1
|
Pamulapati V, Cuda CM, Smith TL, Jung J, Xiong L, Swaminathan S, Ho KJ. Inflammatory Cell Dynamics after Murine Femoral Artery Wire Injury: A Multi-Parameter Flow Cytometry-Based Analysis. Cells 2023; 12:689. [PMID: 36899827 PMCID: PMC10000449 DOI: 10.3390/cells12050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
An acute inflammatory response following arterial surgery for atherosclerosis, such as balloon angioplasty, stenting, and surgical bypass, is an important driver of neointimal hyperplasia after arterial injury, which leads to recurrent ischemia. However, a comprehensive understanding of the dynamics of the inflammatory infiltrate in the remodeling artery is difficult to attain due to the shortcomings of conventional methods such as immunofluorescence. We developed a 15-parameter flow cytometry method to quantitate leukocytes and 13 leukocyte subtypes in murine arteries at 4 time points after femoral artery wire injury. Live leukocyte numbers peaked at 7 days, which preceded the peak neointimal hyperplasia lesion at 28 days. Neutrophils were the most abundant early infiltrate, followed by monocytes and macrophages. Eosinophils were elevated after 1 day, while natural killer and dendritic cells gradually infiltrated over the first 7 days; all decreased between 7 and 14 days. Lymphocytes began accumulating at 3 days and peaked at 7 days. Immunofluorescence of arterial sections demonstrated similar temporal trends of CD45+ and F4/80+ cells. This method allows for the simultaneous quantitation of multiple leukocyte subtypes from small tissue samples of injured murine arteries and identifies the CD64+Tim4+ macrophage phenotype as being potentially important in the first 7 days post-injury.
Collapse
Affiliation(s)
- Vivek Pamulapati
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carla M. Cuda
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tracy L. Smith
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan Jung
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Liqun Xiong
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Suchitra Swaminathan
- Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Karen J. Ho
- Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
2
|
Osaka M, Deushi M, Aoyama J, Funakoshi T, Ishigami A, Yoshida M. High-Fat Diet Enhances Neutrophil Adhesion in LDLR-Null Mice Via Hypercitrullination of Histone H3. ACTA ACUST UNITED AC 2021; 6:507-523. [PMID: 34222722 PMCID: PMC8246031 DOI: 10.1016/j.jacbts.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Neutrophil adhesion on the atheroprone femoral artery of high-fat diet-fed low-density lipoprotein receptor-null mice was enhanced more than in wild-type mice. The inhibition of histone H3 citrullination of neutrophils reversed the enhancement of neutrophil adhesion, suggesting that hypercitrullination contributes to enhanced neutrophil adhesion. Furthermore, pemafibrate reduced the citrullination of histone H3 in these mice. Therefore, the hypercitrullination of histone H3 in neutrophils contributes to atherosclerotic vascular inflammation.
Collapse
Key Words
- BM, bone marrow
- BW, body weight
- DNaseI, deoxyribonuclease I
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HFD, high-fat diet
- HUVECs, human umbilical vein endothelial cells
- IVM, intravital microscopy
- LDLR, low-density lipoprotein receptor
- LysM, lysosome M
- MPO, myeloperoxidase
- NC, normal chow
- NE, neutrophil elastase
- NET, neutrophil extracellular trap
- PAD4, peptidylarginine deiminase 4
- PPAR, peroxisome proliferator-activated receptor
- TC, total cholesterol
- TDFA, N-acetyl-l-threonyl-l-α-aspartyl-N5-(2-fluoro-1-iminoethyl)-l-ornithinamide trifluoroacetate salt
- TG, triglyceride
- citrullination
- cxcl1
- eGFP, enhanced green fluorescent protein
- in vivo imaging
- neutrophil
- vascular inflammation
- wt, wild type
Collapse
Affiliation(s)
- Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jiro Aoyama
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoko Funakoshi
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.,Department of Physiology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihito Ishigami
- Research Team for Functional Biogerontology, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
3
|
Higashijima Y, Matsui Y, Shimamura T, Nakaki R, Nagai N, Tsutsumi S, Abe Y, Link VM, Osaka M, Yoshida M, Watanabe R, Tanaka T, Taguchi A, Miura M, Ruan X, Li G, Inoue T, Nangaku M, Kimura H, Furukawa T, Aburatani H, Wada Y, Ruan Y, Glass CK, Kanki Y. Coordinated demethylation of H3K9 and H3K27 is required for rapid inflammatory responses of endothelial cells. EMBO J 2020; 39:e103949. [PMID: 32125007 DOI: 10.15252/embj.2019103949] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.
