1
|
Lekatz LA, Shukla P, Vasquez Hidalgo MA, O'Rourke S, Haring J, Dorsam GP, Grazul-Bilska AT, Vonnahme KA. Uterine kallikrein and arterial bradykinin activities and uterine arterial proliferation in response to acute estradiol-17β exposure in ovariectomized ewes. Domest Anim Endocrinol 2022; 81:106748. [PMID: 35842984 DOI: 10.1016/j.domaniend.2022.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
Estradiol-17β (E2) increases kallikrein in rodent and human reproductive tissues. Kallikrein specific activity is increased in the porcine uterus when conceptus E2 is secreted at maternal recognition of pregnancy. When kallikrein acts on kininogen to liberate bradykinin, angiogenic and vasoactive factors are released. The uterus of ovariectomized ewes administered E2 undergoes rapid vascular changes via different patterns of angiogenic and vasoactive factors. Our hypothesis was that E2 would increase the specific activity and protein secretion of tissue kallikrein in endometrial explants culture media (ECM) and ewes exposed to E2 would have uterine arteries that would be more sensitive to the vasodilatory effects of bradykinin. Ovariectomized ewes received 100 mg of E2 implants for 0, 12, 24, or 48 h. After treatment, uterine weights were determined, and caruncles were processed for ECM. Uterine weights and uterine weight per ewe body weight were significantly greater in the 12 and 24 h ewes compared with the 0 h ewes, with the 48 h ewes being similar to the 24 h ewes. There were no statistically significant differences in caruncular tissue kallikrein protein secretion among the treatment groups. There was a tendency (P = 0.09) for duration of E2 exposure to influence tissue kallikrein specific activity where kallikrein activity was greater (P ≤ 0.05) in the 12 and 48 h ewes compared with the 0 h ewes, with 24 h ewes being intermediate (unprotected F test). Uterine arteries from ewes with E2 for 24 and 48 h had more sensitivity to bradykinin, via the bradykinin receptor 2, than uterine arteries from ewes with 0 or 12 h E2 exposure. We fail to reject our hypothesis as E2 did elicit a positive response in tissue kallikrein specific activity and bradykinin response. Further investigations are needed to determine how kallikrein and bradykinin may be involved in vascular remodeling of the ovine uterus.
Collapse
Affiliation(s)
- L A Lekatz
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - P Shukla
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - M A Vasquez Hidalgo
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - S O'Rourke
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - J Haring
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - G P Dorsam
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - A T Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - K A Vonnahme
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
2
|
Bhunu B, Riccio I, Intapad S. Insights into the Mechanisms of Fetal Growth Restriction-Induced Programming of Hypertension. Integr Blood Press Control 2021; 14:141-152. [PMID: 34675650 PMCID: PMC8517636 DOI: 10.2147/ibpc.s312868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/30/2021] [Indexed: 12/21/2022] Open
Abstract
In recent decades, both clinical and animal studies have shown that fetal growth restriction (FGR), caused by exposure to adverse uterine environments, is a risk factor for hypertension as well as for a variety of adult diseases. This observation has shaped and informed the now widely accepted theory of developmental origins of health and disease (DOHaD). There is a plethora of evidence supporting the association of FGR with increased risk of adult hypertension; however, the underlying mechanisms responsible for this correlation remain unclear. This review aims to explain the current advances in the field of fetal programming of hypertension and a brief narration of the underlying mechanisms that may link FGR to increased risk of adult hypertension. We explain the theory of DOHaD and then provide evidence from both clinical and basic science research which support the theory of fetal programming of adult hypertension. In addition, we have explored the underlying mechanisms that may link FGR to an increased risk of adult hypertension. These mechanisms include epigenetic changes, metabolic disorders, vascular dysfunction, neurohormonal impairment, and alterations in renal physiology and function. We further describe sex differences seen in the developmental origins of hypertension and provide insights into the opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Benjamin Bhunu
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Isabel Riccio
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Suttira Intapad
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| |
Collapse
|
3
|
