1
|
Gaynullina DK, Schubert R, Tarasova OS. Changes in Endothelial Nitric Oxide Production in Systemic Vessels during Early Ontogenesis-A Key Mechanism for the Perinatal Adaptation of the Circulatory System. Int J Mol Sci 2019; 20:ijms20061421. [PMID: 30901816 PMCID: PMC6472151 DOI: 10.3390/ijms20061421] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022] Open
Abstract
Nitric oxide (NO) produced in the wall of blood vessels is necessary for the regulation of vascular tone to ensure an adequate blood supply of organs and tissues. In this review, we present evidence that the functioning of endothelial NO-synthase (eNOS) changes considerably during postnatal maturation. Alterations in NO-ergic vasoregulation in early ontogeny vary between vascular beds and correlate with the functional reorganization of a particular organ. Importantly, the anticontractile effect of NO can be an important mechanism responsible for the protectively low blood pressure in the immature circulatory system. The activity of eNOS is regulated by a number of hormones, including thyroid hormones which are key regulators of the perinatal developmental processes. Maternal thyroid hormone deficiency suppresses the anticontractile effect of NO at perinatal age. Such alterations disturb perinatal cardiovascular homeostasis and lead to delayed occurring cardiovascular pathologies in adulthood. The newly discovered role of thyroid hormones may have broad implications in cardiovascular medicine, considering the extremely high prevalence of maternal hypothyroidism in human society.
Collapse
Affiliation(s)
- Dina K Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia.
- Department of Physiology, Russian National Research Medical University, Moscow 117997, Russia.
| | - Rudolf Schubert
- Centre for Biomedicine and Medical Technology Mannheim (CBTM) and European Center of Angioscience (ECAS), Research Division Cardiovascular Physiology, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany.
- Department of Physiology, Medical Faculty, Augsburg University, 86159 Augsburg, Germany.
| | - Olga S Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow 119234, Russia.
- State Research Center of the Russian Federation-Institute for Biomedical Problems, Russian Academy of Sciences, Moscow 123007, Russia.
| |
Collapse
|
2
|
Kang LS, Masilamani S, Boegehold MA. Juvenile growth reduces the influence of epithelial sodium channels on myogenic tone in skeletal muscle arterioles. Clin Exp Pharmacol Physiol 2017; 43:1199-1207. [PMID: 27560463 DOI: 10.1111/1440-1681.12664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/21/2016] [Accepted: 07/14/2016] [Indexed: 02/05/2023]
Abstract
Previous studies have documented that rapid juvenile growth is accompanied by functional changes in the arteriolar endothelium, but much less is known about functional changes in arteriolar smooth muscle over this period. In this study, we investigate the possible contribution of epithelial sodium channels (ENaC) to the myogenic behaviour of arterioles at two stages of juvenile growth. The effects of the ENaC inhibitor benzamil on different levels of myogenic tone were studied in isolated gracilis muscle arterioles from rats aged 21-28 days ("weanlings") and 42-49 days ("juveniles"). ENaC subunit expression in the arteriolar wall was also determined, and the interaction between ENaC and nitric oxide (NO) in regulating vascular tone was explored by combined use of benzamil and NG -monomethyl-l-arginine (l-NMMA). At physiological pressures, both steady-state myogenic tone and the dynamic adjustments in this tone triggered by acute pressure changes were less in juvenile arterioles than in weanling arterioles. α, β and γ ENaC protein was present in arterioles at both ages, but benzamil only had an effect on myogenic tone in weanling arterioles. In these vessels, benzamil increased, rather than decreased, myogenic tone, and this effect was prevented by l-NMMA or endothelial removal. These findings suggest that although ENaC is present in gracilis muscle arterioles of both weanling and juvenile rats, it is not obligatory for the genesis of myogenic activity in these vessels at either age. However, ENaC activity can significantly modulate the level of myogenic tone through stimulation of endothelial NO release at an early stage of growth.
