1
|
Boichenko V, Noakes VM, Reilly-O’Donnell B, Luciani GB, Emanueli C, Martelli F, Gorelik J. Circulating Non-Coding RNAs as Indicators of Fibrosis and Heart Failure Severity. Cells 2025; 14:553. [PMID: 40214506 PMCID: PMC11989213 DOI: 10.3390/cells14070553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality worldwide, representing a complex clinical syndrome in which the heart's ability to pump blood efficiently is impaired. HF can be subclassified into heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF), each with distinct pathophysiological mechanisms and varying levels of severity. The progression of HF is significantly driven by cardiac fibrosis, a pathological process in which the extracellular matrix undergoes abnormal and uncontrolled remodelling. Cardiac fibrosis is characterized by excessive matrix protein deposition and the activation of myofibroblasts, increasing the stiffness of the heart, thus disrupting its normal structure and function and promoting lethal arrythmia. MicroRNAs, long non-coding RNAs, and circular RNAs, collectively known as non-coding RNAs (ncRNAs), have recently gained significant attention due to a growing body of evidence suggesting their involvement in cardiac remodelling such as fibrosis. ncRNAs can be found in the peripheral blood, indicating their potential as biomarkers for assessing HF severity. In this review, we critically examine recent advancements and findings related to the use of ncRNAs as biomarkers of HF and discuss their implication in fibrosis development.
Collapse
Affiliation(s)
- Veronika Boichenko
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Victoria Maria Noakes
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Benedict Reilly-O’Donnell
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Giovanni Battista Luciani
- Department of Surgery, Dentistry, Pediatrics and Gynecology, Cardiovascular and Surgical Sciences, The University of Verona, Policlinico G. B. Rossi, P.le. La Scuro 10, 37134 Verona, Italy
| | - Costanza Emanueli
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097 Milano, Italy
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2
|
Wu H, Hui Y, Qian X, Wang X, Xu J, Wang F, Pan S, Chen K, Liu Z, Gao W, Bai J, Liang G. Exosomes derived from mesenchymal stem cells ameliorate impaired glucose metabolism in myocardial Ischemia/reperfusion injury through miR-132-3p/PTEN/AKT pathway. Cell Cycle 2025:1-20. [PMID: 40181235 DOI: 10.1080/15384101.2025.2485834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 04/05/2025] Open
Abstract
Exosomes secreted by mesenchymal stem cells (MSCs) have been considered as a novel biological therapy for myocardial ischemia/reperfusion injury (MIRI). However, the underlying mechanism of exosomes has not been completely established, especially in the early stage of MIRI. In this study, we primarily investigated the protective effect of exosomes on MIRI from both in vitro and ex vivo perspectives. Bioinformatic analysis was conducted to identify exosomal miRNA associated with myocardial protection, Genes and proteins related to functional studies and myocardial energy metabolism were analyzed and evaluated using techniques such as Polymerase Chain Re-action (PCR), Western blotting, double luciferase biochemical techniques, flow cytometry assay, etc. It was discovered that exosomes ameliorated cardiomyocyte injury t by delivery of miR-132-3p.This process reduced the expression of Phosphatase and tensin homolog (PTEN) mRNA and protein, enhanced the expression of phosphorylated protein kinase (pAKT), regulated the insulin signaling pathway, facilitated intracellular Glucose transporter 4 (GLUT4) protein membrane translocation, and enhanced glucose uptake and Adenosine Triphosphate (ATP) production. This study confirmed, for the first time, that MSC-EXO can provide myocardial protection in the early stages of MIRI through miR-132/PTEN/AKT pathway. This research establishes a theoretical and experimental foundation for the clinical application of MSC-derived exosomes.
Collapse
Affiliation(s)
- Hongkun Wu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Yongpeng Hui
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xingkai Qian
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueting Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, University Town, Guiyang, China
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
| | - Feng Wang
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Sisi Pan
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaiyuan Chen
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhou Liu
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Weilong Gao
- School of basic Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Center for Translational Medicine, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jue Bai
- School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| | - Guiyou Liang
- Department of Cardiac Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Pipicz M, Biró GZ, Szabó MR, Zvara Á, Csont T. Putative Epigenetic Regulator microRNAs (epi-miRNAs) and Their Predicted Targets in High-Fat Diet-Induced Cardiac Dysfunction: An In Silico Analysis in Obese Rats. Int J Mol Sci 2025; 26:2247. [PMID: 40076868 PMCID: PMC11900980 DOI: 10.3390/ijms26052247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Obesity-related cardiac dysfunction is a significant global health challenge. High-fat diets (HFDs) are well-established models of obesity. HFD has been reported to induce cardiac dysfunction and alter cardiac miRNA expression, DNA methylation and histone modifications. Nevertheless, it remains unclear whether cardiac miRNAs altered due to HFD target epigenetic regulator enzymes and function as epigenetic regulator miRNAs (epi-miRNAs), thereby contributing to HFD-induced epigenetic changes and cardiac dysfunction. To address this gap in our knowledge, this study aimed to identify putative cardiac epi-miRNAs and their potential epigenetic targets through an in silico analysis of a previously published miRNA dataset from Sprague Dawley rats subjected to HFD. Using two independent databases, miRDB and miRWalk, predicted miRNA-mRNA interactions were analyzed. A total of 71 miRNAs were identified in our present study as putative epi-miRNAs. A total of 34 epi-miRNAs were upregulated (e.g., miR-92b-3p, let-7c-5p, miR-132-3p), and 37 were downregulated (e.g., miR-21-3p, miR-29c-3p, miR-199a-3p) in response to HFD. Epi-miRNAs targeted 81 individual epigenetic regulators (e.g., Dnmt3a, Ezh2, Hdac4, Kdm3a) with 202 possible miRNA-target interactions. Most of the targeted epigenetic regulators were involved in histone modification. An epi-miRNA-target analysis indicated increased DNA methylation and histone acetylation and decreased histone methylation in the hearts of HFD-fed rats. These findings suggest the importance of epi-miRNA-induced epigenetic changes in HFD-related cardiac dysfunction.
Collapse
Affiliation(s)
- Márton Pipicz
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.P.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Gergő Zalán Biró
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.P.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Márton Richárd Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.P.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Ágnes Zvara
- Laboratory of Functional Genomics, Core Facility, HUN-REN Biological Research Centre, H-6726 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.P.)
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
4
|
Duan Q, Dong A, Cheng H, Zhang S, Chen W, Yang W. Inhibition of Taurine-upregulated Gene 1 Upregulates MiR-34a-5p to Protect against Myocardial Ischemia/Reperfusion via Autophagy Regulation. Comb Chem High Throughput Screen 2025; 28:110-121. [PMID: 38299288 DOI: 10.2174/0113862073267559231106074309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/23/2023] [Accepted: 09/25/2023] [Indexed: 02/02/2024]
Abstract
BACKGROUND Taurine upregulated gene 1 (TUG1) has been identified on long noncoding RNA (lncRNA); however, its function in myocardial cells following ischemia/ reperfusion (I/R) injury has not been explored. This study aimed to investigate the role of LncTUG1 in I/R injury by focusing on its relationship with autophagy induction by regulating miR-34a-5p expression. METHODS We established a myocardial I/R model and H9C2 hypoxia-ischemic and reoxygenation (HI/R) conditions to induce I/R injury. TTC, Western blot, CCK-8 assay, quantitative reverse transcription PCR, flow cytometry, and confocal microscopy were used to assess the size of myocardial infarct, level of some apoptotic-related and autophagy-associated proteins, cell viability, the level of LncRNA TUG1, apoptosis, and autophagy, respectively. RESULTS The results revealed that a TUG1 knockdown protected against I/R-induced myocardial injury by decreasing the impairment in cardiac function. LncRNA TUG1 expression was increased in a myocardial I/R model and HI/R in H9C2 cells. Moreover, inhibition of LncTUG1 enhanced H9C2 cell viability and protected the cells from HI/R-induced apoptosis. Silencing LncRNA TUG1 promoted HI/R-induced autophagy. Furthermore, TUG1 siRNA upregulated the level of miR-34a-5p compared to the HI/R group. The protective effect of LncRNA TUG1 inhibition on H9C2 cells following HI/R was eliminated by blocking autophagy with an miR-34a-5p inhibitor. CONCLUSION These findings indicated that inhibiting TUG1 may reduce the extent of myocardial I/R injury by regulating miR-34a-5p. Taken together, these results suggest that LncRNA TUG1 may represent a novel therapeutic target for myocardial I/R injury.
Collapse
Affiliation(s)
- Qunjun Duan
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Aiqiang Dong
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haifeng Cheng
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Shufen Zhang
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Wei Chen
- Department of Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China
| | - Weijun Yang
- Department of Cardiaovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
5
|
Sanchez-Fernandez E, Guerra-Ojeda S, Suarez A, Serna E, Mauricio MD. Histone Deacetylase Inhibitors as a Promising Treatment Against Myocardial Infarction: A Systematic Review. J Clin Med 2024; 13:7797. [PMID: 39768722 PMCID: PMC11728224 DOI: 10.3390/jcm13247797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Background/Objectives: Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible. However, reperfusion activates several cellular cascades that contribute to organ dysfunction, resulting in the ischaemia/reperfusion (I/R) injury. The search for treatments against AMI and I/R injury is urgent due to the shortage of effective treatments at present. In this regard, histone deacetylase (HDAC) inhibitors emerge as a promising treatment against myocardial infarction. The objective of this systematic review is to analyse the effects of HDAC inhibitors on ventricular function, cardiac remodelling and infarct size, among other parameters, focusing on the signalling pathways that may mediate these cardiovascular effects and protect against AMI. Methods: Original experimental studies examining the effects of HDAC inhibitors on AMI were included in the review using the PubMed and Scopus databases. Non-experimental papers were excluded. The SYRCLE RoB tool was used to assess risk of bias and the results were summarised in a table and presented in sections according to the type of HDAC inhibitor used. Results: A total of 18 studies were included, 10 of them using trichostatin A (TSA) as an HDAC inhibitor and concluding that the treatment improved ventricular function, reduced infarct size, and inhibited myocardial hypertrophy and remodelling after AMI. Other HDAC inhibitors, such as suberoylanilide hydroxamic acid (SAHA), valproic acid (VPA), mocetinostat, givinostat, entinostat, apicidin, and RGFP966, were also analysed, showing antioxidant and anti-inflammatory effects, an improvement in cardiac function and remodelling, and a decrease in apoptosis, among other effects. Conclusions: HDAC inhibitors constitute a significant promise for the treatment of AMI due to their diverse cardioprotective effects. However, high risk of selection, performance, and detection bias in the in vivo studies means that their application in the clinical setting is still a long way off and more research is needed to better understand their benefits and possible side effects.
Collapse
Affiliation(s)
- Eduardo Sanchez-Fernandez
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (E.S.-F.); (S.G.-O.); (A.S.); (E.S.)
| | - Sol Guerra-Ojeda
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (E.S.-F.); (S.G.-O.); (A.S.); (E.S.)
- Instituto Investigación Hospital Clínico-INCLIVA, 46010 Valencia, Spain
| | - Andrea Suarez
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (E.S.-F.); (S.G.-O.); (A.S.); (E.S.)
- Instituto Investigación Hospital Clínico-INCLIVA, 46010 Valencia, Spain
| | - Eva Serna
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (E.S.-F.); (S.G.-O.); (A.S.); (E.S.)
