1
|
Bao M, Huang W, Zhao Y, Fang X, Zhang Y, Gao F, Huang D, Wang B, Shi G. Verapamil Alleviates Myocardial Ischemia/Reperfusion Injury by Attenuating Oxidative Stress via Activation of SIRT1. Front Pharmacol 2022; 13:822640. [PMID: 35281891 PMCID: PMC8905444 DOI: 10.3389/fphar.2022.822640] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a potential complication of ischemic heart disease after recanalization. One of the primary reasons for I/R injury is the excessive accumulation of reactive oxygen species (ROS) in cardiomyocytes. Verapamil, a classic calcium channel blocker, has the potential to mitigate I/R-evoked oxidative stress. However, the underlying mechanisms have not been fully elucidated. SIRT1 is an essential regulator of I/R and offers resistance to oxidative stress arising from I/R. It is still inconclusive if verapamil can reduce myocardial I/R-triggered oxidative damage through modulating SIRT1 antioxidant signaling. To verify our hypothesis, the H9c2 cardiomyocytes and the mice were treated with verapamil and then exposed to hypoxia/reoxygenation (H/R) or I/R in the presence or absence of the SIRT1 inhibitor EX527. As expected, verapamil stimulated SIRT1 antioxidant signaling evidenced by upregulation of SIRT1, FoxO1, SOD2 expressions and downregulation of Ac-FoxO1 expression in vitro and in vivo. In addition, verapamil remarkably suppressed H/R and I/R-induced oxidative stress proven by declined ROS level and MDA content. The cardioprotective actions of verapamil via SIRT1 were further confirmed in the experiments with the presence of the specific SIRT1 inhibitor EX527. We demonstrated that verapamil alleviated myocardial I/R-evoked oxidative stress partially via activation of SIRT1 antioxidant signaling. Subsequently, verapamil protected against cardiac dysfunction and myocardial infarction accompanied by oxidative stress.
Collapse
Affiliation(s)
- Mi Bao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Weiyi Huang
- Department of Clinical Pharmacy, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Yang Zhao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Xinzhe Fang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
| | - Yanmei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Danmei Huang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Ganggang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, China
- Pharmaceutical Laboratory, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
- Department of Cardiovascular Diseases, The First Affiliated Hospital, Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Blair CA, Pruitt BL. Mechanobiology Assays with Applications in Cardiomyocyte Biology and Cardiotoxicity. Adv Healthc Mater 2020; 9:e1901656. [PMID: 32270928 PMCID: PMC7480481 DOI: 10.1002/adhm.201901656] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocytes are the motor units that drive the contraction and relaxation of the heart. Traditionally, testing of drugs for cardiotoxic effects has relied on primary cardiomyocytes from animal models and focused on short-term, electrophysiological, and arrhythmogenic effects. However, primary cardiomyocytes present challenges arising from their limited viability in culture, and tissue from animal models suffers from a mismatch in their physiology to that of human heart muscle. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can address these challenges. They also offer the potential to study not only electrophysiological effects but also changes in cardiomyocyte contractile and mechanical function in response to cardiotoxic drugs. With growing recognition of the long-term cardiotoxic effects of some drugs on subcellular structure and function, there is increasing interest in using hiPSC-CMs for in vitro cardiotoxicity studies. This review provides a brief overview of techniques that can be used to quantify changes in the active force that cardiomyocytes generate and variations in their inherent stiffness in response to cardiotoxic drugs. It concludes by discussing the application of these tools in understanding how cardiotoxic drugs directly impact the mechanobiology of cardiomyocytes and how cardiomyocytes sense and respond to mechanical load at the cellular level.
Collapse
Affiliation(s)
- Cheavar A. Blair
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Beth L. Pruitt
- Department of mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA, USA
- Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Biocompatibility of Oxygen-Sensing Paramagnetic Implants. Cell Biochem Biophys 2019; 77:197-202. [PMID: 31444784 DOI: 10.1007/s12013-019-00881-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 08/06/2019] [Indexed: 12/31/2022]
Abstract
Oxygen-sensing implants, composed of paramagnetic microcrystals embedded in a biocompatible polymer, are increasingly being used for electron paramagnetic resonance (EPR) oximetry in animal models and human subjects. The implants are stable and designed to stay in the tissues for indefinite periods. However, it is not known whether the crystals that may be exposed on the surface of the implants or leached out from the implants will induce cytotoxicity thereby compromising their biocompatibility over the long term. The goal of the current study was to evaluate the cytotoxicity of the implants and crystalline particulates under in vitro conditions. Apoptosis and cell viability studies were performed using L6, a rat muscle cell line and AsPC-1, a cancer cell line derived from human pancreatic adenocarcinoma. The results indicated that neither the intact implants nor their components elicit cytotoxicity, thus establishing their biocompatibility for use in human subjects.
Collapse
|
4
|
Implantable microchip containing oxygen-sensing paramagnetic crystals for long-term, repeated, and multisite in vivo oximetry. Biomed Microdevices 2019; 21:71. [PMID: 31286244 DOI: 10.1007/s10544-019-0421-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
EPR oximetry is established as a viable method for measuring the tissue oxygen level (partial pressure of oxygen, pO2) in animal models; however, it has not yet been established for measurements in humans. EPR oximetry requires an oxygen-sensing paramagnetic probe (molecular or particulate) to be placed at the site/organ of measurement, which may pose logistical and safety concerns, including invasiveness of the probe-placement procedure as well as lack of temporal stability and sensitivity for long-term (repeated) measurements, and possible toxicity in the short- and long-term. In the past, we have developed an implantable oxygen-sensing probe, called OxyChip, which we have successfully established for oximetry in pre-clinical animal models (Hou et al. Biomed. Microdevices 20, 29, 2018). Currently, OxyChip is being evaluated in a limited clinical trial in cancer patients. A major limitation of OxyChip is that it is a large (1.4 mm3) implant and hence not suitable for measuring oxygen heterogeneity that may be present in solid tumors, chronic wounds, etc. In this report, we describe the development of a substantially smaller version of OxyChip (0.07 mm3 or 70 cubic micron), called mChip, that can be placed in the tissue of interest using a 23G syringe-needle with minimal invasiveness. Using in vitro and in vivo models, we have shown that the microchip provides adequate EPR sensitivity, stability, and biocompatibility and thus enables robust, repeated, and simultaneous measurement from multiple implants providing mean and median pO2 values in the implanted region. The mChips will be particularly useful for those applications that require repeated measurements of mean/median pO2 in superficial tissues and malignancies.