Collapse
Affiliation(s)
- Lori S Kang
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Shyama Masilamani
- Department of Internal Medicine/Division of Nephrology, Virginia Commonwealth University Medical Center, Richmond, VA, USA
| | - Matthew A Boegehold
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
3
|
Tykocki NR, Boerman EM, Jackson WF. Smooth Muscle Ion Channels and Regulation of Vascular Tone in Resistance Arteries and Arterioles. Compr Physiol 2017; 7:485-581. [PMID: 28333380 DOI: 10.1002/cphy.c160011] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular tone of resistance arteries and arterioles determines peripheral vascular resistance, contributing to the regulation of blood pressure and blood flow to, and within the body's tissues and organs. Ion channels in the plasma membrane and endoplasmic reticulum of vascular smooth muscle cells (SMCs) in these blood vessels importantly contribute to the regulation of intracellular Ca2+ concentration, the primary determinant of SMC contractile activity and vascular tone. Ion channels provide the main source of activator Ca2+ that determines vascular tone, and strongly contribute to setting and regulating membrane potential, which, in turn, regulates the open-state-probability of voltage gated Ca2+ channels (VGCCs), the primary source of Ca2+ in resistance artery and arteriolar SMCs. Ion channel function is also modulated by vasoconstrictors and vasodilators, contributing to all aspects of the regulation of vascular tone. This review will focus on the physiology of VGCCs, voltage-gated K+ (KV) channels, large-conductance Ca2+-activated K+ (BKCa) channels, strong-inward-rectifier K+ (KIR) channels, ATP-sensitive K+ (KATP) channels, ryanodine receptors (RyRs), inositol 1,4,5-trisphosphate receptors (IP3Rs), and a variety of transient receptor potential (TRP) channels that contribute to pressure-induced myogenic tone in resistance arteries and arterioles, the modulation of the function of these ion channels by vasoconstrictors and vasodilators, their role in the functional regulation of tissue blood flow and their dysfunction in diseases such as hypertension, obesity, and diabetes. © 2017 American Physiological Society. Compr Physiol 7:485-581, 2017.
Collapse
Affiliation(s)
- Nathan R Tykocki
- Department of Pharmacology, University of Vermont, Burlington, Vermont, USA
| | - Erika M Boerman
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - William F Jackson
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Sofronova SI, Borzykh AA, Gaynullina DK, Kuzmin IV, Shvetsova AA, Lukoshkova EV, Tarasova OS. Endothelial nitric oxide weakens arterial contractile responses and reduces blood pressure during early postnatal development in rats. Nitric Oxide 2016; 55-56:1-9. [PMID: 26923819 DOI: 10.1016/j.niox.2016.02.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/22/2016] [Accepted: 02/19/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE During maturation the vascular system undergoes structural and functional remodeling. At the systemic level it results in a gradual increase of arterial blood pressure during postnatal ontogenesis. The mechanisms of maintaining the blood pressure at a comparatively low level during the early postnatal development are not completely understood. Recently we showed that the hindlimb arteries of young (1-2 wk-old) rats exhibited an enhanced endothelial NO-pathway activity, which weakened their contractile responsiveness compared to the arteries of adult rats. Here we tested the hypothesis that an increased tonic endothelial NO production can take place in the whole vascular system leading to a decreased level of systemic blood pressure in young rats. DESIGN AND METHODS Segments of small mesenteric, saphenous, sural and intrarenal arteries were isolated from the young (2 wk-old), juvenile (4 wk-old) and adult (10-12 wk-old) male rats and tested in a wire isometric myograph. Anticontractile effect of NO was evaluated by the effects of NOS inhibitor L-NNA on both arterial spontaneous tone and constrictor responses to methoxamine (α1-adrenoceptor agonist). In addition, eNOS and arginase-2 mRNA expression in arterial preparations by qPCR and serum nitrite/nitrate levels by Griess reaction were estimated. Blood pressure with an intra-carotid artery catheter was measured in conscious rats. RESULTS In all arteries of 2 wk rats except the renal ones, L-NNA exposure resulted in a considerable tonic contraction and a remarkable enhancement of contractile responses to methoxamine. The effect of L-NNA gradually decreased with age and by 10-12 weeks became very small in the mesenteric arteries and disappeared in the sural and saphenous arteries. Although no difference in eNOS mRNA expression was found, the content of arginase-2 mRNA was significantly lower in young rats compared to adults. Serum levels of NO metabolites were two-fold higher in 2 wk-old rats than in adult rats. Along with that, arterial blood pressure was by half lower but rose more prominently after administration of l-NAME in young rats than in adults. CONCLUSIONS In young rats, tonic release of NO by the endothelium considerably weakens contractile responses of arteries supplying intestine, skin and skeletal muscles, which receive a high proportion of the cardiac output. Such anticontractile effect of NO can be an important mechanism responsible for the blood pressure reduction in immature circulatory system.