Collapse
Affiliation(s)
- Yoshiki Higashijima
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan.,Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yusuke Matsui
- Division of Biomedical and Health Informatics, Graduate school of medicine, Nagoya university, Nagoya, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | - Nao Nagai
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Shuichi Tsutsumi
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Yohei Abe
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Verena M Link
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Faculty of Biology, Division of Evolutionary Biology, Ludwig-Maximilian University of Munich, Munich, Germany.,Metaorganism Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mizuko Osaka
- Department of Nutrition in Cardiovascular Disease, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ryo Watanabe
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiro Tanaka
- Department of Human Genetics and Disease Diversity, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Bioresource Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akashi Taguchi
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Mai Miura
- Isotope Science Center, The University of Tokyo, Tokyo, Japan.,Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo, Japan
| | - Xiaoan Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Guoliang Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Tsuyoshi Inoue
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsushi Furukawa
- Department of Bioinformational Pharmacology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Aburatani
- Division of Genome Sciences, RCAST, The University of Tokyo, Tokyo, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| | - Yijun Ruan
- Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Wang Y, Chen D, Zhang Y, Wang P, Zheng C, Zhang S, Yu B, Zhang L, Zhao G, Ma B, Cai Z, Xie N, Huang S, Liu Z, Mo X, Guan Y, Wang X, Fu Y, Ma D, Wang Y, Kong W. Novel Adipokine, FAM19A5, Inhibits Neointima Formation After Injury Through Sphingosine-1-Phosphate Receptor 2. Circulation 2018; 138:48-63. [DOI: 10.1161/circulationaha.117.032398] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 02/01/2018] [Indexed: 01/10/2023]
Abstract
Background:
Obesity plays crucial roles in the development of cardiovascular diseases. However, the mechanisms that link obesity and cardiovascular diseases remain elusive. Compelling evidence indicates that adipokines play an important role in obesity-related cardiovascular diseases. Here, we found a new adipokine-named family with sequence similarity 19, member A5 (FAM19A5), a protein with unknown function that was predicted to be distantly related to the CC-chemokine family. We aimed to test whether adipose-derived FAM19A5 regulates vascular pathology on injury.
Methods:
DNA cloning, protein expression, purification, and N-terminal sequencing were applied to characterize FAM19A5. Adenovirus infection and siRNA transfection were performed to regulate FAM19A5 expression. Balloon and wire injury were performed in vivo on the rat carotid arteries and mouse femoral arteries, respectively. Bioinformatics analysis, radioactive ligand-receptor binding assays, receptor internalization, and calcium mobilization assays were used to identify the functional receptor for FAM19A5.
Results:
We first characterized FAM19A5 as a secreted protein, and the first 43 N-terminal amino acids were the signal peptides. Both FAM19A5 mRNA and protein were abundantly expressed in the adipose tissue but were downregulated in obese mice. Overexpression of FAM19A5 markedly inhibited vascular smooth muscle cell proliferation and migration and neointima formation in the carotid arteries of balloon-injured rats. Accordingly, FAM19A5 silencing in adipocytes significantly promoted vascular smooth muscle cell activation. Adipose-specific FAM19A5 transgenic mice showed greater attenuation of neointima formation compared with wild-type littermates fed with or without Western-style diet. We further revealed that sphingosine-1-phosphate receptor 2 was the functional receptor for FAM19A5, with a dissociation constant (
K
d
) of 0.634 nmol/L. Inhibition of sphingosine-1-phosphate receptor 2 or its downstream G12/13-RhoA signaling circumvented the suppressive effects of FAM19A5 on vascular smooth muscle cell proliferation and migration.
Conclusions:
We revealed that a novel adipokine, FAM19A5, was capable of inhibiting postinjury neointima formation via sphingosine-1-phosphate receptor 2-G12/13-RhoA signaling. Downregulation of FAM19A5 during obesity may trigger cardiometabolic diseases.
Collapse
Affiliation(s)
- Yingbao Wang
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Dixin Chen
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yan Zhang
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Pingzhang Wang
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Peking University, Beijing, China (P.W., X.M., D.M., Y.W.)
| | - Can Zheng
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Songyang Zhang
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Bing Yu
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Lu Zhang
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Guizhen Zhao
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Baihui Ma
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Zeyu Cai
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Nan Xie
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Shiyang Huang
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ziyi Liu
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Xiaoning Mo
- Center for Human Disease Genomics, Peking University, Beijing, China (P.W., X.M., D.M., Y.W.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Liaoning, China (Y.G.)
| | - Xian Wang
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Yi Fu
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| | - Dalong Ma
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Peking University, Beijing, China (P.W., X.M., D.M., Y.W.)
| | - Ying Wang
- Department of Immunology, Key Laboratory of Medical Immunology of Ministry of Health (D.C., Y.Z., P.W., C.Z., S.H., D.M., Y.W.), School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Center for Human Disease Genomics, Peking University, Beijing, China (P.W., X.M., D.M., Y.W.)
