1
|
Zhou Z, Zhang G, Wang Z, Xu Y, Qin H, Zhang H, Zhang P, Li Z, Xu S, Tan X, Zeng Y, Yu F, Zhu S, Chang L, Zheng Y, Han X. Molecular subtypes of ischemic heart disease based on circadian rhythm. Sci Rep 2024; 14:14155. [PMID: 38898215 PMCID: PMC11187219 DOI: 10.1038/s41598-024-65236-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
Coronary atherosclerotic heart disease (CAD) is among the most prevalent chronic diseases globally. Circadian rhythm disruption (CRD) is closely associated with the progression of various diseases. However, the precise role of CRD in the development of CAD remains to be elucidated. The Circadian rhythm disruption score (CRDscore) was employed to quantitatively assess the level of CRD in CAD samples. Our investigation revealed a significant association between high CRDscore and adverse prognosis in CAD patients, along with a substantial correlation with CAD progression. Remarkably distinct CRDscore distributions were also identified among various subtypes. In summary, we have pioneered the revelation of the relationship between CRD and CAD at the single-cell level and established reliable markers for the development, treatment, and prognosis of CAD. A deeper understanding of these mechanisms may offer new possibilities for incorporating "the therapy of coronary heart disease based circadian rhythm" into personalized medical treatment regimens.
Collapse
Affiliation(s)
- Zhaokai Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ge Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhan Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yudi Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongzhuo Qin
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haonan Zhang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhengrui Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Xu
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Xin Tan
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Yiyao Zeng
- Department of Cardiology, The Fourth Affiliated Hospital of Soochow University, Suzhou Dushu Lake Hospital, Medical Center of Soochow University, Suzhou, 215000, China
- Institute for Hypertension, Soochow University, Suzhou, 215000, China
| | - Fengyi Yu
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Shanshan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, China
| | - Le Chang
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Youyang Zheng
- Department of Cardiology, Fuwai Hospital, National Centre for Cardiovascular Diseases, National Clinical Research Centre for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
3
|
Latimer MN, Williams LJ, Shanmugan G, Carpenter BJ, Lazar MA, Dierickx P, Young ME. Cardiomyocyte-specific disruption of the circadian BMAL1-REV-ERBα/β regulatory network impacts distinct miRNA species in the murine heart. Commun Biol 2023; 6:1149. [PMID: 37952007 PMCID: PMC10640639 DOI: 10.1038/s42003-023-05537-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/01/2023] [Indexed: 11/14/2023] Open
Abstract
Circadian disruption increases cardiovascular disease (CVD) risk, through poorly understood mechanisms. Given that small RNA species are critical modulators of cardiac physiology/pathology, we sought to determine the extent to which cardiomyocyte circadian clock (CCC) disruption impacts cardiac small RNA species. Accordingly, we collected hearts from cardiomyocyte-specific Bmal1 knockout (CBK; a model of CCC disruption) and littermate control (CON) mice at multiple times of the day, followed by small RNA-seq. The data reveal 47 differentially expressed miRNAs species in CBK hearts. Subsequent bioinformatic analyses predict that differentially expressed miRNA species in CBK hearts influence processes such as circadian rhythmicity, cellular signaling, and metabolism. Of the induced miRNAs in CBK hearts, 7 are predicted to be targeted by the transcriptional repressors REV-ERBα/β (integral circadian clock components that are directly regulated by BMAL1). Similar to CBK hearts, cardiomyocyte-specific Rev-erbα/β double knockout (CM-RevDKO) mouse hearts exhibit increased let-7c-1-3p, miR-23b-5p, miR-139-3p, miR-5123, and miR-7068-3p levels. Importantly, 19 putative targets of these 5 miRNAs are commonly repressed in CBK and CM-RevDKO heart (of which 16 are targeted by let-7c-1-3p). These observations suggest that disruption of the circadian BMAL1-REV-ERBα/β regulatory network in the heart induces distinct miRNAs, whose mRNA targets impact critical cellular functions.
Collapse
Affiliation(s)
- Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lamario J Williams
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gobinath Shanmugan
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bryce J Carpenter
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Pieterjan Dierickx
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
4
|
Abuelazm M, Saleh O, Albarakat MM, Katamesh B, Abdalshafy H, Mahmoud A, Abdelazeem B. The effect of bedtime versus morning dosing of antihypertensive drugs on the cardiovascular outcomes: a systematic review and meta-analysis of randomized controlled trials. J Hypertens 2023; 41:1595-1605. [PMID: 37642592 DOI: 10.1097/hjh.0000000000003508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND OBJECTIVE Antihypertensive drugs are one of the most effective strategies to prevent disability and mortality; however, there have been contradictory findings about the best dosing time for antihypertensive drugs. Therefore, we aim to evaluate the effect of bedtime versus morning dosing of antihypertensive drugs on cardiovascular outcomes. METHODS We synthesized randomized controlled studies (RCTs) from the Web of Science, SCOPUS, EMBASE, PubMed, and CENTRAL until 13 October 2022. The risk ratio (RR) for dichotomous outcomes with the corresponding 95% confidence interval (CI) was used. The study protocol was registered in PROSPERO with ID: CRD42022368612. RESULTS Five RCTs with 59 200 participants were included. Bedtime dosing was significantly associated with less incidence of myocardial infarction (MI) [RR: 0.80 with 95% CI (0.70-0.91), P = 0.0007] compared with morning dosing; however, there was no statistically significant difference between bedtime and morning dosing, regarding all-cause mortality [RR: 0.77 with 95% CI (0.51-1.16), P = 0.21], cardiovascular mortality [RR: 0.65 with 95% CI (0.35-1.21), P = 0.17], major adverse cardiac events (MACE) [RR: 0.79 with 95% CI (0.56-1.10), P = 0.16], heart failure [RR: 0.68 with 95% CI (0.42-1.09), P = 0.11], cerebrovascular accidents [RR: 0.80 with 95% CI (0.53-1.22), P = 0.30], coronary revascularization [RR: 0.79 with 95% CI (0.50-1.24), P = 0.30}, and angina [RR: 0.91 with 95% CI (0.55-1.50), P = 0.70]. CONCLUSION Evidence about the comparative efficacy of bedtime versus morning dosing of antihypertensives is still uncertain. However, bedtime dosing significantly reduced MI, which warrants more robust RCTs to validate.
Collapse
Affiliation(s)
| | - Othman Saleh
- Faculty of Medicine, The Hashemite University, Zarqa
| | - Majd M Albarakat
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | | | | | | | - Basel Abdelazeem
- Department of Internal Medicine, McLaren Healthcare, Flint
- Department of Internal Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Pawar VA, Srivastava S, Tyagi A, Tayal R, Shukla SK, Kumar V. Efficacy of Bioactive Compounds in the Regulation of Metabolism and Pathophysiology in Cardiovascular Diseases. Curr Cardiol Rep 2023; 25:1041-1052. [PMID: 37458865 DOI: 10.1007/s11886-023-01917-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/29/2023] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW An imbalance in reactive oxygen species (ROS) homeostasis can wreak damage to metabolic and physiological processes which can eventually lead to an advancement in cardiovascular diseases (CVD). Mitochondrial dysfunction is considered as a key source of ROS. The purpose of the current review is to concisely discuss the role of bioactive compounds in the modulation of cardiovascular metabolism and their potential application in the management of cardiovascular diseases. RECENT FINDINGS Recently, it has been shown that bioactive compounds exhibit immunomodulatory function by regulating inflammatory pathways and ROS homeostasis. It has also been reported that bioactive compounds regulate mitochondria dynamics, thus modulating the autophagy and energy metabolism in the cells. In the present article, we have discussed the roles of different bioactive compounds in the modulation of different inflammatory drivers. The functional properties of bioactive compounds in mitochondrial dynamics and its impact on cardiac disease protection have been briefly summarized. Furthermore, we have also discussed various aspects of bioactive compounds with respect to metabolism, immune modulation, circadian rhythm, and its impact on CVD's pathophysiology.
Collapse
Affiliation(s)
| | - Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, 110054, India
| | - Rajul Tayal
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Surendra Kumar Shukla
- Department of Oncology Science, OU Health Stephenson Cancer Center, Oklahoma City, OK, 73104, USA.
| | - Vinay Kumar
- Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, 473 W 12th Ave, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Joshi K, Das M, Sarma A, Arora MK, SInghal M, Kumar B. Insight on Cardiac Chronobiology and Latest Developments of Chronotherapeutic Antihypertensive Interventions for Better Clinical Outcomes. Curr Hypertens Rev 2023; 19:106-122. [PMID: 36624649 DOI: 10.2174/1573402119666230109142156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 01/11/2023]
Abstract
Cardiac circadian rhythms are an important regulator of body functions, including cardiac activities and blood pressure. Disturbance of circadian rhythm is known to trigger and aggravate various cardiovascular diseases. Thus, modulating the circadian rhythm can be used as a therapeutic approach to cardiovascular diseases. Through this work, we intend to discuss the current understanding of cardiac circadian rhythms, in terms of quantifiable parameters like BP and HR. We also elaborate on the molecular regulators and the molecular cascades along with their specific genetic aspects involved in modulating circadian rhythms, with specific reference to cardiovascular health and cardiovascular diseases. Along with this, we also presented the latest pharmacogenomic and metabolomics markers involved in chronobiological control of the cardiovascular system along with their possible utility in cardiovascular disease diagnosis and therapeutics. Finally, we reviewed the current expert opinions on chronotherapeutic approaches for utilizing the conventional as well as the new pharmacological molecules for antihypertensive chronotherapy.
