1
|
Zhao H, Guo M, Yang C, Xing F. The relationship between serum Omega-6 fatty acids and cardiovascular disease mortality: A competing risks and multivariate Mendelian randomization analysis. Clin Nutr ESPEN 2025; 66:372-380. [PMID: 39894349 DOI: 10.1016/j.clnesp.2025.01.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/15/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND & AIMS The impact of serum Omega-6 fatty acids on cardiovascular health is debated, with evidence supporting both protective and harmful effects. To investigate the association between serum Omega-6 fatty acid and mortality from all causes and cardiovascular disease (CVD), utilizing advanced statistical methodologies including competing risk models and multivariate Mendelian randomization. METHODS Data of 5070 participants from National Health and Nutrition Examination Survey (NHANES) in 2011-2014 wave were analyzed, with follow-up data on mortality sourced from the National Death Index. Serum Omega-6 fatty acids level was measured at baseline. Cox proportional hazards regression and competing risks models was used to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs) for all-cause and CVD mortality by baseline Omega-6 fatty acids level. Restricted cubic splines were used to explore the nonlinearity. Mendelian randomization to assess the causal relationships between Omega-6 levels and mortality. RESULTS 438 all-cause deaths and 137 CVD deaths were observed during an 83 months median follow-up. Restricted cubic spline analysis demonstrated a U-shaped correlation between baseline serum Omega-6 fatty acid levels with all-cause and CVD mortality risks. Subgroup analysis indicated that for the low-level Omega-6 fatty acid participants, the hazard ratios were 0.68 (95 % CI, 0.55-0.85) for all-cause mortality and 0.62 (95 % CI, 0.40-0.95) for CVD mortality. Conversely, for the high-level participants, the hazard ratios were 1.14 (95 % CI, 1.01-1.28) for all-cause mortality and 1.23 (95 % CI, 1.05-1.44) for CVD mortality. Both univariate and multivariate Mendelian randomization analyses confirmed a positive causal relationship between higher serum Omega-6 fatty acid levels and increased CVD mortality risk. CONCLUSIONS The findings suggest a U-shaped relationship between serum Omega-6 fatty acid levels and mortality risks, with elevated levels linked causally to increased CVD mortality. These results underscore the need for balanced dietary Omega-6 fatty acid intake to optimize cardiovascular health.
Collapse
Affiliation(s)
- Huimin Zhao
- Department of General Medicine, No. 970 Hospital of the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Meirong Guo
- Department of General Medicine, No. 970 Hospital of the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Changlin Yang
- Department of General Medicine, No. 970 Hospital of the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China
| | - Fangkai Xing
- Department of General Medicine, No. 970 Hospital of the People's Liberation Army Joint Logistics Support Force, Yantai, Shandong, China.
| |
Collapse
|
2
|
Liu T, Ai D. Roles of Lipoxygenases in Cardiovascular Diseases. J Cardiovasc Transl Res 2025:10.1007/s12265-025-10605-2. [PMID: 40133736 DOI: 10.1007/s12265-025-10605-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Lipoxygenases (LOXs) are a family of dioxygenases that catalyze the peroxidation of polyunsaturated fatty acids, such as linoleic acid and arachidonic acid, initiating the synthesis of bioactive lipid mediators. The LOX-mediated production of these bioactive molecules in various cell types plays a critical role in the pathophysiology of cardiovascular diseases, including atherosclerosis, hypertension, and myocardial ischemia-reperfusion injury. In this review, we summarize the roles of LOXs and their products in different cardiovascular cells and conditions, offering valuable insights may contribute to the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Ting Liu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
- Department of Cardiology, Tianjin Medical University General Hospital, 154, Anshan Road, Heping District, Tianjin Heping District, Tianjin, 300052, China
| | - Ding Ai
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education) and Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China.
