1
|
Feng Y, Yin L, Li Y. BDNF-mediated depressor response by direct baroreceptor activation benefits for prevention and control of hypertension in high-latitude cold region. Neuropeptides 2025; 111:102506. [PMID: 40037144 DOI: 10.1016/j.npep.2025.102506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025]
Abstract
Brian-derived neurotrophic factor (BDNF)-tyrosine kinase B (TrkB) signaling impacts on neuronal and cardiovascular physiology; however, its role in neurocontrol of circulation via baroreflex afferent pathway is largely unknown. Gene and protein expression of BDNF/TrkB were detected in the nodose (NG) and nucleus of tractus solitary (NTS) and expression levels were higher in male compared with female rats, which is relevant well with the blood pressure (BP, males > females in average). Microinjection of BDNF into NG dose-dependently reduced BP and this reduction was more dramatic in shamed control vs. renovascular hypertension (RVH) model rats, which partially inhibited in the presence of TrkB inhibitor K252a, indicating that BDNF-TrkB tends to lower BP under physiological and hypertensive conditions due presumably to a negative feed-back control by BP or compensatory mechanism. To answer this question, expression profiles for BDNF-TrkB were tested in the tissue of NG and NTS collected from RVH model rats. Consistently, the expression of both BDNF-TrkB were significantly up-regulated in RVH model alone with the elevation of BP. Taken these data together, our observation provides direct evidence showing the fundamental role of BDNF-TrkB signaling in autonomic control of BP regulation through baroreflex afferent function, potentially dominant role of BDNF-TrkB-mediated BP reduction in vivo baroreceptor activation due to distinct cellular mechanism compared with their role in the NTS, which extends our understanding of activity-dependent or compensatory mechanism of BDNF-TrkB in response to BP change, and sheds new light of BDNF-TrkB as potential target in prevention and control of hypertension in cold-region.
Collapse
Affiliation(s)
- Yan Feng
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Lei Yin
- Department of Pharmacy, the 3(rd) Affiliated Hospital of Harbin medical University, Harbin, China
| | - Ying Li
- Department of Pharmacy, Tianjin Cancer Hospital Airport Hospital, National Clinical Research Center for Cancer, Tianjin 300308, China.
| |
Collapse
|
2
|
Tsare EPG, Klapa MI, Moschonas NK. Protein-protein interaction network-based integration of GWAS and functional data for blood pressure regulation analysis. Hum Genomics 2024; 18:15. [PMID: 38326862 PMCID: PMC11465932 DOI: 10.1186/s40246-023-00565-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/12/2023] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND It is valuable to analyze the genome-wide association studies (GWAS) data for a complex disease phenotype in the context of the protein-protein interaction (PPI) network, as the related pathophysiology results from the function of interacting polyprotein pathways. The analysis may include the design and curation of a phenotype-specific GWAS meta-database incorporating genotypic and eQTL data linking to PPI and other biological datasets, and the development of systematic workflows for PPI network-based data integration toward protein and pathway prioritization. Here, we pursued this analysis for blood pressure (BP) regulation. METHODS The relational scheme of the implemented in Microsoft SQL Server BP-GWAS meta-database enabled the combined storage of: GWAS data and attributes mined from GWAS Catalog and the literature, Ensembl-defined SNP-transcript associations, and GTEx eQTL data. The BP-protein interactome was reconstructed from the PICKLE PPI meta-database, extending the GWAS-deduced network with the shortest paths connecting all GWAS-proteins into one component. The shortest-path intermediates were considered as BP-related. For protein prioritization, we combined a new integrated GWAS-based scoring scheme with two network-based criteria: one considering the protein role in the reconstructed by shortest-path (RbSP) interactome and one novel promoting the common neighbors of GWAS-prioritized proteins. Prioritized proteins were ranked by the number of satisfied criteria. RESULTS The meta-database includes 6687 variants linked with 1167 BP-associated protein-coding genes. The GWAS-deduced PPI network includes 1065 proteins, with 672 forming a connected component. The RbSP interactome contains 1443 additional, network-deduced proteins and indicated that essentially all BP-GWAS proteins are at most second neighbors. The prioritized BP-protein set was derived from the union of the most BP-significant by any of the GWAS-based or the network-based criteria. It included 335 proteins, with ~ 2/3 deduced from the BP PPI network extension and 126 prioritized by at least two criteria. ESR1 was the only protein satisfying all three criteria, followed in the top-10 by INSR, PTN11, CDK6, CSK, NOS3, SH2B3, ATP2B1, FES and FINC, satisfying two. Pathway analysis of the RbSP interactome revealed numerous bioprocesses, which are indeed functionally supported as BP-associated, extending our understanding about BP regulation. CONCLUSIONS The implemented workflow could be used for other multifactorial diseases.
Collapse
Affiliation(s)
- Evridiki-Pandora G Tsare
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Maria I Klapa
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| | - Nicholas K Moschonas
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece.
- Metabolic Engineering and Systems Biology Laboratory, Institute of Chemical Engineering Sciences, Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece.
| |
Collapse
|
3
|
Suriyaprom K, Pheungruang B, Pooudong S, Putpadungwipon P, Sirikulchayanonta C. Associations of Plasma BDNF and BDNF Gene Polymorphism with Cardiometabolic Parameters in Thai Children: A Pilot Study. J Nutr Metab 2023; 2023:9668626. [PMID: 37007871 PMCID: PMC10065857 DOI: 10.1155/2023/9668626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Background Childhood obesity is an important public health crisis worldwide. The brain-derived neurotrophic factor (BDNF) has been demonstrated to play a role in controlling energy homeostasis and cardiovascular regulation. Objectives To examine brain-derived neurotrophic factor (BDNF) levels and anthropometric-cardiometabolic and hematological parameters in obese and nonobese children and to determine whether two BDNF gene polymorphisms (G196A and C270T) are linked to BDNF levels, obesity, and anthropometric-cardiometabolic and hematological parameters among Thai children. Methods This case-control study included an analysis of 469 Thai children: 279 healthy nonobese and 190 obese children. Anthropometric-cardiometabolic and hematological variables and BDNF levels were measured. Genotyping of BDNF G196A and C270T was performed using the polymerase chain reaction-restriction fragment length polymorphism technique. Results Children in the obese group had significantly higher white blood cell counts and some cardiometabolic parameters. Although the difference in BDNF level between the nonobese and obese groups was not significant, BDNF level was significantly positively correlated with hematological and cardiometabolic parameters, including blood pressure, triglycerides, and triglycerides and the glucose index. The BDNF G196A polymorphism in children was only associated with decreased systolic blood pressure (p < 0.05), while the BDNF C270T polymorphism was found not to be related to BDNF levels, obesity, or other parameters after adjusting for potential covariates. Conclusions These findings in Thai children suggest that obesity is associated with increased cardiometabolic risk factors, but not with BDNF levels or the two BDNF polymorphisms studied, while the BDNF G196A polymorphism is a beneficial marker for controlling blood pressure among Thai children.
Collapse
Affiliation(s)
- Kanjana Suriyaprom
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Pathumthani 12000, Thailand
| | - Banchamaphon Pheungruang
- School of Nutrition and Dietetics, Institute of Public Health, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Somchai Pooudong
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Rajvithi Road, Rajthevee, Bangkok 10400, Thailand
| | - Pumpath Putpadungwipon
- Faculty of Medical Technology, Rangsit University, Paholyothin Road, Pathumthani 12000, Thailand
| | | |
Collapse
|
4
|
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: Implications for depression pathology. Front Mol Neurosci 2022; 15:1028223. [PMID: 36466807 PMCID: PMC9708894 DOI: 10.3389/fnmol.2022.1028223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a prevalent mental health disorder and is the number one cause of disability worldwide. Risk factors for depression include genetic predisposition and stressful life events, and depression is twice as prevalent in women compared to men. Both clinical and preclinical research have implicated a critical role for brain-derived neurotrophic factor (BDNF) signaling in depression pathology as well as therapeutics. A preponderance of this research has focused on the role of BDNF and its primary receptor tropomyosin-related kinase B (TrkB) in the cortex and hippocampus. However, much of the symptomatology for depression is consistent with disruptions in functions of the hypothalamus including changes in weight, activity levels, responses to stress, and sociability. Here, we review evidence for the role of BDNF and TrkB signaling in the regions of the hypothalamus and their role in these autonomic and behavioral functions associated with depression. In addition, we identify areas for further research. Understanding the role of BDNF signaling in the hypothalamus will lead to valuable insights for sex- and stress-dependent neurobiological underpinnings of depression pathology.