Collapse
|
5
|
Kmiec MM, Hou H, Kuppusamy ML, Drews TM, Prabhat AM, Petryakov SV, Demidenko E, Schaner PE, Buckey JC, Blank A, Kuppusamy P. Application of SPOT chip for transcutaneous oximetry. Magn Reson Med 2019; 81:2837-2840. [PMID: 30761605 DOI: 10.1002/mrm.27667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Maciej M Kmiec
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Huagang Hou
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - M Lakshmi Kuppusamy
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Thomas M Drews
- Department of Chemistry, University of Massachusetts, Amherst, MA
| | - Anjali M Prabhat
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Sergey V Petryakov
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Eugene Demidenko
- Department of Biomedical Data Sciences, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Philip E Schaner
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Jay C Buckey
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Aharon Blank
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Haifa, Israel
| | - Periannan Kuppusamy
- Departments of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| |
Collapse
|
6
|
Kmiec MM, Hou H, Lakshmi Kuppusamy M, Drews TM, Prabhat AM, Petryakov SV, Demidenko E, Schaner PE, Buckey JC, Blank A, Kuppusamy P. Transcutaneous oxygen measurement in humans using a paramagnetic skin adhesive film. Magn Reson Med 2018; 81:781-794. [PMID: 30277275 DOI: 10.1002/mrm.27445] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/11/2018] [Accepted: 06/11/2018] [Indexed: 01/20/2023]
Abstract
PURPOSE Transcutaneous oxygen tension (TcpO2 ) provides information about blood perfusion in the tissue immediately below the skin. These data are valuable in assessing wound healing problems, diagnosing peripheral vascular/arterial insufficiency, and predicting disease progression or the response to therapy. Currently, TcpO2 is primarily measured using electrochemical skin sensors, which consume oxygen and are prone to calibration errors. The goal of the present study was to develop a reliable method for TcpO2 measurement in human subjects. METHODS We have developed a novel TcpO2 oximetry method based on electron paramagnetic resonance (EPR) principles with an oxygen-sensing skin adhesive film, named the superficial perfusion oxygen tension (SPOT) chip. The SPOT chip is a 3-mm diameter, 60-μm thick circular film composed of a stable paramagnetic oxygen sensor. The chip is covered with an oxygen-barrier material on one side and secured on the skin by a medical adhesive transfer tape to ensure that only the oxygen that diffuses through the skin surface is measured. The method quantifies TcpO2 through the linewidth of the EPR spectrum. RESULTS Repeated measurements using a cohort of 10 healthy human subjects showed that the TcpO2 measurements were robust, reliable, and reproducible. The TcpO2 values ranged from 7.8 ± 0.8 to 22.0 ± 1.0 mmHg in the volar forearm skin (N = 29) and 8.1 ± 0.3 to 23.4 ± 1.3 mmHg in the foot (N = 86). CONCLUSIONS The results demonstrated that the SPOT chip can measure TcpO2 reliably and repeatedly under ambient conditions. The SPOT chip method could potentially be used to monitor TcpO2 in the clinic.
Collapse
Affiliation(s)
- Maciej M Kmiec
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Huagang Hou
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - M Lakshmi Kuppusamy
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Thomas M Drews
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts
| | - Anjali M Prabhat
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Sergey V Petryakov
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Eugene Demidenko
- Department of Biomedical Data Sciences, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Philip E Schaner
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Jay C Buckey
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire
| | - Aharon Blank
- Schulich Faculty of Chemistry Technion, Israel Institute of Technology, Haifa, Israel
| | - Periannan Kuppusamy
- Department of Radiology, Geisel School of Medicine, Dartmouth College, Lebanon, New Hampshire.,Department of Chemistry, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Prabhat AM, Kuppusamy ML, Naidu SK, Meduru S, Reddy PT, Dominic A, Khan M, Rivera BK, Kuppusamy P. Supplemental Oxygen Protects Heart Against Acute Myocardial Infarction. Front Cardiovasc Med 2018; 5:114. [PMID: 30211171 PMCID: PMC6120988 DOI: 10.3389/fcvm.2018.00114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 08/07/2018] [Indexed: 12/03/2022] Open
Abstract
Myocardial infarction (MI), which occurs often due to acute ischemia followed by reflow, is associated with irreversible loss (death) of cardiomyocytes. If left untreated, MI will lead to progressive loss of viable cardiomyocytes, deterioration of cardiac function, and congestive heart failure. While supplemental oxygen therapy has long been in practice to treat acute MI, there has not been a clear scientific basis for the observed beneficial effects. Further, there is no rationale for the amount or duration of administration of supplemental oxygenation for effective therapy. The goal of the present study was to determine an optimum oxygenation protocol that can be clinically applicable for treating acute MI. Using EPR oximetry, we studied the effect of exposure to supplemental oxygen cycling (OxCy) administered by inhalation of 21–100% oxygen for brief periods (15–90 min), daily for 5 days, using a rat model of acute MI. Myocardial oxygen tension (pO2), cardiac function and pro-survival/apoptotic signaling molecules were used as markers of treatment outcome. OxCy resulted in a significant reduction of infarct size and improvement of cardiac function. An optimal condition of 30-min OxCy with 95% oxygen + 5% CO2 under normobaric conditions was found to be effective for cardioprotection.
Collapse
Affiliation(s)
- Anjali M Prabhat
- Departments of Radiology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - M Lakshmi Kuppusamy
- Departments of Radiology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States.,Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Shan K Naidu
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Sarath Meduru
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Praneeth T Reddy
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Abishai Dominic
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Mahmood Khan
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States.,Department of Emergency Medicine, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Brian K Rivera
- Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| | - Periannan Kuppusamy
- Departments of Radiology and Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, United States.,Dorothy M. Davis Heart and Lung Research Institute, Columbus, OH, United States
| |
Collapse
|
8
|
|
9
|
Comparative metabonomics of Wenxin Keli and Verapamil reveals differential roles of gluconeogenesis and fatty acid β-oxidation in myocardial injury protection. Sci Rep 2017; 7:8739. [PMID: 28821850 PMCID: PMC5562700 DOI: 10.1038/s41598-017-09547-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022] Open
Abstract
Metabonomics/metabolomics is a rapid technology for comprehensive profiling of small molecule metabolites in cells, tissues, or whole organisms, the application of which has led to understanding pathophysiologic mechanisms of cardiometabolic diseases, defining predictive biomarkers for those diseases, and also assessing the efficacious effects of incident drugs. In this study, proton nuclear magnetic resonance (NMR)-based metabonomics was employed to identify the metabolic changes in rat plasma caused by myocardial ischemia-reperfusion injury (MIRI), and to compare the metabolic regulatory differences between traditional Chinese medicine Wenxin Keli (WXKL) and Western medicine verapamil. The results revealed that energy-substrate metabolism were significantly disturbed by ischemia-reperfusion (I/R) in myocardium and bulk of the key metabolites could be further modulated by verapamil and/or WXKL. Lipid metabolism and amino acid transamination occurred mainly following the treatment of verapamil, whereas glucose oxidation and BCAA degradation were prominently ameliorated by WXKL to content the energy demands of heart. Moreover, both WXKL and verapamil improved the secretions of taurine and ketone bodies to overcome the oxidative stress and the shortage of energy sources induced by ischemia-reperfusion.