| | - Wei Kong
- Department of Physiology and Pathophysiology (Y.W., D.C., S.Z., B.Y., L.Z., G.Z., B.M., Z.C., N.X., Z.L., X.W., Y.F., W.K.)
| |
Collapse
|
5
|
Haase N, Rüder C, Haase H, Kamann S, Kouno M, Morano I, Dechend R, Zohlnhöfer D, Haase T. Protective Function of Ahnak1 in Vascular Healing after Wire Injury. J Vasc Res 2017; 54:131-142. [PMID: 28468000 DOI: 10.1159/000464287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/13/2017] [Indexed: 01/17/2023] Open
Abstract
AIM Vascular remodeling following injury substantially accounts for restenosis and adverse clinical outcomes. In this study, we investigated the role of the giant scaffold protein Ahnak1 in vascular healing after endothelial denudation of the murine femoral artery. METHODS The spatiotemporal expression pattern of Ahnak1 and Ahnak2 was examined using specific antibodies and real-time quantitative PCR. Following wire-mediated endothelial injury of Ahnak1-deficient mice and wild-type (WT) littermates, the processes of vascular healing were analyzed. RESULTS Ahnak1 and Ahnak2 showed a mutually exclusive vascular expression pattern, with Ahnak1 being expressed in the endothelium and Ahnak2 in the medial cells in naïve WT arteries. After injury, a marked increase of Ahnak1- and Ahnak2-positive cells at the lesion site became evident. Both proteins showed a strong upregulation in neointimal cells 14 days after injury. Ahnak1-deficient mice showed delayed vascular healing and dramatically impaired re-endothelialization that resulted in prolonged adverse vascular remodeling, when compared to the WT littermates. CONCLUSION The large scaffold and adaptor proteins Ahnak1 and Ahnak2 exhibit differential expression patterns and functions in naïve and injured arteries. Ahnak1 plays a nonredundant protective role in vascular healing.
Collapse
Affiliation(s)
- Nadine Haase
- Experimental and Clinical Research Center (a joint cooperation of the MDC and the Charité Medical Faculty), Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Osaka M, Ito S, Honda M, Inomata Y, Egashira K, Yoshida M. Critical role of the C5a-activated neutrophils in high-fat diet-induced vascular inflammation. Sci Rep 2016; 6:21391. [PMID: 26893238 PMCID: PMC4759545 DOI: 10.1038/srep21391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/22/2016] [Indexed: 12/21/2022] Open
Abstract
Exceed and chronic high-fat diet (HFD) contributes to the diagnosis and development of atherosclerosis, obesity, and metabolic syndrome. However, the key molecular component(s) triggered by HFD responsible for initiating vascular inflammation remain unknown. We observed that feeding HFD for 4 weeks is sufficient to induce leukocyte recruitment in the femoral artery of wild-type mice. Neutrophil- and monocyte-depletion analyses confirmed the preferential recruitment of neutrophils in these mice. Protein analysis of sera from HFD-fed mice revealed a marked elevation of complement component C5a levels. Exogenous C5a alone induced leukocyte recruitment, which was abolished by a C5a-receptor antagonist. We also examined the role of neutrophil-derived MCP-1 in accumulation of leukocytes in the artery. These results demonstrated a previously unrecognized role for C5a and neutrophils in the early onset of HFD-induced vascular inflammation. Further study may help in elucidating a novel regulatory pathway to control diet-induced inflammation such as that in case of atherosclerosis.
Collapse
Affiliation(s)
- Mizuko Osaka
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Nutrition and Metabolism in Cardiovascular Disease, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Ito
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Masaki Honda
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukihiro Inomata
- Department of Transplantation and Pediatric Surgery, Postgraduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensuke Egashira
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masayuki Yoshida
- Department of Life Science and Bioethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Ito S, Osaka M, Edamatsu T, Itoh Y, Yoshida M. Crucial Role of the Aryl Hydrocarbon Receptor (AhR) in Indoxyl Sulfate-Induced Vascular Inflammation. J Atheroscler Thromb 2016; 23:960-75. [PMID: 26860885 DOI: 10.5551/jat.34462] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
AIM The aryl hydrocarbon receptor (AhR), a ligand-inducible transcription factor mediating toxic effects of dioxins and uremic toxins, has recently emerged as a pathophysiological regulator of immune-inflammatory conditions. Indoxyl sulfate, a uremic toxin, is associated with cardiovascular disease in patients with chronic kidney disease and has been shown to be a ligand for AhR. The aim of this study was to investigate the potential role of AhR in indoxyl sulfate-induced leukocyte-endothelial interactions. METHODS Endothelial cell-specific AhR knockout (eAhR KO) mice were produced by crossing AhR floxed mice with Tie2 Cre mice. Indoxyl sulfate was administered for 2 weeks, followed by injection of TNF-α. Leukocyte recruitment to the femoral artery was assessed by intravital microscopy. Vascular endothelial cells were transfected with siRNA specific to AhR (siAhR) and treated with indoxyl sulfate, followed by stimulation with TNF-α. RESULTS Indoxyl sulfate dramatically enhanced TNF-α-induced leukocyte recruitment to the vascular wall in control animals but not in eAhR KO mice. In endothelial cells, siAhR significantly reduced indoxyl sulfate-enhanced leukocyte adhesion as well as E-selectin expression, whereas the activation of JNK and nuclear factor-κB was not affected. A luciferase assay revealed that the region between -153 and -146 bps in the E-selectin promoter was responsible for indoxyl sulfate activity via AhR. Mutational analysis of this region revealed that activator protein-1 (AP-1) is responsible for indoxyl sulfate-triggered E-selectin expression via AhR. CONCLUSION AhR mediates indoxyl sulfate-enhanced leukocyte-endothelial interactions through AP-1 transcriptional activity, which may constitute a new mechanism of vascular inflammation in patients with renal disease.