- Instituto Investigación Hospital Clínico-INCLIVA, 46010 Valencia, Spain
| | - Maria D. Mauricio
- Department of Physiology, Universitat de Valencia, 46010 Valencia, Spain; (E.S.-F.); (S.G.-O.); (A.S.); (E.S.)
- Instituto Investigación Hospital Clínico-INCLIVA, 46010 Valencia, Spain
- Center for Biomedical Research Network on Cardiovascular Diseases (CIBER-CV), 28029 Madrid, Spain
| |
Collapse
|
6
|
Fang C, Sun S, Chen W, Huang D, Wang F, Wei W, Wang W. Bioinformatics analysis of the role of cuproptosis gene in acute myocardial infarction. Minerva Cardiol Angiol 2024; 72:595-606. [PMID: 38842240 DOI: 10.23736/s2724-5683.23.06493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
BACKGROUND Immune infiltration plays a vital role in the course of acute myocardial infarction (AMI). Cuproptosis is a new type of programmed cell death discovered recently. Currently, there is no study on the mechanism of cuproptosis gene regulating immune infiltration in AMI. Therefore, by integrating cuproptosis-related genes and GEO database-related microarray data, this study analyzed the association between cuproptosis genes and immune infiltration and built a risk model. METHODS The GSE59867 was used to extract cuproptosis gene expression profile. The R limma package was used to analyze the differentially expressed genes associated with AMI-Cuproptosis. The risk model was constructed according to AMI-cuproptosis differentially expressed genes. Prediction of AMI-cuproptosis-related gene drugs through Coremine Medical database. The upstream miRNAs were predicted using miRWalk, TargetScan, and miRDB libraries, and a miRNA-mRNA network was constructed. RESULTS Cuproptosis-related genes (DLST, LIAS, DBT, ATP7A, LIPT1, PDHB, GCSH, DLD, DLAT) were down-regulated in AMI patients. One (ATP7B) gene was up-regulated in AMI patients (P<0.05). These 10 Cuproptosis-related genes were significantly associated with immune cell infiltration. Based on these 10 differential genes, the AMI risk prediction model was constructed, and the AUC value was 0.825, among which the abnormal expression of DLST was a risk factor for AMI. Additionally, we also predicted DLAT upstream miRNAs and associated drug targets, finding that 9 miRNAs were upstream of DLST. CONCLUSIONS DLST is a potential cuproptosis gene associated with AMI, but its specific mechanism remains unclear and requires further investigation in future studies.
Collapse
Affiliation(s)
- Chunyun Fang
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiling Sun
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenjing Chen
- Department of Gastroenterology, Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Dongling Huang
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fan Wang
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wanxia Wei
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Wang
- Emergency Department, First Affiliated Hospital of Guangxi Medical University, Nanning, China -
| |
Collapse
|
7
|
Nie X, Chen L, Wang B, Wang S, Li Y. FOXO3 induces TUG1-mediated miR-375/GATA3 signaling axis to promote the survival of melanocytes in vitiligo. FASEB J 2024; 38:e70145. [PMID: 39520296 DOI: 10.1096/fj.202400676rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Vitiligo is characterized by the depletion of melanocytes due to the activation of CD8+ T cells. Taurine-upregulated gene 1 (TUG1), a long noncoding RNA, is involved in melanogenesis. This study aimed to explore the role and mechanism of TUG1 in vitiligo. RT-qPCR and western blot analyses demonstrated decreased TUG1 levels and increased miR-375 levels in patients with vitiligo. MTT and transwell assays indicated that TUG1 upregulation facilitated melanocyte survival and inhibited CD8+ T cell migration. Dual luciferase reporter and chromatin immunoprecipitation assays verified that Forkhead box O3 (FOXO3) directly interacted with the TUG1 promoter, leading to the positive regulation of TUG1 expression. In addition, FOXO3 promoted melanocyte survival by enhancing the transcription of TUG1. Luciferase reporter assay and RNA immunoprecipitation assay confirmed that TUG1 upregulated GATA binding protein 3 (GATA3) expression by targeting miR-375. TUG1 facilitated melanocyte survival by regulating the miR-375/GATA3 axis. In vitiligo, melanocyte survival is promoted by the induction of the TUG1-mediated miR-375/GATA3 axis by FOXO3, which offers new therapeutic targets for vitiligo treatment.
Collapse
Affiliation(s)
- Xiaojuan Nie
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lamei Chen
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Baihe Wang
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Shengnan Wang
- Department of Dermatology, Shenxian People's Hospital of Shandong Province, Liaocheng, Shandong Province, China
| | - Yuanyuan Li
- Department of Dermatology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
8
|
He L, Ye J, Zhuang X, Shi J, Wu W. Omega-3 polyunsaturated fatty acids alleviate endoplasmic reticulum stress-induced neuroinflammation by protecting against traumatic spinal cord injury through the histone deacetylase 3/ peroxisome proliferator-activated receptor-γ coactivator pathway. J Neuropathol Exp Neurol 2024; 83:939-950. [PMID: 39190872 DOI: 10.1093/jnen/nlae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) attenuate inflammatory responses in the central nervous system, leading to neuroprotective effects. Inhibition of histone deacetylase 3 (HDAC3) has neuroprotective effects after spinal cord injury (SCI) through the SIRT1 pathway, but the pathophysiological mechanisms of SCI are complex and the interactions between ω-3 PUFAs and organelles remain largely unknown. This study aimed to investigate the effect of ω-3 PUFAs on endoplasmic reticulum (ER) stress-induced neuroinflammation through the HDAC3/peroxisome proliferator-activated receptor-γ coactivator (PGC)-1ɑ pathway after SCI. To this end, a contusion-induced SCI rat model was established to evaluate the effects of ω-3 PUFAs on ER stress-mediated inflammation in SCI. ER stress was rapidly induced in spinal cord lesions after SCI and was significantly reduced after ω-3 PUFA treatment. Consistent with reduced ER stress, HDAC3 expression levels and inflammatory responses were decreased, and PGC-1ɑ expression levels were increased after SCI. We found that ω-3 PUFA treatment attenuated ER stress through HDAC3 inhibition, thereby reducing SCI-induced inflammation. Taken together, these results suggest a role for ω-3 PUFA in protecting against SCI-induced neuroinflammation and promoting neurological functional recovery by regulating the histone deacetylase 3/ peroxisome proliferator-activated receptor-γ coactivator pathway.
Collapse
Affiliation(s)
- Lijiang He
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jingfang Ye
- Department of Nursing Faculty, Quanzhou Medical College, Quanzhou, Fujian Province, China
| | - Xunrong Zhuang
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Jinnan Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| | - Wenhua Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, China
| |
Collapse
|
9
|
Heydari R, Tavassolifar MJ, Fayazzadeh S, Sadatpour O, Meyfour A. Long non-coding RNAs in biomarking COVID-19: a machine learning-based approach. Virol J 2024; 21:134. [PMID: 38849961 PMCID: PMC11161961 DOI: 10.1186/s12985-024-02408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/05/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The coronavirus pandemic that started in 2019 has caused the highest mortality and morbidity rates worldwide. Data on the role of long non-coding RNAs (lncRNAs) in coronavirus disease 2019 (COVID-19) is scarce. We aimed to elucidate the relationship of three important lncRNAs in the inflammatory states, H19, taurine upregulated gene 1 (TUG1), and colorectal neoplasia differentially expressed (CRNDE) with key factors in inflammation and fibrosis induction including signal transducer and activator of transcription3 (STAT3), alpha smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in COVID-19 patients with moderate to severe symptoms. METHODS Peripheral blood mononuclear cells from 28 COVID-19 patients and 17 healthy controls were collected. The real-time quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the expression of RNAs and lncRNAs. Western blotting analysis was also performed to determine the expression levels of STAT3 and α-SMA proteins. Machine learning and receiver operating characteristic (ROC) curve analysis were carried out to evaluate the distinguishing ability of lncRNAs. RESULTS The expression levels of H19, TUG1, and CRNDE were significantly overexpressed in COVID-19 patients compared to healthy controls. Moreover, STAT3 and α-SMA expression levels were remarkedly increased at both transcript and protein levels in patients with COVID-19 compared to healthy subjects and were correlated with Three lncRNAs. Likewise, IL-6 and TNF-α were considerably upregulated in COVID-19 patients. Machine learning and ROC curve analysis showed that CRNDE-H19 panel has the proper ability to distinguish COVID-19 patients from healthy individuals (area under the curve (AUC) = 0.86). CONCLUSION The overexpression of three lncRNAs in COVID-19 patients observed in this study may align with significant manifestations of COVID-19. Furthermore, their co-expression with STAT3 and α-SMA, two critical factors implicated in inflammation and fibrosis induction, underscores their potential involvement in exacerbating cardiovascular, pulmonary and common symptoms and complications associated with COVID-19. The combination of CRNDE and H19 lncRNAs seems to be an impressive host-based biomarker panel for screening and diagnosis of COVID-19 patients from healthy controls. Research into lncRNAs can provide a robust platform to find new viral infection-related mediators and propose novel therapeutic strategies for viral infections and immune disorders.
Collapse
Affiliation(s)
- Raheleh Heydari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Tavassolifar
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Fayazzadeh
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Omid Sadatpour
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Dong L, Zhao Y, Luo J, Li X, Wang S, Li M, Zou P, Kong H, Wang Q, Zhao Y, Qu H. Carbon Dots Derived from Curcumae Radix and Their Heartprotective Effect. Int J Nanomedicine 2024; 19:3315-3332. [PMID: 38617797 PMCID: PMC11012788 DOI: 10.2147/ijn.s444125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Background Acute myocardial infarction (AMI) is a common cardiovascular disease in clinic. Currently, there is no specific treatment for AMI. Carbon dots (CDs) have been reported to show excellent biological activities, which hold promise for the development of novel nanomedicines for the treatment of cardiovascular diseases. Methods In this study, we firstly prepared CDs from the natural herb Curcumae Radix Carbonisata (CRC-CDs) by a green, simple calcination method. The aim of this study is to investigate the cardioprotective effect and mechanism of CRC-CDs on isoproterenol (ISO) -induced myocardial infarction (MI) in rats. Results The results showed that pretreatment with CRC-CDs significantly reduced serum levels of cardiac enzymes (CK-MB, LDH, AST) and lipids (TC, TG, LDL) and reduced st-segment elevation and myocardial infarct size on the ECG in AMI rats. Importantly, cardiac ejection fraction (EF) and shortening fraction (FS) were markedly elevated, as was ATPase activity. In addition, CRC-CDs could significantly increase the levels of superoxide dismutase (SOD), reduced glutathione (GSH), catalase (CAT), and reduce the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) in myocardial tissue, thereby exerting cardioprotective effect by enhancing the antioxidant capacity of myocardial tissue. Moreover, the TUNEL staining image showed that positive apoptotic cells were markedly declined after CRC-CDs treatment, which indicate that CRC-CDs could inhibit cardiomyocyte apoptosis. Importantly, The protective effect of CRC-CDs on H2O2 -pretreated H9c2 cells was also verified in vitro. Conclusion Taken together, CRC-CDs has the potential for clinical application as an anti-myocardial ischemia drug candidate, which not only provides evidence for further broadening the biological application of cardiovascular diseases, but also offers potential hope for the application of nanomedicine to treat intractable diseases.