Collapse
Affiliation(s)
- Svetlana I Sofronova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234, Moscow, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia.
| | - Anna A Borzykh
- Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia
| | - Dina K Gaynullina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234, Moscow, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia; Department of Physiology, Russian National Research Medical University, Ostrovitianova str. 1, 117997, Moscow, Russia
| | - Ilya V Kuzmin
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234, Moscow, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia
| | - Anastasia A Shvetsova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234, Moscow, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia
| | - Elena V Lukoshkova
- Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia; Institute of Experimental Cardiology, Russian Cardiology Research Center, 3rd Cherepkovskaya Street 15a, 121552, Moscow, Russia
| | - Olga S Tarasova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, 119234, Moscow, Russia; Institute for Biomedical Problems, Russian Academy of Sciences, Khoroshevskoe shosse 76A, 123007, Moscow, Russia
| |
Collapse
|
5
|
|
6
|
Schlager O, Giurgea A, Hammer A, Charwat-Resl S, Margeta C, Mueller M, Ehringer T, Zehetmayer S, Willfort-Ehringer A, Koppensteiner R, Gschwandtner ME. Impact of age and gender on microvascular function. Eur J Clin Invest 2014; 44:766-74. [PMID: 24942279 DOI: 10.1111/eci.12293] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 06/13/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Microcirculatory function can be assessed by postocclusive reactive hyperaemia (PORH) using laser Doppler fluxmetry. Previous studies have shown that PORH reveals microvascular damage at an early stage. In particular, at younger ages, PORH might depend on age and gender. To implement PORH into a larger scale of clinical studies, one has to be aware of the influence of age and gender on microcirculation. The aim of this study was to assess the impact of age and gender on microcirculatory function during adolescence. MATERIALS AND METHODS Within the scope of an epidemiological project, 896 children and adolescents underwent assessment of PORH by laser Doppler fluxmetry. Microcirculatory parameters during PORH (baseline perfusion, biological zero, peak perfusion, time to peak perfusion and recovery time) were analysed in relation to age (by tertiles) and gender. RESULTS Baseline perfusion, biological zero and peak perfusion were lower in children/adolescents in the upper age tertile (12·3-18·1 years) than in the middle (9·8-12·2 years) and lower (4·3-9·7 years) age tertiles (P < 0·0001). In the total of participants, baseline perfusion, biological zero and peak perfusion were higher in males than in females (P < 0·0001). Analysing microcirculatory parameters as a function of age and gender, the sex differences were only apparent in the upper and the middle age tertiles, but not in the lower. CONCLUSIONS During adolescence, PORH is a function of age. At higher age, microvascular reactivity considerably depends on gender, whereas no sex differences are present at younger ages.
Collapse
Affiliation(s)
- Oliver Schlager
- Division of Angiology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gaynullina D, Lubomirov LT, Sofronova SI, Kalenchuk VU, Gloe T, Pfitzer G, Tarasova OS, Schubert R. Functional remodelling of arterial endothelium during early postnatal development in rats. Cardiovasc Res 2013; 99:612-21. [PMID: 23729664 DOI: 10.1093/cvr/cvt138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS Functional remodelling takes place permanently in the circulatory system. Whether this process also affects the anti-contractile effect of the endothelium during vasoconstrictor action is unknown. Therefore, the hypothesis was tested that the impact of the anti-contractile effect of the endothelium on agonist-induced contractions changes during early postnatal development. METHODS AND RESULTS We studied isometric contractions in saphenous arteries of young (1-2 weeks) and adult (2-3 months) rats. Real-time PCR and western blot were performed to evaluate the levels of mRNA expression and protein phosphorylation, respectively. In young but not in adult rats, methoxamine-induced contractions of endothelium-intact vessels exhibited a lower sensitivity compared with endothelium-denuded vessels. The endothelial influence on methoxamine-induced contractions in arteries of young rats was completely blocked by inhibition of endothelial NO-synthase (eNOS) and guanylate cyclase. NO-donor-induced vessel relaxations were not different in young and adult rats. The expression level of eNOS mRNA was prominently higher in arteries from young compared with adult rats. eNOS inhibition alone induced tonic contractions of endothelium-intact arteries from young but not from adult animals that were associated with corresponding changes in phosphorylation of the myosin regulatory light chains, the regulatory subunit of smooth muscle cell myosin light chain phosphatase, and vasodilator-stimulated phosphoprotein, the latter two being considered to be good markers of NO/sGC/PKG pathway activity. CONCLUSION We demonstrated that agonist-induced contractions in arteries of young rats are attenuated by the endothelium possessing an active NO-pathway. The active NO-pathway is due to a constitutive eNOS activity that disappears with age.