Collapse
Affiliation(s)
- Shunsuke Ito
- Life Science and Bioethics, Department of International Health Development, Tokyo Medical and Dental University
| | | | | | | | | |
Collapse
|
8
|
Kataoka H, Ariyama Y, Deushi M, Osaka M, Nitta K, Yoshida M. Inhibitory Effect of Serotonin Antagonist on Leukocyte-Endothelial Interactions In Vivo and In Vitro. PLoS One 2016; 11:e0147929. [PMID: 26824242 PMCID: PMC4732655 DOI: 10.1371/journal.pone.0147929] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 01/11/2016] [Indexed: 11/25/2022] Open
Abstract
Background Although 5-HT2A serotonergic antagonists have been used to treat vascular disease in patients with diabetes mellitus or obesity, their effects on leukocyte-endothelial interactions have not been fully investigated. In this study, we assessed the effects of sarpogrelate hydrochloride (SRPO), a 5-HT2A receptor inverse agonist, on leukocyte-endothelial cell interactions in obesity both in vivo and in vitro. Methods and Findings In the in vivo experiment, C57BL/6 mice were fed a high-fat high-fructose diet (HFFD), comprising 20% fat and 30% fructose, with or without intraperitoneal injection of 5 mg/kg/day SRPO for 4 weeks. The body weight, visceral fat weight, and serum monocyte chemoattractant protein-1 levels in the mice increased significantly with the HFFD, but these effects were prevented by chronic injections of SRPO. Intravital microscopy of the femoral artery detected significant leukocyte-endothelial interactions after treatment with HFFD, but these leukocyte-endothelial interactions were reduced in the mice injected with SRPO. In the in vitro experiment, pre-incubation of activated human umbilical vein endothelial cells (HUVECs) with platelet-rich plasma (PRP) induced THP-1 cell adhesion under physiological flow conditions, but the adhesion was reduced by pretreatment of PRP with SRPO. A fluorescent immunobinding assay showed that PRP induced significant upregulation of E-selectin in HUVECs, but this upregulation was reduced by pretreatment of PRP with SRPO. In other in vitro conditions, pre-incubation of THP-1 cells with phorbol 12-myristate 13-acetate increased the adhesion of THP-1 cells to activated HUVECs under rotational conditions, but this adhesion was reduced by pretreatment with SRPO. Western blotting analysis showed that protein kinase C α activation in THP-1 cells was inhibited by SRPO. Conclusion Our findings indicated that SRPO inhibits vascular inflammation in obesity via inactivation of platelets and leukocytes, and improvement of obese.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuno Ariyama
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michiyo Deushi
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuko Osaka
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women’s Medical University, Tokyo, Japan
| | - Masayuki Yoshida
- Department of Life Sciences and Bioethics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
9
|
Jin R, Yu S, Song Z, Zhu X, Wang C, Yan J, Wu F, Nanda A, Granger DN, Li G. Soluble CD40 ligand stimulates CD40-dependent activation of the β2 integrin Mac-1 and protein kinase C zeda (PKCζ) in neutrophils: implications for neutrophil-platelet interactions and neutrophil oxidative burst. PLoS One 2013; 8:e64631. [PMID: 23785403 PMCID: PMC3675111 DOI: 10.1371/journal.pone.0064631] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 04/11/2013] [Indexed: 11/18/2022] Open
Abstract
Recent work has revealed an essential involvement of soluble CD40L (sCD40L) in inflammation and vascular disease. Activated platelets are the major source of sCD40L, which has been implicated in platelet and leukocyte activation, although its exact functional impact on leukocyte-platelet interactions and the underlying mechanisms remain undefined. We aimed to determine the impact and the mechanisms of sCD40L on neutrophils. We studied neutrophil interactions with activated, surface-adherent platelets as a model for leukocyte recruitment to the sites of injury. Our data show that CD40L contributes to neutrophil firm adhesion to and transmigration across activated