Collapse
Affiliation(s)
- Kumud Joshi
- Department of Pharmacy, Lloyd Institute of Management and Technology, Greater Noida, India
| | - Madhubanti Das
- Department of Zoology, Gauhati University, Guwahati, Assam, India
| | - Anupam Sarma
- Advanced Drug Delivery Laboratory, GIPS, Girijananda Chowdhury University, Guwahati, Assam, India
| | - Mandeep K Arora
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| | - Manmohan SInghal
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| | - Bhavna Kumar
- School of Pharmacy and population health informatics, DIT University, Dehradun, India
| |
Collapse
|
7
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Clavere NG, Alqallaf A, Rostron KA, Parnell A, Mitchell R, Patel K, Boateng SY. Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling. Dis Model Mech 2022; 15:275323. [PMID: 35380160 PMCID: PMC9118092 DOI: 10.1242/dmm.049424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1, which is required for DNA excision and repair, and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB). DNA damage and oxidative stress were significantly increased in Ercc1Δ/− hearts, but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/− hearts. RNA-sequencing analysis showed that in Ercc1Δ/− hearts, there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whereas sActRIIB treatment reversed this effect. Ercc1Δ/− hearts also expressed higher levels of anti-hypertrophic genes and decreased levels of pro-hypertrophic ones, which were also reversed by sActRIIB treatment. These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1-deficient mice and presents a potentially novel therapeutic target for heart diseases. Summary: Attenuated DNA repair is associated with pathological cardiac remodelling and gene expression. Much of this phenotype is attenuated by inhibition of the activin signalling pathway using soluble activin receptor treatment.
Collapse
Affiliation(s)
- Nicolas G Clavere
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ali Alqallaf
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Kerry A Rostron
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College London, Commonwealth Building, Hammersmith Hospital, Du Cane Road, London W12 0NN, UK
| | - Andrew Parnell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Robert Mitchell
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Ketan Patel
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| | - Samuel Y Boateng
- Institute of Cardiovascular and Metabolic Research, School of Biological Sciences, Health and Life Sciences Building, University of Reading, Whiteknights, Reading RG6 6UB, UK
| |
Collapse
|
9
|
Abstract
The cardiomyocyte circadian clock temporally governs fundamental cellular processes, leading to 24-h rhythms in cardiac properties (such as electrophysiology and contractility). The importance of this cell-autonomous clock is underscored by reports that the disruption of the mechanism leads to adverse cardiac remodeling and heart failure. In healthy non-stressed mice, the cardiomyocyte circadian clock modestly augments both cardiac protein synthesis (~14%) and mass (~11%) at the awake-to-sleep transition (relative to their lowest values in the middle of the awake period). However, the increased capacity for cardiac growth at the awake-to-sleep transition exacerbates the responsiveness of the heart to pro-hypertrophic stimuli/stresses (e.g., adrenergic stimulation, nutrients) at this time. The cardiomyocyte circadian clock orchestrates time-of-day-dependent rhythms in cardiac growth through numerous mechanisms. Both ribosomal RNA (e.g., 28S) and the PI3K/AKT/mTOR/S6 signaling axis are circadian regulated, peaking at the awake-to-sleep transition in the heart. Conversely, the negative regulators of translation (including PER2, AMPK, and the integrated stress response) are elevated in the middle of the awake period in a coordinated fashion. We speculate that persistent circadian governance of cardiac growth during non-dipping/nocturnal hypertension, sleep apnea, and/or shift work may exacerbate left ventricular hypertrophy and cardiac disease development, highlighting a need for the advancement of chronotherapeutic interventions.
Collapse
Affiliation(s)
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
10
|
Zhang J, Zhao L, Li Y, Dong H, Zhang H, Zhang Y, Ma T, Yang L, Gao D, Wang X, Jiang H, Li C, Wang A, Jin Y, Chen H. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. Am J Physiol Cell Physiol 2021; 322:C231-C245. [PMID: 34936504 DOI: 10.1152/ajpcell.00267.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Autophagy of granulosa cells (GCs) is involved in follicular atresia, which occurs repeatedly during the ovarian development cycle. Several circadian clock genes are rhythmically expressed in both rodent ovarian tissues and GCs. Nuclear receptor subfamily 1 group D member 1 (NR1D1), an important component of the circadian clock system, is involved in the autophagy process through the regulation of autophagy-related genes. However, there are no reports illustrating the role of the circadian clock system in mouse GC autophagy. In the present study, we found that core circadian clock genes (Bmal1, Per2, Nr1d1, and Dbp) and an autophagy-related gene (Atg5) exhibited rhythmic expression patterns across 24 h in mouse ovaries and primary GCs. Treatment with SR9009, an agonist of NR1D1, significantly reduced the expression of Bmal1, Per2, and Dbp in mouse GCs. ATG5 expression was significantly attenuated by SR9009 treatment in mouse GCs. Conversely, Nr1d1 knockdown increased ATG5 expression in mouse GCs. Decreased NR1D1 expression at both the mRNA and protein levels was detected in the ovaries of Bmal1-/- mice, along with elevated expression of ATG5. Dual-luciferase reporter assay and electrophoretic mobility shift assay showed that NR1D1 inhibited Atg5 transcription by binding to two putative retinoic acid-related orphan receptor response elements within the promoter. In addition, rapamycin-induced autophagy and ATG5 expression were partially reversed by SR9009 treatment in mouse GCs. Taken together, our current data demonstrated that the circadian clock regulates GC autophagy through NR1D1-mediated inhibition of ATG5 expression, and thus, plays a role in maintaining autophagy homeostasis in GCs.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijia Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yating Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Dong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haisen Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Yu Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Tiantian Ma
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Luda Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Dengke Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaoyu Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Haizhen Jiang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Chao Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Aihua Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yaping Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| | - Huatao Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.,Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural affairs, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
11
|
PER2 Regulates Reactive Oxygen Species Production in the Circadian Susceptibility to Ischemia/Reperfusion Injury in the Heart. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6256399. [PMID: 34659637 PMCID: PMC8519710 DOI: 10.1155/2021/6256399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to investigate the diurnal differences in Period 2 (PER2) expression in myocardial ischemia-reperfusion (I/R) injury. We investigated diurnal variations in oxidative stress and energy metabolism after myocardial I/R in vitro and in vivo. In addition, we also analyzed the effects of H2O2 treatment and serum shock in H9c2 cells transfected with silencing RNA against Per2 (siRNA-Per2) in vitro. We used C57BL/6 male mice to construct a model of I/R injury at zeitgeber time (ZT) 2 and ZT14 by synchronizing the circadian rhythms. Our in vivo analysis demonstrated that there were diurnal differences in the severity of injury caused by myocardial infarctions, with more injury occurring in the daytime. PER2 was significantly reduced in heart tissue in the daytime and was higher at night. Our results also showed that more severe injury of mitochondrial function in daytime produced more reactive oxygen species (ROS) and less ATP, which increased myocardial injury. In vitro, our findings presented a similar trend showing that apoptosis of H9c2 cells was increased when PER2 expression was lower. Meanwhile, downregulation of PER2 disrupted the oxidative balance by increasing ROS and mitochondrial injury. The result was a reduction in ATP and failure to provide sufficient energy protection for cardiomyocytes.
Collapse
|
12
|
Abdel-Rahman EA, Hosseiny S, Aaliya A, Adel M, Yasseen B, Al-Okda A, Radwan Y, Saber SH, Elkholy N, Elhanafy E, Walker EE, Zuniga-Hertz JP, Patel HH, Griffiths HR, Ali SS. Sleep/wake calcium dynamics, respiratory function, and ROS production in cardiac mitochondria. J Adv Res 2021; 31:35-47. [PMID: 34194831 PMCID: PMC8240107 DOI: 10.1016/j.jare.2021.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022] Open
Abstract
Introduction Incidents of myocardial infarction and sudden cardiac arrest vary with time of the day, but the mechanism for this effect is not clear. We hypothesized that diurnal changes in the ability of cardiac mitochondria to control calcium homeostasis dictate vulnerability to cardiovascular events. Objectives Here we investigate mitochondrial calcium dynamics, respiratory function, and reactive oxygen species (ROS) production in mouse heart during different phases of wake versus sleep periods. Methods We assessed time-of-the-day dependence of calcium retention capacity of isolated heart mitochondria from young male C57BL6 mice. Rhythmicity of mitochondrial-dependent oxygen consumption, ROS production and transmembrane potential in homogenates were explored using the Oroboros O2k Station equipped with a fluorescence detection module. Changes in expression of essential clock and calcium dynamics genes/proteins were also determined at sleep versus wake time points. Results Our results demonstrate that cardiac mitochondria exhibit higher calcium retention capacity and higher rates of calcium uptake during sleep period. This was associated with higher expression of clock gene Bmal1, lower expression of per2, greater expression of MICU1 gene (mitochondrial calcium uptake 1), and lower expression of the mitochondrial transition pore regulator gene cyclophilin D. Protein levels of mitochondrial calcium uniporter (MCU), MICU2, and sodium/calcium exchanger (NCLX) were also higher at sleep onset relative to wake period. While complex I and II-dependent oxygen utilization and transmembrane potential of cardiac mitochondria were lower during sleep, ROS production was increased presumably due to mitochondrial calcium sequestration. Conclusions Taken together, our results indicate that retaining mitochondrial calcium in the heart during sleep dissipates membrane potential, slows respiratory activities, and increases ROS levels, which may contribute to increased vulnerability to cardiac stress during sleep-wake transition. This pronounced daily oscillations in mitochondrial functions pertaining to stress vulnerability may at least in part explain diurnal prevalence of cardiac pathologies.