Collapse
Affiliation(s)
- Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, People’s Republic of China
| | - Xiaopeng Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Peng Zou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qingguo Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Sun B, Lin L, Yao T, Yao J, Zhang G, Li Y, Li C. Jingfang Granule mitigates Coxsackievirus B3-induced myocardial damage by modulating mucolipin 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117396. [PMID: 37951374 DOI: 10.1016/j.jep.2023.117396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Granules (JFG) originate from the traditional herbal formula Jingfang Baidu powder. It has the effects of inducing sweating and dispelling wind. It is a classic medication used for treating external pathogenic factors and viral diseases. However, the therapeutic mechanism of JFG for viral myocarditis needs further clarification. AIM OF THE STUDY This study aimed to explore the therapeutic efficacy of JFG on coxsackievirus B3-induced viral myocarditis (VMC), along with the elucidation of its underlying mechanisms. MATERIALS AND METHODS C57 BL/6JNifdc mice were divided randomly into several groups: control, model, Jingfang Granule groups (0.23, 0.46, and 0.69 g/20g, respectively), and a positive group (oseltamivir, 19.33 mg/kg). Following the establishment of the VMC model, the mice underwent an 8 -week treatment regimen. Pathological alterations in cardiac tissues and inflammatory protein expression were monitored. Differential gene analysis was conducted utilizing transcriptomic techniques. The differential gene mucolipin 1 (Mcoln1) was knocked down by transfection with siRNA in H9C2 cell, and investigative techniques such as immunoblotting, qRT-PCR, immunofluorescence, JC-1 staining, reactive oxygen species (ROS) detection, and mitochondrial stress testing were employed to examine its mechanism of action. RESULTS JFG significantly mitigates the pathological damage observed in the cardiac tissues of CVB3-induced VMC mice and attenuates the expression of inflammatory genes. Subsequently, differentially expressed genes are identified through transcriptomic analysis and validated via PCR. Among these, the upregulation of Mcoln1 promotes autophagy, facilitating the clearance of damaged mitochondria and excessive ROS. This has been substantiated through in vitro experiments. Excessive ROS precipitates a reduction in mitochondrial membrane potential, instigating cell apoptosis. In accordance with TUNEL staining results, JFG acts to inhibit cell apoptosis. To ascertain whether Mcoln1 is a crucial target for JFG in treating VMC, Mcoln1 was suppressed in H9C2 cells. The suppression of Mcoln1 hinders the elevation in autophagy levels post-JFG treatment, obstructs the enhancement of mitochondrial function, and impedes the clearance of ROS. Furthermore, the inhibitory effect of JFG on cell apoptosis is attenuated. CONCLUSION The research findings indicate that JFG has a protective effect on CVB3-induced H9C2 cell injury. JFG may exert its effects in VMC treatment by enhancing autophagy to suppress cell apoptosis through the mitochondrial pathway, thereby counteracting cell damage.
Collapse
Affiliation(s)
- Bowen Sun
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lin Lin
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Tian Yao
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jingchun Yao
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Guimin Zhang
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Lunan Pharmaceutical Group Co., Ltd., Linyi, 276006, China
| | - Yunlun Li
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
12
|
Sun Y, Chu S, Wang R, Xia R, Sun M, Gao Z, Xia Z, Zhang Y, Dong S, Wang T. Non-coding RNAs modulate pyroptosis in myocardial ischemia-reperfusion injury: A comprehensive review. Int J Biol Macromol 2024; 257:128558. [PMID: 38048927 DOI: 10.1016/j.ijbiomac.2023.128558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/06/2023]
Abstract
Reperfusion therapy is the most effective treatment for acute myocardial infarction. However, reperfusion itself can also cause cardiomyocytes damage. Pyroptosis has been shown to be an important mode of myocardial cell death during ischemia-reperfusion. Non-coding RNAs (ncRNAs) play critical roles in regulating pyroptosis. The regulation of pyroptosis by microRNAs, long ncRNAs, and circular RNAs may represent a new mechanism of myocardial ischemia-reperfusion injury. This review summarizes the currently known regulatory roles of ncRNAs in myocardial ischemia-reperfusion injury and interactions between ncRNAs. Potential therapeutic strategies using ncRNA modulation are also discussed.
Collapse
Affiliation(s)
- Yi Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Shujuan Chu
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rong Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Rui Xia
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Meng Sun
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhixiong Gao
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yan Zhang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China
| | - Siwei Dong
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| | - Tingting Wang
- Department of Anesthesiology, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Institute of Anesthesia and Critical Care Medicine, Union Hosptial, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, China.
| |
Collapse
|
13
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
14
|
Bhat AA, Afzal O, Agrawal N, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Altamimi ASA, Kukreti N, Chakraborty A, Singh SK, Dua K, Gupta G. A comprehensive review on the emerging role of long non-coding RNAs in the regulation of NF-κB signaling in inflammatory lung diseases. Int J Biol Macromol 2023; 253:126951. [PMID: 37734525 DOI: 10.1016/j.ijbiomac.2023.126951] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Public health globally faces significant risks from conditions like acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), and various inflammatory lung disorders. The NF-κB signaling system partially controls lung inflammation, immunological responses, and remodeling. Non-coding RNAs (lncRNAs) are crucial in regulating gene expression. They are increasingly recognized for their involvement in NF-κB signaling and the development of inflammatory lung diseases. Disruption of lncRNA-NF-κB interactions is a potential cause and resolution factor for inflammatory respiratory conditions. This study explores the therapeutic potential of targeting lncRNAs and NF-κB signaling to alleviate inflammation and restore lung function. Understanding the intricate relationship between lncRNAs and NF-κB signaling could offer novel insights into disease mechanisms and identify therapeutic targets. Regulation of lncRNAs and NF-κB signaling holds promise as an effective approach for managing inflammatory lung disorders. This review aims to comprehensively analyze the interaction between lncRNAs and the NF-κB signaling pathway in the context of inflammatory lung diseases. It investigates the functional roles of lncRNAs in modulating NF-κB activity and the resulting inflammatory responses in lung cells, focusing on molecular mechanisms involving upstream regulators, inhibitory proteins, and downstream effectors.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, UP, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, UK; Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC 3800, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia.
| | - Gaurav Gupta
- Center for Global Health research (CGHR), Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| |
Collapse
|
15
|
Haybar H, Sadati NS, Purrahman D, Mahmoudian-Sani MR, Saki N. lncRNA TUG1 as potential novel biomarker for prognosis of cardiovascular diseases. Epigenomics 2023; 15:1273-1290. [PMID: 38088089 DOI: 10.2217/epi-2023-0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Globally, cardiovascular diseases (CVDs) are among the leading causes of death. In light of the high prevalence and mortality of CVDs, it is imperative to understand the molecules involved in CVD pathogenesis and the signaling pathways that they initiate. This may facilitate the development of more precise and expedient diagnostic techniques, the identification of more effective prognostic molecules and the identification of potential therapeutic targets. Numerous studies have examined the role of lncRNAs, such as TUG1, in CVD pathogenesis in recent years. According to this review article, TUG1 can be considered a biomarker for predicting the prognosis of CVD.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Narjes Sadat Sadati
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
16
|
Zhang H, Guo Q, Feng G, Shen X, Feng X, Guo Y, Wang S, Zhong X. Lnc-PXMP4-2-4 alleviates myocardial cell damage by activating the JAK2/STAT3 signaling pathway. Heliyon 2023; 9:e18649. [PMID: 37560637 PMCID: PMC10407674 DOI: 10.1016/j.heliyon.2023.e18649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
PURPOSE The aim of this study was to investigate the protective effect of long non-coding lnc-PXMP4-2-4 on myocardial cell damage caused by acute myocardial infarction (AMI). METHODS Peripheral blood mononuclear cells (PBMC) were collected from 24 patients with AMI on the day of admission, the first day after percutaneous coronary intervention (PCI) and the third day after surgery, and 24 patients with clinical control group. Real-time quantitative PCR(QRT-PCR) was used to detect the expression of related genes. Then in human cardiomyocytes (AC16), Cell Counting Kit-8 (CCK-8) was used to determine cell viability, lactate dehydrogenase release assay (LDH) was used to determine the release of lactate dehydrogenase, PCR was used to detect the expression of genes, cell death was detected by flow cytometry, and the expression of related proteins was measured by Western blot. The effect of lnc-PXMP4-2-4 was further studied by silencing and overexpressing lnc-PXMP4-2-4. RESULTS Compared with clinical control group, the expression of lnc-PXMP4-2-4 in PBMC of AMI patients was significantly higher than it. Compared with pre-operation, the expression of lnc-PXMP4-2-4 was significantly up-regulated on day 1 after PCI, and recovered to pre-operation level on day 3 after surgery. In AC16 cells, lnc-PXMP4-2-4 inhibited the proliferation of AC16, promoted the release of LDH and increased cell death, aggravated the cardiomyocyte injury caused by H2O2, and inhibited the expression of JAK2 and STAT3 mRNA and protein. The up-regulation of lnc-PXMP-4-2-4 had the opposite effect. In addition, the inhibition of the signal pathway by JAK2/STAT3 pathway inhibitor AG490 partially weakened the enhanced viability of AC16 cells, decreased LDH release and apoptosis induced by lnc-PXMP4-2-4 overexpression, increased Bcl-2 expression and down-regulated Bax expression. CONCLUSION Therefore, we conclude that lnc-PXMP4-2-4 protects cardiomyocytes from injury by activating the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Qinlin Guo
- Department of Endocrine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Guiju Feng
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xin Shen
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xinxin Feng
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250012, People's Republic of China
| | - Yi Guo
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Shouyan Wang
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| | - Xia Zhong
- Department of General Practice, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
| |
Collapse
|
17
|
Wei L, Sun J, Wang X, Huang Y, Huang L, Han L, Zheng Y, Xu Y, Zhang N, Yang M. Noncoding RNAs: an emerging modulator of drug resistance in pancreatic cancer. Front Cell Dev Biol 2023; 11:1226639. [PMID: 37560164 PMCID: PMC10407809 DOI: 10.3389/fcell.2023.1226639] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023] Open
Abstract
Pancreatic cancer is the eighth leading cause of cancer-related deaths worldwide. Chemotherapy including gemcitabine, 5-fluorouracil, adriamycin and cisplatin, immunotherapy with immune checkpoint inhibitors and targeted therapy have been demonstrated to significantly improve prognosis of pancreatic cancer patients with advanced diseases. However, most patients developed drug resistance to these therapeutic agents, which leading to shortened patient survival. The detailed molecular mechanisms contributing to pancreatic cancer drug resistance remain largely unclear. The growing evidences have shown that noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in pancreatic cancer pathogenesis and development of drug resistance. In the present review, we systematically summarized the new insight on of various miRNAs, lncRNAs and circRNAs on drug resistance of pancreatic cancer. These results demonstrated that targeting the tumor-specific ncRNA may provide novel options for pancreatic cancer treatments.
Collapse
Affiliation(s)
- Ling Wei
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yizhou Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linying Huang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linyu Han
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yanxiu Zheng
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Nasha Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Zhang Y, Chen X, Yang X, Huang L, Qiu X. Mesenchymal Stem Cell-Derived from Dental Tissues-Related lncRNAs: A New Regulator in Osteogenic Differentiation. J Tissue Eng Regen Med 2023; 2023:4622584. [PMID: 40226409 PMCID: PMC11919082 DOI: 10.1155/2023/4622584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 04/15/2025]
Abstract
Odontogenic stem cells are mesenchymal stem cells (MSCs) with multipotential differentiation potential from different dental tissues. Their osteogenic differentiation is of great significance in bone tissue engineering. In recent years, it has been found that long noncoding RNAs (lncRNAs) participate in regulating the osteoblastic differentiation of stem cells at the epigenetic level, transcriptional level, and posttranscriptional level. We reviewed the existing lncRNA related to the osteogenic differentiation of odontogenic stem cells and emphasized the critical mechanism of lncRNA in the osteogenic differentiation of odontogenic stem cells. These findings are expected to be an important target for promoting osteoblastic differentiation of odontogenic stem cells in bone regeneration therapy with lncRNA.