Collapse
|
10
|
Wu WY, Dai YC, Li NG, Dong ZX, Gu T, Shi ZH, Xue X, Tang YP, Duan JA. Novel multitarget-directed tacrine derivatives as potential candidates for the treatment of Alzheimer's disease. J Enzyme Inhib Med Chem 2017; 32:572-587. [PMID: 28133981 PMCID: PMC6009885 DOI: 10.1080/14756366.2016.1210139] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder, which is complex and progressive; it has not only threatened the health of elderly people, but also burdened the whole social medical and health system. The available therapy for AD is limited and the efficacy remains unsatisfactory. In view of the prevalence and expected increase in the incidence of AD, the design and development of efficacious and safe anti-AD agents has become a hotspot in the field of pharmaceutical research. Due to the multifactorial etiology of AD, the multitarget-directed ligands (MTDLs) approach is promising in search for new drugs for AD. Tacrine, which is the first acetylcholinesterase (AChE) inhibitor, has been selected as the ideal active fragment because of its simple structure, clear activity, and its superiority in the structural modification, thus it could be introduced into the overall molecular skeletons of the multi-target-directed anti-AD agents. In this review, we have summarized the recent advances (2012 to the present) in the chemical modification of tacrine, which could provide the reference for the further study of novel multi-target-directed tacrine derivatives to treat AD.
Collapse
Affiliation(s)
- Wen-Yu Wu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Chen Dai
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Nian-Guang Li
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ze-Xi Dong
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Ting Gu
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Zhi-Hao Shi
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,c Department of Organic Chemistry , China Pharmaceutical University , Nanjing , Jiangsu , China
| | - Xin Xue
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Yu-Ping Tang
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| | - Jin-Ao Duan
- a Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China.,b Department of Medicinal Chemistry , Nanjing University of Chinese Medicine , Nanjing , Jiangsu , China
| |
Collapse
|
11
|
Shireman TI, Mahnken JD, Phadnis MA, Ellerbeck EF. Effectiveness comparison of cardio-selective to non-selective β-blockers and their association with mortality and morbidity in end-stage renal disease: a retrospective cohort study. BMC Cardiovasc Disord 2016; 16:60. [PMID: 27012911 PMCID: PMC4807583 DOI: 10.1186/s12872-016-0233-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 03/19/2016] [Indexed: 11/10/2022] Open
Abstract
Background Within-class comparative effectiveness studies of β-blockers have not been performed in the chronic dialysis setting. With widespread cardiac disease in these patients and potential mechanistic differences within the class, we examined whether mortality and morbidity outcomes varied between cardio-selective and non-selective β-blockers. Methods Retrospective observational study of within class β-blocker exposure among a national cohort of new chronic dialysis patients (N = 52,922) with hypertension and dual eligibility (Medicare-Medicaid). New β-blocker users were classified according to their exclusive use of one of the subclasses. Outcomes were all-cause mortality (ACM) and cardiovascular morbidity and mortality (CVMM). The associations of cardio-selective and non-selective agents on outcomes were adjusted for baseline characteristics using Cox proportional hazards. Results There were 4938 new β-blocker users included in the ACM model and 4537 in the CVMM model: 77 % on cardio-selective β-blockers. Exposure to cardio-selective and non-selective agents during the follow-up period was comparable, as measured by proportion of days covered (0.56 vs. 0.53 in the ACM model; 0.56 vs 0.54 in the CVMM model). Use of cardio-selective β-blockers was associated with lower risk for mortality (AHR = 0.84; 99 % CI = 0.72–0.97, p = 0.0026) and lower risk for CVMM events (AHR = 0.86; 99 % CI = 0.75–0.99, p = 0.0042). Conclusion Among new β-blockers users on chronic dialysis, cardio-selective agents were associated with a statistically significant 16 % reduction in mortality and 14 % in cardiovascular morbidity and mortality relative to non-selective β-blocker users. A randomized clinical trial would be appropriate to more definitively answer whether cardio-selective β-blockers are superior to non-selective β-blockers in the setting of chronic dialysis.
Collapse
Affiliation(s)
- Theresa I Shireman
- Health Services Policy & Practice and the Center for Gerontology & Health Care Research, Brown University School of Public Health, 121 South Main St, Box-G-S121-6, Providence, RI, 02912, USA.
| | - Jonathan D Mahnken
- Biostatistics, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Milind A Phadnis
- Biostatistics, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Edward F Ellerbeck
- Preventive Medicine and Public Health, University of Kansas School of Medicine, Kansas City, KS, USA.,Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
12
|
Wetmore JB, Mahnken JD, Phadnis MA, Ellerbeck EF, Shireman TI. Relationship between calcium channel blocker class and mortality in dialysis. Pharmacoepidemiol Drug Saf 2015; 24:1249-58. [PMID: 26371369 DOI: 10.1002/pds.3869] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 07/20/2015] [Accepted: 08/11/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE The comparative effectiveness of dihydropyridine (DHP) and non-DHP calcium channel blockers (CCBs) in maintenance dialysis patients has not been well-studied. METHODS A retrospective cohort of hypertensive patients initiating dialysis was created. New CCB initiators, defined as individual who had no evidence of CCB use in the first 90 days of dialysis but who were initiated by day 180, were followed from their first day of medication exposure until event or censoring; events consisted of all-cause mortality (ACM) and a combined endpoint of cardiovascular morbidity or mortality (CVMM). Cox proportional hazards models were used to determine adjusted hazard ratios (AHRs) comparing the effect of DHPs vs. non-DHPs. RESULTS There were 2900 and 2704 new initiators of CCBs in the ACM and CVMM models, respectively. Adjusted for other factors, use of DHPs, compared to non-DHPs, was associated with an AHR of 0.77 (99% confidence intervals, 0.64 - 0.93, P = 0.0004) for ACM and 0.86 (0.72 - 1.02, P = 0.024) for CVMM. Results were similar when individuals who initiated therapy at any point after the cohort inception were included, with AHRs of 0.60 (0.53 - 0.69, P < 0.0001) and 0.77 (0.67 - 0.89, P < 0.0001) for ACM and CVMM, respectively. Further, elimination of individuals with chronic atrial fibrillation resulted in AHRs of 0.71 and 0.70 for ACM and CVVM, respectively. CONCLUSION DHPs, as compared to non-DHPs, were associated with reduced hazard of death or cardiovascular morbidity and mortality; potential mechanisms of action require further study.