Collapse
Affiliation(s)
- Anita E. Autry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, United States
- *Correspondence: Anita E. Autry,
| |
Collapse
|
5
|
Louras P, Brown LM, Gomez R, Warren SL, Fairchild JK. BDNF Val66Met Moderates the Effects of Hypertension on Executive Functioning in Older Adults Diagnosed With aMCI. Am J Geriatr Psychiatry 2022; 30:1223-1233. [PMID: 35779988 DOI: 10.1016/j.jagp.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/16/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To investigate whether the BDNF Val66Met polymorphism influences the associations of hypertension, executive functioning and processing speed in older adults diagnosed with amnestic Mild Cognitive Impairment (aMCI). DESIGN Secondary data analysis using moderation modeling. SETTING Veterans Affairs Hospital, Palo Alto, CA. PARTICIPANTS Sample included 108 community-dwelling volunteers (mean age 71.3 ± 9.2 years) diagnosed with aMCI. MEASUREMENTS Cognitive performance was evaluated from multiple baseline assessments (Trail Making Test; Stroop Color-Word Test; Symbol Digit Modality Test) and grouped into standardized composite scores representing executive function and processing speed domains. BDNF genotypes were determined from whole blood samples. Hypertension was assessed from resting blood pressures or by self-report. RESULTS Controlling for age, BDNF Val66Met moderated the effects of hypertension on executive functioning, but added no significant variance to processing speed scores. Specifically, hypertensive carriers of the BDNF Met allele performed significantly below the sample mean on tasks of executive functioning, and evidenced significantly lower scores when compared to Val-Val homozygotes and normotensive participants. CONCLUSIONS Results posit that the executive functioning of non-demented older adults may be susceptible to interactions between BDNF genotype and hypertension, and Val-Val homozygotes and normotensive older adults may be more resilient to these effects of cognitive change. Further research is needed to understand the underlying processes and to implement strategies that target modifiable risk factors and promote cognitive resilience.
Collapse
Affiliation(s)
- Peter Louras
- Sierra Pacific Mental Illness Research (PL, JKF), Education, and Clinical Center (MIRECC) at VA Palo Alto Health Care System, Palo Alto, CA; Department of Psychiatry and Behavioral Sciences (PL, LMB, JKF), Stanford University School of Medicine, Stanford, CA
| | - Lisa M Brown
- Department of Psychiatry and Behavioral Sciences (PL, LMB, JKF), Stanford University School of Medicine, Stanford, CA; Department of Psychology (LMB, RG, SLW), Palo Alto University, Palo Alto, CA
| | - Rowena Gomez
- Department of Psychology (LMB, RG, SLW), Palo Alto University, Palo Alto, CA
| | - Stacie L Warren
- Department of Psychology (LMB, RG, SLW), Palo Alto University, Palo Alto, CA
| | - Jennifer Kaci Fairchild
- Sierra Pacific Mental Illness Research (PL, JKF), Education, and Clinical Center (MIRECC) at VA Palo Alto Health Care System, Palo Alto, CA; Department of Psychiatry and Behavioral Sciences (PL, LMB, JKF), Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
6
|
Johnson AC, Uhlig F, Einwag Z, Cataldo N, Erdos B. The neuroendocrine stress response impairs hippocampal vascular function and memory in male and female rats. Neurobiol Dis 2022; 168:105717. [PMID: 35385769 PMCID: PMC9018625 DOI: 10.1016/j.nbd.2022.105717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Chronic psychological stress affects brain regions involved in memory such as the hippocampus and accelerates age-related cognitive decline, including in Alzheimer's disease and vascular dementia. However, little is known about how chronic stress impacts hippocampal vascular function that is critically involved in maintaining neurocognitive health that could contribute to stress-related memory dysfunction. Here, we used a novel experimental rat model that mimics the neuroendocrine and cardiovascular aspects of chronic stress to determine how the neuroendocrine components of the stress response affect hippocampal function. We studied both male and female rats to determine potential sex differences in the susceptibility of the hippocampus and its vasculature to neuroendocrine stress-induced dysfunction. We show that activation of neuroendocrine stress pathways impaired the vasoreactivity of hippocampal arterioles to mediators involved in coupling neuronal activity with local blood flow that was associated with impaired memory function. Interestingly, we found more hippocampal arteriolar dysfunction and scarcer hippocampal microvasculature in male compared to female rats that was associated with greater memory impairment, suggesting the male sex may be at increased risk of neuroendocrine-derived hippocampal dysfunction during chronic stress. Overall, this study revealed the therapeutic potential of targeting hippocampal arterioles to prevent or slow memory decline in the setting of prolonged and/or unavoidable stress.
Collapse
Affiliation(s)
- Abbie C Johnson
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA.
| | - Friederike Uhlig
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Noelle Cataldo
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, 05405, USA
| |
Collapse
|
7
|
Maroofi A, Bagheri Rouch A, Naderi N, Damirchi A. Effects of two different exercise paradigms on cardiac function, BDNF-TrkB expression, and myocardial protection in the presence and absence of Western diet. IJC HEART & VASCULATURE 2022; 40:101022. [PMID: 35399608 PMCID: PMC8991101 DOI: 10.1016/j.ijcha.2022.101022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Background Brain-derived neurotrophic factor (BDNF) -tropomyosin-related kinase receptor B (TrkB) signaling is a vital regulator of myocardial performance. Here, we tested the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on heart function, metabolic parameters, and serum/cardiac BDNF (with its TrkB receptor) in animals fed a Western (WD) or regular diet (ND). Further, myocardial expression of pro-inflammatory cytokine interleukin-18 (IL-18) and cardioprotective molecule heme oxygens-1 (HO-1) were monitored. Methods Wistar rats were divided into HIIT, MICT, and sedentary (SED), all fed a WD or ND, for 12 weeks. Heart function, protein expression, and serum factors were assessed via echocardiography, western blotting, and ELISA, respectively. Results WD plus SED caused insulin resistance, dyslipidemia, visceral fat deposition, serum BDNF depletion as well as cardiac upregulation of IL-18 and downregulation of HO-1, without affecting, heart function and BDNF-TrkB expression. The cardiometabolic risk factors, serum BDNF losses, and IL-18 overexpression were similarly obviated by HIIT and MICT, although HO-1 expression was boosted by HIIT exclusively (even in ND). HIIT enhanced heart function, regardless of the diet. HIIT augmented cardiac BDNF expression, with a significant difference between ND and WD. Likewise, HIIT instigated TrkB expression only in ND. Conclusions HIIT and MICT can cope with myocardial inflammation and cardiometabolic risk factors in WD consumers and, exclusively, HIIT may grant further protection by increasing heart function, BDNF-TrkB expression, and HO-1 expression. Thus, the HIIT paradigm should be considered as a preference for subjects who require heart function to be preserved or enhanced.
Collapse
Affiliation(s)
- Abdulbaset Maroofi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Ahmadreza Bagheri Rouch
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Damirchi
- Department of Exercise Physiology, Faculty of Physical Education & Sport Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
8
|
Kassan A, Ait-Aissa K, Kassan M. Gut Microbiota Regulates the Sympathetic Nerve Activity and Peripheral Serotonin Through Hypothalamic MicroRNA-204 in Order to Increase the Browning of White Adipose Tissue in Obesity. Cureus 2022; 14:e21913. [PMID: 35155042 PMCID: PMC8820388 DOI: 10.7759/cureus.21913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/21/2022] Open
Abstract
The prevalence of obesity is increasing worldwide, and novel therapeutic strategies such as enhancement of thermogenic pathways in white adipose tissue (WAT) are gaining more attention. The gut/brain axis plays an essential role in promoting the browning of WAT. However, the mechanism by which this axis regulates WAT function is not fully understood. On the other hand, the role of microRNAs (miRNAs) in the control of WAT browning has already been established. Therefore, understanding the communication pathways linking the gut/brain axis and miRNAs might establish a promising intervention for obesity. Our published data showed that microRNA-204 (miR-204), a microRNA that plays an important role in the control of the central nervous system (CNS) and the pathogenesis of obesity, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that controls the browning of WAT by acting as a potential link between the gut microbiota and the brain. In this review, we summarized the current knowledge about communication pathways between the brain, gut, and miR-204 and examined the literature to discuss potential research directions that might lead to a better understanding of the mechanisms underlying the browning of WAT in obesity.
Collapse
Affiliation(s)
- Adam Kassan
- Pharmacy, West Coast University, Los Angeles, USA
| | | | - Modar Kassan
- Physiology, University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
9
|
Perrotta M, Carnevale D. Brain Areas Involved in Modulating the Immune Response Participating in Hypertension and Its Target Organ Damage. Antioxid Redox Signal 2021; 35:1515-1530. [PMID: 34269604 DOI: 10.1089/ars.2021.0142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Hypertension is a multifactorial disease ensuing from the continuous challenge imposed by several risk factors on the cardiovascular system. Classically known pathophysiological alterations associated with hypertension comprise neurogenic mechanisms dysregulating the autonomic nervous system (ANS), vascular dysfunction, and excessive activation of the renin angiotensin system. During the past few years, a considerable number of studies indicated that immune activation and inflammation also have an important role in the onset and maintenance of hypertension. Critical Issues: On these premises, it has been necessary to reconsider the pathophysiological mechanisms underlying hypertension development, taking into account the potential interactions established between classically known determinants of high blood pressure and the immune system. Recent Advances: Interestingly, central nervous system areas controlling cardiovascular functions are enriched with Angiotensin II receptors. Observations showing that these brain areas are crucial for mediating peripheral ANS and immune responses were suggestive of a critical role of neuroimmune interactions in hypertension. In fact, the ANS, characterized by an intricate network of afferent and efferent fibers, represents an intermediate between the brain and peripheral responses that are essential for blood pressure regulation. Future Directions: In this review, we will summarize studies showing how specific brain areas can modulate immune responses that are involved in hypertension. Antioxid. Redox Signal. 35, 1515-1530.
