch sutured on the artery. Completion of the operation signals the initiation of complex mechanical and hemodynamic phenomena. Fatigue performance of the patch eventually determines the successful outcome of carotid endarterectomy. In this study, we evaluate with a two-fold approach the mechanics of patch angioplasty in carotid endarterectomy. First, an analytical model for the fatigue behavior of textiles is developed, considering the microstructure and geometry of the fabric. Then, the surgical procedure is simulated and a finite element analysis of the endarterectomized and patched carotid artery is employed. Stress fields are calculated, while deformation at the site of patch angioplasty indicates a potential cause for the formation of aneurismal degeneration after the surgery. Such analysis can provide a better understanding in the establishment of follow-up protocols.
Collapse
Affiliation(s)
- I D Gavardinas
- Laboratory for Strength of Materials and Micromechanics, Department of Civil Engineering, University of Thessaly, Volos, Greece.
| | - L A Spyrou
- Biomechanics Group, Institute for Bio-Economy and Agri-Technology, Centre for Research & Technology Hellas (CERTH), Volos, Greece.
| | - A Zervaki
- Laboratory of Materials, Department of Mechanical Engineering, University of Thessaly, Volos, Greece.
| | - K Spanos
- Department of Vascular Surgery, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | - A D Giannoukas
- Department of Vascular Surgery, University Hospital of Larissa, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
| | | |
Collapse
|
34
|
Lisický O, Malá A, Bednařík Z, Novotný T, Burša J. Consideration of stiffness of wall layers is decisive for patient-specific analysis of carotid artery with atheroma. PLoS One 2020; 15:e0239447. [PMID: 32991605 PMCID: PMC7523976 DOI: 10.1371/journal.pone.0239447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
The paper deals with the impact of chosen geometric and material factors on maximal stresses in carotid atherosclerotic plaque calculated using patient-specific finite element models. These stresses are believed to be decisive for the plaque vulnerability but all applied models suffer from inaccuracy of input data, especially when obtained in vivo only. One hundred computational models based on ex vivo MRI are used to investigate the impact of wall thickness, MRI slice thickness, lipid core and fibrous tissue stiffness, and media anisotropy on the calculated peak plaque and peak cap stresses. The investigated factors are taken as continuous in the range based on published experimental results, only the impact of anisotropy is evaluated by comparison with a corresponding isotropic model. Design of Experiment concept is applied to assess the statistical significance of these investigated factors representing uncertainties in the input data of the model. The results show that consideration of realistic properties of arterial wall in the model is decisive for the stress evaluation; assignment of properties of fibrous tissue even to media and adventitia layers as done in some studies may induce up to eightfold overestimation of peak stress. The impact of MRI slice thickness may play a key role when local thin fibrous cap is present. Anisotropy of media layer is insignificant, and the stiffness of fibrous tissue and lipid core may become significant in some combinations.
Collapse
Affiliation(s)
- Ondřej Lisický
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
- * E-mail:
| | - Aneta Malá
- Institute of Scientific Instruments, The Czech Academy of Science, Brno, Czech Republic
| | - Zdeněk Bednařík
- 1st Department of Pathology, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Tomáš Novotný
- 2nd Department of Surgery, St. Anne’s University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jiří Burša
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Brno, Czech Republic
| |
Collapse
|
35
|
Díaz C, Peña JA, Martínez MA, Peña E. Unraveling the multilayer mechanical response of aorta using layer-specific residual stresses and experimental properties. J Mech Behav Biomed Mater 2020; 113:104070. [PMID: 33007727 DOI: 10.1016/j.jmbbm.2020.104070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022]
Abstract
To test the capability of the multilayer model, we used previously published layer-specific experimental data relating to the axial pre-stretch, the opening angle, the fiber distribution obtained by polarized light microscopy measurements, and the uniaxial and biaxial response of the porcine descending and abdominal aorta. We fitted the mechanical behavior of each arterial layer using Gasser, Holzapfel and Ogden strain energy function using the dispersion parameter κ as phenomenological parameter obtained during the fitting procedure or computed from the experimental fiber distribution. A multilayer finite element model of the whole aorta with the dimensions of the circumferential and longitudinal strips were then built using layer-specific material parameters previously fitted. This model was used to capture the whole aorta response under uniaxial and biaxial stress states and to reproduce the response of the whole aorta to internal pressure. Our results show that a model based on a multilayer structure without residual stresses is unable to render the uniaxial and biaxial mechanical response of the aorta (R2=0.6954 and R2=0.8582 for descending thoracic aorta (DTA) and infrarenal abdominal aorta (IAA), respectively). Only an appropriate multilayer model that includes layer-specific residual stresses can reproduce the response of the whole aorta (R2=0.9787 and R2=0.9636 for DTA and IAA respectively). In addition, a multilayer model without residual stresses produces the same stress distribution as a monolayer model without residual stresses where the maximal value of circumferential and longitudinal stresses appears at the inner radius of the intima. Finally, if layer-specific residual stresses are not available, there is less error the stress distribution using a monolayer model with residual stresses that a multilayer model without residual stresses.
