1
|
Sun W, Lin R, Li Y, Yao Y, Lu B, Yu Y. Circulating branched-chain amino acids and the risk of major adverse cardiovascular events in the UK biobank. Front Endocrinol (Lausanne) 2025; 16:1510910. [PMID: 40052157 PMCID: PMC11882422 DOI: 10.3389/fendo.2025.1510910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the relationship between circulating branched-chain amino acids (BCAAs) and the risk of major adverse cardiovascular events (MACE) in a national population-based cohort study. Methods UK Biobank, a prospective study involving 22 recruitment centers across the United Kingdom. For this analysis, we included 266,840 participants from the UK Biobank who had available BCAA data and no history of MACE at baseline. Cox regression analysis was conducted to evaluate these associations, adjusting for potential confounders. Results During a 13.80 ± 0.83-year follow-up, 52,598 participants experienced MACE, with the incidence of MACE increasing progressively across quintiles of circulating BCAAs, isoleucine, leucine, and valine. Overall, the fifth quintile exhibited a 7-12% higher MACE risk compared to the second quintile. In males, BCAAs were not associated with MACE risk. However, increased risks were observed for isoleucine (8-12% in higher quintiles), leucine (9% in the first quintile and 6% in the fifth quintile), and valine (8% in the first quintile). In females, higher quintiles of BCAAs, isoleucine, leucine, and valine were associated with increased MACE risk, ranging from 9% to 12%. Among participants under 65y, higher quintiles of BCAAs, isoleucine, and leucine were associated with increased MACE risk, while valine showed no significant association. No association was found in participants aged 65 and older. These analyses were adjusted for multiple potential confounders. Conclusion Generally, higher levels of BCAAs, isoleucine, leucine, and valine were associated with an increased risk of MACE, except in participants older than 65. Additionally, in males, the lowest quintiles of leucine and valine were also associated with an increased risk of MACE.
Collapse
Affiliation(s)
- Wanwan Sun
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ruilang Lin
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Yiming Li
- Department of Endocrinology, Huashan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Bin Lu
- Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yongfu Yu
- Department of Biostatistics, School of Public Health, The Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Abstract
Research conducted in the past 15 years has yielded crucial insights that are reshaping our understanding of the systems physiology of branched-chain amino acid (BCAA) metabolism and the molecular mechanisms underlying the close relationship between BCAA homeostasis and cardiovascular health. The rapidly evolving literature paints a complex picture, in which numerous tissue-specific and disease-specific modes of BCAA regulation initiate a diverse set of molecular mechanisms that connect changes in BCAA homeostasis to the pathogenesis of cardiovascular diseases, including myocardial infarction, ischaemia-reperfusion injury, atherosclerosis, hypertension and heart failure. In this Review, we outline the current understanding of the major factors regulating BCAA abundance and metabolic fate, highlight molecular mechanisms connecting impaired BCAA homeostasis to cardiovascular disease, discuss the epidemiological evidence connecting BCAAs with various cardiovascular disease states and identify current knowledge gaps requiring further investigation.
Collapse
Affiliation(s)
- Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Cardiology, Duke University, Durham, NC, USA.
| | - Phillip J White
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Medicine, Division of Endocrinology, Metabolism and Nutrition, Duke University, Durham, NC, USA.
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
3
|
Tekwe CD, Yao K, Lei J, Li X, Gupta A, Luan Y, Meininger CJ, Bazer FW, Wu G. Oral administration of α-ketoglutarate enhances nitric oxide synthesis by endothelial cells and whole-body insulin sensitivity in diet-induced obese rats. Exp Biol Med (Maywood) 2019; 244:1081-1088. [PMID: 31357871 DOI: 10.1177/1535370219865229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor for many chronic diseases, including hypertension, type-2 diabetes, and cancer. Interestingly, concentrations of branched-chain amino acids (BCAAs) in plasma are commonly associated with endothelial dysfunction in humans and animals with obesity. Because L-leucine inhibits nitric oxide synthesis by endothelial cells (EC), we hypothesized that dietary supplementation with AKG (a substrate for BCAA transaminase) may stimulate BCAA catabolism in the small intestine and extra-intestinal tissues, thereby reducing the circulating concentrations of BCAAs and increasing nitric oxide synthesis by endothelial cells. Beginning at four weeks of age, male Sprague-Dawley rats were fed a low-fat or a high-fat diet for 15 weeks. At 19 weeks of age, lean or obese rats continued to be fed for 12 weeks their respective diets and received drinking water containing 0 or 1% AKG ( n = 8/group). At 31 weeks of age, the rats were euthanized to obtain tissues. Food intake did not differ ( P > 0.05) between rats supplemented with or without AKG. Oral administration of AKG (250 mg/kg BW per day) reduced ( P < 0.05) concentrations of BCAAs, glucose, ammonia, and triacylglycerols in plasma, adiposity, and glutamine:fructose-6-phosphate transaminase activity in endothelial cells, and enhanced ( P < 0.05) concentrations of the reduced form of glutathione in tissues, nitric oxide synthesis by endothelial cells, and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in both low-fat and high-fat rats. AKG administration reduced ( P < 0.05) white adipose tissue weights of rats in the low-fat and high-fat groups. These novel results indicate that AKG can reduce adiposity and increase nitric oxide production by endothelial cells in diet-induced obese rats. Impact statement Obesity is associated with elevated concentrations of branched-chain amino acids, including L-leucine. L-Leucine inhibits the synthesis of nitric oxide from L-arginine by endothelial cells, contributing to impairments in angiogenesis, blood flow, and vascular dysfunction, as well as insulin resistance. Reduction in the circulating levels of branched-chain amino acids through dietary supplementation with α-ketoglutarate to promote their transamination in the small intestine and other tissues can restore nitric oxide synthesis in the vasculature and reduce the weights of white adipose tissues, thereby improving metabolic profiles and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in diet-induced obese rats. Our findings provide a simple and effective nutritional means to alleviate metabolic syndrome in obese subjects. This is highly significant to combat the current obesity epidemic and associated health problems in humans worldwide.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Kang Yao