Collapse
Affiliation(s)
- James B Wetmore
- Division of Nephrology, Hennepin County Medical Center, Minneapolis, MN, USA.,Chronic Disease Research Group, Minneapolis, MN, USA
| | | | | | | | - Theresa I Shireman
- Preventive Medicine and Public Health, Kansas City, KS, USA.,The Kidney Institute, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
13
|
Liepinsh E, Makrecka-Kuka M, Kuka J, Vilskersts R, Makarova E, Cirule H, Loza E, Lola D, Grinberga S, Pugovics O, Kalvins I, Dambrova M. Inhibition of L-carnitine biosynthesis and transport by methyl-γ-butyrobetaine decreases fatty acid oxidation and protects against myocardial infarction. Br J Pharmacol 2015; 172:1319-32. [PMID: 25363063 DOI: 10.1111/bph.13004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 10/21/2014] [Accepted: 10/28/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The important pathological consequences of ischaemic heart disease arise from the detrimental effects of the accumulation of long-chain acylcarnitines in the case of acute ischaemia-reperfusion. The aim of this study is to test whether decreasing the L-carnitine content represents an effective strategy to decrease accumulation of long-chain acylcarnitines and to reduce fatty acid oxidation in order to protect the heart against acute ischaemia-reperfusion injury. KEY RESULTS In this study, we used a novel compound, 4-[ethyl(dimethyl)ammonio]butanoate (Methyl-GBB), which inhibits γ-butyrobetaine dioxygenase (IC₅₀ 3 μM) and organic cation transporter 2 (OCTN2, IC₅₀ 3 μM), and, in turn, decreases levels of L-carnitine and acylcarnitines in heart tissue. Methyl-GBB reduced both mitochondrial and peroxisomal palmitate oxidation rates by 44 and 53% respectively. In isolated hearts treated with Methyl-GBB, uptake and oxidation rates of labelled palmitate were decreased by 40%, while glucose oxidation was increased twofold. Methyl-GBB (5 or 20 mg·kg(-1)) decreased the infarct size by 45-48%. In vivo pretreatment with Methyl-GBB (20 mg·kg(-1)) attenuated the infarct size by 45% and improved 24 h survival of rats by 20-30%. CONCLUSIONS AND IMPLICATIONS Reduction of L-carnitine and long-chain acylcarnitine content by the inhibition of OCTN2 represents an effective strategy to protect the heart against ischaemia-reperfusion-induced damage. Methyl-GBB treatment exerted cardioprotective effects and increased survival by limiting long-chain fatty acid oxidation and facilitating glucose metabolism.
Collapse
Affiliation(s)
- E Liepinsh
- Latvian Institute of Organic Synthesis, Riga, Latvia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Adluri RS, Thirunavukkarasu M, Zhan L, Maulik N, Svennevig K, Bagchi M, Maulik G. Cardioprotective efficacy of a novel antioxidant mix VitaePro against ex vivo myocardial ischemia-reperfusion injury. Cell Biochem Biophys 2014; 67:281-6. [PMID: 21960420 DOI: 10.1007/s12013-011-9300-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Circumstantial evidence frequently implicates oxygen-derived free radicals and oxidative stress as mediators of myocardial ischemia/reperfusion (I/R) injury. Therefore, external supplementation of natural antioxidants plays a main role as cardioprotective compounds. This study was designed to evaluate the cardioprotective effect of VitaePro (70 mg/kg body weight, 21 days), a novel antioxidant mix of astaxanthin, lutein and zeaxanthin in a rat ex vivo model of ischemia/reperfusion injury. The cardioprotective effect of VitaePro was also compared with vitamin E (70 mg/kg body weight, 21 days) treatment. Rats were randomized into control I/R (CIR), VitaePro I/R (VPIR) and Vitamin E I/R (VEIR). After 21 days of oral treatment, isolated hearts from each group were subjected to 30 min of ischemia followed by 2 h of reperfusion. In the VPIR group compared to CIR and VEIR groups at 2 h of reperfusion, increased left ventricular functional recovery, such as left ventricular developed pressure (92.7 ± 0.7 vs. 85.3 ± 0.3 and 89.4 ± 1.2 mm Hg), dp/dt max (2518.7 ± 77.9 vs. 1962.5 ± 24 and 2255.7 ± 126.6 mm Hg/s), and aortic flow (21.5 ± 1.36 vs. 4.4 ± 0.6 and 13.2 ± 1.02 ml/min) were observed. The infarct size (27.68 ± 1.7 vs. 45.4 ± 1.8 and 35.4 ± 0.6%), apoptotic cardiomyocytes (61.7 ± 10.6 vs. 194.1 ± 14.8 and 118.7 ± 15.4 counts/100 HPF) and thiobarbituric acid reactive substances levels (80 ± 3 vs. 127 ± 5 and 103 ± 2 nM/mg tissue) also were decreased in VPIR group when compared to CIR and VEIR. As evidenced by the data, administration of vitamin E offered substantial cardioprotection to I/R injury, but VitaePro enhanced cardioprotection significantly more than vitamin E treatment. Taken in concert, the results of this study suggests that the oral ingestion of VitaePro protects myocardium from ischemia/reperfusion injury by decreasing oxidative stress and apoptosis, which may be of therapeutic benefit in the treatment of cardiovascular complications. However, further in vivo animal and human intervention studies are warranted before establishing any recommendations about usage of VitaePro for human cardiovascular complications.
Collapse
Affiliation(s)
- Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut School of Medicine, Farmington Avenue, Farmington, CT, 06032, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Kálai T, Altman R, Maezawa I, Balog M, Morisseau C, Petrlova J, Hammock BD, Jin LW, Trudell JR, Voss JC, Hideg K. Synthesis and functional survey of new Tacrine analogs modified with nitroxides or their precursors. Eur J Med Chem 2014; 77:343-50. [PMID: 24657571 PMCID: PMC4065883 DOI: 10.1016/j.ejmech.2014.03.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/03/2014] [Accepted: 03/08/2014] [Indexed: 12/22/2022]
Abstract
A series of new Tacrine analogs modified with nitroxides or pre-nitroxides on 9-amino group via methylene or piperazine spacers were synthesized; the nitroxide or its precursors were incorporated into the Tacrine scaffold. The new compounds were tested for their hydroxyl radical and peroxyl radical scavenging ability, acetylcholinesterase inhibitor activity and protection against Aβ-induced cytotoxicity. Based on these assays, we conclude that Tacrine analogs connected to five and six-membered nitroxides via piperazine spacers (9b, 9b/HCl and 12) exhibited the best activity, providing direction for further development of additional candidates with dual functionality (anti Alzheimer's and antioxidant).