Collapse
Affiliation(s)
- Clara Díaz
- Department of Mechanical Engineering, University of Zaragoza, Spain
| | - Juan A Peña
- Department of Management and Manufacturing Engineering, Faculty of Engineering and Architecture, University of Zaragoza, Spain; Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain
| | - Miguel A Martínez
- Department of Mechanical Engineering, University of Zaragoza, Spain; Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; CIBER de Bioingeniería, Biomaterials y Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Estefanía Peña
- Department of Mechanical Engineering, University of Zaragoza, Spain; Applied Mechanics and Bioengineering, Aragón Institute of Engineering Research (I3A), University of Zaragoza, Spain; CIBER de Bioingeniería, Biomaterials y Nanomedicine (CIBER-BBN), Zaragoza, Spain.
| |
Collapse
|
36
|
Ghasemi M, Nolan DR, Lally C. Assessment of mechanical indicators of carotid plaque vulnerability: Geometrical curvature metric, plaque stresses and damage in tissue fibres. J Mech Behav Biomed Mater 2020; 103:103573. [PMID: 32090902 DOI: 10.1016/j.jmbbm.2019.103573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/15/2019] [Accepted: 11/29/2019] [Indexed: 11/16/2022]
Abstract
Stroke is a major cause of death worldwide. The rupture of atherosclerotic carotid plaques is the leading single cause of stroke. Currently there is no accepted clinical measure to quantitatively assess the risk of carotid plaque rupture. Structural analyses of vulnerable plaques, using finite element (FE) analysis, have retrospectively found that regions of high stress tend to be the site of plaque rupture. The current study proposes a new clinical measure, based on plaque geometry, to assess the risk of carotid plaque rupture. This measure, named the weighted curvature difference, is based on the curvature of both the lumen and intima-media boundary, and the local plaque thickness. A series of idealized and realistic, 2-D and 3-D geometries are used to systematically assess this novel geometrical metric. The areas predicted to be at high risk of rupture using this geometrical metric are compared with areas of high stress, obtained from both isotropic and anisotropic material models. These results are also compared with areas in diseased carotid arteries that are predicted to have high damage accumulation in collagen fibres using a continuum damage model. Results show the new geometrical metric consistently predicts the locations of high stress in all of the vessel geometries examined. The drawbacks of using lumen curvature only as a risk measure are highlighted; particularly in the case of outward remodelled vessels. Weighted curvature difference shows great potential to be used as a metric to efficiently distinguish the rupture prone areas in a diseased vessels in a way that is independent of material properties.
Collapse
Affiliation(s)
- Milad Ghasemi
- Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - David R Nolan
- Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland
| | - Caitríona Lally
- Dept. of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland.
| |
Collapse
|
37
|
Sokolis DP, Bompas A, Papadodima SA, Kourkoulis SK. Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender. J Biomech Eng 2020; 142:021003. [PMID: 31141590 DOI: 10.1115/1.4043877] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Indexed: 07/25/2024]
Abstract
Our understanding of aortic biomechanics is customarily limited by lack of information on the axial residual stretches of the vessel in both humans and experimental animals that would facilitate the identification of its actual zero-stress state. The aim of this study was thus to acquire hitherto unreported quantitative knowledge of axial opening angle and residual stretches in different segments and quadrants of the human aorta according to age and gender. Twenty-three aortas were harvested during autopsy from the aortic root to the iliac bifurcation and were divided into ≥12 segments and 4 quadrants. Morphometric measurements were taken in the excised/curled configuration of rectangular strips considered to be under zero-stress using image-analysis software to study the axial/circumferential variation of axial opening angle, internal/external residual stretch, and thickness of the aortic wall. The measured data demonstrated: (1) an axial opening angle peak at the arch branches, decreasing toward the ascending and to a near-constant value in the descending thoracic aorta, and increasing in the abdominal aorta; (2) the variation of residual stretches resembled that of opening angle, but axial differences in external residual stretch were more prominent; (3) wall thickness showed a progressive diminution along the vessel; (4) the highest opening angle/residual stretches were found in the inner quadrant and the lowest in the outer quadrant; (5) the anterior was the thinnest quadrant throughout the aorta; (6) age caused thickening but greatly reduced axial opening angle/residual stretches, without differences between males and females.