Collapse
Affiliation(s)
- Dina Gaynullina
- Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Ruprecht-Karls-University Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Jendzjowsky NG, DeLorey DS. Short-term exercise training augments sympathetic vasoconstrictor responsiveness and endothelium-dependent vasodilation in resting skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2012; 303:R332-9. [DOI: 10.1152/ajpregu.00053.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We tested the hypotheses that 4 wk of exercise training would diminish the magnitude of vasoconstriction in response to sympathetic nerve stimulation and augment endothelium-dependent vasodilation (EDD) in resting skeletal muscle in a training intensity-dependent manner. Sprague-Dawley rats were randomly assigned to sedentary time-control (S), mild- (M; 20 m/min, 5% grade), or heavy-intensity (H; 40 m/min, 5% grade) treadmill exercise groups. Animals trained 5 days/wk for 4 wk with training volume matched between groups. Rats were anesthetized and instrumented for study 24 h after the last training session. Arterial pressure and femoral artery blood flow were measured, and femoral vascular conductance (FVC) was calculated. Lumbar sympathetic chain stimulation was delivered continuously at 2 Hz and in patterns at 20 and 40 Hz. EDD was assessed by the vascular response to intra-arterial bolus injections of ACh. The response (% change FVC) to sympathetic stimulation increased ( P < 0.05) in a training intensity-dependent manner at 2 Hz (S: −20.2 ± 9.8%, M: −34.0 ± 6.7%, and H: −44.9 ± 2.0%), 20 Hz (S: −22.0 ± 10.6%, M: −31.2 ± 8.4%, and H: −42.8 ± 5.9%), and 40 Hz (S: H −24.5 ± 8.5%, M: −35.1 ± 8.9%, H: −44.9 ± 6.5%). The magnitude of EDD also increased in a training intensity-dependent manner ( P < 0.05). These data demonstrate that short-term exercise training augments the magnitude of vasoconstriction in response to sympathetic stimulation and EDD in resting skeletal muscle in a training intensity-dependent manner.
Collapse
Affiliation(s)
- Nicholas G. Jendzjowsky
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
| | - Darren S. DeLorey
- Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Alberta, Canada; and
- Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Butcher JT, Goodwill AG, Frisbee JC. The ex vivo isolated skeletal microvessel preparation for investigation of vascular reactivity. J Vis Exp 2012:3674. [PMID: 22565845 DOI: 10.3791/3674] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The isolated microvessel preparation is an ex vivo preparation that allows for examination of the different contributions of factors that control vessel diameter, and thus, perfusion resistance(1-5). This is a classic experimental preparation that was, in large measure, initially described by Uchida et al.(15) several decades ago. This initial description provided the basis for the techniques that was extensively modified and enhanced, primarily in the laboratory of Dr. Brian Duling at the University of Virginia(6-8), and we present a current approach in the following pages. This preparation will specifically refer to the gracilis arteriole in a rat as the microvessel of choice, but the basic preparation can readily be applied to vessels isolated from nearly any other tissue or organ across species(9-13). Mechanical (i.e., dimensional) changes in the isolated microvessels can easily be evaluated in response to a broad array of physiological (e.g., hypoxia, intravascular pressure, or shear) or pharmacological challenges, and can provide insight into mechanistic elements comprising integrated responses in an intact, although ex vivo, tissue. The significance of this method is that it allows for facile manipulation of the influences on the integrated regulation of microvessel diameter, while also allowing for the control of many of the contributions from other sources, including intravascular pressure (myogenic), autonomic innervation, hemodynamic (e.g., shear stress), endothelial dependent or independent stimuli, hormonal, and parenchymal influences, to provide a partial list. Under appropriate experimental conditions and with appropriate goals, this can serve as an advantage over in vivo or in situ tissue/organ preparations, which do not readily allow for the facile control of broader systemic variables. The major limitation of this preparation is essentially the consequence of its strengths. By definition, the behavior of these vessels is being studied under conditions where many of the most significant contributors to the regulation of vascular resistance have been removed, including neural, humoral, metabolic, etc. As such, the investigator is cautioned to avoid over-interpretation and extrapolation of the data that are collected utilizing this preparation. The other significant area of concern with regard to this preparation is that it can be very easy to damage cellular components such as the endothelial lining or the vascular smooth muscle, such that variable source of error can be introduced. It is strongly recommended that the individual investigator utilize appropriate measurements to ensure the quality of the preparation, both at the initiation of the experiment and periodically throughout the course of a protocol.
