1
|
Chaloemthanetphong A, Choowongkomon K, Worrapitirungsi W, Thangsiriskul N, Sathirapatya T, Sukawutthiya P, Noh H, Kanhar AA, Varrathyarom P, Lertparinyaphorn I, Natthasumon N, Bongsebandhu-Phubhakdi S, Auvichayapat V, Vongpaisarnsin K. SCN5A missense variants and their contribution to deaths in Sudden Unexplained Nocturnal Death Syndrome (SUNDS). Forensic Sci Int Genet 2025; 76:103237. [PMID: 39977965 DOI: 10.1016/j.fsigen.2025.103237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/22/2025]
Abstract
Sudden Unexplained Nocturnal Death Syndrome (SUNDS), locally known as Lai-tai in Thailand, leads to sudden death during sleep in otherwise healthy young males. Cardiac arrhythmias, including Brugada syndrome (BrS) and Long QT syndrome (LQTS), are often implicated, with mutations in the SCN5A gene, encoding the Nav1.5 sodium channel, strongly linked to both conditions. This study characterized postmortem SUNDS cases in Thailand and analyzed SCN5A gene variants using whole exome sequencing (WES) and molecular modeling. Forensic autopsies were performed on 98 SUNDS victims from August 2020 to February 2023. WES was applied to 98 SUNDS-related genes, filtering variants based on dbNSFP annotations and public databases like the 1000 Genomes Project. Three SCN5A variants (A665S, R179Q, and R965C) were detected in five cases (approximate for 5 %). One case of A665S, which was reported for the first time in Thailand, was discovered. The R179Q variant was identified in an additional case, but it did not have a substantial electrostatic surface impact on Nav1.5. In contrast, the R965C variant, which is frequently associated with BrS, was discovered in three cases (approximate for 3 %). These results imply that SCN5A variants are involved in the pathogenesis of SUNDS and may provide valuable genetic markers for the purpose of diagnosis and prevention.
Collapse
Affiliation(s)
- Aummarin Chaloemthanetphong
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Wikanda Worrapitirungsi
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nattachai Thangsiriskul
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tikumphorn Sathirapatya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Poonyapat Sukawutthiya
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hasnee Noh
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Ashfaque Ahmed Kanhar
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pagparpat Varrathyarom
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand
| | - Irin Lertparinyaphorn
- Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | - Saknan Bongsebandhu-Phubhakdi
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Chula Neuroscience Center, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vichaya Auvichayapat
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kornkiat Vongpaisarnsin
- Center of Excellence in Forensic Genetics, Ratchadapiseksompotch Fund, Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Forensic Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Forensic Serology and DNA, King Chulalongkorn Memorial Hospital and Thai Red Cross Society, Bangkok, Thailand.
| |
Collapse
|
2
|
Zhu W, Bian X, Lv J. From genes to clinical management: A comprehensive review of long QT syndrome pathogenesis and treatment. Heart Rhythm O2 2024; 5:573-586. [PMID: 39263612 PMCID: PMC11385408 DOI: 10.1016/j.hroo.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Background Long QT syndrome (LQTS) is a rare cardiac disorder characterized by prolonged ventricular repolarization and increased risk of ventricular arrhythmias. This review summarizes current knowledge of LQTS pathogenesis and treatment strategies. Objectives The purpose of this study was to provide an in-depth understanding of LQTS genetic and molecular mechanisms, discuss clinical presentation and diagnosis, evaluate treatment options, and highlight future research directions. Methods A systematic search of PubMed, Embase, and Cochrane Library databases was conducted to identify relevant studies published up to April 2024. Results LQTS involves mutations in ion channel-related genes encoding cardiac ion channels, regulatory proteins, and other associated factors, leading to altered cellular electrophysiology. Acquired causes can also contribute. Diagnosis relies on clinical history, electrocardiographic findings, and genetic testing. Treatment strategies include lifestyle modifications, β-blockers, potassium channel openers, device therapy, and surgical interventions. Conclusion Advances in understanding LQTS have improved diagnosis and personalized treatment approaches. Challenges remain in risk stratification and management of certain patient subgroups. Future research should focus on developing novel pharmacological agents, refining device technologies, and conducting large-scale clinical trials. Increased awareness and education are crucial for early detection and appropriate management of LQTS.
Collapse
Affiliation(s)
- Wenjing Zhu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xueyan Bian
- Department of Pediatrics, Lixia District People's Hospital, Jinan, Shandong, China
| | - Jianli Lv
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
3
|
Zhao Z, Zang X, Niu K, Song W, Wang X, Mügge A, Aweimer A, Hamdani N, Zhou X, Zhao Y, Akin I, El-Battrawy I. Impacts of gene variants on drug effects-the foundation of genotype-guided pharmacologic therapy for long QT syndrome and short QT syndrome. EBioMedicine 2024; 103:105108. [PMID: 38653189 PMCID: PMC11041837 DOI: 10.1016/j.ebiom.2024.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/20/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024] Open
Abstract
The clinical significance of optimal pharmacotherapy for inherited arrhythmias such as short QT syndrome (SQTS) and long QT syndrome (LQTS) has been increasingly recognised. The advancement of gene technology has opened up new possibilities for identifying genetic variations and investigating the pathophysiological roles and mechanisms of genetic arrhythmias. Numerous variants in various genes have been proven to be causative in genetic arrhythmias. Studies have demonstrated that the effectiveness of certain drugs is specific to the patient or genotype, indicating the important role of gene-variants in drug response. This review aims to summarize the reported data on the impact of different gene-variants on drug response in SQTS and LQTS, as well as discuss the potential mechanisms by which gene-variants alter drug response. These findings may provide valuable information for future studies on the influence of gene variants on drug efficacy and the development of genotype-guided or precision treatment for these diseases.
Collapse
Affiliation(s)
- Zhihan Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xiaobiao Zang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Kerun Niu
- Department of Orthopaedic, Henan Provincial People's Hospital; Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Weifeng Song
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Xianqing Wang
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Andreas Mügge
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
| | - Assem Aweimer
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| | - Nazha Hamdani
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
- HCEMM-Cardiovascular Research Group, Department of Pharmacology and Pharmacotherapy, University of Budapest, Budapest, Hungary
- Department of Physiology, Cardiovascular Research Institute Maastricht University Maastricht, Maastricht, the Netherlands
| | - Xiaobo Zhou
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Yonghui Zhao
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Ibrahim Akin
- Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany
- German Center for Cardiovascular Research (DZHK) Partner Site Heidelberg/Mannheim, Medical Centre Mannheim, Heidelberg University, Germany
| | - Ibrahim El-Battrawy
- Department of Cardiology and Angiology, Bergmannsheil University Hospitals, Ruhr University of Bochum, 44789, Bochum, Germany
- Institute of Physiology, Department of Cellular and Translational Physiology, Medical Faculty and Institut für Forschung und Lehre (IFL), Molecular and Experimental Cardiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
4
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
5
|
Lenaeus M, Gamal El-Din TM, Tonggu L, Zheng N, Catterall WA. Structural basis for inhibition of the cardiac sodium channel by the atypical antiarrhythmic drug ranolazine. NATURE CARDIOVASCULAR RESEARCH 2023; 2:587-594. [PMID: 39185478 PMCID: PMC11343317 DOI: 10.1038/s44161-023-00271-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 08/27/2024]
Affiliation(s)
- Michael Lenaeus
- Division of General Internal Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | | | - Lige Tonggu
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Ning Zheng
- Department of Pharmacology, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
vom Dahl C, Müller CE, Berisha X, Nagel G, Zimmer T. Coupling the Cardiac Voltage-Gated Sodium Channel to Channelrhodopsin-2 Generates Novel Optical Switches for Action Potential Studies. MEMBRANES 2022; 12:907. [PMID: 36295666 PMCID: PMC9607247 DOI: 10.3390/membranes12100907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Voltage-gated sodium (Na+) channels respond to short membrane depolarization with conformational changes leading to pore opening, Na+ influx, and action potential (AP) upstroke. In the present study, we coupled channelrhodopsin-2 (ChR2), the key ion channel in optogenetics, directly to the cardiac voltage-gated Na+ channel (Nav1.5). Fusion constructs were expressed in Xenopus laevis oocytes, and electrophysiological recordings were performed by the two-microelectrode technique. Heteromeric channels retained both typical Nav1.5 kinetics and light-sensitive ChR2 properties. Switching to the current-clamp mode and applying short blue-light pulses resulted either in subthreshold depolarization or in a rapid change of membrane polarity typically seen in APs of excitable cells. To study the effect of individual K+ channels on the AP shape, we co-expressed either Kv1.2 or hERG with one of the Nav1.5-ChR2 fusions. As expected, both delayed rectifier K+ channels shortened AP duration significantly. Kv1.2 currents remarkably accelerated initial repolarization, whereas hERG channel activity efficiently restored the resting membrane potential. Finally, we investigated the effect of the LQT3 deletion mutant ΔKPQ on the AP shape and noticed an extremely prolonged AP duration that was directly correlated to the size of the non-inactivating Na+ current fraction. In conclusion, coupling of ChR2 to a voltage-gated Na+ channel generates optical switches that are useful for studying the effect of individual ion channels on the AP shape. Moreover, our novel optogenetic approach provides the potential for an application in pharmacology and optogenetic tissue-engineering.