Muroya S, Zhang Y, Kinoshita A, Otomaru K, Oshima K, Gotoh Y, Oshima I, Sano M, Roh S, Oe M, Ojima K, Gotoh T. Maternal Undernutrition during Pregnancy Alters Amino Acid Metabolism and Gene Expression Associated with Energy Metabolism and Angiogenesis in Fetal Calf Muscle. Metabolites 2021; 11:metabo11090582. [PMID: 34564398 PMCID: PMC8465837 DOI: 10.3390/metabo11090582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
To elucidate the mechanisms underlying maternal undernutrition (MUN)-induced fetal skeletal muscle growth impairment in cattle, the longissimus thoracis muscle of Japanese Black fetal calves at 8.5 months in utero was analyzed by an integrative approach with metabolomics and transcriptomics. The pregnant cows were fed on 60% (low-nutrition, LN) or 120% (high-nutrition, HN) of their overall nutritional requirement during gestation. MUN markedly decreased the bodyweight and muscle weight of the fetus. The levels of amino acids (AAs) and arginine-related metabolites including glutamine, gamma-aminobutyric acid (GABA), and putrescine were higher in the LN group than those in the HN group. Metabolite set enrichment analysis revealed that the highly different metabolites were associated with the metabolic pathways of pyrimidine, glutathione, and AAs such as arginine and glutamate, suggesting that MUN resulted in AA accumulation rather than protein accumulation. The mRNA expression levels of energy metabolism-associated genes, such as PRKAA1, ANGPTL4, APLNR, CPT1B, NOS2, NOS3, UCP2, and glycolytic genes were lower in the LN group than in the HN group. The gene ontology/pathway analysis revealed that the downregulated genes in the LN group were associated with glucose metabolism, angiogenesis, HIF-1 signaling, PI3K-Akt signaling, pentose phosphate, and insulin signaling pathways. Thus, MUN altered the levels of AAs and expression of genes associated with energy expenditure, glucose homeostasis, and angiogenesis in the fetal muscle.
Collapse
Affiliation(s)
- Susumu Muroya
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
- Correspondence: (S.M.); (T.G.)
| | - Yi Zhang
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Aoi Kinoshita
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Kounosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan;
| | - Kazunaga Oshima
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Yuji Gotoh
- Division of Year-Round Grazing Research, NARO Western Region Agricultural Research Center, 60 Yoshinaga, Ohda 694-0013, Shimane, Japan; (K.O.); (Y.G.)
| | - Ichiro Oshima
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
| | - Mitsue Sano
- Faculty of Human Culture, University of Shiga Prefecture, 2500 Hassaka-cho, Hikone 522-8533, Shiga, Japan;
| | - Sanggun Roh
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
| | - Mika Oe
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Koichi Ojima
- Division of Animal Products Research, NARO Institute of Livestock and Grassland Science (NILGS), Tsukuba 305-0901, Ibaraki, Japan; (M.O.); (K.O.)
| | - Takafumi Gotoh
- Department of Agricultural Sciences and Natural Resources, Kagoshima University, Korimoto 1-21-24, Kagoshima 890-8580, Japan; (Y.Z.); (A.K.); (I.O.)
- Correspondence: (S.M.); (T.G.)
| |
Collapse
|
4
|
Sandoval C, Wu G, Smith SB, Dunlap KA, Satterfield MC. Maternal Nutrient Restriction and Skeletal Muscle Development: Consequences for Postnatal Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1265:153-165. [PMID: 32761575 DOI: 10.1007/978-3-030-45328-2_9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Severe undernutrition and famine continue to be a worldwide concern, as cases have been increasing in the past 5 years, particularly in developing countries. The occurrence of nutrient restriction (NR) during pregnancy affects fetal growth, leading to small for gestational age (SGA) or intrauterine growth restricted (IUGR) offspring. During adulthood, SGA and IUGR offspring are at a higher risk for the development of metabolic syndrome. Skeletal muscle is particularly sensitive to prenatal NR. This tissue plays an essential role in oxidation and glucose metabolism because roughly 80% of insulin-mediated glucose uptake occurs in muscle, and it represents around 40% of body weight. Alterations in myofiber number, hypertrophy and myofiber type composition, decreased protein synthesis, lower mitochondrial content and activity of oxidative enzymes, and increased accumulation of intramuscular triglycerides are among the described programming effects of maternal NR on skeletal muscle. Together, these features would add to a phenotype that is prone to insulin resistance, type 2 diabetes, obesity, and metabolic syndrome. Insights from diverse animal models (i.e. ovine, swine, and rodent) have provided valuable information regarding the molecular mechanisms behind those altered developmental pathways. Understanding those molecular signatures supports the development of efficient treatments to counteract the effects of maternal NR on skeletal muscle, and its negative implications for postnatal health.