Collapse
Affiliation(s)
- Yinchun Zhang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Xuan Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - XiaoXia Yang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Lei Huang
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong 510280, China
| |
Collapse
|
19
|
He R, Liu B, Geng B, Li N, Geng Q. The role of HDAC3 and its inhibitors in regulation of oxidative stress and chronic diseases. Cell Death Discov 2023; 9:131. [PMID: 37072432 PMCID: PMC10113195 DOI: 10.1038/s41420-023-01399-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 03/01/2023] [Accepted: 03/06/2023] [Indexed: 04/20/2023] Open
Abstract
HDAC3 is a specific and crucial member of the HDAC family. It is required for embryonic growth, development, and physiological function. The regulation of oxidative stress is an important factor in intracellular homeostasis and signal transduction. Currently, HDAC3 has been found to regulate several oxidative stress-related processes and molecules dependent on its deacetylase and non-enzymatic activities. In this review, we comprehensively summarize the knowledge of the relationship of HDAC3 with mitochondria function and metabolism, ROS-produced enzymes, antioxidant enzymes, and oxidative stress-associated transcription factors. We also discuss the role of HDAC3 and its inhibitors in some chronic cardiovascular, kidney, and neurodegenerative diseases. Due to the simultaneous existence of enzyme activity and non-enzyme activity, HDAC3 and the development of its selective inhibitors still need further exploration in the future.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bohao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Boxin Geng
- School of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Ma X, Li Q, Chen G, Xie J, Wu M, Meng F, Liu J, Liu Y, Zhao D, Wang W, Wang D, Liu C, Dai J, Li C, Cui M. Role of Hippocampal miR-132-3p in Modifying the Function of Protein Phosphatase Mg2+/Mn2+-dependent 1 F in Depression. Neurochem Res 2023:10.1007/s11064-023-03926-8. [PMID: 37036545 DOI: 10.1007/s11064-023-03926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/15/2023] [Accepted: 03/28/2023] [Indexed: 04/11/2023]
Abstract
Depression is a common, severe, and debilitating psychiatric disorder of unclear etiology. Our previous study has shown that protein phosphatase Mg2+/Mn2+-dependent 1F (PPM1F) in the hippocampal dentate gyrus (DG) displays significant regulatory effects in depression-related behaviors. miR-132-3p plays a potential role in the etiology of depression. This study explored the effect of miR-132-3p on the onset of depression and the possible underlying mechanism for modulating PPM1F expression during the pathology of depression. We found that miR-132-3p levels in the hippocampus of depressed mice subjected to chronic unpredictable stress (CUS) were dramatically reduced, which were correlated with depression-related behaviors. Knockdown of miR-132-3p in hippocampal DG resulted in depression-related phenotypes and increased susceptibility to stress. miR-132-3p overexpression in hippocampal DG alleviated CUS-induced depression-related performance. We then screened out the potential target genes of miR-132-3p, and we found that the expression profiles of sterol regulatory element-binding transcription factor 1 (Srebf1) and forkhead box protein O3a (FOXO3a) were positively correlated with PPM1F under the condition of miR-132-3p knockdown. Finally, as anticipated, we revealed that the activities of Ca2+/calmodulin-dependent protein kinase II (CAMKII) and adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) were reduced, which underlies the target signaling pathway of PPM1F. In conclusion, our study suggests that miR-132-3p was designed to regulate depression-related behaviors by indirectly regulating PPM1F and targeting Srebf1 and FOXO3a, which have been linked to the pathogenesis and treatment of depression.
Collapse
Affiliation(s)
- Xiangxian Ma
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Qiongyu Li
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Gastroenterology, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Guanhong Chen
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Junjie Xie
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- The first clinical medical college, Binzhou Medical University, Yantai, Shandong, China
| | - Min Wu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Fantao Meng
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Jing Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Yong Liu
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
- Department of Physiology, Binzhou Medical University, Shandong, China
| | - Di Zhao
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Wentao Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Dan Wang
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Cuilan Liu
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Juanjuan Dai
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Chen Li
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| | - Minghu Cui
- Department of Psychology, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Medical research center, Binzhou Medical University Hospital, No. 661 Huanghe 2nd Road, Binzhou, Shandong, 256603, China.
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong, China.
| |
Collapse
|
21
|
Williams AC, Singh V, Liu P, Kriegel AJ. Liquid Biopsies Poorly miRror Renal Ischemia-Reperfusion Injury. Noncoding RNA 2023; 9:ncrna9020024. [PMID: 37104006 PMCID: PMC10141369 DOI: 10.3390/ncrna9020024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/18/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Acute kidney injury (AKI) is the rapid reduction in renal function. It is often difficult to detect at an early stage. Biofluid microRNAs (miRs) have been proposed as novel biomarkers due to their regulatory role in renal pathophysiology. The goal of this study was to determine the overlap in AKI miRNA profiles in the renal cortex, urine, and plasma samples collected from a rat model of ischemia-reperfusion (IR)-induced AKI. Bilateral renal ischemia was induced by clamping the renal pedicles for 30 min, followed by reperfusion. Urine was then collected over 24 h, followed by terminal blood and tissue collection for small RNA profiling. Differentially expressed (IR vs. sham) miRs within the urine and renal cortex sample types demonstrated a strong correlation in normalized abundance regardless of injury (IR and sham: R2 = 0.8710 and 0.9716, respectively). Relatively few miRs were differentially expressed in multiple samples. Further, there were no differentially expressed miRs with clinically relevant sequence conservation common between renal cortex and urine samples. This project highlights the need for a comprehensive analysis of potential miR biomarkers, including analysis of pathological tissues and biofluids, with the goal of identifying the cellular origin of altered miRs. Analysis at earlier timepoints is needed to further evaluate clinical potential.
Collapse
Affiliation(s)
- Adaysha C. Williams
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Vaishali Singh
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Pengyuan Liu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Alison J. Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
22
|
Liu L, Zhang Y, Zhong L. LncRNA TUG1 relieves renal mesangial cell injury by modulating the miR-153-3p/Bcl-2 axis in lupus nephritis. Immun Inflamm Dis 2023; 11:e811. [PMID: 37102641 PMCID: PMC10091205 DOI: 10.1002/iid3.811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Lupus nephritis (LN) is one of the most common and serious complications of systemic lupus erythematosus. Our experiments aimed to evaluate the molecular mechanisms of long noncoding RNA (lncRNA) TUG1 in a human renal mesangial cell (HRMC) model of LN. METHODS Cells were treated with lipopolysaccharide (LPS) to induce inflammatory damage. StarBase, TargetScan, and a luciferase reporter assay were used to predict and confirm the interactions between lncRNA TUG1, miR-153-3p, and Bcl-2. We determined the lncRNA TUG1 and miR-153-3p levels in LPS-induced HRMCs using quantitative reverse transcription PCR (RT-qPCR). MTT and flow cytometry analyses were used to detect HRMC proliferation and apoptosis, respectively. In addition, the expression of the apoptosis-related proteins Bax and Bcl-2 was evaluated using western blot analysis and RT-qPCR. Lastly, the secretion of inflammatory cytokines (IL-1β, IL-6, and TNF-α) was assessed using ELISA. RESULTS miR-153-3p directly targeted lncRNA TUG1. The level of lncRNA TUG1 was remarkably lower and miR-153-3p expression was markedly higher in LPS-treated HRMCs than in untreated cells. Transfection with TUG1-plasmid relieved LPS-induced HRMC injury, as evidenced by increased cell viability, inhibited apoptotic cells, reduced Bax expression, increased Bcl-2 level, and reduced secretion of inflammatory cytokines. Importantly, these findings were reversed by miR-153-3p mimic. We also found that miR-153-3p directly targeted Bcl-2 and negatively regulated Bcl-2 expression in HRMCs. In addition, our findings suggest that miR-153-3p inhibitor relieved LPS-induced HRMC injury via the upregulation of Bcl-2. CONCLUSION lncRNA TUG1 alleviated LPS-induced HRMC injury through regulation of the miR-153-3p/Bcl-2 axis in LN.
Collapse
Affiliation(s)
- Lingxi Liu
- Department of NephrologyWuhan City Puren HospitalWuhanChina
| | - Yanxia Zhang
- Department of NephrologyTongren Hospital of Wuhan University (Wuhan Third Hospital)WuhanChina
| | - Liping Zhong
- Department of NephrologyHubei Integrated Traditional Chinese and Western Medicine HospitalWuhanChina
| |
Collapse
|
23
|
Gong K, Xu J, Tang J. Diagnostic and Prognostic Value of Deregulated Circulating Long Non-coding RNA TUG1 in Elderly Patients with Severe Pneumonia. Inflammation 2023; 46:313-321. [PMID: 36104517 DOI: 10.1007/s10753-022-01735-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
To investigate the expression pattern of long non-coding RNA TUG1 in elderly patients with severe community-acquired pneumonia (sCAP) and evaluate its diagnostic and prognostic value for sCAP. Serum TUG1 levels were detected in 130 sCAP patients and 122 healthy volunteers via qRT-PCR method. The receiver operating characteristic (ROC) curve and k-M plot were drawn for the diagnostic and prognostic value evaluation. A diminished trend of TUG1 was detected in the serum of sCAP cases, and negatively correlated with the concentration of TNF-α, CRP, suPAR and sTREM-1. Among the 130 cases, 30 cases died from sCAP within 30 days after admission. Serum TUG1 had the diagnostic value for 30-day mortality prediction with the AUC of 0.823. In the non-survival group, more cases had old age, high CURB score and PSI score. K-M plot demonstrated that cases with low TUG1 levels showed poor survival than those carrying high TUG1 levels. Serum TUG1 was an independent risk factor for death in elderly patients with sCAP within 30 days after admission. Serum TUG1 was at low expression in sCAP patients, and it had the predictive value for the clinical prognosis of elderly sCAP patients.
Collapse
Affiliation(s)
- Kai Gong
- Department of Respiratory Medicine, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China
| | - Jiao Xu
- Department of Respiratory Medicine, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China
| | - Jianlei Tang
- Department of Intensive Care Unit, Wu-Jin Hospital Affiliated to Jiangsu University, Wu-Jin Clinical College of Xuzhou Medical University, No. 2 Yongning North Road, Chang Zhou, Jiangsu, 213017, China.
| |
Collapse
|
24
|
Xue Y, Ke J, Zhang J, Chen M, Zeng L, Fan Q, Zheng C, Chen F. Analysis of long noncoding RNAs and messenger RNAs expression profiles in the hearts of mice with acute viral myocarditis. J Med Virol 2023; 95:e28473. [PMID: 36606604 DOI: 10.1002/jmv.28473] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/08/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Acute viral myocarditis (AVMC) is a common acute myocardial inflammation caused by viral infections, which can lead to severe cardiac dysfunction. Several long noncoding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of AVMC. However, the expression profiles and functions of lncRNAs in AVMC have not been fully elucidated. In the present study, we constructed AVMC mouse models by intraperitoneal injection of coxsackievirus B3 (CVB3) and performed RNA sequencing (RNA-seq) on heart tissues to investigate the differences in lncRNAs and messenger RNAs (mRNAs) expression profiles. Based on the cutoff criteria of adjusted p-values (padj) <0.05 and |log2FoldChange| >1, a total of 1122 differentially expressed lncRNAs (DElncRNAs) and 3186 differentially expressed mRNAs (DEmRNAs) were screened, including 734 upregulated and 388 downregulated lncRNAs, 1821 upregulated and 1365 downregulated mRNAs. RT-qPCR analysis validated that the expression patterns of 12 randomly selected genes (6 DElncRNAs and 6 DEmRNAs) were highly consistent with those in RNA-seq, proving the reliability of the RNA-seq data. Then, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed genes were mainly involved in metabolic and immune-related processes. Furthermore, co-expression networks between DElncRNAs and DEmRNAs in cytokine-cytokine receptor interaction, MAPK signaling pathway, and PI3K-Akt signaling pathway were constructed to study the molecular interactions of these molecules. Our study, for the first time, reveals the expression profiles of lncRNAs and mRNAs associated with AVMC, which may shed light on the roles of lncRNAs in disease pathogenesis and aid in discovering new therapeutic targets.