Collapse
Affiliation(s)
- Christian vom Dahl
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Christoph Emanuel Müller
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Xhevat Berisha
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| | - Georg Nagel
- Institute of Physiology—Neurophysiology, Julius Maximilians University, 97070 Wuerzburg, Germany
| | - Thomas Zimmer
- Institute of Physiology II, University Hospital Jena, Friedrich Schiller University, 07740 Jena, Germany
| |
Collapse
|
7
|
Plumereau Q, Theriault O, Pouliot V, Moreau A, Morel E, Fressart V, Denjoy I, Delinière A, Bessière F, Chevalier P, Gamal El-Din TM, Chahine M. Novel G1481V and Q1491H SCN5A Mutations Linked to Long QT Syndrome Destabilize the Nav1.5 Inactivation State. CJC Open 2021; 3:256-266. [PMID: 33778442 PMCID: PMC7984979 DOI: 10.1016/j.cjco.2020.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Nav1.5, which is encoded by the SCN5A gene, is the predominant voltage-gated Na+ channel in the heart. Several mutations of this gene have been identified and reported to be involved in several cardiac rhythm disorders, including type 3 long QT interval syndrome, that can cause sudden cardiac death. We analyzed the biophysical properties of 2 novel variants of the Nav1.5 channel (Q1491H and G1481V) detected in 5- and 12-week-old infants diagnosed with a prolonged QT interval. METHODS The Nav1.5 wild-type and the Q1491H and G1481V mutant channels were reproduced in vi tr o. Wild-type or mutant channels were cotransfected in human embryonic kidney (HEK) 293 cells with the beta 1 regulatory subunit. Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. RESULTS The Q1491H mutant channel exhibited a lower current density, a persistent Na+ current, an enhanced window current due to a +20-mV shift of steady-state inactivation, a +10-mV shift of steady-state activation, a faster onset of slow inactivation, and a recovery from fast inactivation with fast and slow time constants of recovery. The G1481V mutant channel exhibited an increase in current density and a +7-mV shift of steady-state inactivation. The observed defects are characteristic of gain-of-function mutations typical of type 3 long QT interval syndrome. CONCLUSIONS The 5- and 12-week-old infants displayed prolonged QT intervals. Our analyses of the Q1491H and G1481V mutations correlated with the clinical diagnosis. The observed biophysical dysfunctions associated with both mutations were most likely responsible for the sudden deaths of the 2 infants.
Collapse
Affiliation(s)
| | | | | | - Adrien Moreau
- Inserm U1046, CNRS UMR 9214, Université de Montpellier, Montpellier, France
| | - Elodie Morel
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Véronique Fressart
- Centre de Génétique Moléculaire et Chromosomique, Hôpital Pitié-Salpêtrière, Paris, France
| | | | - Antoine Delinière
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Francis Bessière
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
| | - Philippe Chevalier
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Bron, France
- Department of Rhythmology, Louis Pradel Cardiovascular Hospital, Lyon, France
- Université de Lyon, Lyon, France
| | | | - Mohamed Chahine
- CERVO Brain Research Center, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
8
|
Dong C, Wang Y, Ma A, Wang T. Life Cycle of the Cardiac Voltage-Gated Sodium Channel Na V1.5. Front Physiol 2020; 11:609733. [PMID: 33391024 PMCID: PMC7773603 DOI: 10.3389/fphys.2020.609733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiac voltage-gated sodium channel NaV1.5, encoded by SCN5A, is crucial for the upstroke of action potential and excitation of cardiomyocytes. NaV1.5 undergoes complex processes before it reaches the target membrane microdomains and performs normal functions. A variety of protein partners are needed to achieve the balance between SCN5A transcription and mRNA decay, endoplasmic reticulum retention and export, Golgi apparatus retention and export, selective anchoring and degradation, activation, and inactivation of sodium currents. Subtle alterations can impair NaV1.5 in terms of expression or function, eventually leading to NaV1.5-associated diseases such as lethal arrhythmias and cardiomyopathy.
Collapse
Affiliation(s)
- Caijuan Dong
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Key Laboratory of Molecular Cardiology, Shaanxi Province, Xi'an, China.,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
9
|
Li W, Stauske M, Luo X, Wagner S, Vollrath M, Mehnert CS, Schubert M, Cyganek L, Chen S, Hasheminasab SM, Wulf G, El-Armouche A, Maier LS, Hasenfuss G, Guan K. Disease Phenotypes and Mechanisms of iPSC-Derived Cardiomyocytes From Brugada Syndrome Patients With a Loss-of-Function SCN5A Mutation. Front Cell Dev Biol 2020; 8:592893. [PMID: 33195263 PMCID: PMC7642519 DOI: 10.3389/fcell.2020.592893] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Brugada syndrome (BrS) is one of the major causes of sudden cardiac death in young people, while the underlying mechanisms are not completely understood. Here, we investigated the pathophysiological phenotypes and mechanisms using induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CMs) from two BrS patients (BrS-CMs) carrying a heterozygous SCN5A mutation p.S1812X. Compared to CMs derived from healthy controls (Ctrl-CMs), BrS-CMs displayed a 50% reduction of INa density, a 69.5% reduction of NaV1.5 expression, and the impaired localization of NaV1.5 and connexin 43 (Cx43) at the cell surface. BrS-CMs exhibited reduced action potential (AP) upstroke velocity and conduction slowing. The Ito in BrS-CMs was significantly augmented, and the ICaL window current probability was increased. Our data indicate that the electrophysiological mechanisms underlying arrhythmia in BrS-CMs may involve both depolarization and repolarization disorders. Cilostazol and milrinone showed dramatic inhibitions of Ito in BrS-CMs and alleviated the arrhythmic activity, suggesting their therapeutic potential for BrS patients.
Collapse
Affiliation(s)
- Wener Li
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Michael Stauske
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Xiaojing Luo
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Stefan Wagner
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Meike Vollrath
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Carola S Mehnert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Mario Schubert
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lukas Cyganek
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Simin Chen
- German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Sayed-Mohammad Hasheminasab
- Department of Dermatology, Venereology and Allergy, Charité - Universitätsmedizin Berlin, Berlin, Germany.,CCU Translational Radiation Oncology, German Cancer Consortium Core-Center Heidelberg, National Center for Tumor Diseases, Heidelberg University Hospital (UKHD) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gerald Wulf
- Department of Hematology and Oncology, University Medical Center Göttingen, Göttingen, Germany
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany
| | - Lars S Maier
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,Clinic for Internal Medicine II, University Hospital Regensburg, Regensburg, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, Dresden, Germany.,Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Characterization of a novel LQT3 variant with a selective efficacy of mexiletine treatment. Sci Rep 2019; 9:12997. [PMID: 31506521 PMCID: PMC6736863 DOI: 10.1038/s41598-019-49450-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogenic variants in the human SCN5A gene encoding the a-subunit of the principle Na+ channel (Nav1.5) are associated with long QT syndrome (LQTS) 3. LQT3 patients display variable responses to Na+ channel blockers demanding for the development of variant-specific therapeutic strategies. Here we performed a combined electrophysiological analysis with in silico simulation of variant channel to elucidate mechanisms of therapeutic responsiveness. We identified a novel SCN5A variant (A1656D) in a LQTS patient with a distinct response to mexiletine resulting in suppression of non-sustained ventricular tachycardia and manifestation of premature atrial contraction. Patch clamp analysis revealed that A1656D variant exerted gain-of-function effects including hyperpolarizing shift of the voltage-dependence of activation, depolarizing shift in the voltage-dependence of inactivation, and slowing of fast inactivation. Among ranolazine, flecainide, and mexiletine, only mexiletine restored inactivation kinetics of A1656D currents. In silico simulation to assess the effect of A1656D variant on ventricular cardiac cell excitation predicted a prolonged action potential which is consistent with the prolonged QT and non-sustained ventricular tachycardia of the patient. It also predicted that only mexiletine suppressed the prolonged action potential of human ventricular myocytes expressing A1656D. These data elucidate the underlying mechanism of the distinct response to mexiletine in this patient.