Collapse
Affiliation(s)
- Dimitrios P Sokolis
- Laboratory of Biomechanics, Center of Clinical, Experimental Surgery, and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephesiou Street, Athens 115 27, Greece
| | - Andreas Bompas
- Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnion Avenue, Theocaris Bld., Zografou Campus, Athens 157 73, Greece
| | - Stavroula A Papadodima
- Department of Forensic Medicine and Toxicology, Medical School, National and Kapodistrian University of Athens, M. Asias 75, Goudi, Athens 115 27, Greece
| | - Stavros K Kourkoulis
- Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, 5 Heroes of Polytechnion Avenue, Theocaris Bld., Zografou Campus, Athens 157 73, Greece
| |
Collapse
|
38
|
Sanders SN, Lopata RGP, van Breemen LCA, van de Vosse FN, Rutten MCM. A novel technique for the assessment of mechanical properties of vascular tissue. Biomech Model Mechanobiol 2020; 19:1585-1594. [PMID: 31980973 PMCID: PMC7502444 DOI: 10.1007/s10237-020-01292-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 01/14/2020] [Indexed: 11/28/2022]
Abstract
Accurate estimation of mechanical properties of the different atherosclerotic plaque constituents is important in assessing plaque rupture risk. The aim of this study was to develop an experimental set-up to assess material properties of vascular tissue, while applying physiological loading and being able to capture heterogeneity. To do so, a ring-inflation experimental set-up was developed in which a transverse slice of an artery was loaded in the radial direction, while the displacement was estimated from images recorded by a high-speed video camera. The performance of the set-up was evaluated using seven rubber samples and validated with uniaxial tensile tests. For four healthy porcine carotid arteries, material properties were estimated using ultrasound strain imaging in whole-vessel-inflation experiments and compared to the properties estimated with the ring-inflation experiment. A 1D axisymmetric finite element model was used to estimate the material parameters from the measured pressures and diameters, using a neo-Hookean and Holzapfel–Gasser–Ogden material model for the rubber and porcine samples, respectively. Reproducible results were obtained with the ring-inflation experiment for both rubber and porcine samples. Similar mean stiffness values were found in the ring-inflation and tensile tests for the rubber samples as 202 kPa and 206 kPa, respectively. Comparable results were obtained in vessel-inflation experiments using ultrasound and the proposed ring-inflation experiment. This inflation set-up is suitable for the assessment of material properties of healthy vascular tissue in vitro. It could also be used as part of a method for the assessment of heterogeneous material properties, such as in atherosclerotic plaques.
Collapse
Affiliation(s)
- Stefan N Sanders
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands.
| | - Richard G P Lopata
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Lambert C A van Breemen
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Frans N van de Vosse
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| | - Marcel C M Rutten
- Department of Biomedical Engineering, Eindhoven University of Technology, PO Box 513, 5600MB, Eindhoven, The Netherlands
| |
Collapse
|
39
|
Misiulis E, Džiugys A, Navakas R, Petkus V. A comparative study of methods used to generate the arterial fiber structure in a clinically relevant numerical analysis. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2019; 35:e3194. [PMID: 30817080 DOI: 10.1002/cnm.3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/13/2019] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
The advanced constitutive material models of artery wall require the definition of the mean collagen fiber directions in the material configuration. There are several proposed methods; however, it is unclear how much does the fiber structures obtained by these methods differ one from the other and how much this difference may affect the results of the structural analysis of a clinically relevant scenario. Therefore, in this paper, we address this issue by presenting the results of the comparative study of our developed and currently state-of-the-art fiber definition methods. In addition, we present the verification of our developed numerical model that incorporates the extended Holzapfel-Gasser-Ogden (HGO) constitutive material model and the generalized prestressing algorithm (GPA). In the case of the patient-specific internal carotid artery (ICA), the percentage error of the mean fiber directions defined by different methods does not exceed 17.73% (at least 0.05%, at most 81.82%) and has negligible effect on the stress levels, as the percentage error of the mean circumferential Cauchy stress does not exceed 0.1%. Both fiber definition methods produce comparable fiber structure, but our proposed method has an advantage, as it does not depend on method and software used to model the arterial wall mechanics.