Collapse
Affiliation(s)
- Camila Sandoval
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Stephen B Smith
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Kathrin A Dunlap
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
5
|
The effect of gestational period on the association between maternal prenatal salivary cortisol and birth weight: A systematic review and meta-analysis. Psychoneuroendocrinology 2018; 94:49-62. [PMID: 29754005 DOI: 10.1016/j.psyneuen.2018.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/21/2018] [Accepted: 04/23/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Studies exploring the relations between maternal stress and fetal development show an association between increased maternal stress and adverse birth outcomes. A frequently proposed mechanism linking maternal prenatal stress and adverse birth outcomes is heightened concentrations of maternal cortisol. To date, studies exploring this association have reported conflicting results because of the diverse approaches taken to measuring cortisol and the wide variety of possible birth outcomes explored. To add clarity to the growing body of literature, this systematic review and meta-analysis reports empirical findings on the association between maternal prenatal salivary cortisol and newborn birth weight. METHODS Searches for relevant papers published up until November 2017 were run in MEDLINE, EMBASE, PsycINFO, and CINAHL. Non-English language papers were included and experts were contacted when necessary. We included data from human observational studies that were designed or had an underlying intention to measure maternal prenatal salivary cortisol and newborn birth weight. We only included data from measurements of salivary cortisol to prevent rendering of the review unsuitable for meta-analysis. Two independent reviewers assessed study eligibility and quality. For every maternal-fetal dyad, an area under the curve with respect to ground (AUCg) of maternal cortisol was calculated to determine a Pearson's correlation coefficient with a continuous measure of newborn birth weight. Correlation coefficients were then pooled across all stages of gestation. To examine if there are critical gestational periods in which the fetus may be more susceptible to elevated concentration of maternal salivary cortisol, a meta-analysis was performed on separate correlations calculated from gestational trimesters. RESULTS Nine studies with a total of 1606 maternal-fetal dyads demonstrated a negative correlation between pooled maternal salivary cortisol and birth weight (-0.24, 95% CI -0.28 to -0.20), but there was a high degree of heterogeneity between studies (I2 = 88.9%). To investigate heterogeneity, subgroup analysis by trimester of the pooled correlation between salivary cortisol and birth weight was performed with the following correlations found: first trimester, -0.18 (95% CI -0.32 to -0.03, I2 = 97.3%); second trimester, -0.20 (95% CI -0.28 to -0.12, I2 = 98.3%); and third trimester, -0.30 (95% CI -0.33 to -0.26, I2 = 85.4%). DISCUSSION A consistently negative association was observed between maternal cortisol and infant birth weight. The review highlights specific gaps in the literature on the relationship between maternal prenatal salivary cortisol and newborn birth weight. Although a significant negative correlation was found, substantial heterogeneity of effects and the likelihood of publication bias exist. The third trimester was revealed as a possible critical gestational period for heightened maternal cortisol concentration to affect birth weight. Challenges faced in this body of research and recommendations for future research are discussed.
Collapse
|
6
|
Cooke CLM, Shah A, Kirschenman RD, Quon AL, Morton JS, Care AS, Davidge ST. Increased susceptibility to cardiovascular disease in offspring born from dams of advanced maternal age. J Physiol 2018; 596:5807-5821. [PMID: 29882308 DOI: 10.1113/jp275472] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/20/2018] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Advanced maternal age increases the risk of pregnancy complications such as fetal growth restriction, hypertension and premature birth. Offspring born from compromised pregnancies are at increased risk of cardiovascular disease as adults. However, the effect of advanced maternal age on later-onset disease in offspring has not been investigated. In adulthood, male but not female offspring born to dams of advanced maternal age showed impaired recovery from cardiac ischaemia/reperfusion injury. Endothelium-dependent relaxation was also impaired in male but not female offspring born from aged dams. Oxidative stress may play a role in the developmental programming of cardiovascular disease in this model. Given the increasing trend toward delayed parenthood, these findings have significant population and health care implications and warrant further investigation. ABSTRACT Exposure to prenatal stressors, including hypoxia, micro- and macronutrient deficiency, and maternal stress, increases the risk of cardiovascular disease in adulthood. It is unclear whether being born from a mother of advanced maternal age (≥35 years old) may also constitute a prenatal stress with cardiovascular consequences in adulthood. We previously demonstrated growth restriction in fetuses from a rat model of advanced maternal age, suggesting exposure to a compromised in utero environment. Thus, we hypothesized that male and female offspring from aged dams would exhibit impaired cardiovascular function as adults. In 4-month-old offspring, we observed impaired endothelium-dependent relaxation in male (P < 0.05) but not female offspring born from aged dams. The anti-oxidant polyethylene glycol superoxide dismutase improved relaxation only in arteries from male offspring of aged dams (ΔEmax : young dam -1.63 ± 0.80 vs. aged dam 11.75 ± 4.23, P < 0.05). Furthermore, endothelium-derived hyperpolarization-dependent relaxation was reduced in male but not female offspring of aged dams (P < 0.05). Interestingly, there was a significant increase in nitric oxide contribution to relaxation in females born from aged dams (ΔEmax : young dam -24.8 ± 12.1 vs. aged dam -68.7 ± 7.7, P < 0.05), which was not observed in males. Recovery of cardiac function following an ischaemia-reperfusion insult in male offspring born from aged dams was reduced by ∼57% (P < 0.001), an effect that was not evident in female offspring. These data indicate that offspring born from aged dams have an altered cardiovascular risk profile that is sex-specific. Given the increasing trend toward delaying pregnancy, these findings may have significant population and health care implications and warrant further investigation.