Collapse
|
11
|
Kroncke BM, Mendenhall J, Smith DK, Sanders CR, Capra JA, George AL, Blume JD, Meiler J, Roden DM. Protein structure aids predicting functional perturbation of missense variants in SCN5A and KCNQ1. Comput Struct Biotechnol J 2019; 17:206-214. [PMID: 30828412 PMCID: PMC6383132 DOI: 10.1016/j.csbj.2019.01.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 11/28/2022] Open
Abstract
Rare variants in the cardiac potassium channel KV7.1 (KCNQ1) and sodium channel NaV1.5 (SCN5A) are implicated in genetic disorders of heart rhythm, including congenital long QT and Brugada syndromes (LQTS, BrS), but also occur in reference populations. We previously reported two sets of NaV1.5 (n = 356) and KV7.1 (n = 144) variants with in vitro characterized channel currents gathered from the literature. Here we investigated the ability to predict commonly reported NaV1.5 and KV7.1 variant functional perturbations by leveraging diverse features including variant classifiers PROVEAN, PolyPhen-2, and SIFT; evolutionary rate and BLAST position specific scoring matrices (PSSM); and structure-based features including “functional densities” which is a measure of the density of pathogenic variants near the residue of interest. Structure-based functional densities were the most significant features for predicting NaV1.5 peak current (adj. R2 = 0.27) and KV7.1 + KCNE1 half-maximal voltage of activation (adj. R2 = 0.29). Additionally, use of structure-based functional density values improves loss-of-function classification of SCN5A variants with an ROC-AUC of 0.78 compared with other predictive classifiers (AUC = 0.69; two-sided DeLong test p = .01). These results suggest structural data can inform predictions of the effect of uncharacterized SCN5A and KCNQ1 variants to provide a deeper understanding of their burden on carriers.
Collapse
Affiliation(s)
- Brett M Kroncke
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jeffrey Mendenhall
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Derek K Smith
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37240, USA
| | - Charles R Sanders
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Biochemistry, Vanderbilt University, Nashville, TN, 37232, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alfred L George
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jeffrey D Blume
- Department of Biostatistics, Vanderbilt University, Nashville, TN 37240, USA
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN 37232, USA.,Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Dan M Roden
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA.,Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| |
Collapse
|
12
|
Bastos AEP, Costa PF, Varderidou-Minasian S, Altelaar M, Lima PA. Feeding cycle alters the biophysics and molecular expression of voltage-gated Na + currents in rat hippocampal CA1 neurones. Eur J Neurosci 2018; 49:1418-1435. [PMID: 30588669 DOI: 10.1111/ejn.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
Abstract
The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.
Collapse
Affiliation(s)
- André E P Bastos
- Department of Chemistry and Biochemistry, Centre of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| | - Pedro F Costa
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal
| | | | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | - Pedro A Lima
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| |
Collapse
|
13
|
Abdelsayed M, Ruprai M, Ruben PC. The efficacy of Ranolazine on E1784K is altered by temperature and calcium. Sci Rep 2018; 8:3643. [PMID: 29483621 PMCID: PMC5827758 DOI: 10.1038/s41598-018-22033-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/15/2018] [Indexed: 12/19/2022] Open
Abstract
E1784K is the most common mixed syndrome SCN5a mutation underpinning both Brugada syndrome type 1 (BrS1) and Long-QT syndrome type 3 (LQT3). The charge reversal mutant enhances the late sodium current (INa) passed by the cardiac voltage-gated sodium channel (NaV1.5), delaying cardiac repolarization. Exercise-induced triggers, like elevated temperature and cytosolic calcium, exacerbate E1784K late INa. In this study, we tested the effects of Ranolazine, the late INa blocker, on voltage-dependent and kinetic properties of E1784K at elevated temperature and cytosolic calcium. We used whole-cell patch clamp to measure INa from wild type and E1784K channels expressed in HEK293 cells. At elevated temperature, Ranolazine attenuated gain-of-function in E1784K by decreasing late INa, hyperpolarizing steady-state fast inactivation, and increasing use-dependent inactivation. Both elevated temperature and cytosolic calcium hampered the capacity of Ranolazine to suppress E1784K late INa. In-silico action potential (AP) simulations were done using a modified O'Hara Rudy (ORd) cardiac model. Simulations showed that Ranolazine failed to shorten AP duration, an effect augmented at febrile temperatures. The drug-channel interaction is clearly affected by external triggers, as reported previously with ischemia. Determining drug efficacy under various physiological states in SCN5a cohorts is crucial for accurate management of arrhythmias.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Manpreet Ruprai
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Peter C Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| |
Collapse
|
14
|
Pérez-Riera AR, Barbosa-Barros R, Daminello Raimundo R, da Costa de Rezende Barbosa MP, Esposito Sorpreso IC, de Abreu LC. The congenital long QT syndrome Type 3: An update. Indian Pacing Electrophysiol J 2018; 18:25-35. [PMID: 29101013 PMCID: PMC5840852 DOI: 10.1016/j.ipej.2017.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/27/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023] Open
Abstract
Congenital long QT syndrome type 3 (LQT3) is the third in frequency compared to the 15 forms known currently of congenital long QT syndrome (LQTS). Cardiac events are less frequent in LQT3 when compared with LQT1 and LQT2, but more likely to be lethal; the likelihood of dying during a cardiac event is 20% in families with an LQT3 mutation and 4% with either an LQT1 or an LQT2 mutation. LQT3 is consequence of mutation of gene SCN5A which codes for the Nav1.5 Na+ channel α-subunit and electrocardiographically characterized by a tendency to bradycardia related to age, prolonged QT/QTc interval (mean QTc value 478 ± 52 ms), accentuated QT dispersion consequence of prolonged ST segment, late onset of T wave and frequent prominent U wave because of longer repolarization of the M cell across left ventricular wall.
Collapse
Affiliation(s)
- Andrés Ricardo Pérez-Riera
- Metodologia da Pesquisa e Escrita Científica da Faculdade de Medicina do ABC, Santo André, São Paulo, Brazil.
| | - Raimundo Barbosa-Barros
- Centro Coronariano do Hospital de Messejana Dr. Carlos Alberto Studart Gomes, Fortaleza, Ceará, Brazil
| | - Rodrigo Daminello Raimundo
- Metodologia da Pesquisa e Escrita Científica da Faculdade de Medicina do ABC, Santo André, São Paulo, Brazil
| | | | | | - Luiz Carlos de Abreu
- Program in Molecular and Integrative Physiological Sciences (MIPS), Department of Environmental Health, Harvard T.H. Chan School of Public Health, USA
| |
Collapse
|
15
|
Yang HY, Firth JM, Francis AJ, Alvarez-Laviada A, MacLeod KT. Effect of ovariectomy on intracellular Ca 2+ regulation in guinea pig cardiomyocytes. Am J Physiol Heart Circ Physiol 2017; 313:H1031-H1043. [PMID: 28778911 DOI: 10.1152/ajpheart.00249.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 01/30/2023]
Abstract
This study addressed the hypothesis that long-term deficiency of ovarian hormones after ovariectomy (OVx) alters cellular Ca2+-handling mechanisms in the heart, resulting in the formation of a proarrhythmic substrate. It also tested whether estrogen supplementation to OVx animals reverses any alterations to cardiac Ca2+ handling and rescues proarrhythmic behavior. OVx or sham operations were performed on female guinea pigs using appropriate anesthetic and analgesic regimes. Pellets containing 17β-estradiol (1 mg, 60-day release) were placed subcutaneously in selected OVx animals (OVx + E). Cardiac myocytes were enzymatically isolated, and electrophysiological measurements were conducted with a switch-clamp system. In fluo-4-loaded cells, Ca2+ transients were 20% larger, and fractional sarcoplasmic reticulum (SR) Ca2+ release was 7% greater in the OVx group compared with the sham group. Peak L-type Ca2+ current was 16% larger in OVx myocytes with channel inactivation shifting to more positive membrane potentials, creating a larger "window" current. SR Ca2+ stores were 22% greater in the OVx group, and these cells showed a higher frequency of Ca2+ sparks and waves and shorter wave-free intervals. OVx myocytes showed higher frequencies of early afterdepolarizations, and a greater percentage of these cells showed delayed afterdepolarizations after exposure to isoprenaline compared with sham myocytes. The altered Ca2+ regulation occurring in the OVx group was not observed in the OVx + E group. These findings suggest that long-term deprivation of ovarian hormones in guinea pigs lead to changes in myocyte Ca2+-handling mechanisms that are considered proarrhythmogenic. 17β-Estradiol replacement prevented these adverse effects.NEW & NOTEWORTHY Ovariectomized guinea pig cardiomyocytes have higher frequencies of Ca2+ waves, and isoprenaline-challenged cells display more early afterdepolarizations, delayed afterdepolarizations, and extra beats compared with sham myocytes. These alterations to Ca2+ regulation were not observed in myocytes from ovariectomized guinea pigs supplemented with 17β-estradiol, suggesting that ovarian hormone deficiency modifies cardiac Ca2+ regulation, potentially creating proarrhythmic substrates.