Collapse
Affiliation(s)
- Edgaras Misiulis
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
- Kaunas University of Technology, K. Donelaičio St. 73, 44249, Kaunas, Lithuania
| | - Algis Džiugys
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
- Kaunas University of Technology, K. Donelaičio St. 73, 44249, Kaunas, Lithuania
| | - Robertas Navakas
- Laboratory of Combustion Processes, Lithuanian Energy Institute, Kaunas, Lithuania
| | - Vytautas Petkus
- Health Telematics Science Institute, Kaunas University of Technology, Kaunas, Lithuania
| |
Collapse
|
40
|
Syaifudin A, Ariatedja JB, Kaelani Y, Takeda R, Sasaki K. Vulnerability analysis on the interaction between Asymmetric stent and arterial layer. Biomed Mater Eng 2019; 30:309-322. [PMID: 31127751 DOI: 10.3233/bme-191054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The utilization of Asymmetric stent for recovering atherosclerotic diseases, particularly non-symmetric obstruction, is a quite challenging breakthrough treatment. In terms of eccentric plaque, the non-uniform stiffness of arterial layer causes the increasingly complex issues of vulnerability. This study investigated the vulnerability of the interaction between the Asymmetric stent and the surrounding arterial layer using structural transient dynamic analysis in ANSYS. Four combinations of stent deployment, i.e. the Sinusoidal stent expanded by the offset balloon, the Sinusoidal stent expanded by the ordinary cylindrical balloon, the Asymmetric stent expanded by the offset balloon, and the Asymmetric stent expanded by the ordinary cylindrical balloon, are generated for this comparative study. Multilayer material properties from recent in vitro experiments are adopted for the surrounding arterial layer, such as a fibrous cap, lipid core, diseased-healthy intima, and diseased-healthy media. In order to address plaque vulnerability, the Cauchy stresses and Hencky strains are used for stress measure because of convenience in comparison with the uniaxial/biaxial tension test data. The location-specific threshold value from the diseased human carotid artery is adopted for rupture criteria. The simulation indicated that as regards the eccentric plaque, the plaque vulnerability is caused by the plaque shape and components rather than caused by the geometrical structure of the stent or balloon expansion method. Nevertheless, the non-symmetric inflation of balloon, which leads against the plaque, contributed to an increase in the vulnerability of fibrous cap of fibroatheroma plaque.
Collapse
Affiliation(s)
- Achmad Syaifudin
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Julendra B Ariatedja
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Yusuf Kaelani
- Department of Mechanical Engineering, Faculty of Industrial Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ryo Takeda
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Sasaki
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
41
|
Jadidi M, Desyatova A, MacTaggart J, Kamenskiy A. Mechanical stresses associated with flattening of human femoropopliteal artery specimens during planar biaxial testing and their effects on the calculated physiologic stress-stretch state. Biomech Model Mechanobiol 2019; 18:1591-1605. [PMID: 31069592 DOI: 10.1007/s10237-019-01162-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
Planar biaxial testing is commonly used to characterize the mechanical properties of arteries, but stresses associated with specimen flattening during this test are unknown. We quantified flattening effects in human femoropopliteal arteries (FPAs) of different ages and determined how they affect the calculated arterial physiologic stress-stretch state. Human FPAs from 472 tissue donors (age 12-82 years, mean 53 ± 16 years) were tested using planar biaxial extension, and morphometric and mechanical characteristics were used to assess the flattening effects. Constitutive parameters for the invariant-based model were adjusted to account for specimen flattening and used to calculate the physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy for the FPAs in seven age groups. Flattened specimens were overall 12 ± 4% stiffer longitudinally and 19 ± 11% stiffer circumferentially when biaxially tested. Differences between the stress-stretch curves adjusted and non-adjusted for the effects of flattening were relatively constant across all age groups longitudinally, but increased with age circumferentially. In all age groups, these differences were smaller than the intersubject variability. Physiologic stresses, stretches, axial force, circumferential stiffness, and stored energy were all qualitatively and quantitatively similar when calculated with and without the flattening effects. Stresses, stretches, axial force, and stored energy reduced with age, but circumferential stiffness remained relatively constant between 25 and 65 years of age suggesting a homeostatic target of 0.75 ± 0.02 MPa. Flattening effects associated with planar biaxial testing are smaller than the intersubject variability and have little influence on the calculated physiologic stress-stretch state of human FPAs.