Collapse
Affiliation(s)
- Yimin Xue
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jun Ke
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Jiuyun Zhang
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Mingguang Chen
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Lijuan Zeng
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Qiaolian Fan
- Fourth Department of Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, Guangdong, China.,Department of Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Feng Chen
- Department of Emergency, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China.,Fujian Provincial Key Laboratory of Emergency Medicine, Fujian Provincial Hospital, Fuzhou, Fujian, China
| |
Collapse
|
25
|
Li Y, Zong M, Guan X, Wu X, Ma G, Wei Y, Li Z. MBNL1-AS1 Promotes Hypoxia-Induced Myocardial Infarction via the miR-132-3p/RAB14/CAMTA1 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3308725. [PMID: 36785792 PMCID: PMC9922191 DOI: 10.1155/2023/3308725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/19/2022] [Accepted: 11/25/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mounting evidence have indicated that long noncoding RNA (lncRNA) muscleblind like splicing regulator 1 antisense RNA 1 (MBNL1-AS1) play a crucial regulatory role in cardiovascular disease, myocardial infarction (MI) included. In this research, we sought to probe into the biological function and potential mechanism of MBNL1-AS1 in MI. METHODS Cardiomyocytes were treated under hypoxic conditions for 0-12 h. Functional assays including CCK-8 and flow cytometry were performed to assess hypoxia-stimulated cardiomyocyte viability and apoptosis, respectively. Moreover, bioinformatics analysis and mechanical assays were conducted to reveal the competitive endogenous RNA (ceRNA) mechanism of MBNL1-AS1. RESULTS The upregulation of MBNL1-AS1 was found in hypoxia-stimulated cardiomyocytes. Functionally, the downregulation of MBNL1-AS1 dramatically promoted hypoxia-induced cardiomyocyte viability and inhibited apoptosis. Mechanistically, miR-132-3p bound to MBNL1-AS1 in hypoxia-induced cardiomyocytes, and miR-132-3p directly targeted RAB14, member RAS oncogene family (RAB14) and calmodulin binding transcription activator 1 (CAMTA1). Furthermore, MBNL1-AS1 upregulates the expression of RAB14 and CAMTA1 in hypoxia-stimulated cardiomyocytes via targeting miR-132-3p. CONCLUSIONS The current study revealed the critical role of the MBNL1-AS1/miR-132-3p/RAB14/CAMTA1 axis in MI, indicating MBNL1-AS1 as an innovative therapeutic target for MI.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Cardiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Min Zong
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaonan Guan
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Xuejiao Wu
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Guiling Ma
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Yu Wei
- Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
| | - Zhi Li
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Shantou University Medical College, Shantou, 515041 Guangdong, China
| |
Collapse
|
26
|
Fadaei S, Zarepour F, Parvaresh M, Motamedzadeh A, Tamehri Zadeh SS, Sheida A, Shabani M, Hamblin MR, Rezaee M, Zarei M, Mirzaei H. Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs. Front Cardiovasc Med 2022; 9:1014961. [PMID: 36440025 PMCID: PMC9685618 DOI: 10.3389/fcvm.2022.1014961] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/17/2022] [Indexed: 08/13/2023] Open
Abstract
Myocardial infarction (MI) is one of the leading causes of deaths globally. The early diagnosis of MI lowers the rate of subsequent complications and maximizes the benefits of cardiovascular interventions. Many efforts have been made to explore new therapeutic targets for MI, and the therapeutic potential of non-coding RNAs (ncRNAs) is one good example. NcRNAs are a group of RNAs with many different subgroups, but they are not translated into proteins. MicroRNAs (miRNAs) are the most studied type of ncRNAs, and have been found to regulate several pathological processes in MI, including cardiomyocyte inflammation, apoptosis, angiogenesis, and fibrosis. These processes can also be modulated by circular RNAs and long ncRNAs via different mechanisms. However, the regulatory role of ncRNAs and their underlying mechanisms in MI are underexplored. Exosomes play a crucial role in communication between cells, and can affect both homeostasis and disease conditions. Exosomal ncRNAs have been shown to affect many biological functions. Tissue-specific changes in exosomal ncRNAs contribute to aging, tissue dysfunction, and human diseases. Here we provide a comprehensive review of recent findings on epigenetic changes in cardiovascular diseases as well as the role of ncRNAs and exosomal ncRNAs in MI, focusing on their function, diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Sara Fadaei
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Zarepour
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrnoosh Parvaresh
- Department of Physical Medicine and Rehabilitation, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Motamedzadeh
- Department of Internal Medicine, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | | - Amirhossein Sheida
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Shabani
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- Department of Anesthesiology, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Mehdi Rezaee
- Department of Anesthesiology, School of Medicine, Shahid Madani Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Maryam Zarei
- Tehran Heart Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Rahbari R, Rahimi K, Rasmi Y, Khadem-Ansari MH, Abdi M. miR-589-5p Inhibits Cell Proliferation by Targeting Histone Deacetylase 3 in Triple Negative Breast Cancer. Arch Med Res 2022; 53:483-491. [PMID: 35840467 DOI: 10.1016/j.arcmed.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Histone deacetylase 3 (HDAC3) is a potential oncogene that is significantly up-regulated in patients with breast cancer. MicroRNAs (miRs) are a group of small non-coding and regulatory RNAs which have recently been proposed as promising molecules for breast cancer target therapy. In the current study, we investigated the impact of miR-589-5p/ HDAC3 axis on cancer cell development in triple negative breast cancer (TNBC) cells. METHODS In-silico analysis determined that miR-589-5p potentially targets HDAC3. We evaluated the HDAC3 and mir-589-5p expression levels in clinical samples and breast cancer cell lines including MDA-MB-231, MDA-MB-468, MCF-7 and MCF-10A. HDAC3 was knocked out to investigate its role on cancer cell progression. Anti-cancerous role of the miR-589-5p was assessed using an expression vector. We evaluated possible alteration in the cell cycle progression, cell viability and cell proliferation, after transient transfection. RESULTS HDAC3 was over-expressed in TNBC clinical samples and breast cancer cell lines compared to non-cancerous controls while miR-589-5p was down regulated in cancer cells. Suppression of HDAC3 decreased the cell viability, cell proliferation and colony formation. Similar results were observed after over-expression of the miR-589-5p. Dual-Luciferase reporter assay confirmed the direct targeting of HDAC3 by miR-589-5p. CONCLUSION Our results showed that miR-589-5p mediates its anti-proliferative effects on breast cancer cells via targeting HDAC3. These findings suggest that the miR-589-5p/ HDAC3 axis could be considered as a possible therapeutic strategy in TNBC.
Collapse
Affiliation(s)
- Rezgar Rahbari
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Karim Rahimi
- Department of Molecular Biology and Genetics, Gene Expression and Gene Medicine, Aarhus University, Aarhus, Denmark; Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Yousef Rasmi
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mohammad Abdi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
28
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
29
|
Histone Modifications and Non-Coding RNAs: Mutual Epigenetic Regulation and Role in Pathogenesis. Int J Mol Sci 2022; 23:ijms23105801. [PMID: 35628612 PMCID: PMC9146199 DOI: 10.3390/ijms23105801] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 12/07/2022] Open
Abstract
In the last few years, more and more scientists have suggested and confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. This is particularly interesting for a better understanding of processes that occur in the development and progression of various diseases. Appearing on the preclinical stages of diseases, epigenetic aberrations may be prominent biomarkers. Being dynamic and reversible, epigenetic modifications could become targets for a novel option for therapy. Therefore, in this review, we are focusing on histone modifications and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
|
30
|
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X, Shang L. An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 2022; 50:91. [PMID: 35593308 PMCID: PMC9170192 DOI: 10.3892/ijmm.2022.5147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/05/2022] [Indexed: 11/20/2022] Open
Abstract
Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life-threatening disabilities. Existing evidence suggests that long non-coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post-transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
Collapse
Affiliation(s)
- Yanqun Cao
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Jia Liu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Quzhe Lu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Kai Huang
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Baolin Yang
- Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - James Reilly
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK
| | - Na Jiang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| | - Xinhua Shu
- School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China
| | - Lei Shang
- Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
31
|
Omadacycline Efficacy against Streptococcus Agalactiae Isolated in China: Correlation between Resistance and Virulence Gene and Biofilm Formation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:7636983. [PMID: 35510054 PMCID: PMC9061024 DOI: 10.1155/2022/7636983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/03/2022] [Indexed: 11/27/2022]
Abstract
This study aimed to evaluate the activity, resistance, clonality of MIC distribution, and the correlation between virulence and resistance genes and biofilm formation of omadacycline (OMC) in clinics for Streptococcus agalactiae isolates from China. 162 isolates were collected retrospectively in China. The S. agalactiae were collected from the body's cervical secretions, wound secretions, ear swabs, secretions, semen, venous blood, cerebrospinal fluid, pee, etc. The MIC of OMC against S. agalactiae was determined by broth microdilution. The inhibition zone diameters of OMC and other common antibiotics were measured using filter paper. D-test was performed to determine the phenotype of cross resistance between erythromycin and clindamycin. In Multilocus sequence typing (MLST), some commonly-detected resistance genes and virulence gene of these S. agalactiae isolates were investigated using polymerase chain reaction (PCR). Biofilms were detected by crystal violet staining. Our data demonstrated the correalation of the biofilm formation and OMA antimicrobial susceptibility of S.agalactiae clinical isolates with the carrier of virulence gene scpB. Conclusively, OMC exhibits the robust antimcirobial activity against clinical S. agalactiae isolates from China compared with DOX or MIN, and the carrier of the virulence gene scpB might correlate with the biofilm formation in OMC-resistant S. agalactiae.
Collapse
|
32
|
Roohaninasab M, Yavari SF, Babazadeh M, Hagh RA, Pazoki M, Amrovani M. Evaluating the Role of lncRNAs in the Incidence of Cardiovascular Diseases in Androgenetic Alopecia Patients. Cardiovasc Toxicol 2022; 22:603-619. [PMID: 35507254 DOI: 10.1007/s12012-022-09742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/11/2022] [Indexed: 11/28/2022]
Abstract
Hair loss occurs in patients with Androgenetic Alopecia (AGA). The pattern of hair loss is different between men and women. The main cause of hair loss is increased cell apoptosis and decreased regeneration, proliferation and differentiation processes in hair follicles. Long Non-Coding RNAs (lncRNAs) are one of the most important molecules that regulate the processes of apoptosis, regeneration, proliferation and differentiation in hair follicles. Since studies have shown that lncRNAs can be effective in the development of cardiotoxicity and induction of cardiovascular disease (CVD); so effective lncRNAs in the regulation of regeneration, proliferation, differentiation and apoptosis of hair follicles can be involved in the development of CVD in AGA patients with. Therefore, this study investigated the lncRNAs involved in increasing apoptosis and reducing the processes of regeneration, proliferation and differentiation of hair follicles. The aim of the current study was to evaluate the role of lncRNAs as a risk factor in the incidence of CVD in AGA patients; it will help to design treatment strategies by targeting signaling pathways without any cardiotoxicity complications.