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Institute of Cardiology, the Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, The Second Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
3
|
Mouton AJ, Aitken NM, Morato JG, O'Quinn KR, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Stanford JK, Brown JA, Hall JE. Glutamine metabolism improves left ventricular function but not macrophage-mediated inflammation following myocardial infarction. Am J Physiol Cell Physiol 2024; 327:C571-C586. [PMID: 38981605 PMCID: PMC11427008 DOI: 10.1152/ajpcell.00272.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 07/11/2024]
Abstract
Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Nikaela M Aitken
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jemylle G Morato
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Katherine R O'Quinn
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jussara M do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandre A da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Ana C M Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alexandra C Schrimpe-Rutledge
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Simona G Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Stacy D Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - John A McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee, United States
| | - Joshua K Stanford
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Jordan A Brown
- Jackson State University, Jackson, Mississippi, United States
| | - John E Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, Mississippi, United States
| |
Collapse
|
4
|
Rao A, Gupta A, Kain V, Halade GV. Extrinsic and intrinsic modulators of inflammation-resolution signaling in heart failure. Am J Physiol Heart Circ Physiol 2023; 325:H433-H448. [PMID: 37417877 PMCID: PMC10538986 DOI: 10.1152/ajpheart.00276.2023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Chronic and uncleared inflammation is the root cause of various cardiovascular diseases. Fundamentally, acute inflammation is supportive when overlapping with safe clearance of inflammation termed resolution; however, if the lifestyle-directed extrinsic factors such as diet, sleep, exercise, or physical activity are misaligned, that results in unresolved inflammation. Although genetics play a critical role in cardiovascular health, four extrinsic risk factors-unhealthy processed diet, sleep disruption or fragmentation, sedentary lifestyle, thereby, subsequent stress-have been identified as heterogeneous and polygenic triggers of heart failure (HF), which can result in several complications with indications of chronic inflammation. Extrinsic risk factors directly impact endogenous intrinsic factors, such as using fatty acids by immune-responsive enzymes [lipoxygenases (LOXs)/cyclooxygenases (COXs)/cytochromes-P450 (CYP450)] to form resolution mediators that activate specific resolution receptors. Thus, the balance of extrinsic factors such as diet, sleep, and physical activity feed-forward the coordination of intrinsic factors such as fatty acids-enzymes-bioactive lipid receptors that modulates the immune defense, metabolic health, inflammation-resolution signaling, and cardiac health. Future research on lifestyle- and aging-associated molecular patterns is warranted in the context of intrinsic and extrinsic factors, immune fitness, inflammation-resolution signaling, and cardiac health.
Collapse
Affiliation(s)
- Archana Rao
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Akul Gupta
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| | - Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Internal Medicine, Heart Institute, University of South Florida, Tampa, Florida, United States
| |
Collapse
|
5
|
Halade GV, Mat Y, Gowda SGB, Jain S, Hui S, Yadav H, Kain V. Sleep deprivation in obesogenic setting alters lipidome and microbiome toward suboptimal inflammation in acute heart failure. FASEB J 2023; 37:e22899. [PMID: 37002889 DOI: 10.1096/fj.202300184r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Sleep is a fundamental medicine for cardiac homeostasis, and sleep-deprived individuals are prone to higher incidences of heart attack. The lipid-dense diet (obesogenic diet-OBD) is a cumulative risk factor for chronic inflammation in cardiovascular disease; thus, understanding how sleep fragmentation (SF) in an obesity setting impacts immune and cardiac health is an unmet medical need. We hypothesized whether the co-existence of SF with OBD dysregulates gut homeostasis and leukocyte-derived reparative/resolution mediators, thereby impairing cardiac repair. Two-month-old male C57BL/6J mice were randomized first into two groups, then four groups; Control, control + SF, OBD, and OBD + SF mice subjected to myocardial infarction (MI). OBD mice had higher levels of plasma linolenic acid with a decrease in eicosapentaenoic and docosahexaenoic acid. The OBD mice had lower Lactobacillus johnsonii indicating a loss of probiotic microbiota. SF in OBD mice increased Firmicutes/Bacteroidetes ratio indicative of a detrimental change in SF-directed microbiome. OBD + SF group increased in the neutrophil: lymphocyte ratio suggestive of suboptimal inflammation. As a result of SF, resolution mediators (RvD2, RvD3, RvD5, LXA4 , PD1, and MaR1) decreased and inflammatory mediators (PGD2 , PGE2 , PGF2a , 6k-PGF1a ) were increased in OBD mice post-MI. At the site of infarction, the proinflammatory cytokines Ccl2, IL1β, and IL-6 were amplified in OBD + SF indicating a robust proinflammatory milieu post-MI. Also, brain circadian genes (Bmal1, Clock) were downregulated in SF-subjected control mice, but remained elevated in OBD mice post-MI. SF superimposed on obesity dysregulated physiological inflammation and disrupted resolving response thereby impaired cardiac repair and signs of pathological inflammation.