Collapse
Affiliation(s)
- Majid Jadidi
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Anastasia Desyatova
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Jason MacTaggart
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA
| | - Alexey Kamenskiy
- Department of Surgery, 987690 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE, 68198-7690, USA.
| |
Collapse
|
42
|
Ross C, Laurence D, Wu Y, Lee CH. Biaxial Mechanical Characterizations of Atrioventricular Heart Valves. J Vis Exp 2019. [PMID: 31033941 PMCID: PMC8008701 DOI: 10.3791/59170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Extensive biaxial mechanical testing of the atrioventricular heart valve leaflets can be utilized to derive optimal parameters used in constitutive models, which provide a mathematical representation of the mechanical function of those structures. This presented biaxial mechanical testing protocol involves (i) tissue acquisition, (ii) the preparation of tissue specimens, (iii) biaxial mechanical testing, and (iv) postprocessing of the acquired data. First, tissue acquisition requires obtaining porcine or ovine hearts from a local Food and Drug Administration-approved abattoir for later dissection to retrieve the valve leaflets. Second, tissue preparation requires using tissue specimen cutters on the leaflet tissue to extract a clear zone for testing. Third, biaxial mechanical testing of the leaflet specimen requires the use of a commercial biaxial mechanical tester, which consists of force-controlled, displacement-controlled, and stress-relaxation testing protocols to characterize the leaflet tissue's mechanical properties. Finally, post-processing requires the use of data image correlation techniques and force and displacement readings to summarize the tissue's mechanical behaviors in response to external loading. In general, results from biaxial testing demonstrate that the leaflet tissues yield a nonlinear, anisotropic mechanical response. The presented biaxial testing procedure is advantageous to other methods since the method presented here allows for a more comprehensive characterization of the valve leaflet tissue under one unified testing scheme, as opposed to separate testing protocols on different tissue specimens. The proposed testing method has its limitations in that shear stress is potentially present in the tissue sample. However, any potential shear is presumed negligible.
Collapse
Affiliation(s)
- Colton Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma
| | - Devin Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma
| | - Yi Wu
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma; Institute for Biomedical Engineering, Science and Technology (IBEST), The University of Oklahoma;
| |
Collapse
|
43
|
Sigaeva T, Sommer G, Holzapfel GA, Di Martino ES. Anisotropic residual stresses in arteries. J R Soc Interface 2019; 16:20190029. [PMID: 30958201 PMCID: PMC6408350 DOI: 10.1098/rsif.2019.0029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
The paper provides a deepened insight into the role of anisotropy in the analysis of residual stresses in arteries. Residual deformations are modelled following Holzapfel and Ogden (Holzapfel and Ogden 2010, J. R. Soc. Interface 7, 787-799. ( doi:10.1098/rsif.2009.0357 )), which is based on extensive experimental data on human abdominal aortas (Holzapfel et al. 2007, Ann. Biomed. Eng. 35, 530-545. ( doi:10.1007/s10439-006-9252-z )) and accounts for both circumferential and axial residual deformations of the individual layers of arteries-intima, media and adventitia. Each layer exhibits distinctive nonlinear and anisotropic mechanical behaviour originating from its unique microstructure; therefore, we use the most general form of strain-energy function (Holzapfel et al. 2015, J. R. Soc. Interface 12, 20150188. ( doi:10.1098/rsif.2015.0188 )) to derive residual stresses for each layer individually. Finally, the systematic experimental data (Niestrawska et al. 2016, J. R. Soc. Interface 13, 20160620. ( doi:10.1098/rsif.2016.0620 )) on both mechanical and structural properties of the different layers of the human abdominal aorta facilitate our discussion on (i) the importance of anisotropy in modelling residual stresses; (ii) the variability of residual stresses within the same class of tissue, the abdominal aorta; (iii) the limitations of conventional opening angle method to account for complex residual deformations; and (iv) the effect of residual stresses on the loaded configuration of the aorta mimicking in vivo conditions.