Collapse
Affiliation(s)
- Christy-Lynn M Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Lois Hole Hospital for Women, Edmonton, Alberta, Canada
| | - Amin Shah
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Raven D Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Anita L Quon
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Jude S Morton
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada
| | - Alison S Care
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Sandra T Davidge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada.,Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada.,Cardiovascular Research Centre, University of Alberta, Edmonton, Alberta, Canada.,Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
Abilez OJ, Tzatzalos E, Yang H, Zhao MT, Jung G, Zöllner AM, Tiburcy M, Riegler J, Matsa E, Shukla P, Zhuge Y, Chour T, Chen VC, Burridge PW, Karakikes I, Kuhl E, Bernstein D, Couture LA, Gold JD, Zimmermann WH, Wu JC. Passive Stretch Induces Structural and Functional Maturation of Engineered Heart Muscle as Predicted by Computational Modeling. Stem Cells 2018; 36:265-277. [PMID: 29086457 PMCID: PMC5785460 DOI: 10.1002/stem.2732] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 12/16/2022]
Abstract
The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, β-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.
Collapse
Affiliation(s)
- Oscar J. Abilez
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Bio-X Program, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
| | - Evangeline Tzatzalos
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Huaxiao Yang
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ming-Tao Zhao
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Gwanghyun Jung
- Stanford Cardiovascular Institute, Stanford, California, USA
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Alexander M. Zöllner
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, Heart Research Center, University Medical Center, Georg-August-University, Gӧttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site, Gӧttingen, Germany
| | - Johannes Riegler
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Elena Matsa
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Praveen Shukla
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Yan Zhuge
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Tony Chour
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Vincent C. Chen
- Center for Biomedicine and Genetics, City of Hope, Duarte, California, USA
| | - Paul W. Burridge
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ioannis Karakikes
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Ellen Kuhl
- Stanford Cardiovascular Institute, Stanford, California, USA
- Bio-X Program, Stanford University, Stanford, California, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Daniel Bernstein
- Stanford Cardiovascular Institute, Stanford, California, USA
- Department of Pediatrics, Division of Cardiology, Stanford University, Stanford, California, USA
| | - Larry A. Couture
- Center for Biomedicine and Genetics, City of Hope, Duarte, California, USA
- Center for Applied Technology Development, City of Hope, Duarte, California, USA
| | - Joseph D. Gold
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
| | - Wolfram H. Zimmermann
- Institute of Pharmacology and Toxicology, Heart Research Center, University Medical Center, Georg-August-University, Gӧttingen, Germany
- DZHK (German Center for Cardiovascular Research) Partner Site, Gӧttingen, Germany
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford, California, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California, USA
- Bio-X Program, Stanford University, Stanford, California, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
8
|
Yamauchi T, Mogi M, Kan-No H, Shan BS, Higaki A, Min LJ, Higaki T, Iwanami J, Ishii EI, Horiuchi M. Roles of angiotensin II type 2 receptor in mice with fetal growth restriction. Hypertens Res 2018; 41:157-164. [PMID: 29335616 DOI: 10.1038/s41440-017-0004-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 01/04/2023]
Abstract
Our previous report indicated that vascular injury enhances vascular remodeling in fetal growth restriction (FGR) mice. The angiotensin II type 2 receptor (AT2R) is relatively highly expressed in fetal mice. Therefore, we investigated the roles of AT2R in FGR-induced cardiovascular disease using AT2R knockout (AT2KO) mice. Dams (wild-type and AT2KO mice) were fed an isocaloric diet containing 20% protein (NP) or 8% protein (LP) until delivery. Arterial blood pressure, body weight, and histological changes in organs were investigated in offspring. The birth weight of offspring from dams fed an LP diet (LPO) was significantly lower than that of offspring from dams fed an NP diet. The heart/body and kidney/body weight ratios in AT2KO-LPO at 12 weeks of age were significantly higher than those in the other groups. Greater thickness of the left ventricular wall, larger cardiomyocyte size and enhancement of perivascular fibrosis were observed in AT2KO-LPO. Interestingly, mRNA expression of collagen I and inflammatory cytokines was markedly higher in the AT2KO-LPO heart at 6 weeks of age but not at 12 weeks of age. AT2R signaling may be involved in cardiovascular disorders of adult offspring with FGR. Regulation of AT2R could contribute to preventing future cardiovascular disease in FGR offspring.