Collapse
Affiliation(s)
- Ganesh V. Halade
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| | - Yusuf Mat
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| | | | - Shalini Jain
- USF Center for Microbiome Research Microbiomes Institute Tampa Florida USA
- Center for Aging and Brain Repair University of South Florida Tampa Florida USA
| | - Shu‐Ping Hui
- Faculty of Health Sciences Hokkaido University Sapporo Japan
| | - Hariom Yadav
- USF Center for Microbiome Research Microbiomes Institute Tampa Florida USA
- Center for Aging and Brain Repair University of South Florida Tampa Florida USA
| | - Vasundhara Kain
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine University of South Florida Tampa Florida USA
| |
Collapse
|
6
|
Ma Y, Kemp SS, Yang X, Wu MH, Yuan SY. Cellular mechanisms underlying the impairment of macrophage efferocytosis. Immunol Lett 2023; 254:41-53. [PMID: 36740099 PMCID: PMC9992097 DOI: 10.1016/j.imlet.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
The phagocytosis and clearance of dying cells by macrophages, a process termed efferocytosis, is essential for both maintaining homeostasis and promoting tissue repair after infection or sterile injury. If not removed in a timely manner, uncleared cells can undergo secondary necrosis, and necrotic cells lose membrane integrity, release toxic intracellular components, and potentially induce inflammation or autoimmune diseases. Efferocytosis also initiates the repair process by producing a wide range of pro-reparative factors. Accumulating evidence has revealed that macrophage efferocytosis defects are involved in the development and progression of a variety of inflammatory and autoimmune diseases. The underlying mechanisms of efferocytosis impairment are complex, disease-dependent, and incompletely understood. In this review, we will first summarize the current knowledge about the normal signaling and metabolic processes of macrophage efferocytosis and its importance in maintaining tissue homeostasis and repair. We then will focus on analyzing the molecular and cellular mechanisms underlying efferocytotic abnormality (impairment) in disease or injury conditions. Next, we will discuss the potential molecular targets for enhanced efferocytosis in animal models of disease. To provide a balanced view, we will also discuss some deleterious effects of efferocytosis.
Collapse
Affiliation(s)
- Yonggang Ma
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Scott S Kemp
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Xiaoyuan Yang
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Mack H Wu
- Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | - Sarah Y Yuan
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA; Department of Surgery, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.
| |
Collapse
|
7
|
Halade GV, Kain V, Hossain S, Parcha V, Limdi NA, Arora P. Arachidonate 5-lipoxygenase is essential for biosynthesis of specialized pro-resolving mediators and cardiac repair in heart failure. Am J Physiol Heart Circ Physiol 2022; 323:H721-H737. [PMID: 36018758 PMCID: PMC9529265 DOI: 10.1152/ajpheart.00115.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022]
Abstract
Arachidonate 5-lipoxygenase (ALOX5)-derived leukotrienes are primary signals of leukocyte activation and inflammation in response to ischemic cardiac injury (MI; myocardial infarction). Using risk-free male C57BL/6J and ALOX5-null mice (8-12 wk), we quantitated leukocytes and ALOX5-derived bioactive lipids of the infarcted left ventricle (LV) and spleen to measure the physiological inflammation and cardiac repair. Our results showed that ALOX5 endogenously generates specialized pro-resolving mediators (SPMs) that facilitate cardiac repair post-MI. Deficiency of ALOX5 leads to increase in cyclooxygenase gene expression, 6-keto prostaglandin F1α, and delayed neutrophil clearance with signs of unresolved inflammation post-MI. Consequently, ALOX5 deficiency impaired the resolution of inflammation and cardiac repair, including increased myocardium rupture post-MI in acute heart failure. On-time ALOX5 activation is critical for leukocyte clearance from the infarcted heart, indicating an essential role of ALOX5 in the resolution of inflammation. In addition, to balance the inflammatory responses, ALOX5 is also necessary for fibroblast signaling, as the ALOX5-deficient fibroblast are prone to fibroblast-to-myofibroblast differentiation leading to defective scar formation in post-MI cardiac repair. Consistent with these findings, ALOX5-null mice showed an overly inflammatory response, defective fibrotic signaling, and unresolved inflammation. These findings are indicative of a critical role of ALOX5 in myocardium healing, inflammation-resolution signaling, cardiac repair, and fibroblast pathophysiology.NEW & NOTEWORTHY Arachidonate 5-lipoxygenase (ALOX5) is critical in synthesizing specialized pro-resolving mediators that facilitate cardiac repair after cardiac injury. Thus, ALOX5 orchestrates the overlapping phases of inflammation and resolution to facilitate myocardium healing in cardiac repair postmyocardial infarction.
Collapse
Affiliation(s)
- Ganesh V Halade
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Vasundhara Kain
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Shahriare Hossain
- Division of Cardiovascular Sciences, Department of Medicine, University of South Florida, Tampa, Florida
| | - Vibhu Parcha
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Nita A Limdi
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Pankaj Arora
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|