Collapse
Affiliation(s)
- Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary
| | - Robin Altman
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Izumi Maezawa
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA95817, USA
| | - Mária Balog
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary
| | - Christophe Morisseau
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Jitka Petrlova
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, CA 95616, USA
| | - Lee-Way Jin
- M.I.N.D. Institute and Department of Pathology and Laboratory Medicine, University of California Davis, Sacramento, CA95817, USA
| | - James R Trudell
- Department of Anesthesia, Beckman Program for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305-5117, USA
| | - John C Voss
- Department of Biochemistry & Molecular Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7624 Pécs, Szigeti St. 12. Pécs, Hungary.
| |
Collapse
|
16
|
Zhang W, Guo Y, Yu S, Wei J, Jin J. Effects of edaravone on the expression of β-defensin-2 mRNA in lung tissue of rats with myocardial ischemia reperfusion. Mol Med Rep 2013; 7:1683-7. [PMID: 23525405 DOI: 10.3892/mmr.2013.1393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/01/2013] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to investigate the effects of edaravone on lung injury caused by myocardial ischemia reperfusion (I/R) in rats. Wistar rats (n=24) were randomly divided into 4 groups: the sham operation (S group) and myocardial I/R groups (C group) and two edaravone‑treated groups (E1 and E2 groups). Rats in the E1 and E2 groups were injected with 3 or 10 mg/kg edaravone, respectively, 1 min before reperfusion. The rats were sacrificed and the lung tissue, bronchoalveolar lavage (BAL) fluid and serum were obtained. The concentration of serum creatine kinase isoenzyme (CK-MB) was determined, the lung permeability index (PPI) was calculated and β-defensin-2 (BD-2) mRNA expression in the lung tissue and BD-2 and TNF-α protein content levels were determined. Serum CK-MB activity and the PPI were increased, while BD-2 mRNA and BD‑2 and TNF-α protein levels in the lung tissue were upregulated in the C, E1 and E2 groups compared with the S group. The above‑mentioned indicators were decreased in the E1 and E2 groups compared with the IR group. The level of the decrease for indicators in the E2 group was significantly different compared with that in the E1 group. In conclusion, edaravone reduced the lung injury caused by myocardial I/R in rats. Its mechanism of action was not only oxygen free radical scavenging, but was also associated with a suppression of the inflammatory response of the lung tissue.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, P.R. China
| | | | | | | | | |
Collapse
|
17
|
Wetmore JB, Mahnken JD, Rigler SK, Ellerbeck EF, Mukhopadhyay P, Hou Q, Shireman TI. Impact of race on cumulative exposure to antihypertensive medications in dialysis. Am J Hypertens 2013; 26:234-42. [PMID: 23382408 DOI: 10.1093/ajh/hps019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Racial minorities typically have less exposure than non-minorities to antihypertensive medications across an array of cardiovascular conditions in the general population. However, cumulative exposure has not been investigated in dialysis patients. METHODS In a longitudinal analysis of 38,381 hypertensive dialysis patients, prescription drug data from Medicaid was linked to Medicare data contained in United States Renal Data System core data, creating a national cohort of dialysis patients dually eligible for Medicare and Medicaid services. The proportion of days covered (PDC) was calculated to determine cumulative exposure to angiotensin converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs), β-blockers, and calcium-channel blockers (CCDs). The factors associated with use of these medications were modeled through weighted linear regression, with derivation of the adjusted odds ratios (AORs) for exposure. RESULTS Relative to non-Hispanic Caucasians, African-American, Hispanic, or Other race/ethnicity were significantly associated with less exposure to β-blockers (AOR 0.56-0.69, P < 0.001 in each case) and CCBs (AOR 0.84-0.85, P < 0.001 in each case); African-American race and Hispanic ethnicity had AORs of 0.78 and 0.73 for ACEIs and ARBs, respectively (P < 0.001 in both cases). Collectively, the odds of exposure to each class of medication for minorities was about three-quarters of that for Caucasians. CONCLUSIONS Given that dually Medicare-and-Medicaid-eligible dialysis patients have insurance coverage for prescription medications as well as regular contact with health care providers, differences by race in exposure to antihypertensive medications should with time be minimal among patients who are candidates for these drugs. The causes of differences by race in exposure to antihypertensive medications over the course of time should be further examined.
Collapse
Affiliation(s)
- James B Wetmore
- Department of Medicine, Division of Nephrology and Hypertension, University of Kansas School of Medicine, Kansas City, KS, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Hu F, Koon CM, Chan JYW, Lau KM, Fung KP. The cardioprotective effect of danshen and gegen decoction on rat hearts and cardiomyocytes with post-ischemia reperfusion injury. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 12:249. [PMID: 23228089 PMCID: PMC3537695 DOI: 10.1186/1472-6882-12-249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 11/30/2012] [Indexed: 02/02/2023]
Abstract
Background Danshen (Salviae Miltiorrhizae Radix) and Gegen (Puerariae Lobatae Radix) have been used for treating heart disease for several thousand years in China. It has been found that a Danshen and Gegen decoction (DG) exhibiting an anti-atherosclerosis effect, which improves the patients’ heart function recovery. Pre-treatment with DG was reported to have protective effects on myocardium against ischemia/reperfusion injury. In the present study, we aim to investigate the post-treatment effect of DG on ischemic-reperfusion injuries ex vivo or in vitro and the underlying mechanisms involved. Methods The rat heart function in an ischemia and reperfusion (I/R) model was explored by examining three parameters including contractile force, coronary flow rate and the release of heart specific enzymes within the heart perfusate. In vitro model of hypoxia and reoxygenation (H/R), the protective effect of DG on damaged cardiomyocytes was investigated by examining the cell structure integrity, the apoptosis and the functionality of mitochondria. Results Our results showed that DG significantly improved rat heart function after I/R challenge and suppressed the release of enzymes by damaged heart muscles in a dose-dependent manner. DG also significantly inhibited the death of cardiomyocytes, H9c2 cells, with a H/R challenge. It obviously decreased cell apoptosis, protected the mitochondrial function and cell membrane skeleton integrity on H9c2 cells. The cardio-protection was also found to be related to a decrease in intracellular calcium accumulation within H9c2 cells after I/R challenge. Conclusion The potential application of DG in treating rat hearts with an I/R injury has been implied in this study. Our results suggested that DG decoction could act as an anti-apoptotic and anti-ion stunning agent to protect hearts against an I/R injury.