Collapse
Affiliation(s)
- Marialuisa Perrotta
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Daniela Carnevale
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy.,Research Unit of Neuro and Cardiovascular Pathophysiology, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
10
|
Fyk-Kolodziej BE, Mueller PJ. Sedentary Conditions Promote Subregionally Specific Changes in Brain-Derived Neurotrophic Factor in the Rostral Ventrolateral Medulla. Front Physiol 2021; 12:756542. [PMID: 34721079 PMCID: PMC8548431 DOI: 10.3389/fphys.2021.756542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022] Open
Abstract
A sedentary lifestyle is the top preventable cause of death and accounts for substantial socioeconomic costs to society. The rostral ventrolateral medulla regulates blood pressure under normal and pathophysiological states, and demonstrates inactivity-related structural and functional neuroplasticity, which is subregionally specific. The purpose of this study was to examine pro- and mature forms of brain-derived neurotrophic factor (BDNF) and their respective receptors in the male rat rostral ventrolateral medulla (RVLM) and its rostral extension following sedentary vs. active (running wheels) conditions (10-12weeks). We used subregionally specific Western blotting to determine that the mature form of BDNF and its ratio to its pro-form were lower in more caudal subregions of the rostral ventrolateral medulla of sedentary rats but higher in the rostral extension when both were compared to active rats. The full-length form of the tropomyosin receptor kinase B receptor and the non-glycosylated form of the 75 kilodalton neurotrophin receptor were lower in sedentary compared to active rats. The rostrocaudal patterns of expression of the mature form of BDNF and the full-length form of the tropomyosin receptor kinase B receptor were remarkably similar to the subregionally specific patterns of enhanced dendritic branching, neuronal activity, and glutamate-mediated increases in sympathetic nerve activity observed in previous studies performed in sedentary rats. Our studies suggest signaling pathways related to BDNF within subregions of both the rostral ventrolateral medulla and its rostral extension contribute to cardiovascular disease and premature death related to a sedentary lifestyle.
Collapse
Affiliation(s)
| | - Patrick J. Mueller
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
11
|
Kassan A, Ait-Aissa K, Kassan M. Hypothalamic miR-204 Induces Alteration of Heart Electrophysiology and Neurogenic Hypertension by Regulating the Sympathetic Nerve Activity: Potential Role of Microbiota. Cureus 2021; 13:e18783. [PMID: 34692262 PMCID: PMC8523185 DOI: 10.7759/cureus.18783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
There is abundant evidence demonstrating the association between gut dysbiosis and neurogenic diseases such as hypertension. A common characteristic of resistant hypertension is the chronic elevation in sympathetic nervous system (SNS) activity accompanied by increased release of norepinephrine (NE), indicating a neurogenic component that contributes to the development of hypertension. Factors that modulate the sympathetic tone to the cardiovascular system in hypertensive patients are still poorly understood. Research has identified an interaction between the brain and the gut, and this interaction plays a possible role in the mechanism of heart damage-induced hypertension. Data, however, remain scarce, and further study is required to define the role of microbiota in sympathetic neural function and its relationship with heart damage and blood pressure (BP) control. Experimental evidence has pointed toward a bidirectional relationship between alterations in the types of bacteria present in the gut and neurogenic diseases, such as hypertension. Our published data showed that miR-204, a microRNA that plays an important role in the CNS function, is affected by gut dysbiosis. Therefore, miR-204 could be a key element that regulates normal sinus rhythm and neuronal hypertension. In this review, we will shed light on the potential mechanism by which microbiota affects hypothalamic miR-204, which in turn, could hinder the sympathetic nerve drive to the cardiovascular system leading to arrhythmia and hypertension.
Collapse
Affiliation(s)
- Adam Kassan
- School of Pharmacy, West Coast University, Los Angeles, USA
| | | | - Modar Kassan
- Physiology, The University of Tennessee Health Science Center, Memphis, USA
| |
Collapse
|
12
|
Thorsdottir D, Einwag Z, Erdos B. BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. J Neurophysiol 2021; 126:1209-1220. [PMID: 34406887 DOI: 10.1152/jn.00247.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Presympathetic neurons in the paraventricular nucleus of the hypothalamus (PVN) play a key role in cardiovascular regulation. We have previously shown that brain-derived neurotrophic factor (BDNF), acting in the PVN, increases sympathetic activity and blood pressure and serves as a key regulator of stress-induced hypertensive responses. BDNF is known to alter glutamatergic and GABA-ergic signaling broadly in the central nervous system, but whether BDNF has similar actions in the PVN remains to be investigated. Here, we tested the hypothesis that increased BDNF expression in the PVN elevates blood pressure by enhancing N-methyl-d-aspartate (NMDA) receptor (NMDAR)- and inhibiting GABAA receptor (GABAAR)-mediated signaling. Sprague-Dawley rats received bilateral PVN injections of AAV2 viral vectors expressing green fluorescent protein (GFP) or BDNF. Three weeks later, cardiovascular responses to PVN injections of NMDAR and GABAAR agonists and antagonists were recorded under α-chloralose-urethane anesthesia. In addition, expressions of excitatory and inhibitory signaling components in the PVN were assessed using immunofluorescence. Our results showed that NMDAR inhibition led to a greater decrease in blood pressure in the BDNF vs. GFP group, while GABAAR inhibition led to greater increases in blood pressure in the GFP group compared to BDNF. Conversely, GABAAR activation decreased blood pressure significantly more in GFP vs. BDNF rats. In addition, immunoreactivity of NMDAR1 was upregulated, while GABAAR-α1 and K+/Cl- cotransporter 2 were downregulated by BDNF overexpression in the PVN. In summary, our findings indicate that hypertensive actions of BDNF within the PVN are mediated, at least in part, by augmented NMDAR and reduced GABAAR signaling.NEW & NOTEWORTHY We have shown that BDNF, acting in the PVN, elevates blood pressure in part by augmenting NMDA receptor-mediated excitatory input and by diminishing GABAA receptor-mediated inhibitory input to PVN neurons. In addition, we demonstrate that elevated BDNF expression in the PVN upregulates NMDA receptor immunoreactivity and downregulates GABAA receptor as well as KCC2 transporter immunoreactivity.
Collapse
Affiliation(s)
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
13
|
Yang X, Liu S, Zhang Z. Sex difference in blood pressure, a combinatorial consequence of the differential in RAAS components, sex hormones and time course. Curr Hypertens Rev 2021; 18:11-16. [PMID: 33992057 DOI: 10.2174/1573402117666210511011444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 11/22/2022]
Abstract
The longitudinal increment of blood pressure (BP) with age is attributed to lifestyle, internal and external environments. It is not limited to systemic brain-derived neurotrophic factor (BDNF), signaling to allow the individuals to better adapt to the developmental and environmental change. This regulation is necessary for all lives, regardless of sex. Basic levels of renin-angiotensin- aldosterone system (RAAS) components in males and females define the fundamental sex difference in BP, which may be set by prenatal programming and profoundly influence BP after birth. The innate sex difference in BP is magnified during puberty growth and further modified by menopause. At the age of 70 or older, blood pressure was similar in men and women. The understanding of the prenatal setup and development of sexual dimorphism in BP may provide preventative therapeutic strategies, including timing and drugs, for individuals with abnormal BP.
Collapse
Affiliation(s)
- Xiaomei Yang
- College of Basic Medicine, Henan University of Chinese Medicine,156,Jinshui East Road ,Zhengdong New District, Zhengzhou, Henan 450046. China
| | - Shien Liu
- College of Basic Medicine, Henan University of Chinese Medicine,156,Jinshui East Road ,Zhengdong New District, Zhengzhou, Henan 450046. China
| | - Zhongming Zhang
- College of Chinese Medicine, and Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology; 80 Changjiang Rd. Nanyang, Henan, 473004. China
| |
Collapse
|
14
|
Wang T, Maltez MT, Lee HW, Ahmad M, Wang HW, Leenen FHH. Effect of exercise training on the FNDC5/BDNF pathway in spontaneously hypertensive rats. Physiol Rep 2020; 7:e14323. [PMID: 31883222 PMCID: PMC6934876 DOI: 10.14814/phy2.14323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Increased sympathetic activity contributes to the development of cardiovascular diseases such as hypertension. Exercise training lowers sympathetic activity and is beneficial for the prevention and treatment of hypertension and associated cognitive impairment. Increased BDNF expression in skeletal muscle, heart, and brain may contribute to these actions of exercise, but the mechanisms by which this occurs are unknown. We postulated that hypertension is associated with decreased hippocampal BDNF, which can be restored by exercise‐mediated upregulation of fibronectin type‐II domain‐containing 5 (FNDC5). Spontaneously hypertensive rats (SHR) and normotensive Wistar–Kyoto rats (WKY) were subjected to 5 weeks of motorized treadmill training. BDNF and FNDC5 expressions were measured in the left ventricle (LV), quadriceps, soleus muscle, and brain areas. Exercise training reduced blood pressure (BP) in both strains. BDNF and FNDC5 protein in the LV were increased in SHR, but exercise increased only BDNF protein in both strains. BDNF mRNA, but not protein, was increased in the quadriceps of SHR, and BDNF mRNA and protein were decreased by exercise in both groups. FNDC5 protein was higher in SHR in both the quadriceps and soleus muscle, whereas exercise increased FNDC5 protein only in the quadriceps in both strains. BDNF mRNA was lower in the dentate gyrus (DG) of SHR, which was normalized by exercise. BDNF mRNA expression in the DG negatively correlated with BP. No differences in FNDC5 expression were observed in the brain, suggesting that enhanced BDNF signaling may contribute to the cardiovascular and neurological benefits of exercise training, and these processes involve peripheral, but not central, FNDC5.