Collapse
Affiliation(s)
- Toshifumi Yamauchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masaki Mogi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.
| | - Harumi Kan-No
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Bao-Shuai Shan
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Akinori Higaki
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan.,Department of Cardiology, Pulmonology, Hypertension and Nephrology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Li-Juan Min
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Takashi Higaki
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Jun Iwanami
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Ei-Ichi Ishii
- Department of Pediatrics, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| | - Masatsugu Horiuchi
- Department of Molecular Cardiovascular Biology and Pharmacology, Ehime University, Graduate School of Medicine, Tohon, Ehime, 791-0295, Japan
| |
Collapse
|
9
|
Reyes-Castro LA, Padilla-Gómez E, Parga-Martínez NJ, Castro-Rodríguez DC, Quirarte GL, Díaz-Cintra S, Nathanielsz PW, Zambrano E. Hippocampal mechanisms in impaired spatial learning and memory in male offspring of rats fed a low-protein isocaloric diet in pregnancy and/or lactation. Hippocampus 2017; 28:18-30. [PMID: 28843045 DOI: 10.1002/hipo.22798] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 08/15/2017] [Accepted: 08/22/2017] [Indexed: 01/08/2023]
Abstract
Maternal nutritional challenges during fetal and neonatal development result in developmental programming of multiple offspring organ systems including brain maturation and function. A maternal low-protein diet during pregnancy and lactation impairs associative learning and motivation. We evaluated effects of a maternal low-protein diet during gestation and/or lactation on male offspring spatial learning and hippocampal neural structure. Control mothers (C) ate 20% casein and restricted mothers (R) 10% casein, providing four groups: CC, RR, CR, and RC (first letter pregnancy, second lactation diet). We evaluated the behavior of young adult male offspring around postnatal day 110. Corticosterone and ACTH were measured. Males were tested for 2 days in the Morris water maze (MWM). Stratum lucidum mossy fiber (MF) area, total and spine type in basal dendrites of stratum oriens in the hippocampal CA3 field were measured. Corticosterone and ACTH were higher in RR vs. CC. In the MWM acquisition test CC offspring required two, RC three, and CR seven sessions to learn the maze. RR did not learn in eight trials. In a retention test 24 h later, RR, CR, and RC spent more time locating the platform and performed fewer target zone entries than CC. RR and RC offspring spent less time in the target zone than CC. MF area, total, and thin spines were lower in RR, CR, and RC than CC. Mushroom spines were lower in RR and RC than CC. Stubby spines were higher in RR, CR, and RC than CC. We conclude that maternal low-protein diet impairs spatial acquisition and memory retention in male offspring, and that alterations in hippocampal presynaptic (MF), postsynaptic (spines) elements and higher glucocorticoid levels are potential mechanisms to explain these learning and memory deficits.