Collapse
|
19
|
Wetmore JB, Mahnken JD, Mukhopadhyay P, Hou Q, Ellerbeck EF, Rigler SK, Spertus JA, Shireman TI. Geographic variation in cardioprotective antihypertensive medication usage in dialysis patients. Am J Kidney Dis 2011; 58:73-83. [PMID: 21621889 DOI: 10.1053/j.ajkd.2011.02.387] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 02/04/2011] [Indexed: 01/12/2023]
Abstract
BACKGROUND Despite their high risk of adverse cardiac outcomes, persons on long-term dialysis therapy have had lower use of antihypertensive medications with cardioprotective properties, such as angiotensin-converting enzyme (ACE) inhibitors/angiotensin receptor blockers (ARBs), β-blockers, and calcium channel blockers, than might be expected. We constructed a novel database that permits detailed exploration into the demographic, clinical, and geographic factors associated with the use of these agents in hypertensive long-term dialysis patients. STUDY DESIGN National cross-sectional retrospective analysis linking Medicaid prescription drug claims with US Renal Data System core data. SETTING & PARTICIPANTS 48,882 hypertensive long-term dialysis patients who were dually eligible for Medicaid and Medicare services in 2005. FACTORS Demographics, comorbid conditions, functional status, and state of residence. OUTCOMES Prevalence of cardioprotective antihypertensive agents in Medicaid pharmacy claims and state-specific observed to expected ORs of medication exposure. MEASUREMENTS Factors associated with medication use were modeled using multilevel logistic regression models. RESULTS In multivariable analyses, cardioprotective antihypertensive medication exposure was associated significantly with younger age, female sex, nonwhite race, intact functional status, and use of in-center hemodialysis. Diabetes was associated with a statistically significant 28% higher odds of ACE-inhibitor/ARB use, but congestive heart failure was associated with only a 9% increase in the odds of β-blocker use and no increase in ACE-inhibitor/ARB use. There was substantial state-by-state variation in the use of all classes of agents, with a greater than 2.9-fold difference in adjusted-rate ORs between the highest and lowest prescribing states for ACE inhibitors/ARBs and a 3.6-fold difference for β-blockers. LIMITATIONS Limited generalizability beyond study population. CONCLUSIONS In publicly insured long-term dialysis patients with hypertension, there were marked differences in use rates by state, potentially due in part to differences in Medicaid benefits. However, geographic characteristics also were associated with exposure, suggesting clinical uncertainty about the utility of these medications.
Collapse
Affiliation(s)
- James B Wetmore
- Department of Medicine, Division of Nephrology and Hypertension, University of Kansas School of Medicine, Kansas City, KS 66160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Yoshitomi T, Nagasaki Y. Nitroxyl radical-containing nanoparticles for novel nanomedicine against oxidative stress injury. Nanomedicine (Lond) 2011; 6:509-18. [DOI: 10.2217/nnm.11.13] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This article discusses the preparation and characterization of pH-sensitive nitroxyl radical-containing nanoparticles (RNPs) possessing nitroxyl radicals in the core and reactive groups on the periphery, and its biomedical application. The RNPs prepared by a self-assembling amphiphilic block copolymers composed of a hydrophilic poly(ethylene glycol) (PEG) segment and a hydrophobic poly(chloromethylstyrene) (PCMS) segment in which the chloromethyl groups were converted to 2,2,6,6-tetramethylpiperidinyloxyls (TEMPOs) via an amination of PEG-b-PCMS block copolymer with 4-amino-TEMPO are initially described. The cumulant average diameter of an RNP is approximately 40 nm, and the RNP has intense electron paramagnetic resonance signals. RNPs show a prolonged blood circulation time by the compartmentalization of nitroxyl radicals into the hydrophobic core, and disintegrate in response to a low pH environment, such as ischemic tissue, resulting in effectively scavenging reactive oxygen species due to an exposure of nitroxyl radicals from the RNP core. Thus, the RNP prepared was found to be effective for cerebral ischemia–reperfusion injury. Therefore, RNPs are promising as high-performance therapeutic nanomedicine for oxidative stress injuries.
Collapse
Affiliation(s)
- Toru Yoshitomi
- Tsukuba Research Center for Interdisciplinary Materials Science (TIMS), University of Tsukuba, Ibaraki, 305-8573, Japan
- Graduate School of Pure & Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8573, Japan
| | - Yukio Nagasaki
- Satellite Laboratory, International Center for Materials Nanoarchitectonics (MANA), National Institute of Materials Science (NIMS), Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8573, Japan and Master’s School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Ibaraki, 305-8573, Japan and Center for Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
21
|
Mitochondrial involvement in cardiac apoptosis during ischemia and reperfusion: can we close the box? Cardiovasc Toxicol 2010; 9:211-27. [PMID: 19855945 DOI: 10.1007/s12012-009-9055-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Myocardial ischemia is the main cause of death in the Western societies. Therapeutic strategies aimed to protect the ischemic myocardium have been extensively studied. Reperfusion is the definitive treatment for acute coronary syndromes, especially acute myocardial infarction; however, reperfusion has the potential to exacerbate tissue injury, a process termed reperfusion injury. Ischemia/reperfusion (I/R) injury may lead to cardiac arrhythmias and contractile dysfunction that involve apoptosis and necrosis in the heart. The present review describes the mitochondrial role on cardiomyocyte death and some potential pharmacological strategies aimed at preventing the opening of the box, i.e., mitochondrial dysfunction and membrane permeabilization that result into cell death. Data in the literature suggest that mitochondrial disruption during I/R can be avoided, although uncertainties still exist, including the fact that the optimal windows of treatment are still fairly unknown. Despite this, the protection of cardiac mitochondrial function should be critical for the patient survival, and new strategies to avoid mitochondrial alterations should be designed to avoid cardiomyocyte loss.
Collapse
|
22
|
Khan M, Kwiatkowski P, Rivera BK, Kuppusamy P. Oxygen and oxygenation in stem-cell therapy for myocardial infarction. Life Sci 2010; 87:269-74. [PMID: 20600148 DOI: 10.1016/j.lfs.2010.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 06/09/2010] [Accepted: 06/15/2010] [Indexed: 01/15/2023]
Abstract
Myocardial infarction (MI) is caused by deprivation of oxygen and nutrients to the cardiac tissue due to blockade of coronary artery. It is a major contributor to chronic heart disease, a leading cause of mortality in the modern world. Oxygen is required to meet the constant energy demands for heart contractility, and also plays an important role in the regulation of heart function. However, reoxygenation of the ischemic myocardium upon restoration of blood flow may lead to further injury. Controlled oxygen delivery during reperfusion has been advocated to prevent this consequence. Monitoring the myocardial oxygen concentration would play a vital role in understanding the pathological changes in the ischemic heart following myocardial infarction. During the last two decades, several new techniques have become available to monitor myocardial oxygen concentration in vivo. Electron paramagnetic resonance (EPR) oximetry would appear to be the most promising and reliable of these techniques. EPR utilizes crystalline probes which yield a single sharp line, the width of which is highly sensitive to oxygen tension. Decreased oxygen tension results in a sharpening of the EPR spectrum, while an increase results in widening. In our recent studies, we have used EPR oximetry as a valuable tool to monitor myocardial oxygenation for several applications like ischemia-reperfusion injury, stem-cell therapy and hyperbaric oxygen therapy. The results obtained from these studies have demonstrated the importance of tissue oxygen in the application of stem-cell therapy to treat ischemic heart tissues. These results have been summarized in this review article.