Collapse
Affiliation(s)
- Tao Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Melissa T Maltez
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
15
|
Lee HW, Ahmad M, Wang HW, Leenen FHH. Effects of exercise on BDNF-TrkB signaling in the paraventricular nucleus and rostral ventrolateral medulla in rats post myocardial infarction. Neuropeptides 2020; 82:102058. [PMID: 32507324 DOI: 10.1016/j.npep.2020.102058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023]
Abstract
Brain-derived neurotrophic factor (BDNF)-tropomyosin-related kinase B (TrkB) signaling in the paraventricular nucleus (PVN) and rostral ventrolateral medulla (RVLM) is associated with cardiovascular regulation. Exercise increases plasma BDNF and attenuates activation of central pathways in the PVN and RVLM post myocardial infarction (MI). The present study assessed whether MI alters BDNF-TrkB signaling and intracellular factors Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Akt in the PVN and RVLM of male Wistar rats with or without exercise or treatment with the TrkB blocker ANA-12. A 4-week period of treadmill exercise training was performed in MI rats. A separate experiment was conducted with 2.5 mg/kg ANA-12 in sedentary MI rats. At 5 weeks post MI, in both the PVN and RVLM, the ratio of full-length TrkB (TrkB.FL) and truncated TrkB (TrkB.T1) was decreased. 0.5 mg/kg ANA-12 did not affect BDNF-TrkB signaling and cardiac function post MI, but 2.5 mg/kg ANA-12 further decreased ejection fraction (EF). Exercise increased mature BDNF (mBDNF) and decreased Akt activity in the PVN, whereas in the RVLM, exercise did not affect mBDNF but lowered p-CaMKIIβ. ANA-12 prevented the exercise-induced increase in mBDNF in the PVN and decrease in p-CaMKIIβ in the RVLM. In conclusion, exercise decreases Akt activity in the PVN and decreases p-CaMKIIβ in the RVLM post MI. BDNF-TrkB signaling only mediates the decrease in p-CaMKIIβ in the RVLM. The exercise-induced decreases in Akt activity in the PVN and p-CaMKIIβ in the RVLM may contribute to the attenuation of the decrease in EF and sympathetic hyperactivity post MI.
Collapse
Affiliation(s)
- Heow Won Lee
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Monir Ahmad
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Hong-Wei Wang
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Hasegawa Y, Cheng C, Hayashi K, Takemoto Y, Kim-Mitsuyama S. Anti-apoptotic effects of BDNF-TrkB signaling in the treatment of hemorrhagic stroke. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
17
|
Balasubramanian P, Asirvatham-Jeyaraj N, Monteiro R, Sivasubramanian MK, Hall D, Subramanian M. Obesity-induced sympathoexcitation is associated with Nrf2 dysfunction in the rostral ventrolateral medulla. Am J Physiol Regul Integr Comp Physiol 2019; 318:R435-R444. [PMID: 31823672 DOI: 10.1152/ajpregu.00206.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increases in sympathetic nerve activity (SNA) have been implicated in obesity-induced risk for cardiovascular diseases, especially hypertension. Previous studies indicate that oxidative stress in the rostral ventrolateral medulla (RVLM), a key brain stem region that regulates sympathetic outflow to peripheral tissues, plays a pathogenic role in obesity-mediated sympathoexcitation. However, the molecular mechanisms underlying this phenomenon are not clear. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that regulates the expression of antioxidant and anti-inflammatory genes and confers cytoprotection against oxidative stress. The present study was designed to investigate whether Nrf2 dysfunction was associated with obesity-induced oxidative stress in the RVLM and sympathoexcitation. C57BL/6J mice were fed with chow or a high-fat diet (HFD) for 16 wk. Blood pressure parameters were assessed by radiotelemeters in conscious freely moving mice. SNA was measured by heart rate variability analysis and also through assessment of depressor response to ganglionic blockade. The RVLM was microdissected for gene expression and protein analysis (Western blot analysis and activity assay) related to Nrf2 signaling. Our results showed that HFD-induced obesity resulted in significant increases in SNA, although we only observed a mild increase in mean arterial pressure. Obesity-induced oxidative stress in the RVLM was associated with impaired Nrf2 signaling marked by decreased Nrf2 activity, downregulation of Nrf2 mRNA, its target genes [NAD(P)H quinone dehyrogenase 1 (Nqo1) and superoxide dismutase 2 (Sod2)], and inflammation. Our findings suggest that obesity results in Nrf2 dysfunction, which likely causes maladaptation to oxidative stress and inflammation in the RVLM. These mechanisms could potentially contribute to obesity-induced sympathoexcitation.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Reynolds Oklahoma Center on Aging, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | - Raisa Monteiro
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Mahesh Kumar Sivasubramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Delton Hall
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| | - Madhan Subramanian
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
18
|
Thorsdottir D, Cruickshank NC, Einwag Z, Hennig GW, Erdos B. BDNF downregulates β-adrenergic receptor-mediated hypotensive mechanisms in the paraventricular nucleus of the hypothalamus. Am J Physiol Heart Circ Physiol 2019; 317:H1258-H1271. [PMID: 31603352 DOI: 10.1152/ajpheart.00478.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is upregulated in the paraventricular nucleus of the hypothalamus (PVN) in response to hypertensive stimuli such as stress and hyperosmolality, and BDNF acting in the PVN plays a key role in elevating sympathetic activity and blood pressure. However, downstream mechanisms mediating these effects remain unclear. We tested the hypothesis that BDNF increases blood pressure, in part by diminishing inhibitory hypotensive input from nucleus of the solitary tract (NTS) catecholaminergic neurons projecting to the PVN. Male Sprague-Dawley rats received bilateral PVN injections of viral vectors expressing either green fluorescent protein (GFP) or BDNF and bilateral NTS injections of vehicle or anti-dopamine-β-hydroxylase-conjugated saporin (DSAP), a neurotoxin that selectively lesions noradrenergic and adrenergic neurons. BDNF overexpression in the PVN without NTS lesioning significantly increased mean arterial pressure (MAP) in awake animals by 18.7 ± 1.8 mmHg. DSAP treatment also increased MAP in the GFP group, by 9.8 ± 3.2 mmHg, but failed to affect MAP in the BDNF group, indicating a BDNF-induced loss of NTS catecholaminergic hypotensive effects. In addition, in α-chloralose-urethane-anesthetized rats, hypotensive responses to PVN injections of the β-adrenergic agonist isoprenaline were significantly attenuated by BDNF overexpression, whereas PVN injections of phenylephrine had no effect on blood pressure. BDNF treatment was also found to significantly reduce β1-adrenergic receptor mRNA expression in the PVN, whereas expression of other adrenergic receptors was unaffected. In summary, increased BDNF expression in the PVN elevates blood pressure, in part by downregulating β-receptor signaling and diminishing hypotensive catecholaminergic input from the NTS to the PVN.NEW & NOTEWORTHY We have shown that BDNF, a key hypothalamic regulator of blood pressure, disrupts catecholaminergic signaling between the NTS and the PVN by reducing the responsiveness of PVN neurons to inhibitory hypotensive β-adrenergic input from the NTS. This may be occurring partly via BDNF-mediated downregulation of β1-adrenergic receptor expression in the PVN and results in an increase in blood pressure.