Collapse
Affiliation(s)
- Masoumeh Roohaninasab
- Department of Dermatology, Rasool Akram Medical Complex, Iran University of Medical Sciences, Sattarkhan St, Tehran, 1445613131, Iran
| | - Shadnaz Fakhteh Yavari
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran.,Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | - Motahareh Babazadeh
- Department of Dermatology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Mahboubeh Pazoki
- Department of Cardiology, Rasoul Akram General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Mehran Amrovani
- High Institute for Education and Research in Transfusion Medicine, Tehran, Iran.
| |
Collapse
|
33
|
Possible implication of miR-142-3p in coronary microembolization induced myocardial injury via ATXN1L/HDAC3/NOL3 axis. J Mol Med (Berl) 2022; 100:763-780. [PMID: 35414011 DOI: 10.1007/s00109-022-02198-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
This study aims to explore the mechanism underlying miR-142-3p regulating myocardial injury induced by coronary microembolization (CME) through ATXN1L. miR-142-3p overexpression or ATXN1L knockout adenovirus vectors were injected into rats before CME treatment. Cardiac functions were examined by echocardiography, and pathologies of myocardial tissues were assessed. Then, serum cTnI and IL-1β contents and concentrations of IL-1β and IL-18 in cell supernatant were measured. Immunofluorescence determined the localization of histone deacetylase 3 (HDAC3). The interaction between miR-142-3p and ATXN1L as well as the binding between HDAC3 and histone 3 (H3) was identified. The binding of ATXN1L and HDAC3 to NOL3 promoter was verified using ChIP. The levels of ATXN1L, NOL3, and miR-142-3p as well as apoptosis- and pyroptosis-related proteins and acetyl-histone 3 (ac-H3) were evaluated. CME treatment impaired the cardiac functions in rats and increased cTnI content. CME rats showed microinfarction foci in myocardial tissues. After CME treatment, miR-142-3p and NOL3 were modestly expressed while ATXN1L content was elevated, in addition to increases in apoptosis and pyroptosis. miR-142-3p overexpression or ATXN1L knockout alleviated CME-induced myocardial injury, cardiomyocyte apoptosis, and pyroptosis in myocardial tissues. miR-142-3p regulated ATXN1L expression in a targeted manner. In the cellular context, miR-142-3p overexpression attenuated apoptosis and pyroptosis in cardiomyocytes, which was partly counteracted by ATXN1L overexpression. ATXN1L functioned on cardiomyocytes by promoting deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression. Inhibition of HDAC3 or overexpression of NOL3 ameliorated the promotive effects of ATXN1L on cardiomyocyte apoptosis and pyroptosis. In vivo and in vitro evidence in this study supported that miR-142-3p could attenuate CME-induced myocardial injury via ATXN1L/HDAC3/NOL3. HIGHLIGHTS: CME model witnessed aberrant expression of miR-142-3p, ATXN1L, and NOL3; miR-142-3p negatively regulated ATXN1L; miR-142-3p mediated CME-induced myocardial injury through ATXN1L; ATXN1L promoted deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression; ATXN1L acted on cardiomyocyte apoptosis and pyroptosis through HDAC3/NOL3 axis.
Collapse
|
34
|
Wang YW, Dong HZ, Tan YX, Bao X, Su YM, Li X, Jiang F, Liang J, Huang ZC, Ren YL, Xu YL, Su Q. HIF-1α-regulated lncRNA-TUG1 promotes mitochondrial dysfunction and pyroptosis by directly binding to FUS in myocardial infarction. Cell Death Dis 2022; 8:178. [PMID: 35396503 PMCID: PMC8993815 DOI: 10.1038/s41420-022-00969-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 12/02/2022]
Abstract
Myocardial infarction (MI) is a fatal heart disease that affects millions of lives worldwide each year. This study investigated the roles of HIF-1α/lncRNA-TUG1 in mitochondrial dysfunction and pyroptosis in MI. CCK-8, DHE, lactate dehydrogenase (LDH) assays, and JC-1 staining were performed to measure proliferation, reactive oxygen species (ROS), LDH leakage, and mitochondrial damage in hypoxia/reoxygenation (H/R)-treated cardiomyocytes. Enzyme-linked immunoassay (ELISA) and flow cytometry were used to detect LDH, creatine kinase (CK), and its isoenzyme (CK-MB) levels and caspase-1 activity. Chromatin immunoprecipitation (ChIP), luciferase assay, and RNA-immunoprecipitation (RIP) were used to assess the interaction between HIF-1α, TUG1, and FUS. Quantitative real-time polymerase chain reaction (qRT-PCR), Western blotting, and immunohistochemistry were used to measure HIF-1α, TUG1 and pyroptosis-related molecules. Hematoxylin and eosin (HE), 2,3,5-triphenyltetrazolium chloride (TTC), and terminal deoxynucleotidyl transferase dUTP risk end labelling (TUNEL) staining were employed to examine the morphology, infarction area, and myocardial injury in the MI mouse model. Mitochondrial dysfunction and pyroptosis were induced in H/R-treated cardiomyocytes, accompanied by an increase in the expression of HIF-α and TUG1. HIF-1α promoted TUG1 expression by directly binding to the TUG1 promoter. TUG1 silencing inhibited H/R-induced ROS production, mitochondrial injury and the expression of the pyroptosis-related proteins NLRP3, caspase-1 and GSDMD. Additionally, H/R elevated FUS levels in cardiomyocytes, which were directly inhibited by TUG1 silencing. Fused in sarcoma (FUS) overexpression reversed the effect of TUG1 silencing on mitochondrial damage and caspase-1 activation. However, the ROS inhibitor N-acetylcysteine (NAC) promoted the protective effect of TUG1 knockdown on H/R-induced cardiomyocyte damage. The in vivo MI model showed increased infarction, myocardial injury, ROS levels and pyroptosis, which were inhibited by TUG1 silencing. HIF-1α targeting upregulated TUG1 promotes mitochondrial damage and cardiomyocyte pyroptosis by combining with FUS, thereby promoting the occurrence of MI. HIF-1α/TUG1/FUS may serve as a potential treatment target for MI.
Collapse
Affiliation(s)
- Yong-Wang Wang
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Hong-Zhi Dong
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, 300222, P. R. China
| | - Yong-Xing Tan
- Department of Intensive Care Unit, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xu Bao
- Department of Anesthesiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Ying-Man Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Xin Li
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Fang Jiang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Jing Liang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Zhen-Cai Huang
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yan-Ling Ren
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Yu-Li Xu
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China
| | - Qiang Su
- Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, Zhuang Autonomous Region, P. R. China.
| |
Collapse
|
35
|
Chen X, Cheng Q, Wu H, Du Y. Long Non-Coding RNAs in Systemic Lupus Erythematosus: New Insights into Disease Pathogenesis and Diagnosis. Scand J Immunol 2022; 95:e13167. [PMID: 35316555 DOI: 10.1111/sji.13167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/20/2022] [Accepted: 03/18/2022] [Indexed: 11/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is a remarkable heterogeneous autoimmune disease that is sometimes hard to diagnose at the early stage and can lead to premature mortality. Long non-coding RNAs (lncRNAs) are a class of non-protein-coding RNAs greater than 200 nucleotides in length that can regulate gene expression in various human diseases, including SLE. Peripheral blood samples and renal tissue samples from SLE patients were used for study. Abnormally expressed lncRNAs in SLE have been shown to influence several signaling pathways, including the IFN-I, MAPK and WNT pathways. This can affect cellular phenotypes like cell activation, differentiation skewing, cytokine production, and cell apoptosis. Many of the reported lncRNAs may be useful for diagnosing, evaluating progression, and predicting potential organ damage in SLE patients. While numerous lncRNAs play important roles in SLE, more basic and clinical studies are warranted to clarify the function of these regulatory molecules and determine their diagnostic value.
Collapse
Affiliation(s)
- Xin Chen
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.,Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.,Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| |
Collapse
|
36
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
37
|
Kiani S, Kahrizi D, Varmira K, Kassaee SM. Molecular and Biochemical Evaluation of Ethyl Methanesulfonate-Induced Mutant Lines in Camelina sativa L. IRANIAN JOURNAL OF BIOTECHNOLOGY 2022; 20:e2948. [PMID: 35891951 PMCID: PMC9284240 DOI: 10.30498/ijb.2021.263748.2948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Camelina sativa is one of the most important oilseeds that has a proportionate profile of essential unsaturated fatty acids that are suitable for human nutrition. In this regard, we can mention a high percentage and a reasonable ratio of omega 3 and omega 6. Objectives In the current study, the created variation of second-generation mutant (M2) camelina lines in terms of fatty acid profiles and ISSR molecular markers in C. sativa was evaluated. Materials and Methods For this purpose, while producing the first-generation of mutant plants (M1), 200 M2 seeds with 0.1% and 0.5% ethyl methanesulfonate (EMS) mutations were treated in two replications for 8 and 16 hours based on a completely randomized design. Results The results of mean comparisons showed that there was no significant difference between treatments in terms of fatty acids of palmitic acid, stearic acid, linoleic acid, eicosadienoic acid, oleic acid and erucic acid. The cluster analysis revealed that all the treatments used with five replications were divided into eight groups. It was found that all replications of the treatment with a concentration of 0.1% and a time of 16 hours (C1T2) were in the second group with the lowest palmitic acid was present among other treatments. Therefore, C1T2 treatment is recommended as the best treatment to reduce palmitic acid. Examination of the information content of ISSR molecular markers also showed that markers 2, 5, and 6 were the best informative markers in the detection of camelina fatty acid profiles. Conclusion A significant variation has been created in the fatty acids profile and it can be applied in future breeding programs depending on the intended purpose.