Collapse
Affiliation(s)
- Joshua T Butcher
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, West Virginia University, USA
| | | | | |
Collapse
|
10
|
Falabella CA, Jiang H, Frame MD, Chen W. In Vivo Validation of Biological Responses of bFGF Released from Microspheres Formulated by Blending Poly-Lactide-co-Glycolide and Poly(ethylene glycol)-Grafted-Chitosan in Hamster Cheek Pouch Microcirculatory Models. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 20:903-22. [DOI: 10.1163/156856209x444330] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Christine A. Falabella
- a Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | | | - Mary D. Frame
- c Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| | - Weiliam Chen
- d Department of Biomedical Engineering, State University of New York at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
11
|
Kang LS, Nurkiewicz TR, Wu G, Boegehold MA. Changes in eNOS phosphorylation contribute to increased arteriolar NO release during juvenile growth. Am J Physiol Heart Circ Physiol 2012; 302:H560-6. [PMID: 22140037 PMCID: PMC3353788 DOI: 10.1152/ajpheart.00277.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 11/14/2011] [Indexed: 02/07/2023]
Abstract
Nitric oxide (NO) mediates a major portion of arteriolar endothelium-dependent dilation in adults, but indirect evidence has suggested that NO contributes minimally to these responses in the young. Isolated segments of arterioles were studied in vitro to verify this age-related increase in NO release and investigate the mechanism by which it occurs. Directly measured NO release induced by ACh or the Ca(2+) ionophore A-23187 was five- to sixfold higher in gracilis muscle arterioles from 42- to 46-day-old (juvenile) rats than in those from 25- to 28-day-old (weanling) rats. There were no differences between groups in arteriolar endothelial NO synthase (eNOS) expression or tetrahydrobiopterin levels, and arteriolar l-arginine levels were lower in juvenile vessels than in weanling vessels (104 ± 6 vs.126 ± 3 pmol/mg). In contrast, agonist-induced eNOS Thr(495) dephosphorylation and eNOS Ser(1177) phosphorylation (events required for maximal activity) were up to 30% and 65% greater, respectively, in juvenile vessels. Juvenile vessels did not show increased expression of enzymes that mediate these events [protein phosphatases 1 and 2A and PKA and PKB (Akt)] or heat shock protein 90, which facilitates Ser(1177) phosphorylation. However, agonist-induced colocalization of heat shock protein 90 with eNOS was 34-66% greater in juvenile vessels than in weanling vessels, and abolition of this difference with geldanamycin also abolished the difference in Ser(1177) phosphorylation between groups. These findings suggest that growth-related increases in arteriolar NO bioavailability may be due at least partially to changes in the regulation of eNOS phosphorylation and increased signaling activity, with no change in the abundance of eNOS signaling proteins.