Collapse
Affiliation(s)
- Mahmood Khan
- Davis Heart and Lung Research Institute, Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | |
Collapse
|
23
|
Meenakshisundaram G, Eteshola E, Blank A, Lee SC, Kuppusamy P. A molecular paramagnetic spin-doped biopolymeric oxygen sensor. Biosens Bioelectron 2010; 25:2283-9. [PMID: 20371170 PMCID: PMC2866758 DOI: 10.1016/j.bios.2010.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 03/01/2010] [Accepted: 03/08/2010] [Indexed: 11/15/2022]
Abstract
Electron paramagnetic resonance (EPR) oximetry is a powerful technique capable of providing accurate, reliable, and repeated measurements of tissue oxygenation, which is crucial to the diagnosis and treatment of several pathophysiological conditions. Measurement of tissue pO(2) by EPR involves the use of paramagnetic, oxygen-sensitive probes, which can be either soluble (molecular) in nature or insoluble paramagnetic materials. Development of innovative strategies to enhance the biocompatibility and in vivo application of these oxygen-sensing probes is crucial to the growth and clinical applicability of EPR oximetry. Recent research efforts have aimed at encapsulating particulate probes in bioinert polymers for the development of biocompatible EPR probes. In this study, we have developed novel EPR oximetry probes, called perchlorotriphenylmethyl triester (PTM-TE):polydimethyl siloxane (PDMS) chips, by dissolving and incorporating the soluble (molecular) EPR probe, PTM-TE, in an oxygen-permeable polymer matrix, PDMS. We demonstrate that such incorporation (doping) of PTM-TE in PDMS enhanced its oxygen sensitivity several fold. The cast-molding method of fabricating chips enabled them to be made with increasing amounts of PTM-TE (spin density). Characterization of the spin distribution within the PDMS matrix, using EPR micro-imaging, revealed potential inhomogeneties, albeit with no adverse effect on the oxygen-sensing characteristics of PTM-TE:PDMS. The chips were resistant to autoclaving or in vitro oxidoreductant treatment, thus exhibiting excellent in vitro biostability. Our results establish PTM-TE:PDMS as a viable probe for biological oxygen-sensing, and also validate the incorporation of soluble probes in polymer matrices as an innovative approach to the development of novel probes for EPR oximetry.
Collapse
Affiliation(s)
- Guruguhan Meenakshisundaram
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Edward Eteshola
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aharon Blank
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Stephen C. Lee
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Periannan Kuppusamy
- Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
24
|
Khan M, Meduru S, Mostafa M, Khan S, Hideg K, Kuppusamy P. Trimetazidine, administered at the onset of reperfusion, ameliorates myocardial dysfunction and injury by activation of p38 mitogen-activated protein kinase and Akt signaling. J Pharmacol Exp Ther 2010; 333:421-9. [PMID: 20167841 PMCID: PMC2872960 DOI: 10.1124/jpet.109.165175] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 02/17/2010] [Indexed: 01/28/2023] Open
Abstract
Trimetazidine [1-(2,3,4-trimethoxybenzyl)piperazine; TMZ] is an anti-ischemic cardiac drug; however, its efficacy and mechanism of cardioprotection upon reperfusion are largely unknown. The objective of this study was to determine whether TMZ, given before reperfusion, could attenuate myocardial reperfusion injury. Ischemia/reperfusion (I/R) was induced in rat hearts by ligating the left anterior descending (LAD) coronary artery for 30 min followed by 48 h of reperfusion. TMZ (5 mg/kg b.wt.) was administered 5 min before reperfusion. The study used three experimental groups: control (-I/R; -TMZ), I/R (+I/R; -TMZ), and TMZ (+I/R; +TMZ). Echocardiography and EPR oximetry were used to assess cardiac function and oxygenation, respectively. The ejection fraction, which was significantly depressed in the I/R group (62 +/- 5 versus 84 +/- 3% in control), was restored to 72 +/- 3% in the TMZ group. Myocardial pO2 in the TMZ group returned to baseline levels (approximately 20 mm Hg) within 1 h of reperfusion, whereas the I/R group showed a significant hyperoxygenation even after 48 h of reperfusion. The infarct size was significantly reduced in the TMZ group (26 +/- 3 versus 47 +/- 5% in I/R). TMZ treatment significantly attenuated superoxide levels in the tissue. Tissue homogenates showed a significant increase in p38 and p-Akt and decrease in caspase-3 levels in the TMZ group. In summary, the results demonstrated that TMZ is cardioprotective when administered before reperfusion and that this protection appears to be mediated by activation of p38 mitogen-activated protein kinase and Akt signaling. The study emphasizes the importance of administering TMZ before reflow to prevent reperfusion-mediated cardiac injury and dysfunction.
Collapse
Affiliation(s)
- Mahmood Khan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
25
|
Selvendiran K, Ahmed S, Dayton A, Kuppusamy ML, Tazi M, Bratasz A, Tong L, Rivera BK, Kálai T, Hideg K, Kuppusamy P. Safe and targeted anticancer efficacy of a novel class of antioxidant-conjugated difluorodiarylidenyl piperidones: differential cytotoxicity in healthy and cancer cells. Free Radic Biol Med 2010; 48:1228-35. [PMID: 20156552 PMCID: PMC2847669 DOI: 10.1016/j.freeradbiomed.2010.02.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 01/23/2010] [Accepted: 02/07/2010] [Indexed: 12/31/2022]
Abstract
The development of smart anticancer drugs that can selectively kill cancer cells while sparing the surrounding healthy tissues/cells is of paramount importance for safe and effective cancer therapy. We report a novel class of bifunctional compounds based on diarylidenyl piperidone (DAP) conjugated to an N-hydroxypyrroline (NOH; a nitroxide precursor) group. We hypothesized that the DAP would have cytotoxic (anticancer) activity, whereas the NOH moiety would function as a tissue-specific modulator (antioxidant) of cytotoxicity. The study used four DAPs, namely H-4073 and H-4318 without NOH and HO-3867 and HO-4200 with NOH substitution. The goal of the study was to evaluate the proof-of-concept anticancer-versus-antioxidant efficacy of the DAPs using a number of cancerous (breast, colon, head and neck, liver, lung, ovarian, and prostate cancer) and noncancerous (smooth muscle, aortic endothelial, and ovarian surface epithelial) human cell lines. Cytotoxicity was determined using an MTT-based cell viability assay. All four compounds induced significant loss of cell viability in cancer cells, whereas HO-3867 and HO-4200 showed significantly less cytotoxicity in noncancerous cells. EPR measurements showed a metabolic conversion of the N-hydroxylamine function to nitroxide with significantly higher levels of the metabolite and superoxide radical-scavenging (antioxidant) activity in noncancerous cells compared to cancer cells. Western blot analysis showed that the DAP-induced growth arrest and apoptosis in cancer cells were mediated by inhibition of STAT3 phosphorylation at the Tyr705 and Ser727 residues and induction of apoptotic markers of cleaved caspase-3 and PARP. The results suggest that the antioxidant-conjugated DAPs will be useful as safe and effective anticancer agents for cancer therapy.