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jian Lei
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Anand Gupta
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
4
|
Yang Y, Wu Z, Meininger CJ, Wu G. L-Leucine and NO-mediated cardiovascular function. Amino Acids 2015; 47:435-47. [PMID: 25552397 DOI: 10.1007/s00726-014-1904-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/13/2014] [Indexed: 02/06/2023]
Abstract
Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either α-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China,
| | | | | | | |
Collapse
|
5
|
Schachter D, Buteau J. Glutamate formation via the leucine-to-glutamate pathway of rat pancreas. Am J Physiol Gastrointest Liver Physiol 2014; 306:G938-46. [PMID: 24699330 DOI: 10.1152/ajpgi.00394.2013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The leucine-to-glutamate (Leu→Glu) pathway, which metabolizes the carbon atoms of l-leucine to form l-glutamate, was studied by incubation of rat tissue segments with l-[U-(14)C]leucine and estimation of the [(14)C]glutamate formed. Metabolism of the leucine carbon chain occurs in most rat tissues, but maximal activity of the Leu→Glu pathway for glutamate formation is limited to the thoracic aorta and pancreas. In rat aorta, the Leu→Glu pathway functions to relax the underlying smooth muscle; its functions in the pancreas are unknown. This report characterizes the Leu→Glu pathway of rat pancreas and develops methods to examine its functions. Pancreatic segments effect net formation of glutamate on incubation with l-leucine, l-glutamine, or a mix of 18 other plasma amino acids at their concentrations in normal rat plasma. Glutamate formed from leucine remains mainly in the tissue, whereas that from glutamine enters the medium. The pancreatic Leu→Glu pathway uses the leucine carbons for net glutamate formation; the α-amino group is not used; the stoichiometry is as follows: 1 mol of leucine yields 2 mol of glutamate (2 leucine carbons per glutamate) plus 2 mol of CO2. Comparison of the Leu→Glu pathway in preparations of whole pancreatic segments, isolated acini, and islets of Langerhans localizes it in the acini; relatively high activity is found in cultures of the AR42J cell line and very little in the INS-1 832/13 cell line. Pancreatic tissue glutamate concentration is homeostatically regulated in the range of ∼1-3 μmol/g wet wt. l-Valine and leucine ethyl, benzyl, and tert-butyl esters inhibit the Leu→Glu pathway without decreasing tissue total glutamate.
Collapse
Affiliation(s)
- David Schachter
- Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons, New York, New York; and
| | - Jean Buteau
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York, and University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Schachter D. L-glutamine in vitro regulates rat aortic glutamate content and modulates nitric oxide formation and contractility responses. Am J Physiol Cell Physiol 2007; 293:C142-51. [PMID: 17329397 DOI: 10.1152/ajpcell.00589.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
These studies test the hypothesis that l-glutamine at its physiological plasma concentration, approximately 0.5 mM, can increase tissue content and net synthesis of glutamate in rat aortic segments in vitro, thereby mediating relaxation of the underlying smooth muscle in the elastic reservoir region of the thoracic aorta. Aortic segments were incubated in an isotonic medium with and without 21 amino acids at their normal plasma concentrations. Of these amino acids only L-glutamine and L-leucine at their plasma concentrations increased glutamate synthesis and content. Tissue glutamate content resulting from increasing concentrations of each precursor reached an upper level of approximately 1.3-1.6 micromol/g wet wt. Regulation of the tissue glutamate content involves an interaction of the synthetic pathways in which L-glutamine inhibits the endothelial leucine-to-glutamate pathway. L-glutamine increases nitric oxide (NO) formation, and NO inhibits the controlling enzyme of the endothelial leucine-to-glutamate pathway, the branched-chain alpha-ketoacid dehydrogenase complex. Treatment of precontracted aortic rings with 0.5 mM L-glutamine elicits smooth muscle relaxation, a response that requires endothelial nitric oxide synthase activity and an intact endothelium. The results demonstrate that in vitro L-glutamine at its normal concentration in plasma can regulate rat aortic glutamate content and modulate NO formation and contractility responses of the thoracic aortic wall.
Collapse
MESH Headings
- 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/antagonists & inhibitors
- 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism
- Animals
- Aorta, Thoracic/drug effects
- Aorta, Thoracic/metabolism
- Dose-Response Relationship, Drug
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Enzyme Inhibitors/pharmacology
- Glutamic Acid/metabolism
- Glutamine/metabolism
- Glutamine/pharmacology
- In Vitro Techniques
- Leucine/metabolism
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NG-Nitroarginine Methyl Ester/pharmacology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitric Oxide Synthase/antagonists & inhibitors
- Nitric Oxide Synthase/metabolism
- Rats
- Rats, Sprague-Dawley
- Triazenes/pharmacology
- Vasodilation/drug effects
Collapse
Affiliation(s)
- David Schachter
- Dept. of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 W. 168th St., New York, NY 10032, USA.
| |
Collapse
|