Collapse
Affiliation(s)
| | | | - Zachary Einwag
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Grant W Hennig
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| |
Collapse
|
19
|
Effects of enalapril and losartan alone and in combination with sodium valproate on seizures, memory, and cardiac changes in rats. Epilepsy Behav 2019; 92:345-352. [PMID: 30658894 DOI: 10.1016/j.yebeh.2018.12.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Cardiac changes accompanying seizures may be responsible for sudden unexpected death in epilepsy (SUDEP), and drugs with antiseizure and favorable cardiovascular profile could be beneficial. The effect of losartan and enalapril alone and in combination with sodium valproate on seizures, cognition, cardiac histopathology, and serum brain-derived neurotropic factor (BDNF) levels were determined. METHODS Male "Wistar" rats (200-250 g) were administered enalapril (20 mg/kg, intraperitoneally (i.p.)) and losartan (10 mg/kg, i.p.) daily and simultaneously subjected to pentylenetetrazole (PTZ)-kindling (PTZ 30 mg/kg, i.p., every alternate day). Enalapril and losartan were injected 45 & 120 min before seizure stimuli. In another set of experiments, sodium valproate (150 mg/kg, i.p.) alone or in combination with enalapril (20 mg/kg, i.p.) and losartan (10 mg/kg, i.p.) were administered daily during induction of kindling. The effect on seizures and behavior were noted; rats were sacrificed, and blood and hearts were collected for further analysis, i.e., BDNF levels, heart weight-body weight (HWBW) ratio, and cardiac histopathology. RESULTS Losartan, but not enalapril, suppressed the seizure score in PTZ kindling. Sodium valproate alone or in combination with losartan or enalapril prevented kindled seizures. Sodium valproate per se caused cognitive impairment, which was prevented on combining with losartan or enalapril. A decrease in HWBW ratio was observed only in enalapril group (p value = 0.02). Kindling led to cardiac ischemic changes, which could be prevented by losartan and sodium valproate. Serum BDNF level was decreased in PTZ (p value = 0.02) and sodium valproate per se group (p value = 0.04), but sodium valproate could reverse the PTZ-induced decrease in serum BDNF level. CONCLUSION The use of losartan with sodium valproate in epilepsy may prevent the cognitive and cardiac sequelae of seizures. The BDNF levels as a marker for cardiovascular risk in persons with epilepsy (PWE) needs to be explored further.
Collapse
|
20
|
Zhang Z, Zhang Y, Wang Y, Ding S, Wang C, Gao L, Johnson A, Xue B. Genetic knockdown of brain-derived neurotrophic factor in the nervous system attenuates angiotensin II-induced hypertension in mice. J Renin Angiotensin Aldosterone Syst 2019; 20:1470320319834406. [PMID: 30894041 PMCID: PMC6429654 DOI: 10.1177/1470320319834406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/06/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION: Brain-derived neurotropic factor (BDNF) is expressed throughout the central nervous system and peripheral organs involved in the regulation of blood pressure, but the systemic effects of BDNF in the control of blood pressure are not well elucidated. MATERIALS AND METHODS: We utilized loxP flanked BDNF male mice to cross with nestin-Cre female mice to generate nerve system BDNF knockdown mice, nestin-BDNF (+/-), or injected Cre adenovirus into the subfornical organ to create subfornical organ BDNF knockdown mice. Histochemistry was used to verify injection location. Radiotelemetry was employed to determine baseline blood pressure and pressor response to angiotensin II (1000 ng/kg/min). Real-time polymerase chain reaction was used to measure the expression of renin-angiotensin system components in the laminal terminalis and peripheral organs. RESULTS: Nestin-BDNF (+/-) mice had lower renin-angiotensin system expression in the laminal terminalis and peripheral organs including the gonadal fat pad, and a lower basal blood pressure. They exhibited an attenuated hypertensive response and a weak or similar modification of renin-angiotensin system component expression to angiotensin II infusion. Subfornical organ BDNF knockdown was sufficient for the attenuation of angiotensin II-induced hypertension. CONCLUSION: Central BDNF, especially subfornical organ BDNF is involved in the maintenance of basal blood pressure and in augmentation of hypertensive response to angiotensin II through systemic regulation of the expression of renin-angiotensin system molecules.
Collapse
Affiliation(s)
- Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yijing Zhang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Yan Wang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Shengchen Ding
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Chenhui Wang
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Li Gao
- Zhang Zhongjing College of Chinese Medicine, Henan Key Laboratory of Zhang Zhongjing’s Formulea for Immunoregulation, Nanyang Institute of Technology, China
| | - Alan Johnson
- Department of Psychological and Brain Sciences, University of Iowa, USA
| | - Baojian Xue
- Department of Psychological and Brain Sciences, University of Iowa, USA
| |
Collapse
|
21
|
Forrester SJ, Booz GW, Sigmund CD, Coffman TM, Kawai T, Rizzo V, Scalia R, Eguchi S. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev 2018; 98:1627-1738. [PMID: 29873596 DOI: 10.1152/physrev.00038.2017] [Citation(s) in RCA: 720] [Impact Index Per Article: 102.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The renin-angiotensin-aldosterone system plays crucial roles in cardiovascular physiology and pathophysiology. However, many of the signaling mechanisms have been unclear. The angiotensin II (ANG II) type 1 receptor (AT1R) is believed to mediate most functions of ANG II in the system. AT1R utilizes various signal transduction cascades causing hypertension, cardiovascular remodeling, and end organ damage. Moreover, functional cross-talk between AT1R signaling pathways and other signaling pathways have been recognized. Accumulating evidence reveals the complexity of ANG II signal transduction in pathophysiology of the vasculature, heart, kidney, and brain, as well as several pathophysiological features, including inflammation, metabolic dysfunction, and aging. In this review, we provide a comprehensive update of the ANG II receptor signaling events and their functional significances for potential translation into therapeutic strategies. AT1R remains central to the system in mediating physiological and pathophysiological functions of ANG II, and participation of specific signaling pathways becomes much clearer. There are still certain limitations and many controversies, and several noteworthy new concepts require further support. However, it is expected that rigorous translational research of the ANG II signaling pathways including those in large animals and humans will contribute to establishing effective new therapies against various diseases.
Collapse
Affiliation(s)
- Steven J Forrester
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - George W Booz
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Curt D Sigmund
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Thomas M Coffman
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Tatsuo Kawai
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Victor Rizzo
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Rosario Scalia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| | - Satoru Eguchi
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University , Philadelphia, Pennsylvania ; Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center , Jackson, Mississippi ; Department of Pharmacology, Center for Hypertension Research, Roy J. and Lucille A. Carver College of Medicine, University of Iowa , Iowa City, Iowa ; and Duke-NUS, Singapore and Department of Medicine, Duke University Medical Center , Durham, North Carolina
| |
Collapse
|
22
|
Dampney RA, Michelini LC, Li DP, Pan HL. Regulation of sympathetic vasomotor activity by the hypothalamic paraventricular nucleus in normotensive and hypertensive states. Am J Physiol Heart Circ Physiol 2018; 315:H1200-H1214. [PMID: 30095973 PMCID: PMC6297824 DOI: 10.1152/ajpheart.00216.2018] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/22/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is a unique and important brain region involved in the control of cardiovascular, neuroendocrine, and other physiological functions pertinent to homeostasis. The PVN is a major source of excitatory drive to the spinal sympathetic outflow via both direct and indirect projections. In this review, we discuss the role of the PVN in the regulation of sympathetic output in normal physiological conditions and in hypertension. In normal healthy animals, the PVN presympathetic neurons do not appear to have a major role in sustaining resting sympathetic vasomotor activity or in regulating sympathetic responses to short-term homeostatic challenges such as acute hypotension or hypoxia. Their role is, however, much more significant during longer-term challenges, such as sustained water deprivation, chronic intermittent hypoxia, and pregnancy. The PVN also appears to have a major role in generating the increased sympathetic vasomotor activity that is characteristic of multiple forms of hypertension. Recent studies in the spontaneously hypertensive rat model have shown that impaired inhibitory and enhanced excitatory synaptic inputs to PVN presympathetic neurons are the basis for the heightened sympathetic outflow in hypertension. We discuss the molecular mechanisms underlying the presynaptic and postsynaptic alterations in GABAergic and glutamatergic inputs to PVN presympathetic neurons in hypertension. In addition, we discuss the ability of exercise training to correct sympathetic hyperactivity by restoring blood-brain barrier integrity, reducing angiotensin II availability, and decreasing oxidative stress and inflammation in the PVN.
Collapse
Affiliation(s)
- Roger A Dampney
- Department of Physiology, University of Sydney , Sydney, New South Wales , Australia
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| | - De-Pei Li
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center , Houston, Texas
| |
Collapse
|
23
|
Mirenayat MS, Moradi S, Mohammadi H, Rouhani MH. Effect of L-Citrulline Supplementation on Blood Pressure: a Systematic Review and Meta-Analysis of Clinical Trials. Curr Hypertens Rep 2018; 20:98. [DOI: 10.1007/s11906-018-0898-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Rafa-Zabłocka K, Kreiner G, Bagińska M, Nalepa I. Selective Depletion of CREB in Serotonergic Neurons Affects the Upregulation of Brain-Derived Neurotrophic Factor Evoked by Chronic Fluoxetine Treatment. Front Neurosci 2018; 12:637. [PMID: 30294251 PMCID: PMC6158386 DOI: 10.3389/fnins.2018.00637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022] Open
Abstract
Neurotrophic factors are regarded as crucial regulatory components in neuronal plasticity and are postulated to play an important role in depression pathology. The abundant expression of brain-derived neurotrophic factor (BDNF) in various brain structures seems to be of particular interest in this context, as downregulation of BDNF is postulated to be correlated with depression and its upregulation is often observed after chronic treatment with common antidepressants. It is well-known that BDNF expression is regulated by cyclic AMP response element-binding protein (CREB). In our previous study using mice lacking CREB in serotonergic neurons (Creb1TPH2CreERT2 mice), we showed that selective CREB ablation in these particular neuronal populations is crucial for drug-resistant phenotypes in the tail suspension test observed after fluoxetine administration in Creb1TPH2CreERT2 mice. The aim of this study was to investigate the molecular changes in the expression of neurotrophins in Creb1TPH2CreERT2 mice after chronic fluoxetine treatment, restricted to the brain structures implicated in depression pathology with profound serotonergic innervation including the prefrontal cortex (PFC) and hippocampus. Here, we show for the first time that BDNF upregulation observed after fluoxetine in the hippocampus or PFC might be dependent on the transcription factor CREB residing, not within these particular structures targeted by serotonergic projections, but exclusively in serotonergic neurons. This observation may shed new light on the neurotrophic hypothesis of depression, where the effects of BDNF observed after antidepressants in the hippocampus and other brain structures were rather thought to be regulated by CREB residing within the same brain structures. Overall, these results provide further evidence for the pivotal role of CREB in serotonergic neurons in maintaining mechanisms of antidepressant drug action by regulation of BDNF levels.