Collapse
Affiliation(s)
- Engy A. Abdel-Rahman
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Salma Hosseiny
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Abdullah Aaliya
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Mohamed Adel
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Basma Yasseen
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| | - Abdelrahman Al-Okda
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Yasmine Radwan
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Saber H. Saber
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Nada Elkholy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Eslam Elhanafy
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
| | - Emily E. Walker
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Juan P. Zuniga-Hertz
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hemal H. Patel
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, USA
- Department of Anesthesiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Sameh S. Ali
- Center for Aging and Associated Diseases, Zewail City of Science and Technology, Giza, Egypt
- 57357 Children's Cancer Hospital, Basic Research Department, Cairo, Egypt
| |
Collapse
|
13
|
Sutovska H, Miklovic M, Molcan L. Artificial light at night suppresses the expression of sarco/endoplasmic reticulum Ca 2+ -ATPase in the left ventricle of the heart in normotensive and hypertensive rats. Exp Physiol 2021; 106:1762-1771. [PMID: 34089548 DOI: 10.1113/ep089594] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022]
Abstract
NEW FINDINGS What is the central question of this study? Artificial light at night decreases blood pressure and heart rate in rats. Are these changes in heart rate accompanied by changes in protein expression in the heart's left ventricle? What is the main finding and its importance? Five weeks of artificial light at night affected protein expression in the heart's left ventricle in normotensive and hypertensive rats. Artificial light at night decreased expression of the sarco/endoplasmic reticulum Ca2+ -ATPase, angiotensin II receptor type 1 and endothelin-1. ABSTRACT Artificial light at night (ALAN) affects the circadian rhythm of the heart rate in normotensive Wistar rats (WT) and spontaneously hypertensive rats (SHR) through the autonomic nervous system, which regulates the heart's activity through calcium handling, an important regulator in heart contractility. We analysed the expression of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA2) and other selected regulatory proteins involved in the regulation of heart contractility, angiotensin II receptor type 1 (AT1 R), endothelin-1 (ET-1) and tyrosine hydroxylase (TH), in the left ventricle of the heart in WT and SHR after 2 and 5 weeks of ALAN with intensity 1-2 lx. Expression of SERCA2 was decreased in WT (control: 0.53 ± 0.07; ALAN: 0.46 ± 0.10) and SHR (control: 0.72 ± 0.18; ALAN: 0.56 ± 0.21) after 5 weeks of ALAN (P = 0.067). Expression of AT1 R was significantly decreased in WT (control: 0.51 ± 0.27; ALAN: 0.34 ± 0.20) and SHR (control: 0.38 ± 0.07; ALAN: 0.23 ± 0.09) after 2 weeks of ALAN (P = 0.028) and in SHR after 5 weeks of ALAN. Expression of ET-1 was decreased in WT (control: 0.51 ± 0.27; ALAN: 0.28 ± 0.12) and SHR (control: 0.54 ± 0.10; ALAN: 0.35 ± 0.23) after 5 weeks of ALAN (P = 0.015). ALAN did not affect the expression of TH in WT or SHR. In conclusion, ALAN suppressed the expression of SERCA2, AT1 R and ET-1, which are important for the regulation of heart contractility, in a strain-dependent pattern in both WT and SHR.
Collapse
Affiliation(s)
- Hana Sutovska
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Matus Miklovic
- Center for Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Pathophysiology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
14
|
Carter B, Justin HS, Gulick D, Gamsby JJ. The Molecular Clock and Neurodegenerative Disease: A Stressful Time. Front Mol Biosci 2021; 8:644747. [PMID: 33889597 PMCID: PMC8056266 DOI: 10.3389/fmolb.2021.644747] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythm dysfunction occurs in both common and rare neurodegenerative diseases. This dysfunction manifests as sleep cycle mistiming, alterations in body temperature rhythms, and an increase in symptomatology during the early evening hours known as Sundown Syndrome. Disruption of circadian rhythm homeostasis has also been implicated in the etiology of neurodegenerative disease. Indeed, individuals exposed to a shifting schedule of sleep and activity, such as health care workers, are at a higher risk. Thus, a bidirectional relationship exists between the circadian system and neurodegeneration. At the heart of this crosstalk is the molecular circadian clock, which functions to regulate circadian rhythm homeostasis. Over the past decade, this connection has become a focal point of investigation as the molecular clock offers an attractive target to combat both neurodegenerative disease pathogenesis and circadian rhythm dysfunction, and a pivotal role for neuroinflammation and stress has been established. This review summarizes the contributions of molecular clock dysfunction to neurodegenerative disease etiology, as well as the mechanisms by which neurodegenerative diseases affect the molecular clock.
Collapse
Affiliation(s)
- Bethany Carter
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Hannah S Justin
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States
| | - Danielle Gulick
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Joshua J Gamsby
- Gamsby Laboratory, USF Health Byrd Alzheimer's Center and Research Institute, University of South Florida Health, Tampa, FL, United States.,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| |
Collapse
|
15
|
Cortisol on Circadian Rhythm and Its Effect on Cardiovascular System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18020676. [PMID: 33466883 PMCID: PMC7830980 DOI: 10.3390/ijerph18020676] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023]
Abstract
The synthesis and secretion of cortisol are controlled by the hypothalamic–pituitary–adrenal axis. Cortisol exhibits a proper 24-h circadian rhythm that affects the brain, the autonomic nervous system, the heart, and the vasculature that prepares the cardiovascular system for optimal function during these anticipated behavioral cycles. A literature search was conducted using databases such as Google Scholar, PubMed, and Scopus. Relevant search terms included “circadian rhythm and cardiovascular”, “cortisol”, “cortisol and acute coronary syndrome”, “cortisol and arrhythmias”, “cortisol and sudden cardiac death”, “cortisol and stroke”, and “cardioprotective agents”. A total of 120 articles were obtained on the basis of the above search. Lower levels of cortisol were seen at the beginning of sleep, while there was a rise towards the end of sleep, with the highest level reached at the moment the individual wakes up. In the present review, we discuss the role of 11β-hydroxysteroid dehydrogenase (11β-HSD1), which is a novel molecular target of interest for treating metabolic syndrome and type-2 diabetes mellitus. 11β-HSD1 is the major determinant of cortisol excess, and its inhibition alleviates metabolic abnormalities. The present review highlights the role of cortisol, which controls the circadian rhythm, and describes its effect on the cardiovascular system. The review provides a platform for future potential cardioprotective therapeutic agents.
Collapse
|
16
|
Man AWC, Xia N, Li H. Circadian Rhythm in Adipose Tissue: Novel Antioxidant Target for Metabolic and Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:E968. [PMID: 33050331 PMCID: PMC7601443 DOI: 10.3390/antiox9100968] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major risk factor for most metabolic and cardiovascular disorders. Adipose tissue is an important endocrine organ that modulates metabolic and cardiovascular health by secreting signaling molecules. Oxidative stress is a common mechanism associated with metabolic and cardiovascular complications including obesity, type 2 diabetes, and hypertension. Oxidative stress can cause adipose tissue dysfunction. Accumulating data from both humans and experimental animal models suggest that adipose tissue function and oxidative stress have an innate connection with the intrinsic biological clock. Circadian clock orchestrates biological processes in adjusting to daily environmental changes according to internal or external cues. Recent studies have identified the genes and molecular pathways exhibiting circadian expression patterns in adipose tissue. Disruption of the circadian rhythmicity has been suggested to augment oxidative stress and aberrate adipose tissue function and metabolism. Therefore, circadian machinery in the adipose tissue may be a novel therapeutic target for the prevention and treatment of metabolic and cardiovascular diseases. In this review, we summarize recent findings on circadian rhythm and oxidative stress in adipose tissue, dissect the key components that play a role in regulating the clock rhythm, oxidative stress and adipose tissue function, and discuss the potential use of antioxidant treatment on metabolic and cardiovascular diseases by targeting the adipose clock.