surface-adherent platelets, possibly through two potential mechanisms. One involves the direct interaction of ligand-receptor (CD40L-CD40), i.e., platelet surface CD40L interaction with neutrophil CD40; another involves an indirect mechanism, i.e. soluble CD40L stimulates activation of the leukocyte-specific β2 integrin Mac-1 in neutrophils and thereby further promotes neutrophil adhesion and migration. Activation of the integrin Mac-1 is known to be critical for mediating neutrophil adhesion and migration. sCD40L activated Mac-1 in neutrophils and enhanced neutrophil-platelet interactions in wild-type neutrophils, but failed to elicit such responses in CD40-deficient neutrophils. Furthermore, our data show that the protein kinase C zeta (PKCζ) is critically required for sCD40L-induced Mac-1 activation and neutrophil adhesive function. sCD40L strongly stimulated the focal clustering of Mac-1 (CD11b) and the colocalization of Mac-1 with PKCζ in wild-type neutrophils, but had minimal effect in CD40-deficient neutrophils. Blocking PKCζ completely inhibited sCD40L-induced neutrophil firm adhesion. Moreover, sCD40L strongly stimulates neutrophil oxidative burst via CD40-dependent activation of PI3K/NF-KB, but independent of Mac-1 and PKCζ. These findings may contribute to a better understanding of the underlying mechanisms by which sCD40L/CD40 pathway contributes to inflammation and vascular diseases.
Collapse
Affiliation(s)
- Rong Jin
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Shiyong Yu
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Institute of Cardiovascular Diseases, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Zifang Song
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Xiaolei Zhu
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Cuiping Wang
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Department of Cardiology, The Affiliated Hospital of Jiangsu University, Jiangsu, Zhenjiang, China
| | - Jinchuan Yan
- Department of Cardiology, The Affiliated Hospital of Jiangsu University, Jiangsu, Zhenjiang, China
| | - Fusheng Wu
- Department of Surgical Oncology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Anil Nanda
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - D. Neil Granger
- Department of Physiology, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Guohong Li
- Vascular Biology and Stroke Research Laboratory, Department of Neurosurgery, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- Department of Physiology, Louisiana State University Health Science Center in Shreveport, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
10
|
In vivo imaging of leukocyte recruitment to the atheroprone femoral artery reveals anti-inflammatory effects of rosuvastatin. BIOMED RESEARCH INTERNATIONAL 2012; 2013:962369. [PMID: 23509822 PMCID: PMC3591208 DOI: 10.1155/2013/962369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/04/2012] [Accepted: 12/14/2012] [Indexed: 12/28/2022]
Abstract
Objective. To monitor the anti-inflammatory effect of rosuvastatin in leukocyte endothelial interactions in the atheroprone femoral artery in vivo. Methods and Results. Male Apolipoprotein E null mice (ApoE−/− mice, 6 weeks old) were fed a high-fat diet (20% fat, 1.25% cholesterol) with or without the HMG CoA reductase inhibitor rosuvastatin (10 mg/kg/day) for 6 weeks. Significant leukocyte adhesion was observed in the femoral artery of ApoE−/− mice, but not of wild type mice, in the absence of rosuvastatin. Interestingly, no obvious plaque formation was observed in the artery at this time point. The number of adherent leukocytes was dramatically diminished in ApoE−/− mice treated with rosuvastatin. DHE-associated oxidative stress and the expression of gp91-phox, a component of NADPH oxidase, were induced in ApoE−/− mice and were abolished by rosuvastatin treatment. Conclusion. Our data documented leukocyte recruitment prior to lipid accumulation and subsequent inhibition by rosuvastatin. The underlying mechanism seemed to involve oxidative stress and an anti-inflammatory effect on the endothelium of atheroprone vessels.