Collapse
Affiliation(s)
- Hsiang-Yu Yang
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and.,Division of Cardiovascular Surgery, Department of Surgery, Tri-Service General Hospital, National Defence Medical Center, Taipei, Taiwan
| | - Jahn M Firth
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Alice J Francis
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| | - Kenneth T MacLeod
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; and
| |
Collapse
|
16
|
Abstract
The pore domain of human voltage-dependent cardiac sodium channel Nav1.5 (hNav1.5) is the crucial binding targets for anti-arrhythmics drugs and some local anesthetic drugs but its three-dimensional structure is still lacking. This has affected the detailed studies of the binding features and mechanism of these drugs. In this paper, we present a structural model for open-state pore domain of hNav1.5 built using single template ROSETTA-membrane homology modeling with the crystal structure of NavMs. The assembled structural models are evaluated by rosettaMP energy and locations of binding sites. The modeled structures of the pore domain of hNav1.5 in open state will be helpful to explore molecular mechanism of a state-dependent drug binding and help designing new drugs.
Collapse
Affiliation(s)
- Xiaofeng Ji
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China.,b Yellow Sea Fisheries Research Institute , Chinese Academy of Fishery Sciences , Qingdao , Shandong 266071 , China
| | - Yi Xiao
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| | - Shiyong Liu
- a School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education , Huazhong University of Science and Technology , Wuhan , Hubei 430074 , China
| |
Collapse
|
17
|
Poulet C, Künzel S, Büttner E, Lindner D, Westermann D, Ravens U. Altered physiological functions and ion currents in atrial fibroblasts from patients with chronic atrial fibrillation. Physiol Rep 2016; 4:4/2/e12681. [PMID: 26811054 PMCID: PMC4760386 DOI: 10.14814/phy2.12681] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The contribution of human atrial fibroblasts to cardiac physiology and pathophysiology is poorly understood. Fibroblasts may contribute to arrhythmogenesis through fibrosis, or by directly altering electrical activity in cardiomyocytes. The objective of our study was to uncover phenotypic differences between cells from patients in sinus rhythm (SR) and chronic atrial fibrillation (AF), with special emphasis on electrophysiological properties. We isolated fibroblasts from human right atrial tissue for patch-clamp experiments, proliferation, migration, and differentiation assays, and gene expression profiling. In culture, proliferation and migration of AF fibroblasts were strongly impaired but differentiation into myofibroblasts was increased. This was associated with a higher number of AF fibroblasts expressing functional Nav1.5 channels. Strikingly Na(+) currents were considerably larger in AF cells. Blocking Na(+) channels in culture with tetrodotoxin did not affect proliferation, migration, or differentiation in neither SR nor AF cells. While freshly isolated fibroblasts showed mostly weak rectifier currents, fibroblasts in culture developed outward rectifier K(+) currents of similar amplitude between the SR and AF groups. Adding the K(+) channel blockers tetraethylammonium and 4-aminopyridin in culture reduced current amplitude and inhibited proliferation in the SR group only. Analysis of gene expression revealed significant differences between SR and AF in genes encoding for ion channels, collagen, growth factors, connexins, and cadherins. In conclusion, this study shows that under AF conditions atrial fibroblasts undergo phenotypic changes that are revealed in culture. Future experiments should be performed in situ to understand the nature of those changes and whether they affect cardiac electrical activity.
Collapse
Affiliation(s)
- Claire Poulet
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Stephan Künzel
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Edgar Büttner
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| | - Diana Lindner
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Dirk Westermann
- Department of General and Interventional Cardiology, University Heart Center Hamburg Eppendorf, Hamburg, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Medical Faculty Carl-Gustav-Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
18
|
Terragni B, Scalmani P, Colombo E, Franceschetti S, Mantegazza M. Ranolazine vs phenytoin: greater effect of ranolazine on the transient Na(+) current than on the persistent Na(+) current in central neurons. Neuropharmacology 2016; 110:223-236. [PMID: 27450092 DOI: 10.1016/j.neuropharm.2016.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/08/2016] [Accepted: 06/26/2016] [Indexed: 12/13/2022]
Abstract
Voltage-gated Na(+) channels (NaV) are involved in pathologies and are important targets of drugs (NaV-blockers), e.g. some anti-epileptic drugs (AEDs). Besides the fast inactivating transient Na(+) current (INaT), they generate a slowly inactivating "persistent" current (INaP). Ranolazine, a NaV-blocker approved for treatment of angina pectoris, is considered a preferential inhibitor of INaP and has been proposed as a novel AED. Although it is thought that classic NaV-blockers used as AEDs target mainly INaT, they can also reduce INaP. It is important to disclose specific features of novel NaV-blockers, which could be necessary for their effect as AEDs in drug resistant patients. We have compared the action of ranolazine and of the classic AED phenytoin in transfected cells expressing the neuronal NaV1.1 Na(+) channel and in neurons of neocortical slices. Our results show that the relative block of INaT versus INaP of ranolazine and phenytoin is variable and depends on Na(+) current activation conditions. Strikingly, ranolazine blocks with less efficacy INaP and more efficacy INaT than phenytoin in conditions mimicking pathological states (i.e. high frequency firing and long lasting depolarizations). The effects are consistent with binding of ranolazine to both open/pre-open and inactivated states; larger INaT block at high stimulation frequencies is caused by the induction of a slow inactivated state. Thus, contrary than expected, ranolazine is not a better INaP blocker than phenytoin in central neurons, and phenytoin is not a better INaT blocker than ranolazine. Nevertheless, they show a complementary action and could differentially target specific pathological dysfunctions.
Collapse
Affiliation(s)
- Benedetta Terragni
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Paolo Scalmani
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Elisa Colombo
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Silvana Franceschetti
- Department of Neurophysiology and Diagnostic Epileptology, IRCCS Foundation C. Besta Neurological Institute, 20133, Milan, Italy.
| | - Massimo Mantegazza
- Institute of Molecular and Cellular Pharmacology (IPMC), CNRS UMR7275, 06560, Valbonne-Sophia Antipolis, France; University of the Côte d'Azur (UCA), 06560, Valbonne-Sophia Antipolis, France; Inserm, 06560, Valbonne-Sophia Antipolis, France.
| |
Collapse
|
19
|
Moreau A, Gosselin-Badaroudine P, Boutjdir M, Chahine M. Mutations in the Voltage Sensors of Domains I and II of Nav1.5 that are Associated with Arrhythmias and Dilated Cardiomyopathy Generate Gating Pore Currents. Front Pharmacol 2015; 6:301. [PMID: 26733869 PMCID: PMC4689871 DOI: 10.3389/fphar.2015.00301] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
Abstract
Voltage gated sodium channels (Nav) are transmembrane proteins responsible for action potential initiation. Mutations mainly located in the voltage sensor domain (VSD) of Nav1.5, the cardiac sodium channel, have been associated with the development of arrhythmias combined with dilated cardiomyopathy. Gating pore currents have been observed with three unrelated mutations associated with similar clinical phenotypes. However, gating pores have never been associated with mutations outside the first domain of Nav1.5. The aim of this study was to explore the possibility that gating pore currents might be caused by the Nav1.5 R225P and R814W mutations (R3, S4 in DI and DII, respectively), which are associated with rhythm disturbances and dilated cardiomyopathy. Nav1.5 WT and mutant channels were transiently expressed in tsA201 cells. The biophysical properties of the alpha pore currents and the presence of gating pore currents were investigated using the patch-clamp technique. We confirmed the previously reported gain of function of the alpha pores of the mutant channels, which mainly consisted of increased window currents mostly caused by shifts in the voltage dependence of activation. We also observed gating pore currents associated with the R225P and R814W mutations. This novel permeation pathway was open under depolarized conditions and remained temporarily open at hyperpolarized potentials after depolarization periods. Gating pore currents could represent a molecular basis for the development of uncommon electrical abnormalities and changes in cardiac morphology. We propose that this biophysical defect be routinely evaluated in the case of Nav1.5 mutations on the VSD.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Quebec CityQC, Canada
| | | | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, BrooklynNY, USA
| | - Mohamed Chahine
- Centre de Recherche de l’Institut Universitaire en Santé Mentale de Québec, Quebec CityQC, Canada
- Department of Medicine, Université Laval, Quebec CityQC, Canada
| |
Collapse
|
20
|
Veerman CC, Wilde AAM, Lodder EM. The cardiac sodium channel gene SCN5A and its gene product NaV1.5: Role in physiology and pathophysiology. Gene 2015; 573:177-87. [PMID: 26361848 DOI: 10.1016/j.gene.2015.08.062] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 07/31/2015] [Accepted: 08/27/2015] [Indexed: 12/18/2022]
Abstract
The gene SCN5A encodes the main cardiac sodium channel NaV1.5. This channel predominates the cardiac sodium current, INa, which underlies the fast upstroke of the cardiac action potential. As such, it plays a crucial role in cardiac electrophysiology. Over the last 60years a tremendous amount of knowledge regarding its function at the electrophysiological and molecular level has been acquired. Furthermore, genetic studies have shown that mutations in SCN5A are associated with multiple cardiac diseases (e.g. Brugada syndrome, Long QT syndrome, conduction disease and cardiomyopathy), while genetic variation in the general population has been associated with differences in cardiac conduction and risk of arrhythmia through genome wide association studies. In this review we aim to give an overview of the current knowledge (and the gaps therein) on SCN5A and NaV1.5.