Collapse
Affiliation(s)
- Taisiya Sigaeva
- Department of Civil Engineering and Centre for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Canada
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
| | - Gerhard A. Holzapfel
- Institute of Biomechanics, Graz University of Technology, Graz, Austria
- Faculty of Engineering Science and Technology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Elena S. Di Martino
- Department of Civil Engineering and Centre for Bioengineering Research and Education, Schulich School of Engineering, University of Calgary, Calgary, Canada
| |
Collapse
|
44
|
An investigation into the role of different constituents in damage accumulation in arterial tissue and constitutive model development. Biomech Model Mechanobiol 2018; 17:1757-1769. [PMID: 30058051 DOI: 10.1007/s10237-018-1054-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 07/11/2018] [Indexed: 12/21/2022]
Abstract
Carotid atherosclerotic plaque rupture is one of the leading causes of stroke. Treatments for atherosclerosis can induce tissue damage during the deployment of an intravascular device or through external tissue clamping during surgery. In this paper, a constituent specific study was performed to investigate the role of the ground matrix and collagen fibres of arterial tissue in response to supra-physiological loads. Cyclic mechanical tests were conducted on intact and collagenase-digested strips of porcine common carotid arteries. Using these tests, four passive damage-relevant phenomena were studied, namely (i) Mullins effect, (ii) hysteresis, (iii) permanent set and (iv) matrix failure and fibre rupture. A constitutive model was also developed to capture all of these damage-relevant phenomena using a continuum damage mechanics approach. The implemented constitutive model was fit to experimental results for both intact and digested samples. The results of this work demonstrate the important role of the ground matrix in the permanent deformation of the arterial tissue under high loads. Supra-physiological load-induced tissue damage may play a key role in vascular remodelling in arteries with atherosclerosis or following interventional procedures.
Collapse
|
45
|
Ahmad F, Prabhu RJ, Liao J, Soe S, Jones MD, Miller J, Berthelson P, Enge D, Copeland KM, Shaabeth S, Johnston R, Maconochie I, Theobald PS. Biomechanical properties and microstructure of neonatal porcine ventricles. J Mech Behav Biomed Mater 2018; 88:18-28. [PMID: 30118921 DOI: 10.1016/j.jmbbm.2018.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/26/2018] [Accepted: 07/27/2018] [Indexed: 12/29/2022]
Abstract
Neonatal heart disorders represent a major clinical challenge, with congenital heart disease alone affecting 36,000 new-borns annually within the European Union. Surgical intervention to restore normal function includes the implantation of synthetic and biological materials; however, a lack of experimental data describing the mechanical behaviour of neonatal cardiac tissue is likely to contribute to the relatively poor short- and long-term outcome of these implants. This study focused on characterising the mechanical behaviour of neonatal cardiac tissue using a porcine model, to enhance the understanding of how this differs to the equivalent mature tissue. The biomechanical properties of neonatal porcine cardiac tissue were characterised by uniaxial tensile, biaxial tensile, and simple shear loading modes, using samples collected from the anterior and posterior walls of the right and left ventricles. Histological images were prepared using Masson's trichrome staining, to enable assessment of the microstructure and correlation with tissue behaviour. The mechanical tests demonstrated that the neonatal cardiac tissue is non-linear, anisotropic, viscoelastic and heterogeneous. Our data provide a baseline describing the biomechanical behaviour of immature porcine cardiac tissue. Comparison with published data also indicated that the neonatal porcine cardiac tissue exhibits one-half the stiffness of mature porcine tissue in uniaxial extension testing, one-third in biaxial extension testing, and one-fourth stiffness in simple shear testing; hence, it provides an indication as to the relative change in characteristics associated with tissue maturation. These data may prove valuable to researchers investigating neonatal cardiac mechanics.
Collapse
Affiliation(s)
| | - Ra J Prabhu
- Centre for Advanced Vehicular Systems and Department of Biological Engineering, Mississippi State University, USA
| | - Jun Liao
- Centre for Advanced Vehicular Systems and Department of Biological Engineering, Mississippi State University, USA; Department of Bioengineering, The University of Texas at Arlington, USA.