Collapse
Affiliation(s)
- Samira Kiani
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Danial Kahrizi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Kambiz Varmira
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Mehrdad Kassaee
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| |
Collapse
|
38
|
Li C, Liu JH, Su J, Lin WJ, Zhao JQ, Zhang ZH, Wu Q. LncRNA XIST knockdown alleviates LPS-induced acute lung injury by inactivation of XIST/miR-132-3p/MAPK14 pathway : XIST promotes ALI via miR-132-3p/MAPK14 axis. Mol Cell Biochem 2021; 476:4217-4229. [PMID: 34346000 PMCID: PMC8330477 DOI: 10.1007/s11010-021-04234-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022]
Abstract
Acute lung injury (ALI) is a fatal inflammatory response syndrome. LncRNA XIST (XIST) is a lung cancer-related gene and participates in pneumonia. However, whether XIST participates in lipopolysaccharides (LPS)-induced ALI remains unclear. LPS-induced inflammation model was constructed in vitro, then cell viability, cytokines, cell apoptosis, protein, and mRNA expressions were individually detected by cell counting kit-8, enzyme-linked immunosorbent assay and flow cytometry, Western blot, and qRT-PCR. A dual-luciferase reporter assay confirmed the relationships among XIST, miR-132-3p, and MAPK14. Furthermore, inflammation and conditions after knockdown of XIST were assessed by hematoxylin and eosin staining, lung wet-to-dry weight ratio, PaO2/FiO2 ratio, and malondialdehyde (MDA) contents using LPS-induced in vivo model. Our findings indicated that the LPS challenge decreased cell viability, increased cell apoptosis, and caused secretions of pro-inflammatory cytokines. Noticeably, LPS significantly upregulated XIST, MAPK14, and downregulated miR-132-3p. Mechanistically, XIST acted as a molecular sponge to suppress miR-132-3p, and MAPK14 was identified as a target of miR-132-3p. Functional analyses demonstrated that XIST silencing remarkably increased cell survival and alleviated cell death and lung injury through decreasing TNF-α, IL-1β, IL-6, accumulation of inflammatory cells, alveolar hemorrhage, MDA release, and increased PaO2/FiO2 ratio, as well as upregulating Bcl-2, and downregulating Bax, MAPK14, and p-extracellular signal-regulated kinases ½. In contrast, inhibition of the miR-132-3p antagonized the effects of XIST silencing. In conclusion, inhibition of XIST exhibited a protective role in LPS-induced ALI through modulating the miR-132-3p/MAPK14 axis.
Collapse
Affiliation(s)
- Chen Li
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Hua Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jing Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Wei-Jia Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Jian-Qing Zhao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Zhi-Hua Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei Province, People's Republic of China
| | - Qi Wu
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, No. 154, Anshan Road, Heping District, Tianjin, 300052, People's Republic of China.
| |
Collapse
|
39
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
40
|
Xu K, Chen C, Wu Y, Wu M, Lin L. Advances in miR-132-Based Biomarker and Therapeutic Potential in the Cardiovascular System. Front Pharmacol 2021; 12:751487. [PMID: 34795586 PMCID: PMC8594750 DOI: 10.3389/fphar.2021.751487] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 12/18/2022] Open
Abstract
Atherosclerotic cardiovascular disease and subsequent heart failure threaten global health and impose a huge economic burden on society. MicroRNA-132 (miR-132), a regulatory RNA ubiquitously expressed in the cardiovascular system, is up-or down-regulated in the plasma under various cardiac conditions and may serve as a potential diagnostic or prognostic biomarker. More importantly, miR-132 in the myocardium has been demonstrated to be a master regulator in many pathological processes of ischemic or nonischemic heart failure in the past decade, such as myocardial hypertrophy, fibrosis, apoptosis, angiogenesis, calcium handling, neuroendocrine activation, and oxidative stress, through downregulating target mRNA expression. Preclinical and clinical phase 1b studies have suggested antisense oligonucleotide targeting miR-132 may be a potential therapeutic approach for ischemic or nonischemic heart failure in the future. This review aims to summarize recent advances in the physiological and pathological functions of miR-132 and its possible diagnostic and therapeutic potential in cardiovascular disease.
Collapse
Affiliation(s)
- Kaizu Xu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Chungui Chen
- Department of Radiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Ying Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Meifang Wu
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| | - Liming Lin
- Department of Cardiology, Affiliated Hospital of Putian University, The Third School of Clinical Medicine, Southern Medical University, Putian, China
| |
Collapse
|
41
|
Zhu Q, Li S, Ji K, Zhou H, Luo C, Sui Y. Differentially expressed TUG1 and miR-145-5p indicate different severity of chronic heart failure and predict 2-year survival prognosis. Exp Ther Med 2021; 22:1362. [PMID: 34659508 PMCID: PMC8515550 DOI: 10.3892/etm.2021.10796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRs) have critical roles in the progression of various diseases. The present study aimed to investigate the levels and clinical significance of lncRNA taurine upregulated gene 1 (TUG1) and miR-145-5p in patients with chronic heart failure (CHF) and explore their indicative value regarding disease severity. TUG1 and miR-145-5p levels were detected by reverse-transcription quantitative PCR. Correlations were examined using Pearson's correlation analysis. Receiver operating characteristic analysis was used to evaluate the diagnostic value of TUG1, miR-145-5p and brain natriuretic peptide (BNP). Survival analysis was performed by the Kaplan-Meier method. Cox regression analysis was used to evaluate the prognostic value of TUG1 and miR-145-5p. The levels of interleukin-6 and tumor necrosis factor-α in serum were detected by ELISA. The results indicated that TUG1 was upregulated and miR-145-5p was downregulated in patients with CHF and they were negatively correlated. TUG1 and miR-145-5p were associated with the left ventricle ejection fraction and were able to indicate the severity of CHF. Serum TUG1 and miR-145-5p had a certain diagnostic value and the combination of BNP, TUG1 and miR-145-5p had high diagnostic accuracy. TUG1 and miR-145-5p were closely associated with overall survival and may function as independent prognostic biomarkers for patients with CHF. In addition, TUG1 and miR-145-5p levels were markedly correlated with inflammation in CHF. Upregulated TUG1 and downregulated miR-145-5p may indicate the severity of CHF, may serve as diagnostic and prognostic biomarkers and may be involved in CHF progression by regulating inflammatory responses.
Collapse
Affiliation(s)
- Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Yana Sui
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
42
|
Zhang L, Yang C, Qiu B. LncRNA RP11-400K9.4 Aggravates Cardiomyocytes Apoptosis After Hypoxia/Reperfusion Injury by Targeting miR-423. Int Heart J 2021; 62:1124-1134. [PMID: 34497168 DOI: 10.1536/ihj.20-828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Our study was aimed at exploring the roles of lncRNA RP11-400K9.4 (RP11-400K9.4) on hypoxia/reoxygenation (H/R) -induced cardiomyocytes apoptosis. H/R model was constructed in rat primary cardiomyocytes (PC) and H9c2 cells. In this study, the results showed that H/R significantly induced the apoptosis of PC and H9c2 cells. The expression of RP11-400K9.4 was upregulated in H/R-induced PC and H9c2 cells, but miR-423 expression was downregulated. Silencing RP11-400K9.4 could attenuate H/R-induced apoptosis in PC and H9c2 cells. We also found that miR-423 was a potential target of RP11-400K9.4. The effect of silencing RP11-400K9.4 on H/R-induced apoptosis of PC and H9c2 cells was significantly reversed by miR-423 inhibitor transfection. Furthermore, our data confirmed that silencing RP11-400K9.4 promoted the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) /extracellular signal-regulated kinase (ERK) pathways and these phenomena can be reversed by miR-423 inhibitor transfection. In conclusion, our study demonstrated that silencing RP11-400K9.4 could alleviate H/R-induced cardiomyocytes damages via suppressing apoptosis by targeting miR-423 with the activation of PI3K/AKT and MEK/ERK signaling pathways.
Collapse
Affiliation(s)
- Liqiong Zhang
- Department of Geriatrics, Qujing Number 1 People's Hospital
| | - Chao Yang
- Department of ECG Room, Weifang Yidu Central Hospital
| | - Binghua Qiu
- Department of General Practice, Weifang people's Hospital
| |
Collapse
|
43
|
Zhao X, Yang L, Qin L. Methyltransferase-like 3 (METTL3) attenuates cardiomyocyte apoptosis with myocardial ischemia-reperfusion (I/R) injury through miR-25-3p and miR-873-5p. Cell Biol Int 2021; 46:992. [PMID: 34553450 DOI: 10.1002/cbin.11706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Methyltransferase-like 3 (METTL3) mediated N6 -methyladenosine (m6A) promotes microRNAs (miRNAs) maturation by processing the primary miRNAs, and METTL3 involves in regulating the development of various diseases, including myocardial ischemia-reperfusion (I/R) injury. However, up until now, the association between METTL3 regulated miRNAs and I/R injury is not fully investigated, which makes investigations on this academic issue necessary. In this study, we showed that METTL3 was downregulated in mice I/R myocardial tissues and hypoxic/re-oxygenated (H/R) cardiomyocytes, and upregulation of METTL3 attenuated I/R and H/R-induced cell apoptosis. In addition, we screened out that two miRNAs, including miR-25-3p and miR-873-5p, were positively regulated by METTL3 in cardiomyocytes in a DGCR8-dependent manner. In addition, both miR-25-3p and miR-873-5p were significantly downregulated by I/R and H/R treatments in mice tissues and cardiomyocytes, and overexpression of the above two miRNAs were effective to improve cell viability in cardiomyocytes under H/R stress. Next, we evidenced that METTL3 suppressed H/R-induced cell death via upregulating miR-25-3p and miR-873-5p. Finally, the potential downstream mechanisms were investigated, and we expectedly found that METTL3 activated the PI3K/Akt pathway in H/R-treated cardiomyocytes through modulating miR-25-3p and miR-873-5p, and the PI3K/Akt pathway inhibitor (LY294002) abrogated the protective effects of METTL3 overexpression in cardiomyocytes with H/R treatment. Collectively, we concluded that METTL3 upregulated miR-25-3p and miR-873-5p to activate the PI3K/Akt pathway, resulting in the suppression of I/R injury.
Collapse
Affiliation(s)
- Xiangmei Zhao
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lei Yang
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Lijie Qin
- Department of Emergency, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, Zhengzhou, Henan, China
| |
Collapse
|
44
|
Xu Z, Huang X, Lin Q, Xiang W. Long non-coding RNA TUG1 knockdown promotes autophagy and improves acute renal injury in ischemia-reperfusion-treated rats by binding to microRNA-29 to silence PTEN. BMC Nephrol 2021; 22:288. [PMID: 34429073 PMCID: PMC8385981 DOI: 10.1186/s12882-021-02473-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) is increased under the condition of ischemia. This study intended to identify the mechanism of TUG1 in renal ischemia-reperfusion (I/R). Methods First, a rat model of acute renal injury induced by I/R was established, followed by the measurement of blood urea nitrogen (BUN), serum creatine (SCr), methylenedioxyphetamine (MDA) and superoxide dismutase (SOD) in the serum of rats. TUG1 was knocked down in I/R rats (ko-TUG1 group). Next, histological staining was used to evaluate the pathological damage and apoptosis of rat kidney. Western blot analysis was used to detect the levels of apoptosis- and autophagy-related proteins and transmission electron microscope was used to observe autophagosomes. Autophagy and apoptosis were evaluated after inhibition of the autophagy pathway using the inhibitor 3-MA. The targeting relation among TUG1, microRNA (miR)-29 and phosphatase and tensin homolog (PTEN) were validated. Lastly, the effects of TUG1 on biological behaviors of renal tubular cells were evaluated in vitro. Results In vivo, the levels of BUN, SCr and MDA in the serum of I/R-treated rats were increased while SOD level and autophagosomes were reduced, tubule epithelial cells were necrotic, and TUG1 was upregulated in renal tissues of I/R-treated rats, which were all reversed in rats in the ko-TUG1 group. Autophagy inhibition (ko-TUG1 + 3-MA group) averted the protective effect of TUG1 knockdown on I/R-treated rats. TUG1 could competitively bind to miR-29 to promote PTEN expression. In vitro, silencing TUG1 (sh-TUG1 group) promoted viability and autophagy of renal tubular cells and inhibited apoptosis. Conclusions LncRNA TUG can promote PTEN expression by competitively binding to miR-29 to promote autophagy and inhibited apoptosis, thus aggravating acute renal injury in I/R-treated rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02473-0.