Collapse
Affiliation(s)
- Karuppaiyah Selvendiran
- Department of Internal Medicine, Davis Heart and Lung Research Institute, and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Bognár B, Ahmed S, Kuppusamy ML, Selvendiran K, Khan M, Jeko J, Hankovszky OH, Kálai T, Kuppusamy P, Hideg K. Synthesis and study of new paramagnetic and diamagnetic verapamil derivatives. Bioorg Med Chem 2010; 18:2954-63. [PMID: 20347319 DOI: 10.1016/j.bmc.2010.02.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 02/16/2010] [Accepted: 02/21/2010] [Indexed: 11/25/2022]
Abstract
New derivatives of verapamil (1) modified with nitroxides and their precursors were synthesized and screened for reactive oxygen species (ROS)-scavenging activities. The basic structure was modified by changing the nitrile group to an amide or the methyl substituent on tertiary nitrogen with nitroxides and their reduced forms (hydroxylamine and secondary amines). Among the new verapamil derivatives compound 16B [Mohan, I. K.; Kahn, M.; Wisel, S.; Selvendiran, K.; Sridhar, A.; Carnes, C.A.; Bognár, B.; Kálai, T.; Hideg, K.; Kuppusamy, P. Am. J. Physiol. Heart Circ. Physiol.2009, 296, 140], modified with hydroxylamine salt of 2,2,6,6-tetramethyl-1,2,3,6-tetrahydropyridine-1-yloxyl proved to be the best ROS scavenger in vitro and protected HSMC and CHO cells against H(2)O(2) induced damage.
Collapse
Affiliation(s)
- Balázs Bognár
- Institute of Organic and Medicinal Chemistry, University of Pécs, H-7602 Pécs, PO Box 99, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Meenakshisundaram G, Eteshola E, Pandian RP, Bratasz A, Selvendiran K, Lee SC, Krishna MC, Swartz HM, Kuppusamy P. Oxygen sensitivity and biocompatibility of an implantable paramagnetic probe for repeated measurements of tissue oxygenation. Biomed Microdevices 2009; 11:817-26. [PMID: 19319683 PMCID: PMC2756533 DOI: 10.1007/s10544-009-9298-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of oxygen-sensing water-insoluble paramagnetic probes, such as lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), enables repeated measurements of pO(2) from the same location in tissue by electron paramagnetic resonance (EPR) spectroscopy. In order to facilitate direct in vivo application, and hence eventual clinical applicability, of LiNc-BuO, we encapsulated LiNc-BuO microcrystals in polydimethylsiloxane (PDMS), an oxygen-permeable and bioinert polymer, and developed an implantable chip. In vitro evaluation of the chip, performed under conditions of sterilization, high-energy irradiation, and exposure to cultured cells, revealed that it is biostable and biocompatible. Implantation of the chip in the gastrocnemius muscle tissue of mice showed that it is capable of repeated and real-time measurements of tissue oxygenation for an extended period. Functional evaluation using a murine tumor model established the suitability and applicability of the chip for monitoring tumor oxygenation. This study establishes PDMS-encapsulated LiNc-BuO as a promising choice of probe for clinical EPR oximetry.
Collapse
Affiliation(s)
- Guruguhan Meenakshisundaram
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Edward Eteshola
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Ramasamy P. Pandian
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Anna Bratasz
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Karuppaiyah Selvendiran
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Stephen C. Lee
- Department of Biomedical Engineering, Ohio State University, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | - Murali C. Krishna
- Biophysics Spectroscopy Section, Radiation Biology Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Harold M. Swartz
- EPR Center for Viable Systems, Dartmouth Medical School, Hanover, NH 03755, USA
| | - Periannan Kuppusamy
- Department of Internal Medicine, Ohio State University, 420 West 12th Avenue, Room 114, Columbus, OH 43210, USA
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
28
|
Wisel S, Khan M, Kuppusamy ML, Mohan IK, Chacko SM, Rivera BK, Sun BC, Hideg K, Kuppusamy P. Pharmacological preconditioning of mesenchymal stem cells with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine) protects hypoxic cells against oxidative stress and enhances recovery of myocardial function in infarcted heart through Bcl-2 expression. J Pharmacol Exp Ther 2009; 329:543-50. [PMID: 19218529 PMCID: PMC2672865 DOI: 10.1124/jpet.109.150839] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 02/12/2009] [Indexed: 01/01/2023] Open
Abstract
Stem cell transplantation is a possible therapeutic option to repair ischemic damage to the heart. However, it is faced with a number of challenges including the survival of the transplanted cells in the ischemic region. The present study was designed to use stem cells preconditioned with trimetazidine (1-[2,3,4-trimethoxybenzyl]piperazine; TMZ), a widely used anti-ischemic drug for treating angina in cardiac patients, to increase the rate of their survival after transplantation. Bone marrow-derived rat mesenchymal stem cells (MSCs) were subjected to a simulated host tissue environment by culturing them under hypoxia (2% O(2)) and using hydrogen peroxide (H(2)O(2)) to induce oxidative stress. MSCs were preconditioned with 10 microM TMZ for 6 h followed by treatment with 100 microM H(2)O(2) for 1 h and characterized for their cellular viability and metabolic activity. The preconditioned cells showed a significant protection against H(2)O(2)-induced loss of cellular viability, membrane damage, and oxygen metabolism accompanied by a significant increase in HIF-1alpha, survivin, phosphorylated Akt (pAkt), and Bcl-2 protein levels and Bcl-2 gene expression. The therapeutic efficacy of the TMZ-preconditioned MSCs was evaluated in an in vivo rat model of myocardial infarction induced by permanent ligation of left anterior descending coronary artery. A significant increase in the recovery of myocardial function and up-regulation of pAkt and Bcl-2 levels were observed in hearts transplanted with TMZ-preconditioned cells. This study clearly demonstrated the potential benefits of pharmacological preconditioning of MSCs with TMZ for stem cell therapy for repairing myocardial ischemic damage.
Collapse
Affiliation(s)
- Sheik Wisel
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|