Collapse
Affiliation(s)
- Katarzyna Rafa-Zabłocka
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
25
|
Black EAE, Smith PM, McIsaac W, Ferguson AV. Brain-derived neurotrophic factor acts at neurons of the subfornical organ to influence cardiovascular function. Physiol Rep 2018; 6:e13704. [PMID: 29802680 PMCID: PMC5974716 DOI: 10.14814/phy2.13704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 04/17/2018] [Indexed: 11/24/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a neurotrophin traditionally associated with neural plasticity, has more recently been implicated in fluid balance and cardiovascular regulation. It is abundantly expressed in both the central nervous system (CNS) and peripheral tissue, and is also found in circulation. Studies suggest that circulating BDNF may influence the CNS through actions at the subfornical organ (SFO), a circumventricular organ (CVO) characterized by the lack of a normal blood-brain barrier (BBB). The SFO, well-known for its involvement in cardiovascular regulation, has been shown to express BDNF mRNA and mRNA for the TrkB receptor at which BDNF preferentially binds. This study was undertaken to determine if: (1) BDNF influences the excitability of SFO neurons in vitro; and (2) the cardiovascular consequences of direct administration of BDNF into the SFO of anesthetized rats. Electrophysiological studies revealed that bath application of BDNF (1 nmol/L) influenced the excitability of the majority of neurons (60%, n = 13/22), the majority of which exhibited a membrane depolarization (13.8 ± 2.5 mV, n = 9) with the remaining affected cells exhibiting hyperpolarizations (-11.1 ± 2.3 mV, n = 4). BDNF microinjections into the SFO of anesthetized rats caused a significant decrease in blood pressure (mean [area under the curve] AUC = -364.4 ± 89.0 mmHg × sec, n = 5) with no effects on heart rate (mean AUC = -12.2 ± 3.4, n = 5). Together these observations suggest the SFO to be a CNS site at which circulating BDNF could exert its effects on cardiovascular regulation.
Collapse
Affiliation(s)
- Emily A. E. Black
- Department of Biomedical and Molecular SciencesQueen's UniversityKingstonOntarioCanada
| | - Pauline M. Smith
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | - William McIsaac
- Centre for Neuroscience StudiesQueen's UniversityKingstonOntarioCanada
| | | |
Collapse
|
26
|
Schaich CL, Wellman TL, Einwag Z, Dutko RA, Erdos B. Inhibition of BDNF signaling in the paraventricular nucleus of the hypothalamus lowers acute stress-induced pressor responses. J Neurophysiol 2018; 120:633-643. [PMID: 29694277 DOI: 10.1152/jn.00459.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during stress, and our recent studies indicate that BDNF induces sympathoexcitatory and hypertensive responses when injected acutely or overexpressed chronically in the PVN. However, it remained to be investigated whether BDNF is involved in the mediation of stress-induced cardiovascular responses. Here we tested the hypothesis that inhibition of the high-affinity BDNF receptor TrkB in the PVN diminishes acute stress-induced cardiovascular responses. Male Sprague-Dawley rats were equipped with radiotelemetric transmitters for blood pressure measurement. BDNF-TrkB signaling was selectively inhibited by viral vector-mediated bilateral PVN overexpression of a dominant-negative truncated TrkB receptor (TrkB.T1, n = 7), while control animals ( n = 7) received green fluorescent protein (GFP)-expressing vector injections. Rats were subjected to acute water and restraint stress 3-4 wk after vector injections. We found that body weight, food intake, baseline mean arterial pressure (MAP), and heart rate were unaffected by TrkB.T1 overexpression. However, peak MAP increases were significantly reduced in the TrkB.T1 group compared with GFP both during water stress (GFP: 39 ± 2 mmHg, TrkB.T1: 27 ± 4 mmHg; P < 0.05) and restraint stress (GFP: 41 ± 3 mmHg, TrkB.T1: 34 ± 2 mmHg; P < 0.05). Average MAP elevations during the poststress period were also significantly reduced after both water and restraint stress in the TrkB.T1 group compared with GFP. In contrast, heart rate elevations to both stressors remained unaffected by TrkB.T1 overexpression. Our results demonstrate that activation of BDNF high-affinity TrkB receptors within the PVN is a major contributor to acute stress-induced blood pressure elevations. NEW & NOTEWORTHY We have shown that inhibition of the high-affinity brain-derived neurotrophic factor receptor TrkB in the paraventricular nucleus of the hypothalamus significantly reduces blood pressure elevations to acute stress without having a significant impact on resting blood pressure, body weight, and food intake.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Zachary Einwag
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Richard A Dutko
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont , Burlington, Vermont
| |
Collapse
|
27
|
Yamagata K, Takahashi N, Akita N, Nabika T. Arginine vasopressin altered the expression of monocarboxylate transporters in cultured astrocytes isolated from stroke-prone spontaneously hypertensive rats and congenic SHRpch1_18 rats. J Neuroinflammation 2017; 14:176. [PMID: 28865453 PMCID: PMC5581459 DOI: 10.1186/s12974-017-0949-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/24/2017] [Indexed: 11/25/2022] Open
Abstract
Background Astrocytes support a range of brain functions as well as neuronal survival, but their detailed relationship with stroke-related edema is not well understood. We previously demonstrated that the release of lactate from astrocytes isolated from stroke-prone spontaneously hypertensive rats (SHRSP/Izm) was attenuated under stroke conditions. The supply of lactate to neurons is regulated by astrocytic monocarboxylate transporters (MCTs). The purpose of this study was to examine the contributions of arginine vasopressin (AVP) and/or hypoxia and reoxygenation (H/R) to the regulation of MCTs and neurotrophic factor in astrocytes obtained from SHRSP/Izm and congenic SHRpch1_18 rats. Methods We compared AVP-induced lactate levels, MCTs, and brain-derived neurotrophic factor (BDNF) in astrocytes isolated from SHRSP/Izm, SHRpch1_18, and Wistar Kyoto rats (WKY/Izm). The expression levels of genes and proteins were determined by PCR and Western blotting (WB). Results The production of lactate induced by AVP was increased in astrocytes from all three strains. However, the levels of lactate were lower in SHRSP/Izm and SHRpch1_18 animals compared with the WKY/Izm strain. Gene expression levels of Slc16a1, Slc16a4, and Bdnf were lowered by AVP in SHRSP/Izm and SHRpch1_18 rats compared with WKY/Izm. The increase of MCT4 that was induced by AVP was blocked by the addition of a specific nitric oxide (NO) chelator, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO). Furthermore, AVP increased the expression of iNOS and eNOS proteins in WKY/Izm and SHRSP/Izm rat astrocytes. However, the iNOS expression levels in SHRSP astrocytes differed from those of WKY/Izm astrocytes. The increase of MCT4 protein expression during AVP treatment was blocked by the addition of a specific NF-kB inhibitor, pyrrolidine dithiocarbamate (PDTC). The induction of MCT4 by AVP may be regulated by NO through NF-kB. Conclusions These results suggest that the expression of MCTs mediated by AVP may be regulated by NO. The data suggest that AVP attenuated the expression of MCTs in SHRSP/Izm and SHRpch1_18 astrocytes. Reduced expression of MCTs may be associated with decreased lactate production in SHRSP.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan.
| | - Natsumi Takahashi
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Nozomi Akita
- Laboratory of Molecular Health of Food, Department of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University (NUBS), 1866, Kameino, Fujisawa, Kanagawa, 252-8510, Japan
| | - Toru Nabika
- Department of Functional Pathology, Shimane University Faculty of Medicine, Matsue, Japan
| |
Collapse
|
28
|
Yu B, Cai D. Neural Programmatic Role of Leptin, TNFα, Melanocortin, and Glutamate in Blood Pressure Regulation vs Obesity-Related Hypertension in Male C57BL/6 Mice. Endocrinology 2017; 158:1766-1775. [PMID: 28419227 PMCID: PMC5460935 DOI: 10.1210/en.2016-1872] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/10/2017] [Indexed: 02/07/2023]
Abstract
Continuous nutritional surplus sets the stage for hypertension development. Whereas moderate dietary obesity in mice is normotensive, the homeostatic balance is disrupted concurrent with an increased risk of hypertension. However, it remains unclear how the obesity-associated prehypertensive state is converted into overt hypertension. Here, using mice with high-fat-diet (HFD)-induced moderate obesity vs control diet (CD)-fed lean mice, we comparatively studied the effects of central leptin and tumor necrosis factor-α (TNFα) as well as the involvement of the neuropeptide melanocortin pathway vs the neurotransmitter glutamate pathway. Compared with CD-fed lean mice, the pressor effect of central excess leptin and TNFα, but not melanocortin, was sensitized in HFD-fed mice. The pressor effect of central leptin in HFD-fed mice was strongly suppressed by glutamatergic inhibition but not by melanocortinergic inhibition. The pressor effect of central TNFα was substantially reversed by melanocortinergic inhibition in HFD-fed mice but barely in CD-fed mice. Regardless of diet, the hypertensive effects of central TNFα and melanocortin were both partially reversed by glutamatergic suppression. Hence, neural control of blood pressure is mediated by a signaling network between leptin, TNFα, melanocortin, and glutamate and changes in dynamics due to central excess leptin and TNFα mediate the switch from normal physiology to obesity-related hypertension.