Collapse
|
11
|
Hagita S, Osaka M, Shimokado K, Yoshida M. Adipose inflammation initiates recruitment of leukocytes to mouse femoral artery: role of adipo-vascular axis in chronic inflammation. PLoS One 2011; 6:e19871. [PMID: 21625491 PMCID: PMC3098847 DOI: 10.1371/journal.pone.0019871] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023] Open
Abstract
Background Although inflammation within adipose tissues is known to play a role in metabolic syndrome, the causative connection between inflamed adipose tissue and atherosclerosis is not fully understood. In the present study, we examined the direct effects of adipose tissue on macro-vascular inflammation using intravital microscopic analysis of the femoral artery after adipose tissue transplantation. Methods and Results We obtained subcutaneous (SQ) and visceral (VIS) adipose tissues from C57BL/6 mice fed normal chow (NC) or a high fat diet (HF), then transplanted the tissues into the perivascular area of the femoral artery of recipient C57/BL6 mice. Quantitative intravital microscopic analysis revealed an increase in adherent leukocytes after adipose tissue transplantation, with VIS found to induce significantly more leukocyte accumulation as compared to SQ. Moreover, adipose tissues from HF fed mice showed significantly more adhesion to the femoral artery. Simultaneous flow cytometry demonstrated upregulation of CD11b on peripheral granulocyte and monocytes after adipose tissue transplantation. We also observed dominant expressions of the inflammatory cytokine IL-6, and chemokines MCP-1 and MIP-1β in the stromal vascular fraction (SVF) of these adipose tissues as well as sera of recipient mice after transplantation. Finally, massive accumulations of pro-inflammatory and dendritic cells were detected in mice with VIS transplantation as compared to SQ, as well as in HF mice as compared to those fed NC. Conclusion Our in vivo findings indicate that adipose tissue stimulates leukocyte accumulation in the femoral artery. The underlying mechanisms involve upregulation of CD11b in leukocytes, induction of cytokines and chemokines, and accumulation of pro-inflammatory cells in the SVF.
Collapse
Affiliation(s)
- Sumihiko Hagita
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
12
|
Hagita S, Osaka M, Shimokado K, Yoshida M. Combination of amlodipine and atorvastatin synergistically reduces leukocyte recruitment to mechanically injured mouse femoral artery. Hypertens Res 2011; 34:450-5. [PMID: 21270816 DOI: 10.1038/hr.2010.254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent studies have demonstrated a potential synergistic effect of the combination of amlodipine with atorvastatin to reduce acute inflammation. The intraluminal wire injury of the mouse femoral artery induced significant leukocyte recruitment to the injured area and oxidative stress within 24 h. Administration of low-dose amlodipine (0.5 mg kg(-1) per day) or atorvastatin (1 mg kg(-1) per day) alone for 7 days failed to modulate leukocyte adhesion, whereas their co-administration for 7 days significantly inhibited leukocyte adhesion. Moreover, flow cytometric analysis showed that injury-induced oxidative stress and CD11b expression in three leukocyte fractions were elevated after injury and then reduced after the co-administration. Next, adoptive transfer of mononuclear cells (MNCs) was performed and MNCs were harvested from mice after wire injury exhibited adhesion to the recipient injured artery. Furthermore, the co-administration of low-dose atorvastatin and amlodipine to MNCs or the vasculature reduced the recruitment of MNCs to the injured artery. Our findings indicate that amlodipine and atorvastatin synergistically inhibit vascular inflammation. The underlying mechanisms of their effect involve, at least in part, stabilizing oxidative stress at the point of injury, suggesting the clinical efficacy of this drug combination for the treatment of vascular diseases.
Collapse
Affiliation(s)
- Sumihiko Hagita
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Ito S, Osaka M, Higuchi Y, Nishijima F, Ishii H, Yoshida M. Indoxyl sulfate induces leukocyte-endothelial interactions through up-regulation of E-selectin. J Biol Chem 2010; 285:38869-75. [PMID: 20937831 PMCID: PMC2998130 DOI: 10.1074/jbc.m110.166686] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/28/2010] [Indexed: 01/18/2023] Open
Abstract
Despite a positive correlation between chronic kidney disease and atherosclerosis, the causative role of uremic toxins in leukocyte-endothelial interactions has not been reported. We thus examined the effects of indoxyl sulfate, a uremic toxin, on leukocyte adhesion to activated endothelial cells and the underlying mechanisms. Pretreatment of human umbilical vein endothelial cells (HUVEC) with indoxyl sulfate significantly enhanced the adhesion of human monocytic cells (THP-1 cell line) to TNF-α-activated HUVEC under physiological flow conditions. Treatment with indoxyl sulfate enhanced the expression level of E-selectin, but not that of ICAM-1 or VCAM-1, in HUVEC. Indoxyl sulfate treatment enhanced the activation of JNK, p38 MAPK, and NF-κB in TNF-α-activated HUVEC. Inhibitors of JNK and NF-κB attenuated indoxyl sulfate-induced E-selectin expression in HUVEC and subsequent THP-1 adhesion. Furthermore, treatment with the NAD(P)H oxidase inhibitor apocynin and the glutathione donor N-acetylcysteine inhibited indoxyl sulfate-induced enhancement of THP-1 adhesion to HUVEC. Next, we examined the in vivo effect of indoxyl sulfate in nephrectomized chronic kidney disease model mice. Indoxyl sulfate-induced leukocyte adhesion to the femoral artery was significantly reduced by anti-E-selectin antibody treatment. These findings suggest that indoxyl sulfate enhances leukocyte-endothelial interactions through up-regulation of E-selectin, presumably via the JNK- and NF-κB-dependent pathway.