Collapse
Affiliation(s)
- L A Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - E Padilla-Gómez
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - N J Parga-Martínez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - D C Castro-Rodríguez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| | - G L Quirarte
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - S Díaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla, Querétaro 76230, México
| | - P W Nathanielsz
- Department of Animal Science, University of Wyoming, Laramie, Wyoming 82071-3684
| | - E Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, México 14080, México
| |
Collapse
|
10
|
Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M, Goldstone AB, Wang M, Fukushi M, Ebert AD, Woo YJ, Rulifson E, Yang PC. Paracrine Effects of the Pluripotent Stem Cell-Derived Cardiac Myocytes Salvage the Injured Myocardium. Circ Res 2017; 121:e22-e36. [PMID: 28743804 DOI: 10.1161/circresaha.117.310803] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/06/2023]
Abstract
RATIONALE Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.
Collapse
Affiliation(s)
- Atsushi Tachibana
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Michelle R Santoso
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Morteza Mahmoudi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Praveen Shukla
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Lei Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mihoko Bennett
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Andrew B Goldstone
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Mouer Wang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Masahiro Fukushi
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Antje D Ebert
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Y Joseph Woo
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Eric Rulifson
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.)
| | - Phillip C Yang
- From the Division of Cardiovascular Medicine (A.T., M.R.S., M.M., P.S., L.W., M.W., A.D.E., E.R., P.C.Y.), Division of Neonatal and Developmental Medicine (M.B.), and Department of Cardiothoracic Surgery (A.B.G., Y.J.W.), Stanford University, CA; Department of Radiological Sciences, Tokyo Metropolitan University, Japan (A.T., M.F.); Department of Critical Care Medicine, 2nd Affiliated Hospital of Guangzhou University of Chinese Medicine, China (L.W.); Department of Cardiology and Pneumonology, Göttingen University Medical Center, Germany (A.D.E.); and German Center for Cardiovascular Research, Partner Site Göttingen, Germany (A.D.E.).
| |
Collapse
|
11
|
Partial Reprogramming of Pluripotent Stem Cell-Derived Cardiomyocytes into Neurons. Sci Rep 2017; 7:44840. [PMID: 28327614 PMCID: PMC5361100 DOI: 10.1038/srep44840] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 02/14/2017] [Indexed: 01/17/2023] Open
Abstract
Direct reprogramming of somatic cells has been demonstrated, however, it is unknown whether electrophysiologically-active somatic cells derived from separate germ layers can be interconverted. We demonstrate that partial direct reprogramming of mesoderm-derived cardiomyocytes into neurons is feasible, generating cells exhibiting structural and electrophysiological properties of both cardiomyocytes and neurons. Human and mouse pluripotent stem cell-derived CMs (PSC-CMs) were transduced with the neurogenic transcription factors Brn2, Ascl1, Myt1l and NeuroD. We found that CMs adopted neuronal morphologies as early as day 3 post-transduction while still retaining a CM gene expression profile. At week 1 post-transduction, we found that reprogrammed CMs expressed neuronal markers such as Tuj1, Map2, and NCAM. At week 3 post-transduction, mature neuronal markers such as vGlut and synapsin were observed. With single-cell qPCR, we temporally examined CM gene expression and observed increased expression of neuronal markers Dcx, Map2, and Tubb3. Patch-clamp analysis confirmed the neuron-like electrophysiological profile of reprogrammed CMs. This study demonstrates that PSC-CMs are amenable to partial neuronal conversion, yielding a population of cells exhibiting features of both neurons and CMs.
Collapse
|
12
|
|
13
|
Morton JS, Cooke CL, Davidge ST. In Utero Origins of Hypertension: Mechanisms and Targets for Therapy. Physiol Rev 2016; 96:549-603. [DOI: 10.1152/physrev.00015.2015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The developmental origins of health and disease theory is based on evidence that a suboptimal environment during fetal and neonatal development can significantly impact the evolution of adult-onset disease. Abundant evidence exists that a compromised prenatal (and early postnatal) environment leads to an increased risk of hypertension later in life. Hypertension is a silent, chronic, and progressive disease defined by elevated blood pressure (>140/90 mmHg) and is strongly correlated with cardiovascular morbidity/mortality. The pathophysiological mechanisms, however, are complex and poorly understood, and hypertension continues to be one of the most resilient health problems in modern society. Research into the programming of hypertension has proposed pharmacological treatment strategies to reverse and/or prevent disease. In addition, modifications to the lifestyle of pregnant women might impart far-reaching benefits to the health of their children. As more information is discovered, more successful management of hypertension can be expected to follow; however, while pregnancy complications such as fetal growth restriction, preeclampsia, preterm birth, etc., continue to occur, their offspring will be at increased risk for hypertension. This article reviews the current knowledge surrounding the developmental origins of hypertension, with a focus on mechanistic pathways and targets for therapeutic and pharmacologic interventions.