Collapse
Affiliation(s)
- Christiaan C Veerman
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Arthur A M Wilde
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands.
| | - Elisabeth M Lodder
- Department of Clinical and Experimental Cardiology, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
O'Leary ME, Chahine M. MTSET modification of D4S6 cysteines stabilize the fast inactivated state of Nav1.5 sodium channels. Front Pharmacol 2015; 6:118. [PMID: 26150789 PMCID: PMC4472985 DOI: 10.3389/fphar.2015.00118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022] Open
Abstract
The transmembrane S6 segments of Na+ sodium channels form the cytoplasmic entrance of the channel and line the internal aspects of the aqueous pore. This region of the channel has been implicated in Na+ channel permeation, gating, and pharmacology. In this study we utilized cysteine substitutions and methanethiosulfonate reagent (MTSET) to investigate the role of the S6 segment of homologous domain 4 (D4S6) in the gating of the cardiac (Nav1.5) channel. D4S6 cysteine mutants were heterologously expressed in tsA201 cells and currents recorded using whole-cell patch clamp. Internal MTSET reduced the peak Na+ currents, induced hyperpolarizing shifts in steady-state inactivation and slowed the recovery of mutant channels with cysteines inserted near the middle (F1760C, V1763C) and C-terminus (Y1767C) of the D4S6. These findings suggested a link between the MTSET inhibition and fast inactivation. This was confirmed by expressing the V1763C and Y1767C mutations in non-inactivating Nav1.5 channels. Removing inactivation abolished the MTSET inhibition of the V1763C and Y1767C mutants. The data indicate that the MTSET-induced reduction in current primarily results from slower recovery from inactivation that produces hyperpolarizing shifts in fast inactivation and decreases the steady-state availability of the channels. This contrasted with a cysteine inserted near the C-terminus of the D4S6 (I1770C) where MTSET increased the persistent Na+ current at depolarized voltages consistent with impaired fast inactivation. Covalent modification of D4S6 cysteines with MTSET adduct appears to reduce the mobility of the D4S6 segment and stabilize the channels in the fast inactivated state. These findings indicate that residues located near the middle and C-terminus of the D4S6 play an important role in fast inactivation.
Collapse
Affiliation(s)
- Michael E O'Leary
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ USA
| | - Mohamed Chahine
- Department of Medicine, Research Centre, Institute Universitaire en Santé Mentale de Québec, Laval University Québec, QC, Canada
| |
Collapse
|
22
|
Herrera JA, Ward CS, Pitcher MR, Percy AK, Skinner S, Kaufmann WE, Glaze DG, Wehrens XHT, Neul JL. Treatment of cardiac arrhythmias in a mouse model of Rett syndrome with Na+-channel-blocking antiepileptic drugs. Dis Model Mech 2015; 8:363-71. [PMID: 25713300 PMCID: PMC4381335 DOI: 10.1242/dmm.020131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/12/2015] [Indexed: 12/11/2022] Open
Abstract
One quarter of deaths associated with Rett syndrome (RTT), an X-linked neurodevelopmental disorder, are sudden and unexpected. RTT is associated with prolonged QTc interval (LQT), and LQT-associated cardiac arrhythmias are a potential cause of unexpected death. The standard of care for LQT in RTT is treatment with β-adrenergic antagonists; however, recent work indicates that acute treatment of mice with RTT with a β-antagonist, propranolol, does not prevent lethal arrhythmias. In contrast, acute treatment with the Na+ channel blocker phenytoin prevented arrhythmias. Chronic dosing of propranolol may be required for efficacy; therefore, we tested the efficacy of chronic treatment with either propranolol or phenytoin on RTT mice. Phenytoin completely abolished arrhythmias, whereas propranolol showed no benefit. Surprisingly, phenytoin also normalized weight and activity, but worsened breathing patterns. To explore the role of Na+ channel blockers on QT in people with RTT, we performed a retrospective analysis of QT status before and after Na+ channel blocker antiepileptic therapies. Individuals with RTT and LQT significantly improved their QT interval status after being started on Na+ channel blocker antiepileptic therapies. Thus, Na+ channel blockers should be considered for the clinical management of LQT in individuals with RTT.
Collapse
Affiliation(s)
- José A Herrera
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Christopher S Ward
- Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Meagan R Pitcher
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alan K Percy
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Walter E Kaufmann
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Daniel G Glaze
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L Neul
- Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA. Jan and Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA. Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA. Cardiovascular Research Institute, Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
23
|
Moreau A, Gosselin-Badaroudine P, Delemotte L, Klein ML, Chahine M. Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy. J Gen Physiol 2015; 145:93-106. [PMID: 25624448 PMCID: PMC4306709 DOI: 10.1085/jgp.201411304] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/07/2015] [Indexed: 11/21/2022] Open
Abstract
The gating pore current, also called omega current, consists of a cation leak through the typically nonconductive voltage-sensor domain (VSD) of voltage-gated ion channels. Although the study of gating pore currents has refined our knowledge of the structure and the function of voltage-gated ion channels, their implication in cardiac disorders has not been established. Two Na(v)1.5 mutations (R222Q and R225W) located in the VSD are associated with atypical clinical phenotypes involving complex arrhythmias and dilated cardiomyopathy. Using the patch-clamp technique, in silico mutagenesis, and molecular dynamic simulations, we tested the hypothesis that these two mutations may generate gating pore currents, potentially accounting for their clinical phenotypes. Our findings suggest that the gating pore current generated by the R222Q and R225W mutations could constitute the underlying pathological mechanism that links Na(v)1.5 VSD mutations with human cardiac arrhythmias and dilatation of cardiac chambers.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Pascal Gosselin-Badaroudine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada
| | - Lucie Delemotte
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Michael L Klein
- Institute of Computational Molecular Science, Temple University, Philadelphia, PA 19122
| | - Mohamed Chahine
- Centre de Recherche de L'Institut Universitaire en Santé Mentale de Québec, Québec City, Québec G1J 2G3, Canada Department of Medicine, Université Laval, Québec City, Québec G1K 7P4, Canada
| |
Collapse
|
24
|
Poulin H, Bruhova I, Timour Q, Theriault O, Beaulieu JM, Frassati D, Chahine M. Fluoxetine blocks Nav1.5 channels via a mechanism similar to that of class 1 antiarrhythmics. Mol Pharmacol 2014; 86:378-389. [PMID: 25028482 PMCID: PMC4164981 DOI: 10.1124/mol.114.093104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/15/2014] [Indexed: 11/22/2022] Open
Abstract
The voltage-gated Nav1.5 channel is essential for the propagation of action potentials in the heart. Malfunctions of this channel are known to cause hereditary diseases. It is a prime target for class 1 antiarrhythmic drugs and a number of antidepressants. Our study investigated the Nav1.5 blocking properties of fluoxetine, a selective serotonin reuptake inhibitor. Nav1.5 channels were expressed in HEK-293 cells, and Na(+) currents were recorded using the patch-clamp technique. Dose-response curves of racemic fluoxetine (IC50 = 39 μM) and its optical isomers had a similar IC50 [40 and 47 μM for the (+) and (-) isomers, respectively]. Norfluoxetine, a fluoxetine metabolite, had a higher affinity than fluoxetine, with an IC50 of 29 μM. Fluoxetine inhibited currents in a frequency-dependent manner, shifted steady-state inactivation to more hyperpolarized potentials, and slowed the recovery of Nav1.5 from inactivation. Mutating a phenylalanine (F1760) and a tyrosine (Y1767) in the S6 segment of domain (D) IV (DIVS6) significantly reduced the affinity of fluoxetine and its frequency-dependent inhibition. We used a noninactivating Nav1.5 mutant to show that fluoxetine displays open-channel block behavior. The molecular model of fluoxetine in Nav1.5 was in agreement with mutational experiments in which F1760 and Y1767 were found to be the key residues in binding fluoxetine. We concluded that fluoxetine blocks Nav1.5 by binding to the class 1 antiarrhythmic site. The blocking of cardiac Na(+) channels should be taken into consideration when prescribing fluoxetine alone or in association with other drugs that may be cardiotoxic or for patients with conduction disorders.