Collapse
Affiliation(s)
| | | | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Langenbeckstr, 1, 55131 Mainz, Germany; (A.W.C.M.); (N.X.)
| |
Collapse
|
17
|
Lowe J, Kolkhof P, Haupt MJ, Peczkowski KK, Rastogi N, Hauck JS, Kadakia FK, Zins JG, Ciccone PC, Smart S, Sandner P, Raman SV, Janssen PML, Rafael-Fortney JA. Mineralocorticoid receptor antagonism by finerenone is sufficient to improve function in preclinical muscular dystrophy. ESC Heart Fail 2020; 7:3983-3995. [PMID: 32945624 PMCID: PMC7754779 DOI: 10.1002/ehf2.12996] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/29/2020] [Accepted: 08/17/2020] [Indexed: 01/11/2023] Open
Abstract
Aims Duchenne muscular dystrophy (DMD) is an X‐linked inherited disease due to dystrophin deficiency causing skeletal and cardiac muscle dysfunction. Affected patients lose ambulation by age 12 and usually die in the second to third decades of life from cardiac and respiratory failure. Symptomatic treatment includes the use of anti‐inflammatory corticosteroids, which are associated with side effects including weight gain, osteoporosis, and increased risk of cardiovascular disease. Novel treatment options include blockade of the renin–angiotensin–aldosterone system, because angiotensin as well as aldosterone contribute to persistent inflammation and fibrosis, and aldosterone blockade represents an efficacious anti‐fibrotic approach in cardiac failure. Recent preclinical findings enabled successful clinical testing of a combination of steroidal mineralocorticoid receptor antagonists (MRAs) and angiotensin converting enzyme inhibitors in DMD boys. The efficacy of MRAs alone on dystrophic skeletal muscle and heart has not been investigated. Here, we tested efficacy of the novel non‐steroidal MRA finerenone as a monotherapy in a preclinical DMD model. Methods and results The dystrophin‐deficient, utrophin haploinsufficient mouse model of DMD was treated with finerenone and compared with untreated dystrophic and wild‐type controls. Grip strength, electrocardiography, cardiac magnetic resonance imaging, muscle force measurements, histological quantification, and gene expression studies were performed. Finerenone treatment alone resulted in significant improvements in clinically relevant functional parameters in both skeletal muscle and heart. Normalized grip strength in rested dystrophic mice treated with finerenone (40.3 ± 1.0 mN/g) was significantly higher (P = 0.0182) compared with untreated dystrophic mice (35.2 ± 1.5 mN/g). Fatigued finerenone‐treated dystrophic mice showed an even greater relative improvement (P = 0.0003) in normalized grip strength (37.5 ± 1.1 mN/g) compared with untreated mice (29.7 ± 1.1 mN/g). Finerenone treatment also led to significantly lower (P = 0.0075) susceptibility to limb muscle damage characteristic of DMD measured during a contraction‐induced injury protocol. Normalized limb muscle force after five lengthening contractions resulted in retention of 71 ± 7% of baseline force in finerenone‐treated compared with only 51 ± 4% in untreated dystrophic mice. Finerenone treatment also prevented significant reductions in myocardial strain rate (P = 0.0409), the earliest sign of DMD cardiomyopathy. Moreover, treatment with finerenone led to very specific cardiac gene expression changes in clock genes that might modify cardiac pathophysiology in this DMD model. Conclusions Finerenone administered as a monotherapy is disease modifying for both skeletal muscle and heart in a preclinical DMD model. These findings support further evaluation of finerenone in DMD clinical trials.
Collapse
Affiliation(s)
- Jeovanna Lowe
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Kolkhof
- R&D Preclinical Research Cardiovascular, Bayer AG, Wuppertal, Germany
| | - Michael J Haupt
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Kyra K Peczkowski
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Neha Rastogi
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - J Spencer Hauck
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Feni K Kadakia
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jonathan G Zins
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Pierce C Ciccone
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Suzanne Smart
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Peter Sandner
- R&D Preclinical Research Cardiovascular, Bayer AG, Wuppertal, Germany.,Department of Pharmacology, Hannover Medical School, Hannover, Germany
| | - Subha V Raman
- Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jill A Rafael-Fortney
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
18
|
Masiewicz S, Gutovitz S, Hart L, Leaman SM, Jehle D. Presentation Times of Myocardial Infarctions to the Emergency Department: Disappearance of the Morning Predominance. J Emerg Med 2020; 58:741-748. [PMID: 32229136 DOI: 10.1016/j.jemermed.2020.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/27/2019] [Accepted: 01/09/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Previous studies show that myocardial infarctions (MIs) occur most frequently in the morning. OBJECTIVES We hypothesized that there no longer is a morning predominance of MI, and that the timing of ST-elevation myocardial infarction (STEMI) vs. non-ST-elevation myocardial infarction (NSTEMI) presentation differs. METHODS We reviewed MI, STEMI, and NSTEMI patients (2013-2017) from a multiple-hospital system, identified by diagnostic codes. Daily emergency department arrival times were categorized into variable time intervals for count and proportional analysis, then examined for differences. RESULTS There were 18,663 MI patients from 12 hospitals included in the analysis. Most MIs occurred between 12:00 pm and 5:59 pm (35.7%), and least between 12:00 am-5:59 am (16.3%). After subdividing all MIs into STEMIs and NSTEMIs, both groups continued to have the greatest presentation between 12:00 pm and 5:59 pm (33.1% and 36.0%, respectively). STEMIs (17.2%) and NSTEMIs (16.2%) were least frequent between 12:00 am and 5:59 am. We found the second most common presentation time for MIs was in the 6 pm-11:59 pm time period, which held true for both subtypes (MI 26.7%, STEMI 26.4%, NSTEMI 26.7%). CONCLUSIONS These data suggest a potential shift in the circadian pattern of MI, revealing an afternoon predominance for both STEMI and NSTEMI subtypes.
Collapse
Affiliation(s)
- Spencer Masiewicz
- Department of Emergency Medicine, Grand Strand Medical Center, Myrtle Beach, South Carolina
| | - Scott Gutovitz
- Department of Emergency Medicine, Grand Strand Medical Center, Myrtle Beach, South Carolina; Department of Surgery, University of South Carolina School of Medicine - Columbia, Columbia, South Carolina
| | - Leslie Hart
- College of Charleston, Charleston, South Carolina
| | - Samuel Madden Leaman
- University of South Carolina School of Medicine - Columbia, Columbia, South Carolina
| | - Dietrich Jehle
- Department of Emergency Medicine, Grand Strand Medical Center, Myrtle Beach, South Carolina; Department of Surgery, University of South Carolina School of Medicine - Columbia, Columbia, South Carolina
| |
Collapse
|
19
|
Abstract
The Earth turns on its axis every 24 h; almost all life on the planet has a mechanism - circadian rhythmicity - to anticipate the daily changes caused by this rotation. The molecular clocks that control circadian rhythms are being revealed as important regulators of physiology and disease. In humans, circadian rhythms have been studied extensively in the cardiovascular system. Many cardiovascular functions, such as endothelial function, thrombus formation, blood pressure and heart rate, are now known to be regulated by the circadian clock. Additionally, the onset of acute myocardial infarction, stroke, arrhythmias and other adverse cardiovascular events show circadian rhythmicity. In this Review, we summarize the role of the circadian clock in all major cardiovascular cell types and organs. Second, we discuss the role of circadian rhythms in cardiovascular physiology and disease. Finally, we postulate how circadian rhythms can serve as a therapeutic target by exploiting or altering molecular time to improve existing therapies and develop novel ones.
Collapse
|
20
|
Sánchez-Martín P, Komatsu M. Physiological Stress Response by Selective Autophagy. J Mol Biol 2020; 432:53-62. [DOI: 10.1016/j.jmb.2019.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 01/06/2023]
|
21
|
Abstract
Synchronization of molecular, metabolic, and cardiovascular circadian oscillations is fundamental to human health. Sleep-disordered breathing, which disrupts such temporal congruence, elicits hemodynamic, autonomic, chemical, and inflammatory disturbances with acute and long-term consequences for heart, brain, and circulatory and metabolic function. Sleep apnea afflicts a substantial proportion of adult men and women but is more prevalent in those with established cardiovascular diseases and especially fluid-retaining states. Despite the experimental, epidemiological, observational, and interventional evidence assembled in support of these concepts, this substantial body of work has had relatively modest pragmatic impact, thus far, on the discipline of cardiology. Contemporary estimates of cardiovascular risk still are derived typically from data acquired during wakefulness. The impact of sleep-related breathing disorders rarely is entered into such calculations or integrated into diagnostic disease-specific algorithms or therapeutic recommendations. Reasons for this include absence of apnea-related symptoms in most with cardiovascular disease, impediments to efficient diagnosis at the population level, debate as to target, suboptimal therapies, difficulties mounting large randomized trials of sleep-specific interventions, and the challenging results of those few prospective cardiovascular outcome trials that have been completed and reported. The objectives of this review are to delineate the bidirectional interrelationship between sleep-disordered breathing and cardiovascular disease, consider the findings and implications of observational and randomized trials of treatment, frame the current state of clinical equipoise, identify principal current controversies and potential paths to their resolution, and anticipate future directions.
Collapse
Affiliation(s)
- John S Floras
- From the University Health Network and Sinai Health System Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
22
|
Kolbe I, Brehm N, Oster H. Interplay of central and peripheral circadian clocks in energy metabolism regulation. J Neuroendocrinol 2019; 31:e12659. [PMID: 30415480 DOI: 10.1111/jne.12659] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Metabolic health founds on a homeostatic balance that has to integrate the daily changes of rest/activity and feeding/fasting cycles. A network of endogenous 24-hour circadian clocks helps to anticipate daily recurring events and adjust physiology and behavioural functions accordingly. Circadian clocks are self-sustained cellular oscillators based on a set of clock genes/proteins organised in interlocked transcriptional-translational feedback loops. The body's clocks need to be regularly reset and synchronised with each other to achieve coherent rhythmic output signals. This synchronisation is achieved by interplay of a master clock, which resides in the suprachiasmatic nucleus, and peripheral tissue clocks. This clock network is reset by time signals such as the light/dark cycle, food intake and activity. The balanced interplay of clocks is easily disturbed in modern society by shiftwork or high-energy diets, which may further promote the development of metabolic disorders. In this review, we summarise the current model of central-peripheral clock interaction in metabolic health. Different established mouse models for central or peripheral clock disruption and their metabolic phenotypes are compared and the possible relevance of clock network interaction for the development of therapeutic approaches in humans is discussed.