Collapse
Affiliation(s)
- Zhiquan Xu
- Department of Nephrology, Rheumatology and Immunology, Hainan Women and Children's Medical Center, 570300, Haikou, Hainan, P.R. China
| | - Xiaoyan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, 570206, Haikou, Hainan, P.R. China
| | - Qiuyu Lin
- Department of Respiratory, Hainan Maternal and Children's Medical Center, 570000, Haikou, Hainan, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Hainan Maternal and Children's Medical Center, Changbin Road, Xiuying District, Hainan, 571199, Haikou, P.R. China.
| |
Collapse
|
45
|
Sun Q, Luo M, Gao Z, Han X, Yan Z, Xie S, Zhao H, Sun H. TUG1 knockdown suppresses cardiac fibrosis after myocardial infarction. Mamm Genome 2021; 32:435-442. [PMID: 34341870 DOI: 10.1007/s00335-021-09895-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Cardiac fibrosis is involved in myocardial remodeling following acute myocardial infarction (AMI), which can result in heart failure, arrhythmias and even sudden cardiac death. Investigating the molecular mechanisms of cardiac fibrosis in acute myocardial infarction (AMI) is essential for better understanding this pathology. The current study aims to investigate the effect of TUG1 on cardiac fibrosis after AMI and elucidated the underlying molecular mechanism of AMI. Rats were randomly divided into four groups (sham-operation group, myocardial infarction group (AMI group), si-NC treated group and si-TUG1 treated group). The biological behavior of cardiac fibroblasts treated with TGF-β1after being transfected by si-TUG1 or miR-590 mimic or miR-590 inhibitor or FGF1 mimic or a combination was evaluated using the cell counting kit-8 (CCK8) and Transwell assays. SatarBase v2.0 was used to predict the target microRNAs binding site candidates with TUG1 and FGF1. Western blot and recovery experiments were used to explore the potential mechanism. TUG1 expression was up-regulated and knockdown of TUG1 improved cardiac function in AMI rats. Knockdown of TUG1 suppressed cell viability and migration and improved collagen production of TGF-β1 treated cardiac fibroblasts. SatarBase v2.0 showed TUG1 served as a sponge for miR-590 and FGF1 is a direct target of miR-590. TUG1 expression was increased in AMI tissue and cardiac fibroblasts treated with TGF-β1. TUG1 knockdown suppressed the biological process of cardiac fibroblasts treated with TGF-β1 by sponging miR-590.
Collapse
Affiliation(s)
- Qingsong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Man Luo
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhiwei Gao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Xiang Han
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Zhuan Yan
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Shouxiang Xie
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China
| | - Hongmei Zhao
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| | - Hong Sun
- Department of Emergency, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, No.1, Huanghe West Road, Huaiyin District, Huai'an, 223300, Jiangsu, China.
| |
Collapse
|
46
|
Long Noncoding RNA Taurine-Upregulated Gene 1 Knockdown Protects Cardiomyocytes Against Hypoxia/Reoxygenation-induced Injury Through Regulating miR-532-5p/Sox8 Axis. J Cardiovasc Pharmacol 2021; 76:556-563. [PMID: 32833900 DOI: 10.1097/fjc.0000000000000895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Long noncoding RNA taurine-upregulated gene 1 (TUG1) has been reported to involve in the processing of cardiac ischemia/reperfusion injury after myocardial infarction. Thus, this study further investigates the underlying mechanisms of TUG1 in hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury in vitro. METHODS Cell viability, apoptosis, and migration and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry, and transwell assay, respectively. Western blot was used to examine the levels of matrix metallopeptidase 9, matrix metallopeptidase 2, and sex determining region Y-box transcription factor 8 (Sox8) protein. Levels of lactate dehydrogenase, malondialdehyde, superoxide dismutase, and glutathione peroxidase were detected using commercial kits. Levels of TUG1, microRNA-532-5p (miR-532-5p), and Sox8 were detected by quantitative real-time polymerase chain reaction. The interaction between miR-532-5p and Sox8 or TUG1 was confirmed by dual-luciferase reporter and RNA immunoprecipitation assay. RESULTS H/R induced rat cardiomyocyte H9c2 injury by inhibiting cell viability, migration and invasion, promoting cell apoptosis, and stimulating oxidative stress. H/R-induced H9c2 injury upregulated the level of TUG1, and TUG1 knockdown alleviated H/R-induced cardiomyocyte injury. TUG1 directly bound to miR-532-5p, and miR-532-5p inhibition reversed the action of TUG1 knockdown on H/R-induced cardiomyocyte injury. Sox8 was a target of miR-532-5p, and miR-532-5p blunted H/R-induced cardiomyocyte injury by targeting Sox8. In addition, TUG1 knockdown inhibited H/R-induced Sox8 elevation through miR-532-5p in H9c2 cells. CONCLUSION TUG1 silence ameliorated H/R-induced cardiomyocytes injury through regulating miR-532-5p/Sox8 axis, suggesting a potential therapeutic target for preventing myocardial ischemia/reperfusion injury.
Collapse
|
47
|
Zhang F, Chen G, Wang L, Feng Z, Mi W. LncRNA taurine up-regulated gene 1 participates in isoflurane induced neurotoxicity. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00141-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
48
|
Hou J, Zeng C, Zheng G, Liang L, Jiang L, Yang Z. LncRNAs Participate in Post-Resuscitation Myocardial Dysfunction Through the PI3K/Akt Signaling Pathway in a Rat Model of Cardiac Arrest and Cardiopulmonary Resuscitation. Front Physiol 2021; 12:689531. [PMID: 34194340 PMCID: PMC8238007 DOI: 10.3389/fphys.2021.689531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, we aimed to explore the role of lncRNAs in post-resuscitation myocardial dysfunction in a rat model of CA-CPR. A rat model of CA-CPR was constructed using a VF method. Myocardial functions, including cardiac output (CO), ejection fraction (EF), and myocardial performance index (MPI), were evaluated at the baseline, and 1, 2, 3, 4, and 6 h after resuscitation. A high throughput sequencing method was used to screen the differentially expressed lncRNAs, miRNAs, and mRNAs, which were further analyzed with bioinformatics. In addition, relationships between the molecules involved in the PI3K/Akt signaling pathway were explored with ceRNA network. Compared with the sham group, EF was significantly reduced and MPI was increased at the five consecutive time points in the CA-CPR group. 68 lncRNAs were upregulated and 40 lncRNAs were downregulated in the CA-CPR group, while 30 miRNAs were downregulated and 19 miRNAs were upregulated. Moreover, mRNAs were also differentially expressed, with 676 upregulated and 588 downregulated. GO analysis suggested that genes associated with cell proliferation, cell death and programmed cell death were significantly enriched. KEGG analysis showed that the PI3K/Akt, MAPK and Ras signaling pathways were the three most-enriched pathways. Construction of a ceRNA regulatory network indicated that LOC102549506, LOC103689920, and LOC103690137 might play important roles in the regulation of the PI3K/Akt signaling pathway in the CA-CPR treated rat. Taken together, LncRNAs, including LOC102549506, LOC103689920 and LOC103690137, might participate in post-resuscitation myocardial dysfunction by functioning as ceRNAs and regulating the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Jingying Hou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chaotao Zeng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Zheng
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lian Liang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Longyuan Jiang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengfei Yang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
49
|
Therapeutic Effect of Electronic Endoscopic Hematoma Removal on Hypertensive Basal Ganglia Cerebral Hemorrhage Based on Smart Medical Technology. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7486249. [PMID: 34211682 PMCID: PMC8208846 DOI: 10.1155/2021/7486249] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 11/17/2022]
Abstract
The medical and health industry has successively experienced three stages of digital medical treatment, local area network medical treatment, and internet medical treatment. With the rapid development of technologies such as the Internet of Things, big data, and artificial intelligence, emerging applications and service models have gradually penetrated into all aspects of the medical and health field. At this point, the informatization development process of the medical industry has entered the stage of smart medical treatment. (Smart medical system is a new medical system that improves users' medical experience and provides users with better services. Due to the cumbersome, complicated, and mechanically rigid environment of the past medical service, there was no uniform standard. In order to create a reliable and open medical service environment, an intelligent medical system came into being.). A diversified technical foundation and smart medical protection, conducive to providing patients with high-quality medical services, are established. This article mainly introduces the analysis of the therapeutic effect of smart medical electronic endoscopic hematoma removal on hypertensive basal ganglia cerebral hemorrhage and aims to inject advanced technology and vitality of smart medical treatment into the treatment of hypertensive basal ganglia cerebral hemorrhage by hematoma removal and help the doctor to treat the patient. This article proposes the research methods of smart medical application in the treatment of hypertensive basal ganglia cerebral hemorrhage with electronic endoscopic hematoma removal, including smart medical overview, intracranial hematoma removal for hypertensive basal ganglia cerebral hemorrhage, and smart medical bioelectric signal classification. The recognition algorithm is used to realize the smart medical application of the electronic endoscopic hematoma removal in the treatment of hypertensive cerebral hemorrhage in the basal ganglia area. The experimental results show that the removal of intracranial hematoma based on smart medicine can effectively improve the removal rate of intracranial hematoma, with a recovery rate of 26.73% and a significant efficiency of 36.49%.
Collapse
|
50
|
Chen Z, Pei L, Zhang D, Xu F, Zhou E, Chen X. HDAC3 increases HMGB3 expression to facilitate the immune escape of breast cancer cells via down-regulating microRNA-130a-3p. Int J Biochem Cell Biol 2021; 135:105967. [PMID: 33727043 DOI: 10.1016/j.biocel.2021.105967] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Histone deacetylase 3 (HDAC3) has been reported to repress the expression of various genes by eliminating acetyl group from histone. The objective of this study was to discuss the effect of HDAC3/microRNA-130a-3p (miR-130a-3p)/high-mobility group box 3 (HMGB3) on immune escape of breast cancer. METHODS HDAC3, miR-130a-3p and HMGB3 expression in breast cancer tissues and cells were tested, and the correlation between HDAC3, miR-130a-3p and HMGB3 was analyzed. CD8, CD69 and programmed cell death protein 1 (PD-1) expression was detected. MDA-MB-231 cells were treated with relative plasmid of HDAC3 or miR-130a-3p to test cell viability, migration, epithelial-mesenchymal transition (EMT) and apoptosis in MDA-MB-231 cells. The cytotoxicity of CD8+/CD69+/PD-1+T cells in MDA-MB-231 cells was tested, and CD8+/CD69+/PD-1+T cell proliferation and apoptosis before and after co-culture with MDA-MB-231 cells were detected. RESULTS HDAC3 and HMGB3 expression were raised and miR-130a-3p expression was diminished in breast cancer tissues and cells. HDAC3 was negatively correlated with miR-130a-3p while miR-130a-3p was negatively correlated with HMGB3. Down-regulating HDAC3 or up-regulating miR-130a-3p restrained cell viability, migration, EMT and anti-CD8+/CD69+/PD-1+T cytotoxicity and facilitated apoptosis of breast cancer cells. HDAC3 regulated HMGB3 by mediating miR-130a-3p expression. Down-regulating miR-130a-3p reversed the role of HDAC3 reduction on breast cancer cells. HDAC3 regulated CD8+/CD69+/PD-1+T cell proliferation and apoptosis by mediating miR-130a-3p. CONCLUSION This study provides evidence that HDAC3 increases HMGB3 expression to promote the immune escape of breast cancer cells via down-regulating miR-130a-3p.
Collapse
Affiliation(s)
- Zonglin Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lei Pei
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Danhua Zhang
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Feng Xu
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Enxiang Zhou
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xianyu Chen
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|