Collapse
Affiliation(s)
- Hugo Poulin
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Iva Bruhova
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Quadiri Timour
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Olivier Theriault
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Jean-Martin Beaulieu
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Dominique Frassati
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| | - Mohamed Chahine
- Centre de recherche, Institut universitaire en santé mentale de Québec, Quebec City, Quebec, Canada (H.P., O.T., J.-M.B., M.C.); State University of New York at Buffalo, Buffalo, New York (I.B.); Laboratoire de Pharmacologie Médicale, EA 4612 Neurocardiologie, Université Lyon 1, Lyon, France (Q.T.); Department of Psychiatry and Neuroscience, Université Laval, Quebec City, Quebec, Canada (J.-M.B.); Pôle Dapela, Département de l'autisme et des psychoses d'évolution lente de l'adulte, Centre Hospitalier Le Vinatier, Bron, France (D.F.); and Department of Medicine, Université Laval, Quebec City, Quebec, Canada (M.C.)
| |
Collapse
|
25
|
Dolz-Gaitón P, Núñez M, Núñez L, Barana A, Amorós I, Matamoros M, Pérez-Hernández M, González de la Fuente M, Álvarez-López M, Macías-Ruiz R, Tercedor-Sánchez L, Jiménez-Jáimez J, Delpón E, Caballero R, Tamargo J. Functional characterization of a novel frameshift mutation in the C-terminus of the Nav1.5 channel underlying a Brugada syndrome with variable expression in a Spanish family. PLoS One 2013; 8:e81493. [PMID: 24363796 PMCID: PMC3868464 DOI: 10.1371/journal.pone.0081493] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 10/14/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na+ channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. Methods and Results Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na+ current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. Conclusion Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na+ channel.
Collapse
Affiliation(s)
- Pablo Dolz-Gaitón
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mercedes Núñez
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Lucía Núñez
- Complejo Hospitalario Universitario de A Coruña and Instituto de Ciencias de la Salud, Universidad de A Coruña, A Coruña, Spain
| | - Adriana Barana
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Marta González de la Fuente
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Miguel Álvarez-López
- Arrhytmias Unit, Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Rosa Macías-Ruiz
- Arrhytmias Unit, Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Luis Tercedor-Sánchez
- Arrhytmias Unit, Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Juan Jiménez-Jáimez
- Arrhytmias Unit, Cardiology Department, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
- * E-mail:
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, School of Medicine, Universidad Complutense, Madrid, Spain
| |
Collapse
|
26
|
Moreau A, Krahn AD, Gosselin-Badaroudine P, Klein GJ, Christé G, Vincent Y, Boutjdir M, Chahine M. Sodium overload due to a persistent current that attenuates the arrhythmogenic potential of a novel LQT3 mutation. Front Pharmacol 2013; 4:126. [PMID: 24098284 PMCID: PMC3787509 DOI: 10.3389/fphar.2013.00126] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/11/2013] [Indexed: 12/21/2022] Open
Abstract
Long QT syndrome (LQTS) is a congenital abnormality of cardiac repolarization that manifests as a prolonged QT interval on 12-lead electrocardiograms (ECGs). The syndrome may lead to syncope and sudden death from ventricular tachyarrhythmias known as torsades de pointes. An increased persistent Na(+) current is known to cause a Ca(2+) overload in case of ischemia for example. Such increased Na(+) persistent current is also usually associated to the LQT3 syndrome. The purpose of this study was to investigate the pathological consequences of a novel mutation in a family affected by LQTS. The impact of biophysical defects on cellular homeostasis are also investigated. Genomic DNA was extracted from blood samples, and a combination of PCR and DNA sequencing of several LQTS-linked genes was used to identify mutations. The mutation was reproduced in vitro and was characterized using the patch clamp technique and in silico quantitative analysis. A novel mutation (Q1476R) was identified on the SCN5A gene encoding the cardiac Na(+) channel. Cells expressing the Q1476R mutation exhibited biophysical alterations, including a shift of SS inactivation and a significant increase in the persistent Na(+) current. The in silico analysis confirmed the arrhythmogenic character of the Q1476R mutation. It further revealed that the increase in persistent Na(+) current causes a frequency-dependent Na(+) overload in cardiomyocytes co-expressing WT and mutant Nav1.5 channels that, in turn, exerts a moderating effect on the lengthening of the action potential (AP) duration caused by the mutation. The Q1476R mutation in SCN5A results in a three-fold increase in the window current and a persistent inward Na(+) current. These biophysical defects may expose the carrier of the mutation to arrhythmias that occur preferentially in the patient at rest or during tachycardia. However, the Na(+) overload counterbalances the gain-of-function of the mutation and is beneficial in that it prevents severe arrhythmias at intermediate heart rates.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec CityQC, Canada
| | - Andrew D. Krahn
- Division of Cardiology, University of British Columbia, VancouverBC, Canada
| | | | - George J. Klein
- Division of Cardiology, University of Western Ontario, LondonON, Canada
| | - Georges Christé
- Laboratoire de Neurocardiologie, Université LyonLyon, France
| | - Yohann Vincent
- Laboratoire de Neurocardiologie, Université LyonLyon, France
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, SUNY Downstate Medical Center and NYU School of Medicine, New York CityNY, USA
| | - Mohamed Chahine
- Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Quebec CityQC, Canada
| |
Collapse
|
27
|
Sokolov S, Peters CH, Rajamani S, Ruben PC. Proton-dependent inhibition of the cardiac sodium channel Nav1.5 by ranolazine. Front Pharmacol 2013; 4:78. [PMID: 23801963 PMCID: PMC3689222 DOI: 10.3389/fphar.2013.00078] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Ranolazine is clinically approved for treatment of angina pectoris and is a potential candidate for antiarrhythmic, antiepileptic, and analgesic applications. These therapeutic effects of ranolazine hinge on its ability to inhibit persistent or late Na+ currents in a variety of voltage-gated sodium channels. Extracellular acidosis, typical of ischemic events, may alter the efficiency of drug/channel interactions. In this study, we examined pH modulation of ranolazine's interaction with the cardiac sodium channel, Nav1.5. We performed whole-cell path clamp experiments at extracellular pH 7.4 and 6.0 on Nav1.5 transiently expressed in HEK293 cell line. Consistent with previous studies, we found that ranolazine induced a stable conformational state in the cardiac sodium channel with onset/recovery kinetics and voltage-dependence resembling intrinsic slow inactivation. This interaction diminished the availability of the channels in a voltage- and use-dependent manner. Low extracellular pH impaired inactivation states leading to an increase in late Na+ currents. Ranolazine interaction with the channel was also slowed 4–5 fold. However, ranolazine restored the voltage-dependent steady-state availability profile, thereby reducing window/persistent currents at pH 6.0 in a manner comparable to pH 7.4. These results suggest that ranolazine is effective at therapeutically relevant concentrations (10 μM), in acidic extracellular pH, where it compensates for impaired native slow inactivation.
Collapse
Affiliation(s)
- S Sokolov
- Molecular Cardiac Physiology Group, Department of Biomedical Physiology and Kinesiology, Simon Fraser University Burnaby, BC, Canada
| | | | | | | |
Collapse
|
28
|
Cieniawa J, Baszak J, Olchowik G, Widomska J. Modeling gender effects on electrical activity of single ventricular myocytes. Comput Biol Med 2013; 43:1063-72. [PMID: 23726761 DOI: 10.1016/j.compbiomed.2013.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 04/08/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
In this study we investigate the mechanisms underlying gender differences in the generation of arrhythmias in the long QT and Brugada syndromes. Simulations were conducted at the single myocyte level using a detailed mathematical model of human ventricular myocytes. Given the scarce human data on the gender-related differences in single cardiac cells, we assumed gender-related differences in five ionic-current systems: fast sodium current (INa), slowly inactivating late sodium current (INal), transient outward potassium current (Ito), slow delayed rectifier potassium current (IKs), and calcium current through the L-type channel (ICa(L)), based on experimental results obtained in canine myocytes. Our modeling results suggest that in left ventricular myocytes, enhanced INal under conditions of reduced repolarization reserve results in sex-dependent development of early afterdepolarizations (EADs) in the post-pause action potentials (APs). Moreover, this modeling study demonstrates increased propensity for the development of the loss of the AP dome in male epicardial myocytes of the right ventricle compared with other types of myocytes from the left and right ventricles. Finally, we also found a slight effect of INal on gender-dependent loss of AP dome in epicardial right ventricular myocytes. In conclusion, at the cellular level, gender differences in the development of EADs and the propensity to develop the loss of the AP dome can be attributed to male/female related differences in INa, INal, Ito, IKs, and ICa(L).