Collapse
Affiliation(s)
- Lori S Kang
- Center for Cardiovascular and Respiratory Sciences, West Virginia Univ. School of Medicine, 1 Medical Center Dr., PO Box 9105, Morgantown, WV 26506-9105, USA
| | | | | | | |
Collapse
|
12
|
Abstract
Endothelial dysfunction can develop at an early age in children with risk factors for cardiovascular disease. A clear understanding of the nature of this dysfunction and how it can worsen over time requires detailed information on the normal growth-related changes in endothelial function on which the pathological changes are superimposed. This review summarizes our current understanding of these normal changes, as derived from studies in four different mammalian species. Although the endothelium plays an important role in controlling vascular tone from birth onward, the vasoactive molecules that mediate this control often change during postnatal or juvenile growth. The specifics of this transition to an adult endothelial cell phenotype can vary depending on the vascular bed. During growth, the contribution of nitric oxide to endothelium-dependent dilation generally increases in the lung, cerebral cortex, and skeletal muscle, but decreases in the intestine. Endothelial capacity for release of other vasoactive factors (e.g., cyclooxygenase products, hydrogen peroxide, carbon monoxide) can also increase or decrease during growth. Although these changes have been well documented, there is less information on their underlying cellular or molecular events. Further research is required to clarify these mechanisms, and to evaluate the functional significance of such shifts in endothelial phenotype.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Cardiovascular Diseases/etiology
- Cardiovascular Diseases/physiopathology
- Cerebrovascular Circulation/physiology
- Endothelium, Vascular/growth & development
- Endothelium, Vascular/physiology
- Enterocolitis, Necrotizing/etiology
- Enterocolitis, Necrotizing/physiopathology
- Humans
- Infant, Newborn
- Intestines/blood supply
- Models, Animal
- Muscle, Skeletal/blood supply
- Muscle, Smooth, Vascular/growth & development
- Muscle, Smooth, Vascular/physiology
- Nitric Oxide/physiology
- Persistent Fetal Circulation Syndrome/etiology
- Persistent Fetal Circulation Syndrome/physiopathology
- Pulmonary Circulation/physiology
- Rats
- Risk Factors
- Sheep
- Swine
- Vascular Resistance/physiology
Collapse
Affiliation(s)
- Matthew A Boegehold
- Department of Physiology and Pharmacology and Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26505-9105, USA.
| |
Collapse
|
13
|
Samora JB, Goodwill AG, Frisbee JC, Boegehold MA. Growth-dependent changes in the contribution of carbon monoxide to arteriolar function. J Vasc Res 2009; 47:23-34. [PMID: 19672105 DOI: 10.1159/000231718] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Accepted: 12/31/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Endothelium-dependent dilation of skeletal muscle arterioles is mediated by unknown factors in very young rats. We assessed the possible contribution of carbon monoxide (CO) to this dilation and to dilation in older animals. METHODS The effects of de-endothelialization or various pharmacological inhibitors on responses to CO or endothelium-dependent dilators were studied in gracilis muscle arterioles from rats at 3-4 weeks ('weanlings') and 6-7 weeks ('juveniles'). RESULTS Exogenous CO constricted, rather than dilated, arterioles from both age groups. This constriction was reduced by endothelial removal or NOS inhibition in juvenile, but not weanling, arterioles. In contrast, this constriction was abolished by K(+) channel inhibition in weanling, but not juvenile, arterioles. The heme precursor delta-aminolevulinic acid constricted juvenile arterioles but did not affect weanling arterioles. The heme oxygenase inhibitor chromium (III) mesoporphyrin IX abolished the endothelium-dependent dilation of juvenile arterioles to simvastatin, and reduced ACh- and simvastatin-induced dilations of weanling arterioles. CONCLUSION These findings suggest that relatively high concentrations of exogenous CO can cause constriction by inhibiting endothelium-derived NO in juvenile arterioles and inhibiting K(+) channels in weanling arterioles. Endogenous CO produced at lower concentrations can contribute to endothelium-dependent dilation in both age groups.