Collapse
Affiliation(s)
- Bin Yu
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Institute of Aging, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
29
|
Becker BK, Wang H, Zucker IH. Central TrkB blockade attenuates ICV angiotensin II-hypertension and sympathetic nerve activity in male Sprague-Dawley rats. Auton Neurosci 2017; 205:77-86. [PMID: 28549782 DOI: 10.1016/j.autneu.2017.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/17/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023]
Abstract
Increased sympathetic nerve activity and the activation of the central renin-angiotensin system are commonly associated with cardiovascular disease states such as hypertension and heart failure, yet the precise mechanisms contributing to the long-term maintenance of this sympatho-excitation are incompletely understood. Due to the established physiological role of neurotrophins contributing toward neuroplasticity and neuronal excitability along with recent evidence linking the renin-angiotensin system and brain-derived neurotrophic factor (BDNF) along with its receptor (TrkB), it is likely the two systems interact to promote sympatho-excitation during cardiovascular disease. However, this interaction has not yet been fully demonstrated, in vivo. Thus, we hypothesized that central angiotensin II (Ang II) treatment will evoke a sympatho-excitatory state mediated through the actions of BDNF/TrkB. We infused Ang II (20ng/min) into the right lateral ventricle of male Sprague-Dawley rats for twelve days with or without the TrkB receptor antagonist, ANA-12 (50ng/h). We found that ICV infusion of Ang II increased mean arterial pressure (+40.4mmHg), increased renal sympathetic nerve activity (+19.4% max activity), and induced baroreflex dysfunction relative to vehicle. Co-infusion of ANA-12 attenuated the increase in blood pressure (-20.6mmHg) and prevented the increase in renal sympathetic nerve activity (-22.2% max) and baroreflex dysfunction relative to Ang II alone. Ang II increased thirst and decreased food consumption, and Ang II+ANA-12 augmented the thirst response while attenuating the decrease in food consumption. We conclude that TrkB signaling is a mediator of the long-term blood pressure and sympathetic nerve activity responses to central Ang II activity. These findings demonstrate the involvement of neurotrophins such as BDNF in promoting Ang II-induced autonomic dysfunction and further implicate TrkB signaling in modulating presympathetic autonomic neurons during cardiovascular disease.
Collapse
Affiliation(s)
- Bryan K Becker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Hanjun Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA.; Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Irving H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA..
| |
Collapse
|
30
|
McIsaac W, Ferguson AV. Glucose concentrations modulate brain-derived neurotrophic factor responsiveness of neurones in the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 2017; 29. [PMID: 28258626 DOI: 10.1111/jne.12464] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/07/2017] [Accepted: 02/20/2017] [Indexed: 11/30/2022]
Abstract
The hypothalamic paraventricular nucleus (PVN) is critical for normal energy balance and has been shown to contain high levels of both brain-derived neurotrophic factor (BDNF) and tropomyosin-receptor kinase B mRNA. Microinjections of BDNF into the PVN increase energy expenditure, suggesting that BDNF plays an important role in energy homeostasis through direct actions in this nucleus. The present study aimed to examine the postsynaptic effects of BDNF on the membrane potential of PVN neurones, and also to determine whether extracellular glucose concentrations modulated these effects. We used hypothalamic PVN slices from male Sprague-Dawley rats to perform whole cell current-clamp recordings from PVN neurones. BDNF was bath applied at a concentration of 2 nmol L-1 and the effects on membrane potential determined. BDNF caused depolarisations in 54% of neurones (n=25; mean±SEM, 8.9±1.2 mV) and hyperpolarisations in 23% (n=11; -6.7±1.4 mV), whereas the remaining cells were unaffected. These effects were maintained in the presence of tetrodotoxin (n=9; 56% depolarised, 22% hyperpolarised, 22% nonresponders), or the GABAa antagonist bicuculline (n=12; 42% depolarised, 17% hyperpolarised, 41% nonresponders), supporting the conclusion that these effects on membrane potential were postsynaptic. Current-clamp recordings from PVN neurones next examined the effects of BDNF on these neurones at varying extracellular glucose concentrations. Larger proportions of PVN neurones hyperpolarised in response to BDNF as the glucose concentrations decreased [10 mmol L-1 glucose 23% (n=11) of neurones hyperpolarised, whereas, at 0.2 mmol L-1 glucose, 71% showed hyperpolarising effects (n=12)]. Our findings reveal that BDNF has direct GABAA independent effects on PVN neurones, which are modulated by local glucose concentrations. The latter observation further emphasises the critical importance of using physiologically relevant conditions in an investigation of the central pathways involved in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- W McIsaac
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| | - A V Ferguson
- Centre for Neuroscience, Queens University, Kingston, ON, Canada
| |
Collapse
|
31
|
Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, Ntalla I, Surendran P, Liu C, Cook JP, Kraja AT, Drenos F, Loh M, Verweij N, Marten J, Karaman I, Segura Lepe MP, O’Reilly PF, Knight J, Snieder H, Kato N, He J, Tai ES, Said MA, Porteous D, Alver M, Poulter N, Farrall M, Gansevoort RT, Padmanabhan S, Mägi R, Stanton A, Connell J, Bakker SJL, Metspalu A, Shields DC, Thom S, Brown M, Sever P, Esko T, Hayward C, van der Harst P, Saleheen D, Chowdhury R, Chambers JC, Chasman DI, Chakravarti A, Newton-Cheh C, Lindgren CM, Levy D, Kooner JS, Keavney B, Tomaszewski M, Samani NJ, Howson JMM, Tobin MD, Munroe PB, Ehret GB, Wain LV, Barnes MR, Tzoulaki I, Caulfield MJ, Elliott P. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet 2017; 49:403-415. [PMID: 28135244 PMCID: PMC5972004 DOI: 10.1038/ng.3768] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/14/2016] [Indexed: 11/21/2022]
Abstract
Elevated blood pressure is the leading heritable risk factor for cardiovascular disease worldwide. We report genetic association of blood pressure (systolic, diastolic, pulse pressure) among UK Biobank participants of European ancestry with independent replication in other cohorts, and robust validation of 107 independent loci. We also identify new independent variants at 11 previously reported blood pressure loci. In combination with results from a range of in silico functional analyses and wet bench experiments, our findings highlight new biological pathways for blood pressure regulation enriched for genes expressed in vascular tissues and identify potential therapeutic targets for hypertension. Results from genetic risk score models raise the possibility of a precision medicine approach through early lifestyle intervention to offset the impact of blood pressure-raising genetic variants on future cardiovascular disease risk.