Collapse
Affiliation(s)
- Isa Kolbe
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Niklas Brehm
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lubeck, Lubeck, Germany
| |
Collapse
|
23
|
The Effect of Special Medical Examination for Night Shift Workers and Follow-Up Management Against Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16050719. [PMID: 30823384 PMCID: PMC6427592 DOI: 10.3390/ijerph16050719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 11/17/2022]
Abstract
Background: Special health examination is a screening program introduced in 1973 in Korea to examine health problems of workers who are regularly exposed to 177 hazardous substances and physical environments specified by the Occupational Safety and Health Act. Shiftwork was added as a risk factor in 2013. The purpose of this study was to analyze changes of hypertension status after a special medical examination and subsequent follow-up management. Methods: We used the data based on the special medical examination outcomes for night shift workers, performed at seven different health examination centers under the Korea Medical Institute (KMI) between 2014 and 2016. Workers who received special medical examinations for two consecutive years (2014–2015 and 2015–2016) were selected. A final study population of 2070 was evaluated. Results: Compared with the first-year examination, 1503 subjects (72.6%) received hypertension medication or showed improvement in blood pressure in their second-year examination. Older age (≥40s), women, larger workplaces (≥300 full-time workers), long-term workers (≥12 years), improvement in smoking habits, improvements for diabetes or dyslipidemia, normal or reduced BMI, and normal waist circumference were associated with proper management of hypertension. Conclusions: An appropriate follow-up management program should be developed to provide health management for night shift workers that need to focus on the factors identified in this study.
Collapse
|
24
|
Froy O, Garaulet M. The Circadian Clock in White and Brown Adipose Tissue: Mechanistic, Endocrine, and Clinical Aspects. Endocr Rev 2018; 39:261-273. [PMID: 29490014 PMCID: PMC6456924 DOI: 10.1210/er.2017-00193] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
Abstract
Obesity is a major risk factor for the development of illnesses, such as insulin resistance and hypertension, and has become a serious public health problem. Mammals have developed a circadian clock located in the hypothalamic suprachiasmatic nuclei (SCN) that responds to the environmental light-dark cycle. Clocks similar to the one located in the SCN are found in peripheral tissues, such as the kidney, liver, and adipose tissue. The circadian clock regulates metabolism and energy homeostasis in peripheral tissues by mediating activity and/or expression of key metabolic enzymes and transport systems. Knockouts or mutations in clock genes that lead to disruption of cellular rhythmicity have provided evidence to the tight link between the circadian clock and metabolism. In addition, key proteins play a dual role in regulating the core clock mechanism, as well as adipose tissue metabolism, and link circadian rhythms with lipogenesis and lipolysis. Adipose tissues are distinguished as white, brown, and beige (or brite), each with unique metabolic characteristics. Recently, the role of the circadian clock in regulating the differentiation into the different adipose tissues has been investigated. In this review, the role of clock proteins and the downstream signaling pathways in white, brown, and brite adipose tissue function and differentiation will be reviewed. In addition, chronodisruption and metabolic disorders and clinical aspects of circadian adiposity will be addressed.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Marta Garaulet
- Department of Physiology, University of Murcia, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria (IMIB), Campus de Ciencias de la Salud, Murcia, Spain
| |
Collapse
|
25
|
Young ME. Temporal partitioning of cardiac metabolism by the cardiomyocyte circadian clock. Exp Physiol 2018; 101:1035-9. [PMID: 27474266 DOI: 10.1113/ep085779] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/09/2016] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the topic of this review? This review highlights temporal partitioning of cardiac metabolism by the cardiomyocyte circadian clock. What advances does it highlight? Advances include: 1) cardiac glucose utilization peaks during the active period to meet increased energetic demands at this time; 2) synthesis of glycogen and triglyceride peak in the heart during the latter half of the active period, likely in anticipation of the upcoming sleep/fasting period; and 3) protein turnover increases in the heart at the beginning of the sleep phase, probably to promote growth and repair at this time. Cell-autonomous circadian clocks have emerged as crucial mediators of 24 h rhythms in cellular processes. In doing so, these molecular timekeepers confer the selective advantage of anticipation, allowing cells and organs to prepare for stimuli and stresses before their onset. The heart is subjected to dramatic fluctuations in energetic demand and nutrient supply in association with sleep-wake and fasting-feeding cycles. Recent studies suggest that the cardiomyocyte circadian clock orchestrates daily rhythms in both oxidative and non-oxidative glucose and fatty acid metabolism, as well as protein turnover. Here, I review this evidence and discuss whether disruption of these rhythms can contribute to cardiovascular disease.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
26
|
Antolic A, Wood CE, Keller-Wood M. Use of radiotelemetry to assess perinatal cardiac function in the ovine fetus and newborn. Am J Physiol Regul Integr Comp Physiol 2017; 313:R660-R668. [PMID: 28855176 PMCID: PMC5814690 DOI: 10.1152/ajpregu.00078.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/26/2017] [Accepted: 08/23/2017] [Indexed: 12/11/2022]
Abstract
The late gestation fetal ECG (fECG) has traditionally been difficult to characterize due to the low fECG signal relative to high maternal noise. Although new technologies have improved the feasibility of its acquisition and separation, little is known about its development in late gestation, a period in which the fetal heart undergoes extensive maturational changes. Here, we describe a method for the chronic implantation of radiotelemetry devices into late gestation ovine fetuses to characterize parameters of the fECG following surgery, throughout late gestation, and in the perinatal period. We found no significant changes in mean aortic pressure (MAP), heart rate (HR), or ECG in the 5 days following implantation; however, HR decreased in the first 24 h following the end of surgery, with associated increases in RR, PR, and QRS intervals. Over the last 14 days of fetal life, fetal MAP significantly increased, and HR significantly decreased, as expected. MAP and HR increased as labor progressed. Although there were no significant changes over time in the ECG during late gestation, the duration of the PR interval initially decreased and then increased as birth approached. These results indicate that although critical maturational changes occur in the late gestation fetal myocardium, the mechanisms that control the cardiac conduction are relatively mature in late gestation. The study demonstrates that radiotelemetry can be successfully used to assess fetal cardiac function, in particular conduction, through the process of labor and delivery, and may therefore be a useful tool for study of peripartum cardiac events.
Collapse
Affiliation(s)
- A Antolic
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida;
| | - C E Wood
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida; and
| | - M Keller-Wood
- Department of Pharmacodynamics, University of Florida, Gainesville, Florida
| |
Collapse
|
27
|
Peliciari-Garcia RA, Bargi-Souza P, Young ME, Nunes MT. Repercussions of hypo and hyperthyroidism on the heart circadian clock. Chronobiol Int 2017; 35:147-159. [PMID: 29111822 DOI: 10.1080/07420528.2017.1388253] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Myocardial gene expression and metabolism fluctuate over the course of the day in association with changes in energy supply and demand. Time-of-day-dependent oscillations in myocardial processes have been linked to the intrinsic cardiomyocyte circadian clock. Triiodothyronine (T3) is an important modulator of heart metabolism and function. Recently, our group has reported time-of-day-dependent rhythms in cardiac T3 sensitivity, as well as, T3-mediated acute alterations on core clock components. Hypo and hyperthyroidism are the second most prevalent endocrine disease worldwide. Considering the importance of the cardiomyocyte circadian clock and T3 to cardiac physiology, the aim of this study was to investigate the consequences of chronic hypo and hyperthyroidism on 24-h rhythms of circadian clock genes in the heart. Hypo and hyperthyroidism was induced in rats by thyroidectomy (Tx) and i.p. injections of supraphysiological dose of T3, respectively. Here we report alterations in mRNA levels of the major core clock components (Bmal1, Per2, Nr1d1, and Rora) for both experimental conditions (with the exception of Per2 during hyperthyroid condition). Oscillations in mRNA levels of key glucose and fatty-acid metabolism genes known to be clock controlled (Pdk4, Ucp3, Acot1, and Cd36) were equally affected by the experimental conditions, especially during the hypothyroid state. These findings suggest that chronic alterations in thyroid status significantly impacts 24-h rhythms in circadian clock and metabolic genes in the heart. Whether these perturbations contribute toward the pathogenesis of cardiac dysfunction associated with hypo and hyperthyroidism requires further elucidation.