Collapse
Affiliation(s)
- Shunsuke Ito
- From the Department of Life Science and Medical Ethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510 and
- the Biomedical Research Laboratories, Kureha Corporation, Tokyo 169-8503, Japan
| | - Mizuko Osaka
- From the Department of Life Science and Medical Ethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510 and
| | - Yusuke Higuchi
- the Biomedical Research Laboratories, Kureha Corporation, Tokyo 169-8503, Japan
| | - Fuyuhiko Nishijima
- the Biomedical Research Laboratories, Kureha Corporation, Tokyo 169-8503, Japan
| | - Hideto Ishii
- From the Department of Life Science and Medical Ethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510 and
| | - Masayuki Yoshida
- From the Department of Life Science and Medical Ethics, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo 113-8510 and
| |
Collapse
|
14
|
Drosopoulos JHF, Kraemer R, Shen H, Upmacis RK, Marcus AJ, Musi E. Human solCD39 inhibits injury-induced development of neointimal hyperplasia. Thromb Haemost 2009; 103:426-34. [PMID: 20024507 DOI: 10.1160/th09-05-0305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 11/01/2009] [Indexed: 12/13/2022]
Abstract
Blood platelets provide the initial response to vascular endothelial injury, becoming activated as they adhere to the injured site. Activated platelets recruit leukocytes, and initiate proliferation and migration of vascular smooth muscle cells (SMC) within the injured vessel wall, leading to development of neointimal hyperplasia. Endothelial CD39/NTPDase1 and recombinant solCD39 rapidly metabolise nucleotides, including stimulatory ADP released from activated platelets, thereby suppressing additional platelet reactivity. Using a murine model of vascular endothelial injury, we investigated whether circulating human solCD39 could reduce platelet activation and accumulation, thus abating leukocyte infiltration and neointimal formation following vascular damage. Intraperitoneally-administered solCD39 ADPase activity in plasma peaked 1 hour (h) post-injection, with an elimination half-life of 43 h. Accordingly, mice were administered solCD39 or saline 1 h prior to vessel injury, then either sacrificed 24 h post-injury or treated with solCD39 or saline (three times weekly) for an additional 18 days. Twenty-four hours post-injury, solCD39-treated mice displayed a reduction in platelet activation and recruitment, P-selectin expression, and leukocyte accumulation in the arterial lumen. Furthermore, repeated administration of solCD39 modulated the late stage of vascular injury by suppressing leukocyte deposition, macrophage infiltration and smooth muscle cell (SMC) proliferation/migration, resulting in abrogation of neointimal thickening. In contrast, injured femoral arteries of saline-injected mice exhibited massive platelet thrombus formation, marked P-selectin expression, and leukocyte infiltration. Pronounced neointimal growth with macrophage and SMC accretion was also observed (intimal-to-medial area ratio 1.56 +/- 0.34 at 19 days). Thus, systemic administration of solCD39 profoundly affects injury-induced cellular responses, minimising platelet deposition and leukocyte recruitment, and suppressing neointimal hyperplasia.
Collapse
Affiliation(s)
- J H F Drosopoulos
- Thrombosis Research Laboratory, Room 13026W, VA New York Harbor Healthcare System, 423 East 23rd Street, New York, N.Y. 10010-5050, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Wang H, Zhang W, Tang R, Hebbel RP, Kowalska MA, Zhang C, Marth JD, Fukuda M, Zhu C, Huo Y. Core2 1-6-N-glucosaminyltransferase-I deficiency protects injured arteries from neointima formation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 2009; 29:1053-9. [PMID: 19372458 DOI: 10.1161/atvbaha.109.187716] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Core2 1 to 6-N-glucosaminyltransferase-I (C2GlcNAcT-I) plays an important role in optimizing the binding functions of several selectin ligands, including P-selectin glycoprotein ligand. We used apolipoprotein E (ApoE)-deficient atherosclerotic mice to investigate the role of C2GlcNAcT-I in platelet and leukocyte interactions with injured arterial walls, in endothelial regeneration at injured sites, and in the formation of arterial neointima. METHODS AND RESULTS Arterial neointima induced by wire injury was smaller in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice (a 79% reduction in size). Compared to controls, apoE(-/-) mice deficient in C2GlcNAcT-I also demonstrated less leukocyte adhesion on activated platelets in microflow chambers (a 75% reduction), and accumulation of leukocytes at injured areas of mouse carotid arteries was eliminated. Additionally, endothelial regeneration in injured lumenal areas was substantially faster in C2GlcNAcT-I-deficient apoE(-/-) mice than in control apoE(-/-) mice. Endothelial regeneration was associated with reduced accumulation of platelet factor 4 (PF4) at injured sites. PF4 deficiency accelerated endothelial regeneration and protected mice from neointima formation after arterial injury. CONCLUSIONS C2GlcNAcT-I deficiency suppresses injury-induced arterial neointima formation, and this effect is attributable to decreased leukocyte recruitment to injured vascular walls and increased endothelial regeneration. Both C2GlcNAcT-I and PF4 are promising targets for the treatment of arterial restenosis.