Collapse
Affiliation(s)
- Jerzy Cieniawa
- Department of Biophysics, Faculty of Medicine, Medical University of Lublin, 20-059 Lublin, Poland.
| | | | | | | |
Collapse
|
29
|
Novel SCN5A mutations in two families with "Brugada-like" ST elevation in the inferior leads and conduction disturbances. J Interv Card Electrophysiol 2013; 37:131-40. [PMID: 23612926 DOI: 10.1007/s10840-013-9805-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 03/20/2013] [Indexed: 10/26/2022]
Abstract
AIMS Brugada syndrome (BrS) is an inherited cardiac disease characterized by ST segment elevation in V1-V3 ECG leads. Mutations SCN5A gene encoding for the cardiac voltage-gated Na(+) channel are found in some BrS patients, but also in family members with isolated conduction disturbances. However, some patients show coved ST elevation in the inferior or lateral leads whose association with SCN5A and familial conduction disturbances are poorly known. METHODS AND RESULTS Two novel SCN5A mutations, D1430N and Q1476X, were identified in two unrelated families comprising patients with Brugada-like ST elevation located in the inferior leads or isolated conduction disturbances. Wild-type (WT) and D1430N mutant channels were expressed in tsA201 cells. Patch clamp electrophysiological experiments revealed total absence of Na(+) current resulting from Nav1.5 mutant when compared to WT channels. Treatments known to restore trafficking defect (incubation at low temperature, with mexiletine or lidocaine) did not restore Na(+) current supporting that Nav1.5 mutation is not a defective trafficking mutation. Furthermore, immunocytolabelling indicates the membrane localisation of both WT and mutant channels confirming what we observed in our patch clamp experiments. This suggests that the mutation may induce a complete block of Na(+) permeation. The nonsense mutation Q1476X was leading to a premature stop codon and was not expressed. CONCLUSION Brugada-like ST elevation in the inferior ECG leads or isolated conduction disturbances were found in two unrelated families and associated with two novel SCN5A mutations. The missense and nonsense mutations are both resulting in a complete loss of ventricular Na(+) current explaining the phenotypes.
Collapse
|
30
|
Despa S, Bers DM. Na⁺ transport in the normal and failing heart - remember the balance. J Mol Cell Cardiol 2013; 61:2-10. [PMID: 23608603 DOI: 10.1016/j.yjmcc.2013.04.011] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/22/2013] [Accepted: 04/11/2013] [Indexed: 12/12/2022]
Abstract
In the heart, intracellular Na(+) concentration ([Na(+)]i) is a key modulator of Ca(2+) cycling, contractility and cardiac myocyte metabolism. Several Na(+) transporters are electrogenic, thus they both contribute to shaping the cardiac action potential and at the same time are affected by it. [Na(+)]i is controlled by the balance between Na(+) influx through various pathways, including the Na(+)/Ca(2+) exchanger and Na(+) channels, and Na(+) extrusion via the Na(+)/K(+)-ATPase. [Na(+)]i is elevated in HF due to a combination of increased entry through Na(+) channels and/or Na(+)/H(+) exchanger and reduced activity of the Na(+)/K(+)-ATPase. Here we review the major Na(+) transport pathways in cardiac myocytes and how they participate in regulating [Na(+)]i in normal and failing hearts. This article is part of a Special Issue entitled "Na(+) Regulation in Cardiac Myocytes."
Collapse
Affiliation(s)
- Sanda Despa
- Department of Pharmacology, University of California, Davis, CA, USA.
| | | |
Collapse
|
31
|
Abdelsayed M, Sokolov S. Voltage-gated sodium channels: pharmaceutical targets via anticonvulsants to treat epileptic syndromes. Channels (Austin) 2013; 7:146-52. [PMID: 23531742 DOI: 10.4161/chan.24380] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Epilepsy is a brain disorder characterized by seizures and convulsions. The basis of epilepsy is an increase in neuronal excitability that, in some cases, may be caused by functional defects in neuronal voltage gated sodium channels, Nav1.1 and Nav1.2. The effects of antiepileptic drugs (AEDs) as effective therapies for epilepsy have been characterized by extensive research. Most of the classic AEDs targeting Nav share a common mechanism of action by stabilizing the channel's fast-inactivated state. In contrast, novel AEDs, such as lacosamide, stabilize the slow-inactivated state in neuronal Nav1.1 and Nav1.7 isoforms. This paper reviews the different mechanisms by which this stabilization occurs to determine new methods for treatment.
Collapse
Affiliation(s)
- Mena Abdelsayed
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
32
|
Desaphy JF, Carbonara R, Costanza T, Lentini G, Cavalluzzi MM, Bruno C, Franchini C, Camerino DC. Molecular dissection of lubeluzole use-dependent block of voltage-gated sodium channels discloses new therapeutic potentials. Mol Pharmacol 2013; 83:406-15. [PMID: 23175529 DOI: 10.1124/mol.112.080804] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Lubeluzole, which acts on various targets in vitro, including voltage-gated sodium channels, was initially proposed as a neuroprotectant. The lubeluzole structure contains a benzothiazole moiety [N-methyl-1,3-benzothiazole-2-amine (R-like)] related to riluzole and a phenoxy-propranol-amine moiety [(RS)-1-(3,4-difluorophenoxy)-3-(piperidin-1-yl)propan-2-ol (A-core)] recalling propranolol. Both riluzole and propranolol are efficient sodium channel blockers. We studied in detail the effects of lubeluzole (racemic mixture and single isomers), the aforementioned lubeluzole moieties, and riluzole on sodium channels to increase our knowledge of drug-channel molecular interactions. Compounds were tested on hNav1.4 sodium channels, and on F1586C or Y1593C mutants functionally expressed in human embryonic kidney 293 cells, using the patch-clamp technique. Lubeluzole blocked sodium channels with a remarkable effectiveness. No stereoselectivity was found. Compared with mexiletine, the dissociation constant for inactivated channels was ~600 times lower (~11 nM), conferring to lubeluzole a huge use-dependence of great therapeutic value. The F1586C mutation only partially impaired the use-dependent block, suggesting that additional amino acids are critically involved in high-affinity binding. Lubeluzole moieties were modest sodium channel blockers. Riluzole blocked sodium channels efficiently but lacked use dependence, similar to R-like. F1586C fully abolished A-core use dependence, suggesting that A-core binds to the local anesthetic receptor. Thus, lubeluzole likely binds to the local anesthetic receptor through its phenoxy-propranol-amine moiety, with consequent use-dependent behavior. Nevertheless, compared with other known sodium channel blockers, lubeluzole adds a third pharmacophoric point through its benzothiazole moiety, which greatly enhances high-affinity binding and use-dependent block. If sufficient isoform specificity can be attained, the huge use-dependent block may help in the development of new sodium channel inhibitors to provide pharmacotherapy for membrane excitability disorders, such as myotonia, epilepsy, or chronic pain.
Collapse
Affiliation(s)
- Jean-François Desaphy
- Section of Pharmacology, Department of Pharmacy, University of Bari-Aldo Moro, Bari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu RM, Tan BH, Orland KM, Valdivia CR, Peterson A, Pu J, Makielski JC. Digenic inheritance novel mutations in SCN5a and SNTA1 increase late I(Na) contributing to LQT syndrome. Am J Physiol Heart Circ Physiol 2013; 304:H994-H1001. [PMID: 23376825 DOI: 10.1152/ajpheart.00705.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
SCN5A and SNTA1 are reported susceptible genes for long QT syndrome (LQTS). This study was designed to elucidate a plausible pathogenic arrhythmia mechanism for the combined novel mutations R800L-SCN5A and A261V-SNTA1 on cardiac sodium channels. A Caucasian family with syncope and marginally prolonged QT interval was screened for LQTS-susceptibility genes and found to harbor the R800L mutation in SCN5A and A261V mutation in SNTA1, and those with both mutations had the strongest clinical phenotype. The mutations were engineered into the most common splice variant of human SCN5A and SNTA1 cDNA, respectively, and sodium current (INa) was characterized in human embryonic kidney 293 cells cotransfected with neuronal nitric oxide synthase (nNOS) and the cardiac isoform of the plasma membrane Ca-ATPase (PMCA4b). Peak INa densities were unchanged for wild-type (WT) and for mutant channels containing R800L-SCN5A, A261V-SNTA1, or R800L-SCN5A plus A261V-SNTA1. However, late INa for either single mutant was moderately increased two- to threefold compared with WT. The combined mutations of R800L-SCN5A plus A261V-SNTA1 significantly enhanced the INa late/peak ratio by 5.6-fold compared with WT. The time constants of current decay of combined mutant channel were markedly increased. The gain-of-function effect could be blocked by the N(G)-monomethyl-l-arginine, a nNOS inhibitor. We conclude that novel mutations in SCN5A and SNTA1 jointly exert a nNOS-dependent gain-of-function on SCN5A channels, which may consequently prolong the action potential duration and lead to LQTS phenotype.