Collapse
Affiliation(s)
- Rodrigo A Peliciari-Garcia
- a Morphophysiology & Pathology Sector, Department of Biological Sciences , Federal University of São Paulo , Diadema , Brazil.,b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Paula Bargi-Souza
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| | - Martin E Young
- c Division of Cardiovascular Diseases, Department of Medicine , University of Alabama at Birmingham , Birmingham , AL , USA
| | - Maria Tereza Nunes
- b Department of Physiology and Biophysics , Institute of Biomedical Sciences-I, University of São Paulo , São Paulo , Brazil
| |
Collapse
|
28
|
Souza A, Carraro Detanico B, Fernandes Medeiros L, Oliveira CD, Leal Scarabelot V, Giotti Cioato S, Caumo W, Torres ILS. Acute stress disrupts temporal patterns of behavioral and biochemical parameters of rats. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1386267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Andressa Souza
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Bernardo Carraro Detanico
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Liciane Fernandes Medeiros
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Carla de Oliveira
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Vanessa Leal Scarabelot
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Stefania Giotti Cioato
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Wolnei Caumo
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| | - Iraci LS Torres
- Post-Graduate Program in Medicine: Medical Sciences – Medicine School, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Pharmacology of Pain and Neuromodulation Laboratory: Pre-clinical Researchs, Department of Pharmacology, Universidade Federal do Rio Grande do Sul, ICBS, Porto Alegre, Brazil
- Animal Experimentation Unit and Graduate Research Group, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
- Post-Graduate Program in Health and Human Development, Universidade La Salle, Canoas, Brazil
| |
Collapse
|
29
|
|
30
|
Young ME. Circadian Control of Cardiac Metabolism: Physiologic Roles and Pathologic Implications. Methodist Debakey Cardiovasc J 2017; 13:15-19. [PMID: 28413577 DOI: 10.14797/mdcj-13-1-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Over the course of the day, the heart is challenged with dramatic fluctuations in energetic demand and nutrient availability. It is therefore not surprising that rhythms in cardiac metabolism have been reported at multiple levels, including the utilization of glucose, fatty acids, and amino acids. Evidence has emerged suggesting that the cardiomyocyte circadian clock is in large part responsible for governing cardiac metabolic rhythms. In doing so, the cardiomyocyte clock temporally partitions ATP generation for increased contractile function during the active period, promotes nutrient storage at the end of the active period, and facilitates protein turnover (synthesis and degradation) during the beginning of the sleep phase. This review highlights the roles of cardiac metabolism rhythms as well as the potential pathological consequences of their impairment.
Collapse
Affiliation(s)
- Martin E Young
- University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
31
|
Liang X, FitzGerald GA. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J Biol Rhythms 2017; 32:505-515. [DOI: 10.1177/0748730417729066] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xue Liang
- Merck Research Laboratories Cambridge Exploratory Science Center, Cambridge, Massachusetts
| | - Garret A. FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Pennsylvania
| |
Collapse
|
32
|
Durgan DJ, Crossland RF, Bryan RM. The rat cerebral vasculature exhibits time-of-day-dependent oscillations in circadian clock genes and vascular function that are attenuated following obstructive sleep apnea. J Cereb Blood Flow Metab 2017; 37:2806-2819. [PMID: 27798273 PMCID: PMC5536790 DOI: 10.1177/0271678x16675879] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Circadian clock components oscillate in cells of the cardiovascular system. Disruption of these oscillations has been observed in cardiovascular diseases. We hypothesized that obstructive sleep apnea, which is associated with cerebrovascular diseases, disrupts the cerebrovascular circadian clock and rhythms in vascular function. Apneas were produced in rats during sleep. Following two weeks of sham or obstructive sleep apnea, cerebral arteries were isolated over 24 h for mRNA and functional analysis. mRNA expression of clock genes exhibited 24-h rhythms in cerebral arteries of sham rats (p < 0.05). Interestingly, peak expression of clock genes was significantly lower following obstructive sleep apnea (p < 0.05). Obstructive sleep apnea did not alter clock genes in the heart, or rhythms in locomotor activity. Isolated posterior cerebral arteries from sham rats exhibited a diurnal rhythm in sensitivity to luminally applied ATP, being most responsive at the beginning of the active phase (p < 0.05). This rhythm was absent in arteries from obstructive sleep apnea rats (p < 0.05). Rhythms in ATP sensitivity in sham vessels were absent, and not different from obstructive sleep apnea, following treatment with L-NAME and indomethacin. We conclude that cerebral arteries possess a functional circadian clock and exhibit a diurnal rhythm in vasoreactivity to ATP. Obstructive sleep apnea attenuates these rhythms in cerebral arteries, potentially contributing to obstructive sleep apnea-associated cerebrovascular disease.
Collapse
Affiliation(s)
- David J Durgan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Randy F Crossland
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, USA
| |
Collapse
|
33
|
Hou W, Jiang Z, Ying J, Ding L, Li X, Qi F, Yang S, Cheng S, Wang Y, Liu Y, Xiao J, Guo H, Li Z, Wang Z. Clock gene affect the noncanonical NF-κB pathway via circadian variation of Otud7b. BIOL RHYTHM RES 2017. [DOI: 10.1080/09291016.2017.1323422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Wang Hou
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhou Jiang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Junjie Ying
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Lu Ding
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Xiaoxue Li
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Fang Qi
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuhong Yang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Shuting Cheng
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yuhui Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Yanyou Liu
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Jing Xiao
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Huiling Guo
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| | - Zhilin Li
- Sichuan Cancer Hospital, Chengdu, P.R. China
| | - Zhengrong Wang
- Health Ministry Key Laboratory of Chronobiology, College of Basic Medicine and Forensic Medicine, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
34
|
Lee H, Nah SS, Chang SH, Kim HK, Kwon JT, Lee S, Cho IH, Lee SW, Kim YO, Hong SJ, Kim HJ. PER2 is downregulated by the LPS-induced inflammatory response in synoviocytes in rheumatoid arthritis and is implicated in disease susceptibility. Mol Med Rep 2017; 16:422-428. [PMID: 28498398 DOI: 10.3892/mmr.2017.6578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 03/16/2017] [Indexed: 11/05/2022] Open
Abstract
The clinical symptoms of rheumatoid arthritis (RA) present with circadian variation, with joint stiffness and pain more prominent in the early morning. The mammalian clock genes, which include circadian locomotor output cycles kaput, brain and muscle Arnt-like protein 1, period and cryptochrome, regulate circadian rhythms. In order to identify the association between genetic polymorphisms in the circadian clock gene period 2 (PER2) and RA, the present study genotyped three PER2 single nucleotide polymorphisms (SNPs), rs934945, rs6754875, and rs2304674, using genetic information from 256 RA patients and 499 control subjects. Primary cultured rheumatoid synovial cells were stimulated with 10 µM lipopolysaccharide (LPS). Total protein was then extracted from the synovial cells following 12 and 24 h, and PER2 protein expression was assayed by immunoblotting. The rs2304674 SNP demonstrated a significant association with susceptibility to RA following Bonferroni correction. However, statistical analysis indicated that the SNPs were not associated with any clinical features of patients with RA. Immunoblotting analysis demonstrated that PER2 protein expression was decreased by LPS‑induced inflammation in RA synovial cells; however, this was not observed in normal synovial cells. The results suggest that the PER2 gene may be a risk factor for RA, and expression of the PER2 protein may be affected by inflammation. Therefore, PER2 may contribute to the pathogenesis of RA.
Collapse
Affiliation(s)
- Hwayoung Lee
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Seong-Su Nah
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Sung-Hae Chang
- Division of Rheumatology, Department of Internal Medicine, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Hyung-Ki Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Jun-Tack Kwon
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung‑Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Ik-Hyun Cho
- Department of Convergence Medical Science, Brain Korea 21 Plus Program and Institute of Korean Medicine, College of Oriental Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sang Won Lee
- Department of Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Chungcheongbuk 27709, Republic of Korea
| | - Young Ock Kim
- Department of Development of Ginseng and Medical Plants Research Institute, Rural Administration, Eumseong, Chungcheongbuk 27709, Republic of Korea
| | - Seung-Jae Hong
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam 31151, Republic of Korea
| |
Collapse
|
35
|
Kiehn JT, Tsang AH, Heyde I, Leinweber B, Kolbe I, Leliavski A, Oster H. Circadian Rhythms in Adipose Tissue Physiology. Compr Physiol 2017; 7:383-427. [PMID: 28333377 DOI: 10.1002/cphy.c160017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The different types of adipose tissues fulfill a wide range of biological functions-from energy storage to hormone secretion and thermogenesis-many of which show pronounced variations over the course of the day. Such 24-h rhythms in physiology and behavior are coordinated by endogenous circadian clocks found in all tissues and cells, including adipocytes. At the molecular level, these clocks are based on interlocked transcriptional-translational feedback loops comprised of a set of clock genes/proteins. Tissue-specific clock-controlled transcriptional programs translate time-of-day information into physiologically relevant signals. In adipose tissues, clock gene control has been documented for adipocyte proliferation and differentiation, lipid metabolism as well as endocrine function and other adipose oscillations are under control of systemic signals tied to endocrine, neuronal, or behavioral rhythms. Circadian rhythm disruption, for example, by night shift work or through genetic alterations, is associated with changes in adipocyte metabolism and hormone secretion. At the same time, adipose metabolic state feeds back to central and peripheral clocks, adjusting behavioral and physiological rhythms. In this overview article, we summarize our current knowledge about the crosstalk between circadian clocks and energy metabolism with a focus on adipose physiology. © 2017 American Physiological Society. Compr Physiol 7:383-427, 2017.