Collapse
Affiliation(s)
- Huan Wang
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Li G, Sanders JM, Bevard MH, Sun Z, Chumley JW, Galkina EV, Ley K, Sarembock IJ. CD40 ligand promotes Mac-1 expression, leukocyte recruitment, and neointima formation after vascular injury. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1141-52. [PMID: 18349125 DOI: 10.2353/ajpath.2008.070633] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
High levels of circulating soluble CD40 ligand (sCD40L) are frequently found in patients with hypercholesterolemia, diabetes, ischemic stroke, or acute coronary syndromes, predicting an increased rate of atherosclerotic plaque rupture and restenosis after coronary/carotid interventions. Clinical restenosis is characterized in part by exaggerated neointima formation, but the underlying mechanism remains incompletely understood. This study investigated the role of elevated sCD40L in neointima formation in response to vascular injury in an atherogenic animal model and explored the molecular mechanisms involved. apoE(-/-) mice fed a Western diet developed severe hypercholesterolemia, significant hyperglycemia, and high levels of plasma sCD40L. Neointima formation after carotid denudation injury was exaggerated in the apoE(-/-) mice. In vivo, blocking CD40L with anti-CD40L monoclonal antibody attenuated the early accumulation of Ly-6G(+) neutrophils and Gr-1(+) monocytes (at 3 days) and the late accumulation of Mac-2(+) macrophages (at 28 days) in the denudated arteries; it also reduced the exaggerated neointima formation at 28 days. In vitro, recombinant CD40L stimulated platelet P-selectin and neutrophil Mac-1 expression and platelet-neutrophil co-aggregation and adhesive interaction. These effects were abrogated by anti-CD40L or anti-Mac-1 monoclonal antibody. Moreover, recombinant CD40L stimulated neutrophil oxidative burst and release of matrix metalloproteinase-9 in vitro. We conclude that elevated sCD40L promotes platelet-leukocyte activation and recruitment and neointima formation after arterial injury, potentially through enhancement of platelet P-selectin and leukocyte Mac-1 expression and oxidative activity.
Collapse
Affiliation(s)
- Guohong Li
- Cardiovascular Division, Robert M. Berne Cardiovascular Research Center, University of Virginia Health System, Charlottesville, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Hagita S, Osaka M, Shimokado K, Yoshida M. Oxidative stress in mononuclear cells plays a dominant role in their adhesion to mouse femoral artery after injury. Hypertension 2008; 51:797-802. [PMID: 18212273 DOI: 10.1161/hypertensionaha.107.098855] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leukocyte recruitment plays a pivotal role during inflammation after vascular injury. The importance of oxidative stress in vascular injury and its modulation by angiotensin II receptor blockers (olmesartan) have been demonstrated. We examined the contribution of leukocyte-associated oxidative stress in acute-phase leukocyte recruitment and its modulation by olmesartan. Male mice were treated with olmesartan (5 mg/kg per day) or vehicle for 7 days before the transluminal wire injury of the femoral artery. Intravital microscopy of the artery revealed that the mechanical injury increased adherent leukocytes at both 24 hours and 7 days after the injury, which was significantly reduced by olmesartan treatment. Dihydroethidium-associated fluorescence intensity observed in vehicle-treated mice was significantly diminished under olmesartan treatment. Apocynin, a nicotinamide-adenine dinucleotide phosphate oxidase inhibitor, showed a similar inhibitory effect on the leukocyte adhesion. Adoptive transfer of mononuclear cells, harvested from mice after wire injury, but not from those without wire injury, exhibited adhesion to the recipient injured artery. Furthermore, olmesartan treatment of mononuclear cells, but not of injured vasculature, reduced their recruitment to the injured artery. These data indicate that leukocyte recruitment to the mechanically injured artery is mediated by oxidative stress in leukocytes but not in vasculatures. Treatment with olmesartan blocked leukocyte recruitment by antagonizing mononuclear cells-associated oxidative stress.
Collapse
Affiliation(s)
- Sumihiko Hagita
- Life Science and Bioethics Research Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | |
Collapse
|