Collapse
Affiliation(s)
- Julie Balch Samora
- Department of Physiology and Pharmacology, and Center for Interdisciplinary Research in Cardiovascular Sciences, West Virginia University School of Medicine, Morgantown, W. Va., USA
| | | | | | | |
Collapse
|
14
|
Zoccal DB, Bonagamba LGH, Paton JFR, Machado BH. Sympathetic-mediated hypertension of awake juvenile rats submitted to chronic intermittent hypoxia is not linked to baroreflex dysfunction. Exp Physiol 2009; 94:972-83. [PMID: 19578126 DOI: 10.1113/expphysiol.2009.048306] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the present study, we evaluated the mechanisms underpinning the hypertension observed in freely moving juvenile rats submitted to chronic intermittent hypoxia (CIH). Male juvenile Wistar rats (20-21 days old) were submitted to CIH (6% O(2) for 40 s every 9 min, 8 h day(1)) for 10 days while control rats were maintained in normoxia. Prior to CIH, baseline systolic arterial pressure (SAP), measured indirectly, was similar between groups (86 +/- 1 versus 87 +/- 1 mmHg). After exposure to CIH, SAP recorded directly was higher in the CIH (n = 28) than in the control group (n = 29; 131 +/- 3 versus 115 +/- 2 mmHg, P < 0.05). This higher SAP of CIH rats presented an augmented power of oscillatory components at low (10.05 +/- 0.91 versus 5.02 +/- 0.63 mmHg(2), P < 0.05) and high (respiratory-related) frequencies (12.42 +/- 2.46 versus 3.28 +/- 0.61 mmHg(2), P < 0.05) in comparison with control animals. In addition, rats exposed to CIH also exhibited an increased cardiac baroreflex gain (3.11 +/- 0.08 versus 2.1 +/- 0.10 beats min(1) mmHg(1), P < 0.0001), associated with a shift to the right of the operating point, in comparison with control rats. Administration of hexamethonium (ganglionic blocker, i.v.), injected after losartan (angiotensin II type 1 receptor antagonist) and [beta-mercapto-beta,beta-cyclopenta-methylenepropionyl(1), O-Me-Tyr(2), Arg(8)]-vasopressin (vasopressin type 1a receptor antagonist), produced a larger depressor response in the CIH (n = 8) than in the control group (n = 9; 49 +/- 2 versus 39 +/- 2 mmHg, P < 0.05). Fifteen days after the cessation of exposure to CIH, the mean arterial pressure of CIH rats returned to normal levels. The data indicate that the sympathetic-mediated hypertension observed in conscious juvenile rats exposed to CIH is not secondary to a reduction in cardiac baroreflex gain and exhibits a higher respiratory modulation, indicating that an enhanced respiratory-sympathetic coupling seems to be the major factor contributing to hypertension in rats exposed to CIH.
Collapse
Affiliation(s)
- Daniel B Zoccal
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, 14049-900, Ribeirão Preto, SP, Brazil
| | | | | | | |
Collapse
|
15
|
Samora JB, Frisbee JC, Boegehold MA. Hydrogen peroxide emerges as a regulator of tone in skeletal muscle arterioles during juvenile growth. Microcirculation 2008; 15:151-61. [PMID: 18260005 PMCID: PMC3403822 DOI: 10.1080/10739680701508497] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The endothelium-dependent dilation of skeletal muscle arterioles is mediated by factors that have not been identified in young rats, and partly mediated by an unidentified hyperpolarizing factor in maturing rats. This study was designed to determine if endogenous hydrogen peroxide (H2O2) contributes to this arteriolar dilation at either of these growth stages. METHODS Gracilis muscle arterioles were isolated from rats at ages 24-26 days ("weanlings") and 46-48 days ("juveniles"). We investigated the effects of catalase treatment on the endothelium-dependent dilation of these vessels to simvastatin and acetylcholine (ACh). Catalase-sensitive 2',7'-dichlorofluorescein (DCF) fluorescence also was measured as an index of H2O2 formation, and arteriolar dilation to exogenous H2O2 was pharmacologically probed in each age group. RESULTS Responses to simvastatin and ACh were attenuated by catalase in juvenile, but not weanling, arterioles. Juvenile, but not weanling, arterioles also displayed catalase-sensitive DCF fluorescence that was increased by ACh. Exogenous H2O2 could induce dilation in juvenile, but not weanling, arterioles. In juvenile arterioles, this dilation was abolished by the K+ channel inhibitors TEA and glibenclamide, and attenuated by NOS inhibition or endothelial removal. CONCLUSIONS These findings suggest that endogenous H2O2 contributes to endothelium-dependent arteriolar dilation in juvenile rats, but not in younger rats, and that H2O2 acts in juvenile rats by stimulating endothelial NO release and activating smooth muscle K+ channels.
Collapse
Affiliation(s)
- Julie Balch Samora
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26505-9105, USA
| | | | | |
Collapse
|