Collapse
Affiliation(s)
- Jude S. Morton
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Christy-Lynn Cooke
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| | - Sandra T. Davidge
- Departments of Obstetrics and Gynaecology and of Physiology, University of Alberta, Edmonton, Canada; Women and Children's Health Research Institute, Edmonton, Canada; and Cardiovascular Research Centre, Edmonton, Canada
| |
Collapse
|
14
|
Stead R, Musa MG, Bryant CL, Lanham SA, Johnston DA, Reynolds R, Torrens C, Fraser PA, Clough GF. Developmental conditioning of endothelium-derived hyperpolarizing factor-mediated vasorelaxation. J Hypertens 2016; 34:452-63; discussion 463. [PMID: 26682783 PMCID: PMC4732175 DOI: 10.1097/hjh.0000000000000833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/26/2015] [Accepted: 11/20/2015] [Indexed: 01/13/2023]
Abstract
OBJECTIVES The endothelium maintains vascular homeostasis through the release of endothelium-derived relaxing factors (EDRF) and endothelium-derived hyperpolarization (EDH). The balance in EDH : EDRF is disturbed in cardiovascular disease and may also be susceptible to developmental conditioning through exposure to an adverse uterine environment to predispose to later risk of hypertension and vascular disease. METHODS Developmentally conditioned changes in EDH : EDRF signalling pathways were investigated in cremaster arterioles (18-32 μm diameter) and third-order mesenteric arteries of adult male mice offspring of dams fed either a fat-rich (high fat, HF, 45% energy from fat) or control (C, 10% energy from fat) diet. After weaning, offspring either continued on high fat or were placed on control diets to give four dietary groups (C/C, HF/C, C/HF, and HF/HF) and studied at 15 weeks of age. RESULTS EDH via intermediate (IKCa) and small (SKca) conductance calcium-activated potassium channels contributed less than 10% to arteriolar acetylcholine-induced relaxation in in-situ conditioned HF/C offspring compared with ∼60% in C/C (P < 0.01). The conditioned reduction in EDH signalling in HF/C offspring was reversed in offspring exposed to a high-fat diet both before and after weaning (HF/HF, 55%, P < 0.01 vs. HF/C). EDH signalling was unaffected in arterioles from C/HF offspring. The changes in EDH : EDRF were associated with altered endothelial cell expression and localization of IKCa channels. CONCLUSION This is the first evidence that EDH-mediated microvascular relaxation is susceptible to an adverse developmental environment through down-regulation of the IKCa signalling pathway. Conditioned offspring exposed to a 'second hit' (HF/HF) exhibit adaptive vascular mechanisms to preserve dilator function.
Collapse
Affiliation(s)
- Rebecca Stead
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | - Moji G. Musa
- Vascular Research Group
- Rebecca Stead and Moji G. Musa contributed equally to the writing of this article
| | | | - Stuart A. Lanham
- Bone and Joint Research Group, Institute of Developmental Sciences
| | - David A. Johnston
- Faculty of Medicine, Biomedical Imaging Unit, University of Southampton, Southampton
| | | | | | - Paul A. Fraser
- Cardiovascular Division, BHF Centre of Research Excellence, School of Medicine, King's College London, London, United Kingdom
| | | |
Collapse
|
15
|
Chen VC, Ye J, Shukla P, Hua G, Chen D, Lin Z, Liu JC, Chai J, Gold J, Wu J, Hsu D, Couture LA. Development of a scalable suspension culture for cardiac differentiation from human pluripotent stem cells. Stem Cell Res 2015; 15:365-75. [PMID: 26318718 DOI: 10.1016/j.scr.2015.08.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022] Open
Abstract
To meet the need of a large quantity of hPSC-derived cardiomyocytes (CM) for pre-clinical and clinical studies, a robust and scalable differentiation system for CM production is essential. With a human pluripotent stem cells (hPSC) aggregate suspension culture system we established previously, we developed a matrix-free, scalable, and GMP-compliant process for directing hPSC differentiation to CM in suspension culture by modulating Wnt pathways with small molecules. By optimizing critical process parameters including: cell aggregate size, small molecule concentrations, induction timing, and agitation rate, we were able to consistently differentiate hPSCs to >90% CM purity with an average yield of 1.5 to 2×10(9) CM/L at scales up to 1L spinner flasks. CM generated from the suspension culture displayed typical genetic, morphological, and electrophysiological cardiac cell characteristics. This suspension culture system allows seamless transition from hPSC expansion to CM differentiation in a continuous suspension culture. It not only provides a cost and labor effective scalable process for large scale CM production, but also provides a bioreactor prototype for automation of cell manufacturing, which will accelerate the advance of hPSC research towards therapeutic applications.