| | - Shwe Soe
- School of Engineering, Cardiff University, UK
| | | | - Jonathan Miller
- Centre for Advanced Vehicular Systems and Department of Biological Engineering, Mississippi State University, USA
| | - Parker Berthelson
- Centre for Advanced Vehicular Systems and Department of Biological Engineering, Mississippi State University, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Sommer G, Benedikt C, Niestrawska JA, Hohenberger G, Viertler C, Regitnig P, Cohnert TU, Holzapfel GA. Mechanical response of human subclavian and iliac arteries to extension, inflation and torsion. Acta Biomater 2018; 75:235-252. [PMID: 29859367 DOI: 10.1016/j.actbio.2018.05.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/08/2018] [Accepted: 05/25/2018] [Indexed: 11/30/2022]
Abstract
Peripheral vascular trauma due to injuries of the upper and lower limbs are life-threatening, and their treatment require rapid diagnosis and highly-qualified surgical procedures. Experienced surgeons have recognized that subclavian arteries, affected by injuries of the upper limbs, require a more careful handling due to fragility than common iliac arteries, which are may be affected by injures of the lower limbs. We investigated these two artery types with comparable diameter to evaluate the differences in the biomechanical properties between subclavian and iliac arteries. Human subclavian and common iliac arteries of 14 donors either from the right or the left side (age: 63 yrs, SD: 19,9 female and 5 male) were investigated. Extension-inflation-torsion experiments at different axial strains (0-20%), transmural pressures (0-200 mmHg) and torsion (±25°) on preconditioned arterial tubes were performed. Residual stresses in both circumferential and axial direction were determined. Additionally, the microstructure of the tissues was determined via second-harmonic generation imaging and by histological investigations. At physiological conditions (pi=13.3 kPa, λz=1.1) common iliac arteries revealed higher Cauchy stresses in circumferential and axial directions but a more compliant response in the circumferential direction than subclavian arteries. Both arteries showed distinct stiffer behavior in circumferential than in axial direction. Circumferential stiffness of common iliac arteries at physiological conditions increased significantly with aging (r=-0.67,p=0.02). The median inversion stretches, where the axial force is basically independent of the transmural pressure, were determined to be 1.05 for subclavian arteries and 1.11 for common iliac arteries. Both arteries exhibited increased torsional stiffness, when either axial prestretch or inflation pressure was increased. Residual stresses in the circumferential direction were significantly lower for subclavian arteries than for common iliac arteries at measurements after 30 min (p=0.05) and 16hrs (p=0.01). Investigations of the collagen microstructure revealed different collagen fiber orientations and dispersions in subclavian and iliac arteries. The difference in the collagen microstructure revealed further that the adventitia seems to contribute significantly to the passive mechanical response of the tested arteries at physiological loadings. Histological investigations indicated pronounced thickened intimal layers in subclavian and common iliac arteries, with a thickness comparable to the adventitial layer. In conclusion, we obtained biomechanical differences between subclavian and common iliac arteries, which possibly resulted from their different mechanical loadings/environments and respective in vivo movements caused by their anatomical locations. The biomechanical differences explored in this study are well reflected by the microstructure of the collagen and the histology of the investigated arteries, and the results can improve trauma patient care and endovascular implant design. STATEMENT OF SIGNIFICANCE During surgical interventions surgeons experienced that subclavian arteries (SAs) supplying the upper extremities, appear more fragile and prone to damage during surgical repair than common iliac arteries (CIAs), supplying the lower extremities. To investigate this difference in a systematic way the aim of this study was to compare the biomechanical properties of these two arteries from the same donors in terms of geometry, extension-inflation-torsion behavior, residual stresses, microstructure, and histology. In regard to cardiovascular medicine the material behavior of aged human arteries is of crucial interest. Moreover, the investigation of SA is important as it can help to improve surgical procedures at this challenging location. Over the long-term it might well be of value in the construction of artificial arteries for substituting native arteries. In addition, the analysis of mechanical stresses can improve design and material choice for endovascular implants to optimize long-term implant function.
Collapse
Affiliation(s)
- Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria
| | | | | | - Gloria Hohenberger
- Department of Orthopedics and Trauma Surgery, Medical University Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University Graz, Austria
| | - Tina U Cohnert
- Clinical Department of Vascular Surgery, Medical University Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Faculty of Engineering Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
47
|
Syaifudin A, Takeda R, Sasaki K. Development of asymmetric stent for treatment of eccentric plaque. Biomed Mater Eng 2018; 29:299-317. [PMID: 29578470 DOI: 10.3233/bme-181737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The selection of stent and balloon type is decisive in the stenting process. In the treatment of an eccentric plaque obstruction, a symmetric expansion from stent dilatation generates nonuniform stress distribution, which may aggravate fibrous cap prone to rupture. This paper developed a new stent design to treat eccentric plaque using structural transient dynamic analysis in ANSYS. A non-symmetric structural geometry of stent is generated to obtain reasonable stress distribution safe for the arterial layer surrounding the stent. To derive the novel structural geometry, a Sinusoidal stent type is modified by varying struts length and width, adding bridges, and varying curvature width of struts. An end ring of stent struts was also modified to eliminate dogboning phenomenon and to reduce the Ectropion angle. Two balloon types were used to deploy the stent, an ordinary cylindrical and offset balloon. Positive modification results were used to construct the final non-symmetric stent design, called an Asymmetric stent. Analyses of the deformation characteristics, changes in surface roughness and induced stresses within intact arterial layer were subsequently examined. Interaction between the stent and vessel wall was implemented by means of changes in surface roughness and stress distribution analyses. The Palmaz and the Sinusoidal stent were used for a comparative study. This study indicated that the Asymmetric stent types reduced the central radial recoiling and the dogboning phenomenon. In terms of changes in surface roughness and induced stresses, the Asymmetric stent has a comparable effect with that of the Sinusoidal stent. In addition, it could enhance the distribution of surface roughening as expanded by an offset balloon.