Collapse
Affiliation(s)
- Jana-Thabea Kiehn
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Anthony H Tsang
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isabel Heyde
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Brinja Leinweber
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Isa Kolbe
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| | - Alexei Leliavski
- Institute of Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Chronophysiology Group, Medical Department I, University of Lübeck, Lübeck, Germany
| |
Collapse
|
36
|
Siddiqi HK, Luminais SN, Montgomery D, Bossone E, Dietz H, Evangelista A, Isselbacher E, LeMaire S, Manfredini R, Milewicz D, Nienaber CA, Roman M, Sechtem U, Silberbach M, Eagle KA, Pyeritz RE. Chronobiology of Acute Aortic Dissection in the Marfan Syndrome (from the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions and the International Registry of Acute Aortic Dissection). Am J Cardiol 2017; 119:785-789. [PMID: 28065489 DOI: 10.1016/j.amjcard.2016.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 10/20/2022]
Abstract
Marfan syndrome (MFS) is an autosomal dominant connective tissue disease associated with acute aortic dissection (AAD). We used 2 large registries that include patients with MFS to investigate possible trends in the chronobiology of AAD in MFS. We queried the International Registry of Acute Aortic Dissection (IRAD) and the Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC) registry to extract data on all patients with MFS who had suffered an AAD. The group included 257 patients with MFS who suffered an AAD from 1980 to 2012. The chi-square tests were used for statistical testing. Mean subject age at time of AAD was 38 years, and 61% of subjects were men. AAD was more likely in the winter/spring season (November to April) than the other half of the year (57% vs 43%, p = 0.05). Dissections were significantly more likely to occur during the daytime hours, with 65% of dissections occurring from 6 a.m. to 6 p.m. (p = 0.001). Men were more likely to dissect during the daytime hours (6 a.m. to 6 p.m.) than women (74% vs 51%, p = 0.01). These insights offer a glimpse of the times of greatest vulnerability for patients with MFS who suffer from this catastrophic event. In conclusion, the chronobiology of AAD in MFS reflects that of AAD in the general population.
Collapse
|
37
|
Panchenko AV, Gubareva EA, Anisimov VN. The role of circadian rhythms and the “cellular clock” in age-associated diseases. ADVANCES IN GERONTOLOGY 2017. [DOI: 10.1134/s2079057017010131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Tong M, Wang S, Pang Y, Zhou Y, Cui H, Ruan L, Su J, Chen X. Circadian expression of connexins in the mouse heart. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2016.1174404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Alterations in the expression of Per1 and Per2 induced by Aβ31-35 in the suprachiasmatic nucleus, hippocampus, and heart of C57BL/6 mouse. Brain Res 2016; 1642:51-58. [PMID: 27021954 DOI: 10.1016/j.brainres.2016.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Abstract
Patients with Alzheimer's disease (AD) have circadian rhythm disorders, which are mimicked in 3xTg-AD and 5xFAD mouse models. The deposition of β-amyloid protein (Aβ) is an important pathological characteristic of AD, however, its role in inducing alterations in biological rhythms and in the expression of circadian clock-related genes remains elusive. The Per1 and Per2 play complex regulatory roles in biological clocks and are diffusely expressed in the suprachiasmatic nucleus (SCN), hippocampus and heart. In the present study, wheel-running behavioral experiments showed that Aβ31-35, which was administered into the hippocampus, resulted in the disruption of the circadian rhythm of C57BL/6 mice. Furthermore, real-time PCR and western blot analysis showed that Aβ31-35 altered the expression of the Per1 and Per2 in the SCN, hippocampus and heart. These findings provide experimental evidence for circadian rhythm disturbances in patients with AD.
Collapse
|
40
|
Altered myocardial metabolic adaptation to increased fatty acid availability in cardiomyocyte-specific CLOCK mutant mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:1579-95. [PMID: 26721420 DOI: 10.1016/j.bbalip.2015.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/18/2015] [Accepted: 12/19/2015] [Indexed: 12/21/2022]
Abstract
A mismatch between fatty acid availability and utilization leads to cellular/organ dysfunction during cardiometabolic disease states (e.g., obesity, diabetes mellitus). This can precipitate cardiac dysfunction. The heart adapts to increased fatty acid availability at transcriptional, translational, post-translational and metabolic levels, thereby attenuating cardiomyopathy development. We have previously reported that the cardiomyocyte circadian clock regulates transcriptional responsiveness of the heart to acute increases in fatty acid availability (e.g., short-term fasting). The purpose of the present study was to investigate whether the cardiomyocyte circadian clock plays a role in adaptation of the heart to chronic elevations in fatty acid availability. Fatty acid availability was increased in cardiomyocyte-specific CLOCK mutant (CCM) and wild-type (WT) littermate mice for 9weeks in time-of-day-independent (streptozotocin (STZ) induced diabetes) and dependent (high fat diet meal feeding) manners. Indices of myocardial metabolic adaptation (e.g., substrate reliance perturbations) to STZ-induced diabetes and high fat meal feeding were found to be dependent on genotype. Various transcriptional and post-translational mechanisms were investigated, revealing that Cte1 mRNA induction in the heart during STZ-induced diabetes is attenuated in CCM hearts. At the functional level, time-of-day-dependent high fat meal feeding tended to influence cardiac function to a greater extent in WT versus CCM mice. Collectively, these data suggest that CLOCK (a circadian clock component) is important for metabolic adaption of the heart to prolonged elevations in fatty acid availability. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
|
41
|
Alex A, Li A, Zeng X, Tate RE, McKee ML, Capen DE, Zhang Z, Tanzi RE, Zhou C. A Circadian Clock Gene, Cry, Affects Heart Morphogenesis and Function in Drosophila as Revealed by Optical Coherence Microscopy. PLoS One 2015; 10:e0137236. [PMID: 26348211 PMCID: PMC4565115 DOI: 10.1371/journal.pone.0137236] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/13/2015] [Indexed: 01/21/2023] Open
Abstract
Circadian rhythms are endogenous, entrainable oscillations of physical, mental and behavioural processes in response to local environmental cues such as daylight, which are present in the living beings, including humans. Circadian rhythms have been related to cardiovascular function and pathology. However, the role that circadian clock genes play in heart development and function in a whole animal in vivo are poorly understood. The Drosophila cryptochrome (dCry) is a circadian clock gene that encodes a major component of the circadian clock negative feedback loop. Compared to the embryonic stage, the relative expression levels of dCry showed a significant increase (>100-fold) in Drosophila during the pupa and adult stages. In this study, we utilized an ultrahigh resolution optical coherence microscopy (OCM) system to perform non-invasive and longitudinal analysis of functional and morphological changes in the Drosophila heart throughout its post-embryonic lifecycle for the first time. The Drosophila heart exhibited major morphological and functional alterations during its development. Notably, heart rate (HR) and cardiac activity period (CAP) of Drosophila showed significant variations during the pupa stage, when heart remodeling took place. From the M-mode (2D + time) OCM images, cardiac structural and functional parameters of Drosophila at different developmental stages were quantitatively determined. In order to study the functional role of dCry on Drosophila heart development, we silenced dCry by RNAi in the Drosophila heart and mesoderm, and quantitatively measured heart morphology and function in those flies throughout its development. Silencing of dCry resulted in slower HR, reduced CAP, smaller heart chamber size, pupal lethality and disrupted posterior segmentation that was related to increased expression of a posterior compartment protein, wingless. Collectively, our studies provided novel evidence that the circadian clock gene, dCry, plays an essential role in heart morphogenesis and function.
Collapse
Affiliation(s)
- Aneesh Alex
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
| | - Airong Li
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Xianxu Zeng
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rebecca E. Tate
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
| | - Mary L. McKee
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Diane E. Capen
- Program in Membrane Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02115
| | - Zhan Zhang
- Department of Pathology, The 3rd Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China, 450000
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States of America, 02129
- * E-mail: (R.E. Tanzi); (CZ)
| | - Chao Zhou
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA, United States of America, 18015
- Center for Photonics and Nanoelectronics, Lehigh University, Bethlehem, PA, United States of America, 18015
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America, 18015
- * E-mail: (R.E. Tanzi); (CZ)
| |
Collapse
|
42
|
Floras JS. Obstructive sleep apnea syndrome, continuous positive airway pressure and treatment of hypertension. Eur J Pharmacol 2015; 763:28-37. [DOI: 10.1016/j.ejphar.2015.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/23/2015] [Accepted: 06/15/2015] [Indexed: 11/30/2022]
|
43
|
Takeda N, Maemura K. The role of clock genes and circadian rhythm in the development of cardiovascular diseases. Cell Mol Life Sci 2015; 72:3225-34. [PMID: 25972277 PMCID: PMC11113935 DOI: 10.1007/s00018-015-1923-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 10/23/2022]
Abstract
The time of onset of cardiovascular disorders such as myocardial infarctions or ventricular arrhythmias exhibits a circadian rhythm. Diurnal variations in autonomic nervous activity, plasma cortisol level or renin-angiotensin activity underlie the pathogenesis of cardiovascular diseases. Transcriptional-translational feedback loop of the clock genes constitute a molecular clock system. In addition to the central clock in the suprachiasmatic nucleus, clock genes are also expressed in a circadian fashion in each organ to make up the peripheral clock. The peripheral clock seems to be beneficial for anticipating external stimuli and thus contributes to the maintenance of organ homeostasis. Loss of synchronization between the central and peripheral clocks also augments disease progression. Moreover, accumulating evidence shows that clock genes affect inflammatory and intracellular metabolic signaling. Elucidating the roles of the molecular clock in cardiovascular pathology through the identification of clock controlled genes will help to establish a novel therapeutic approach for cardiovascular disorders.