Collapse
Affiliation(s)
- Rou-Mu Hu
- Center for Arrhythmia Diagnosis and Treatment, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Nardi A, Damann N, Hertrampf T, Kless A. Advances in targeting voltage-gated sodium channels with small molecules. ChemMedChem 2012; 7:1712-40. [PMID: 22945552 DOI: 10.1002/cmdc.201200298] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Blockade of voltage-gated sodium channels (VGSCs) has been used successfully in the clinic to enable control of pathological firing patterns that occur in conditions as diverse as chronic pain, epilepsy, and arrhythmias. Herein we review the state of the art in marketed sodium channel inhibitors, including a brief compendium of their binding sites and of the cellular and molecular biology of sodium channels. Despite the preferential action of this drug class toward over-excited cells, which significantly limits potential undesired side effects on other cells, the need to develop a second generation of sodium channel inhibitors to overcome their critical clinical shortcomings is apparent. Current approaches in drug discovery to deliver novel and truly innovative sodium channel inhibitors is next presented by surveying the most recent medicinal chemistry breakthroughs in the field of small molecules and developments in automated patch-clamp platforms. Various strategies aimed at identifying small molecules that target either particular isoforms of sodium channels involved in specific diseases or anomalous sodium channel currents, irrespective of the isoform by which they have been generated, are critically discussed and revised.
Collapse
Affiliation(s)
- Antonio Nardi
- Global Drug Discovery, Department of Medicinal Chemistry, Grünenthal, Zieglerstrasse 6, 52078 Aachen, Germany.
| | | | | | | |
Collapse
|
35
|
Chatelier A, Mercier A, Tremblier B, Thériault O, Moubarak M, Benamer N, Corbi P, Bois P, Chahine M, Faivre JF. A distinct de novo expression of Nav1.5 sodium channels in human atrial fibroblasts differentiated into myofibroblasts. J Physiol 2012; 590:4307-19. [PMID: 22802584 DOI: 10.1113/jphysiol.2012.233593] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Fibroblasts play a major role in heart physiology. They are at the origin of the extracellular matrix renewal and production of various paracrine and autocrine factors. In pathological conditions, fibroblasts proliferate, migrate and differentiate into myofibroblasts leading to cardiac fibrosis. This differentiated status is associated with changes in expression profile leading to neo-expression of proteins such as ionic channels. The present study investigates further electrophysiological changes associated with fibroblast differentiation focusing on the activity of voltage-gated sodium channels in human atrial fibroblasts and myofibroblasts. Using the patch clamp technique we show that human atrial myofibroblasts display a fast inward voltage gated sodium current with a density of 13.28 ± 2.88 pA pF(-1) whereas no current was detectable in non-differentiated fibroblasts. Quantitative RT-PCR reveals a large amount of transcripts encoding the Na(v)1.5 α-subunit with a fourfold increased expression level in myofibroblasts when compared to fibroblasts. Accordingly, half of the current was blocked by 1 μm of tetrodotoxin and immunocytochemistry experiments reveal the presence of Na(v)1.5 proteins. Overall, this current exhibits similar biophysical characteristics to sodium currents found in cardiac myocytes except for the window current that is enlarged for potentials between -100 and -20 mV. Since fibrosis is one of the fundamental mechanisms implicated in atrial fibrillation, it is of great interest to investigate how this current could influence myofibroblast properties. Moreover, since several Na(v)1.5 mutations are related to cardiac pathologies, this study offers a new avenue on the fibroblasts involvement of these mutations.
Collapse
Affiliation(s)
- Aurélien Chatelier
- Institut de Physiologie et Biologie Cellulaires, FRE 3511, CNRS/Université de Poitiers, Poitiers, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Moreau A, Keller DI, Huang H, Fressart V, Schmied C, Timour Q, Chahine M. Mexiletine differentially restores the trafficking defects caused by two brugada syndrome mutations. Front Pharmacol 2012; 3:62. [PMID: 22529811 PMCID: PMC3330751 DOI: 10.3389/fphar.2012.00062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/27/2012] [Indexed: 11/13/2022] Open
Abstract
The human cardiac sodium channel Na(v)1.5 encoded by the SCN5A gene plays a critical role in cardiac excitability and the propagation of action potentials. Na(v)1.5 dysfunctions due to mutations cause cardiac diseases such as the LQT3 form of long QT syndrome, conduction disorders, and Brugada syndrome (BrS). They have also recently been associated with dilated cardiomyopathy. BrS is characterized by coved ST-segment elevation on surface ECGs and lethal ventricular arrhythmias in an apparently structurally normal heart. Na(v)1.5 mutations that cause BrS result in a loss of channel function. Our aim was to functionally characterize two novel Na(v)1.5 mutations (A124D and V1378M) in BrS patients. Wild-type (WT) and mutant Na(v)1.5 channels were expressed in tsA201 cells in the presence of the β(1)-auxiliary subunit. The patch-clamp technique and immunocytochemistry approaches were used to study the mutant channels and their cellular localization. The two mutant channels displayed a dramatic reduction in current density but had normal gating properties. The reduction in current density was caused by the retention of channel proteins in the endoplasmic reticulum (ER). Mutant channel retention could be partially reversed by incubating transfected cells at 25°C and by treating them with mexiletine (for V1378M but not A124D), or with curcumin or thapsigargin, two drugs that target ER resident proteins. It is likely that the clinical phenotypes observed in these two BrS patients were related to a surface expression defect caused by ER retention.
Collapse
Affiliation(s)
- Adrien Moreau
- Centre de Recherche, Institut Universitaire en Santé Mentale de QuébecQuebec City, QC, Canada
| | - Dagmar I. Keller
- Department of Internal Medicine and Cardiology, University Hospital ZurichZurich, Switzerland
| | - Hai Huang
- Centre de Recherche, Institut Universitaire en Santé Mentale de QuébecQuebec City, QC, Canada
| | - Véronique Fressart
- UF Cardiogénétique et Myogénétique, Groupe Hospitalier Pitié-SalpêtrièreParis, France
| | - Christian Schmied
- Department of Cardiology, University Hospital ZurichZurich, Switzerland
| | - Quadiri Timour
- INSERM ERI22, Université Claude Bernard de LyonLyon, France
| | - Mohamed Chahine
- Centre de Recherche, Institut Universitaire en Santé Mentale de QuébecQuebec City, QC, Canada
- Department of Medicine, Université LavalQuebec City, QC, Canada
| |
Collapse
|
37
|
Zhao J, Duprè N, Puymirat J, Chahine M. Biophysical characterization of M1476I, a sodium channel founder mutation associated with cold-induced myotonia in French Canadians. J Physiol 2012; 590:2629-44. [PMID: 22250216 DOI: 10.1113/jphysiol.2011.223461] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
M1476I, a French Canadian founder mutation of Na⁺ channel Nav1.4, causes potassium-aggravated myotonia, with cold-induced myotonia as the most distinctive clinical feature. Mexiletine, a class 1B local anaesthetic, relieves the myotonic symptoms of patients carrying the M1476I mutation. We used the patch-clamp method to investigate the functional characteristics of this mutation by heterologous expression in tsA201 cells. The M1476I mutation caused an increased persistent Na⁺ current, a 2- to 3-fold slower fast inactivation, a 6.4 mV depolarizing shift in the midpoint of steady-state inactivation, and an accelerated recovery from fast inactivation compared to the wild-type (WT) channel. Cooling slowed the kinetics of both channel types and increased the amplitude of the persistent current in M1476I channels.Mexiletine suppressed the persistent Na⁺ current generated by the M1476I mutation and blocked both WT and M1476I channels in a use- dependent manner. The inactivation-deficient M1476I channels were less susceptible to mexiletine during repetitive pulses. The decreased use-dependent block of M1476I channels might have resulted from the slower onset of mexiletine block, and/or the faster recovery from mexiletine block, given that the affinity of mexiletine for the inactivated state of the WT and mutant channels was similar. Increased extracellular concentrations of potassium had no effect on either M1476I or WT currents. These results indicated that cooling can augment the disruption of the voltage dependence of fast inactivation by M1476I channels.
Collapse
Affiliation(s)
- Juan Zhao
- Le Centre de recherche en neurosciences, Institut universitaire en santé mentale de Québec, 2601 Chemin de Canardière, Quebec, QC, G1J 2G3, Canada
| | | | | | | |
Collapse
|
38
|
Tamargo J, Caballero R, Delpón E. Ranolazine: an antianginal drug with antiarrhythmic properties. Expert Rev Cardiovasc Ther 2011; 9:815-27. [PMID: 21809962 DOI: 10.1586/erc.11.91] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ranolazine is an agent approved for the symptomatic treatment of chronic stable angina that inhibits the late inward sodium current (I(NaL)). I(NaL) amplitude is increased under several pathological conditions, including increased oxidative stress, myocardial ischemia, cardiac hypertrophy, heart failure, long-QT syndrome variant 3 and atrial fibrillation. Experimental and preliminary clinical evidence suggests that ranolazine may represent a new therapeutic strategy in the treatment of a broad spectrum of cardiac arrhythmias. This article reviews the role of the I(NaL) and provides an update on experimental and clinical evidence supporting the efficacy and safety of ranolazine across a broad spectrum of arrhythmias.
Collapse
Affiliation(s)
- Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, 28040 Madrid, Spain.
| | | | | |
Collapse
|
39
|
|