Collapse
Affiliation(s)
- Achmad Syaifudin
- Department of Mechanical Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Ryo Takeda
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Katsuhiko Sasaki
- Division of Human Mechanical Systems and Design, Faculty of Engineering, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Brewster R, Gale BK, Sant HJ, Monson K, Shea J, Agarwal J. A Biodegradable Vascular Coupling Device for End-to-End Anastomosis. J Med Biol Eng 2017. [DOI: 10.1007/s40846-017-0348-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
McGarry M, Nauleau P, Apostolakis I, Konofagou E. In vivo repeatability of the pulse wave inverse problem in human carotid arteries. J Biomech 2017; 64:136-144. [PMID: 29050824 DOI: 10.1016/j.jbiomech.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/08/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Accurate arterial stiffness measurement would improve diagnosis and monitoring for many diseases. Atherosclerotic plaques and aneurysms are expected to involve focal changes in vessel wall properties; therefore, a method to image the stiffness variation would be a valuable clinical tool. The pulse wave inverse problem (PWIP) fits unknown parameters from a computational model of arterial pulse wave propagation to ultrasound-based measurements of vessel wall displacements by minimizing the difference between the model and measured displacements. The PWIP has been validated in phantoms, and this study presents the first in vivo demonstration. The common carotid arteries of five healthy volunteers were imaged five times in a single session with repositioning of the probe and subject between each scan. The 1D finite difference computational model used in the PWIP spanned from the start of the transducer to the carotid bifurcation, where a resistance outlet boundary condition was applied to approximately model the downstream reflection of the pulse wave. Unknown parameters that were estimated by the PWIP included a 10-segment linear piecewise compliance distribution and 16 discrete cosine transformation coefficients for each of the inlet boundary conditions. Input data was selected to include pulse waves resulting from the primary pulse and dicrotic notch. The recovered compliance maps indicate that the compliance increases close to the bifurcation, and the variability of the average pulse wave velocity estimated through the PWIP is on the order of 11%, which is similar to that of the conventional processing technique which tracks the wavefront arrival time (13%).
Collapse
Affiliation(s)
- Matthew McGarry
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Pierre Nauleau
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Iason Apostolakis
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Elisa Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, United States; Department of Radiology, Columbia University, New York, NY, United States.
| |
Collapse
|
50
|
Uncertainty quantification and sensitivity analysis of an arterial wall mechanics model for evaluation of vascular drug therapies. Biomech Model Mechanobiol 2017; 17:55-69. [PMID: 28755237 PMCID: PMC5807551 DOI: 10.1007/s10237-017-0944-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 02/07/2023]
Abstract
Quantification of the uncertainty in constitutive model predictions describing arterial wall mechanics is vital towards non-invasive assessment of vascular drug therapies. Therefore, we perform uncertainty quantification to determine uncertainty in mechanical characteristics describing the vessel wall response upon loading. Furthermore, a global variance-based sensitivity analysis is performed to pinpoint measurements that are most rewarding to be measured more precisely. We used previously published carotid diameter–pressure and intima–media thickness (IMT) data (measured in triplicate), and Holzapfel–Gasser–Ogden models. A virtual data set containing 5000 diastolic and systolic diameter–pressure points, and IMT values was generated by adding measurement error to the average of the measured data. The model was fitted to single-exponential curves calculated from the data, obtaining distributions of constitutive parameters and constituent load bearing parameters. Additionally, we (1) simulated vascular drug treatment to assess the relevance of model uncertainty and (2) evaluated how increasing the number of measurement repetitions influences model uncertainty. We found substantial uncertainty in constitutive parameters. Simulating vascular drug treatment predicted a 6% point reduction in collagen load bearing (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_\mathrm {coll}$$\end{document}Lcoll), approximately 50% of its uncertainty. Sensitivity analysis indicated that the uncertainty in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll was primarily caused by noise in distension and IMT measurements. Spread in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll could be decreased by 50% when increasing the number of measurement repetitions from 3 to 10. Model uncertainty, notably that in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$L_{\mathrm {coll}}$$\end{document}Lcoll, could conceal effects of vascular drug therapy. However, this uncertainty could be reduced by increasing the number of measurement repetitions of distension and wall thickness measurements used for model parameterisation.
Collapse
|