Collapse
Affiliation(s)
- Vincent C Chen
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jingjing Ye
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Praveen Shukla
- Center for Applied Technology Development, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Giau Hua
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Danlin Chen
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Ziguang Lin
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jian-chang Liu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Jing Chai
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Joseph Gold
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - David Hsu
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Larry A Couture
- Center for Biomedicine and Genetics, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA; Center for Applied Technology Development, Beckman Research Institute of City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
16
|
Chien CCC, Su MJ. 5-hydroxytryptamine has an endothelium-derived hyperpolarizing factor-like effect on coronary flow in isolated rat hearts. J Biomed Sci 2015; 22:42. [PMID: 26076928 PMCID: PMC4467052 DOI: 10.1186/s12929-015-0149-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 05/19/2015] [Indexed: 01/07/2023] Open
Abstract
Background 5-hydroxytryptamine (5-HT)-induced coronary artery responses have both vasoconstriction and vasorelaxation components. The vasoconstrictive effects of 5-HT have been well studied while the mechanism(s) of how 5-HT causes relaxation of coronary arteries has been less investigated. In isolated rat hearts, 5-HT-induced coronary flow increases are partially resistant to the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester (L-NAME) and are blocked by 5-HT7 receptor antagonists. In the present study, we investigated the role of 5-HT7 receptor in 5-HT-induced coronary flow increases in isolated rat hearts in the absence of L-NAME, and we also evaluated the involvement of endothelium-derived hyperpolarizing factor (EDHF) in 5-HT-induced coronary flow increases in L-NAME-treated hearts with the inhibitors of arachidonic acid metabolism and the blockers of Ca2+-activated K+ channels. Results In isolated rat hearts, 5-HT and the 5-HT7 receptor agonist 5-carboxamidotryptamine induced coronary flow increases, and both of these effects were blocked by the selective 5-HT7 receptor antagonist SB269970; in SB269970-treated hearts, 5-HT induced coronary flow decreases, which effect was blocked by the 5-HT2A receptor blocker R96544. In L-NAME-treated hearts, 5-HT-induced coronary flow increases were blocked by the phospholipase A2 inhibitor quinacrine and the cytochrome P450 inhibitor SKF525A, but were not inhibited by the cyclooxygenase inhibitor indomethacin. As to the effects of the Ca2+-activated K+ channel blockers, 5-HT-induced coronary flow increases in L-NAME-treated hearts were inhibited by TRAM-34 (intermediate-conductance Ca2+-activated K+ channel blocker) and UCL1684 (small-conductance Ca2+-activated K+ channel blocker), but effects of the large-conductance Ca2+-activated K+ channel blockers on 5-HT-induced coronary flow increases were various: penitrem A and paxilline did not significantly affect 5-HT-induced coronary flow responses while tetraethylammonium suppressed the coronary flow increases elicited by 5-HT. Conclusion In the present study, we found that 5-HT-induced coronary flow increases are mediated by the activation of 5-HT7 receptor in rat hearts in the absence of L-NAME. Metabolites of cytochrome P450s, small-conductance Ca2+-activated K+ channel, and intermediate-conductance Ca2+-activated K+ channel are involved in 5-HT-induced coronary flow increases in L-NAME-treated hearts, which resemble the mechanisms of EDHF-induced vasorelaxation. The role of large-conductance Ca2+-activated K+ channel in 5-HT-induced coronary flow increases in L-NAME-treated hearts needs further investigation.
Collapse
Affiliation(s)
- Ching-Chia Chang Chien
- Institute of Pharmacology, College of Medicine, National Taiwan University, 11F No.1 Sec.1, Ren-ai Rd, Taipei, 10051, Taiwan.
| | - Ming-Jai Su
- Institute of Pharmacology, College of Medicine, National Taiwan University, 11F No.1 Sec.1, Ren-ai Rd, Taipei, 10051, Taiwan.
| |
Collapse
|
17
|
|