Collapse
Affiliation(s)
- Norihiko Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Koji Maemura
- Department of Cardiovascular Medicine, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| |
Collapse
|
44
|
Ruiz M, Gélinas R, Vaillant F, Lauzier B, Des Rosiers C. Metabolic Tracing Using Stable Isotope-Labeled Substrates and Mass Spectrometry in the Perfused Mouse Heart. Methods Enzymol 2015; 561:107-47. [PMID: 26358903 DOI: 10.1016/bs.mie.2015.06.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been a resurgence of interest for the field of cardiac metabolism catalyzed by evidence demonstrating a role of metabolic dysregulation in the pathogenesis of heart disease as well as the increased need for new therapeutic targets for patients with these diseases. In this regard, measuring substrate fluxes is critical in providing insight into the dynamics of cellular metabolism and in delineating the regulation of metabolite production and utilization. This chapter provides a comprehensive description of concepts, guidelines, and tips to assess metabolic fluxes relevant to energy substrate metabolism using (13)C-labeled substrates and (13)C-isotopomer analysis by gas chromatography-mass spectrometry (GC-MS), and the ex vivo working heart as study model. The focus will be on the mouse and on flux parameters, which are commonly assessed in the field, namely, those relevant to substrate selection for energy metabolism, specifically the relative contribution of carbohydrate (glucose, lactate, and pyruvate) and fatty acid oxidation to acetyl-CoA formation for citrate synthesis, glycolysis, as well as anaplerosis. We provide detailed procedures for the heart isolation and perfusion in the working mode as well as for sample processing for metabolite extraction and analysis by GC-MS and subsequent data processing for calculation of metabolic flux parameters. Finally, we address practical considerations and discuss additional applications and future challenges.
Collapse
Affiliation(s)
- Matthieu Ruiz
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Roselle Gélinas
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Fanny Vaillant
- IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux, Université de Bordeaux, Bordeaux, France; Inserm U1045 Centre de Recherche Cardio-Thoracique de Bordeaux, Université de Bordeaux, Bordeaux, France
| | | | - Christine Des Rosiers
- Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Hypertension and Sleep Apnea. Can J Cardiol 2015; 31:889-97. [DOI: 10.1016/j.cjca.2015.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 12/28/2022] Open
|
46
|
Abstract
Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health.
Collapse
Affiliation(s)
- Zachary Gerhart-Hines
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mitchell A Lazar
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
47
|
Tsimakouridze EV, Alibhai FJ, Martino TA. Therapeutic applications of circadian rhythms for the cardiovascular system. Front Pharmacol 2015; 6:77. [PMID: 25941487 PMCID: PMC4400861 DOI: 10.3389/fphar.2015.00077] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 03/26/2015] [Indexed: 01/13/2023] Open
Abstract
The cardiovascular system exhibits dramatic time-of-day dependent rhythms, for example the diurnal variation of heart rate, blood pressure, and timing of onset of adverse cardiovascular events such as heart attack and sudden cardiac death. Over the past decade, the circadian clock mechanism has emerged as a crucial factor regulating these daily fluctuations. Most recently, these studies have led to a growing clinical appreciation that targeting circadian biology offers a novel therapeutic approach toward cardiovascular (and other) diseases. Here we describe leading-edge therapeutic applications of circadian biology including (1) timing of therapy to maximize efficacy in treating heart disease (chronotherapy); (2) novel biomarkers discovered by testing for genomic, proteomic, metabolomic, or other factors at different times of day and night (chronobiomarkers); and (3) novel pharmacologic compounds that target the circadian mechanism with potential clinical applications (new chronobiology drugs). Cardiovascular disease remains a leading cause of death worldwide and new approaches in the management and treatment of heart disease are clearly warranted and can benefit patients clinically.
Collapse
Affiliation(s)
- Elena V Tsimakouridze
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| | - Faisal J Alibhai
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| | - Tami A Martino
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph Guelph, ON, Canada
| |
Collapse
|
48
|
Martino TA, Young ME. Influence of the Cardiomyocyte Circadian Clock on Cardiac Physiology and Pathophysiology. J Biol Rhythms 2015; 30:183-205. [DOI: 10.1177/0748730415575246] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cardiac function and dysfunction exhibit striking time-of-day-dependent oscillations. Disturbances in both daily rhythms and sleep are associated with increased risk of heart disease, adverse cardiovascular events, and worsening outcomes. For example, the importance of maintaining normal daily rhythms is highlighted by epidemiologic observations that night shift workers present with increased incidence of cardiovascular disease. Rhythmicity in cardiac processes is mediated by a complex interaction between extracardiac (e.g., behaviors and associated neural and humoral fluctuations) and intracardiac influences. Over the course of the day, the intrinsic properties of the myocardium vary at the levels of gene and protein expression, metabolism, responsiveness to extracellular stimuli/stresses, and ion homeostasis, all of which affect contractility (e.g., heart rate and force generation). Over the past decade, the circadian clock within the cardiomyocyte has emerged as an essential mechanism responsible for modulating the intrinsic properties of the heart. Moreover, the critical role of this mechanism is underscored by reports that disruption, through genetic manipulation, results in development of cardiac disease and premature mortality in mice. These findings, in combination with reports that numerous cardiovascular risk factors (e.g., diet, diabetes, aging) distinctly affect the clock in the heart, have led to the hypothesis that aberrant regulation of this mechanism contributes to the etiology of cardiac dysfunction and disease. Here, we provide a comprehensive review on current knowledge regarding known roles of the heart clock and discuss the potential for using these insights for the future development of innovative strategies for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Tami A. Martino
- Cardiovascular Research Group, Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Martin E. Young
- Division of Cardiovascular Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
49
|
Virag JAI, Lust RM. Circadian influences on myocardial infarction. Front Physiol 2014; 5:422. [PMID: 25400588 PMCID: PMC4214187 DOI: 10.3389/fphys.2014.00422] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 10/12/2014] [Indexed: 11/13/2022] Open
Abstract
Components of circadian rhythm maintenance, or "clock genes," are endogenous entrainable oscillations of about 24 h that regulate biological processes and are found in the suprachaismatic nucleus (SCN) and many peripheral tissues, including the heart. They are influenced by external cues, or Zeitgebers, such as light and heat, and can influence such diverse phenomena as cytokine expression immune cells, metabolic activity of cardiac myocytes, and vasodilator regulation by vascular endothelial cells. While it is known that the central master clock in the SCN synchronizes peripheral physiologic rhythms, the mechanisms by which the information is transmitted are complex and may include hormonal, metabolic, and neuronal inputs. Whether circadian patterns are causally related to the observed periodicity of events, or whether they are simply epi-phenomena is not well established, but a few studies suggest that the circadian effects likely are real in their impact on myocardial infarct incidence. Cycle disturbances may be harbingers of predisposition and subsequent response to acute and chronic cardiac injury, and identifying the complex interactions of circadian rhythms and myocardial infarction may provide insights into possible preventative and therapeutic strategies for susceptible populations.
Collapse
Affiliation(s)
- Jitka A I Virag
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| | - Robert M Lust
- Department of Physiology, Brody School of Medicine, East Carolina University Greenville, NC, USA
| |
Collapse
|
50
|
Podobed P, Pyle WG, Ackloo S, Alibhai FJ, Tsimakouridze EV, Ratcliffe WF, Mackay A, Simpson J, Wright DC, Kirby GM, Young ME, Martino TA. The day/night proteome in the murine heart. Am J Physiol Regul Integr Comp Physiol 2014; 307:R121-37. [PMID: 24789993 DOI: 10.1152/ajpregu.00011.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circadian rhythms are essential to cardiovascular health and disease. Temporal coordination of cardiac structure and function has focused primarily at the physiological and gene expression levels, but these analyses are invariably incomplete, not the least because proteins underlie many biological processes. The purpose of this study was to reveal the diurnal cardiac proteome and important contributions to cardiac function. The 24-h day-night murine cardiac proteome was assessed by two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-mass spectrometry. Daily variation was considerable, as ∼7.8% (90/1,147) of spots exhibited statistical changes at paired times across the 24-h light- (L) dark (D) cycle. JTK_CYCLE was used to investigate underlying diurnal rhythms in corresponding mRNA. We next revealed that disruption of the L:D cycle altered protein profiles and diurnal variation in cardiac function in Langendorff-perfused hearts, relative to the L:D cycle. To investigate the role of the circadian clock mechanism, we used cardiomyocyte clock mutant (CCM) mice. CCM myofilaments exhibited a loss of time-of-day-dependent maximal calcium-dependent ATP consumption, and altered phosphorylation rhythms. Moreover, the cardiac proteome was significantly altered in CCM hearts, especially enzymes regulating vital metabolic pathways. Lastly, we used a model of pressure overload cardiac hypertrophy to demonstrate the temporal proteome during heart disease. Our studies demonstrate that time of day plays a direct role in cardiac protein abundance and indicate a novel mechanistic contribution of circadian biology to cardiovascular structure and function.
Collapse
|