Collapse
Affiliation(s)
| | - Helen R Warren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Claudia P Cabrera
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - He Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Meixia Ren
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Borbala Mifsud
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ioanna Ntalla
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Praveen Surendran
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Chunyu Liu
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Boston University School of Public Health, Boston, MA, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis MO, USA
| | - Fotios Drenos
- MRC Integrative Epidemiology Unit, School of Social and Community Medicine, University of Bristol, Bristol, UK
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, Rayne Building, University College London, London, WC1E 6JF, UK
| | - Marie Loh
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Translational Laboratory in Genetic Medicine, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Marten
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Ibrahim Karaman
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Marcelo P Segura Lepe
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Bayer Pharma AG, Berlin, Germany
| | - Paul F O’Reilly
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joanne Knight
- Data Science Institute, Lancester University, Lancaster, UK
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Jiang He
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - E Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - M Abdullah Said
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David Porteous
- Centre for Genomic & Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Maris Alver
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Neil Poulter
- Imperial Clinical Trials Unit, School of Public Health, Imperial College London, London, UK
| | - Martin Farrall
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Alice Stanton
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John Connell
- Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Stephan J L Bakker
- Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Denis C Shields
- School of Medicine, Conway Institute, University College Dublin, Dublin, Ireland
| | - Simon Thom
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Morris Brown
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Peter Sever
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Tõnu Esko
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Caroline Hayward
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Danish Saleheen
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, USA
- Centre for Non-Communicable Diseases, Karachi, Pakistan
- Department of Public Health and Primary Care, University of Cambridge, UK
| | - Rajiv Chowdhury
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - John C Chambers
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Ealing Hospital National Health Service (NHS) Trust, Middlesex, UK
- Imperial College Healthcare NHS Trust, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Aravinda Chakravarti
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher Newton-Cheh
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Cecilia M Lindgren
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, USA
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
- The Big Data Institute at the Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford OX3 7BN, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- National Heart, Lung and Blood Institute's Framingham Heart Study, Framingham, MA, USA
| | - Jaspal S Kooner
- Imperial College Healthcare NHS Trust, London, UK
- Department of Cardiology, Ealing Hospital NHS Trust, Southall, Middlesex, UK
- National Heart and Lung Institute, Cardiovascular Sciences, Hammersmith Campus, Imperial College London, London, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Medicine, Central Manchester NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Joanna M M Howson
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Patricia B Munroe
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Georg B Ehret
- Center for Complex Disease Genomics, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cardiology, Department of Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Michael R Barnes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | - Mark J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- National Institute for Health Research Barts Cardiovascular Biomedical Research Unit, Queen Mary University of London, London, UK
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- MRC-PHE Centre for Environment and Health, Imperial College London, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Peng JH, Liu CW, Pan SL, Wu HY, Liang QH, Gan RJ, Huang L, Ding Y, Bian ZY, Huang H, Lv ZP, Zhou XL, Yin RX. Potential unfavorable impacts of BDNF Val66Met polymorphisms on metabolic risks in average population in a longevous area. BMC Geriatr 2017; 17:4. [PMID: 28056856 PMCID: PMC5217242 DOI: 10.1186/s12877-016-0393-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022] Open
Abstract
Background Brain-derived neurotrophic factor (BDNF) has been implicated in cognitive performance and the modulation of several metabolic parameters in some disease models, but its potential roles in successful aging remain unclear. We herein sought to define the putative correlation between BDNF Val66Met and several metabolic risk factors including BMI, blood pressure, fasting plasma glucose (FPG) and lipid levels in a long-lived population inhabiting Hongshui River Basin in Guangxi. Methods BDNF Val66Met was typed by ARMS-PCR for 487 Zhuang long-lived individuals (age ≥ 90, long-lived group, LG), 593 of their offspring (age 60–77, offspring group, OG) and 582 ethnic-matched healthy controls (aged 60–75, control group, CG) from Hongshui River Basin. The correlations of genotypes with metabolic risks were then determined. Results As a result, no statistical difference was observed on the distribution of allelic and genotypic frequencies of BDNF Val66Met among the three groups (all P > 0.05) except that AA genotype was dramatically higher in females than in males of CG. The HDL-C level of A allele (GA/AA genotype) carriers was profoundly lower than was non-A (GG genotype) carriers in the total population and the CG (P = 0.009 and 0.006, respectively), which maintained in females, hyperglycemic and normolipidemic subgroup of CG after stratification by gender, BMI, glucose and lipid status. Furthermore, allele A carriers, with a higher systolic blood pressure, exhibited 1.63 folds higher risk than non-A carriers to be overweight in CG (OR = 1.63, 95% CI: 1.05 - 2.55, P = 0.012). Multiple regression analysis displayed that the TC level of LG reversely associated with BDNF Val66Met genotype. Conclusions These data suggested that BDNF 66Met may play unfavorable roles in blood pressure and lipid profiles in the general population in Hongshui River area which might in part underscore their poorer survivorship versus the successful aging individuals and their offspring. Electronic supplementary material The online version of this article (doi:10.1186/s12877-016-0393-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun-Hua Peng
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Cheng-Wu Liu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Shang-Ling Pan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China. .,Guangxi Colleges and Universities Key Laboratory of Human Development and Disease Research, 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Hua-Yu Wu
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qing-Hua Liang
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Rui-Jing Gan
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ling Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Yi Ding
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Zhang-Ya Bian
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Hao Huang
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Ze-Ping Lv
- Department of Neurology, Jiangbin Hospital of Guangxi Zhuang Autonomous Region, 85 Hedi Road, Nanning, 530021, Guangxi, China
| | - Xiao-Ling Zhou
- Department of Pathophysiology, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Rui-Xing Yin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| |
Collapse
|
33
|
Decreased plasma concentrations of brain-derived neurotrophic factor in preeclampsia. Clin Chim Acta 2017; 464:142-147. [DOI: 10.1016/j.cca.2016.11.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/21/2016] [Accepted: 11/21/2016] [Indexed: 01/22/2023]
|
34
|
Schaich CL, Wellman TL, Koi B, Erdos B. BDNF acting in the hypothalamus induces acute pressor responses under permissive control of angiotensin II. Auton Neurosci 2016; 197:1-8. [PMID: 26948539 DOI: 10.1016/j.autneu.2016.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/28/2016] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) expression increases in the paraventricular nucleus of the hypothalamus (PVN) during hypertensive stimuli including stress and hyperosmolarity, but its role in PVN cardiovascular regulatory mechanisms is unclear. Chronic BDNF overexpression in the PVN has been shown to elevate sympathetic tone and blood pressure in part by modulating central angiotensin (Ang) II mechanisms. However, the cardiovascular effects of short-term increases in PVN levels of BDNF and the mechanisms governing them are unknown. Therefore, we investigated whether acute BDNF microinjections into the PVN of conscious and anesthetized Sprague-Dawley rats induce blood pressure elevations and whether Ang II signaling is involved in these hypertensive responses. In conscious rats, unilateral BDNF (12.5ng) microinjections into the PVN increased mean arterial pressure (MAP) by 27±1mmHg (P<0.001 vs vehicle), which was significantly attenuated by intracerebroventricular infusion of the Ang II-type-1 receptor (AT1R) antagonist losartan and by ganglionic blockade with intravenous hexamethonium infusion. In anesthetized rats, unilateral PVN microinjection of BDNF increased MAP by 31±4mmHg (P<0.001 vs vehicle), which was prevented by PVN microinjection pretreatments with the high-affinity BDNF receptor TrkB antagonist ANA-12, losartan, the angiotensin converting enzyme inhibitor lisinopril, or by intravenous hexamethonium. Additional experiments in hypothalamic samples including the PVN revealed that BDNF-induced TrkB receptor phosphorylation was prevented by ANA-12 and losartan pretreatments. Collectively, these data indicate that BDNF acting within the PVN acutely raises blood pressure under permissive control of Ang II-AT1R mechanisms and therefore may play an important role in mediating acute pressor responses to hypertensive stimuli.
Collapse
Affiliation(s)
- Chris L Schaich
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Theresa L Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Blanka Koi
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Benedek Erdos
- Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| |
Collapse
|
35
|
Effects of Blood Pressure Lowering With Different Antihypertensive Agents on Cognitive Function and Plasma Brain-derived Neurotrophic Factor Levels: A Comparative Study. J Cardiovasc Pharmacol 2016; 67:538-43. [PMID: 26906033 DOI: 10.1097/fjc.0000000000000377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
PURPOSE Hypertension is a risk factor for cognitive impairment (CI). However, the specific effect of antihypertensive therapy on cognitive function is still controversial. We aimed to investigate the effect of antihypertensive agents targeting the renin-angiotensin system (RAS) on CI and brain-derived neurotropic factor (BDNF). METHODS We included 62 patients who had been using the same antihypertensive agent for at least 3 months. Patients who had relevant conditions that could contribute to CI were excluded. After subjects were divided into 3 groups according to their current antihypertensive medication, the cognitive status of each patient was assessed by the mini-mental state examination (MMSE). BDNF and plasma renin activity were evaluated. RESULTS There was a negative association between systolic blood pressure and MMSE independent of medication (rho = -0.251, P = 0.049). There was no significant correlation between MMSE and BDNF. The MMSE score was slightly higher in the non-RAS group, but the difference did not reach statistical significance (P = 0.09). There was also no significant difference in BDNF levels between study groups (P = 0.32). Mean plasma renin activity levels were significantly lower in the non-RAS group compared with the angiotensin converting enzyme inhibitor and angiotensin receptor blocker groups (P = 0.007). CONCLUSIONS We suggest that the essential intervention for CI in hypertensive patients is appropriate for blood pressure control.
Collapse
|
36
|
Becker BK, Wang HJ, Tian C, Zucker IH. BDNF contributes to angiotensin II-mediated reductions in peak voltage-gated K+ current in cultured CATH.a cells. Physiol Rep 2015; 3:3/11/e12598. [PMID: 26537343 PMCID: PMC4673628 DOI: 10.14814/phy2.12598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Increased central angiotensin II (Ang II) levels contribute to sympathoexcitation in cardiovascular disease states such as chronic heart failure and hypertension. One mechanism by which Ang II increases neuronal excitability is through a decrease in voltage-gated, rapidly inactivating K+ current (IA); however, little is known about how Ang II signaling results in reduced IA. Brain-derived neurotrophic factor (BDNF) has also been demonstrated to decrease IA and has signaling components common to Ang II. Therefore, we hypothesized that Ang II-mediated suppression of voltage-gated K+ currents is due, in part, to BDNF signaling. Differentiated CATH.a, catecholaminergic cell line treated with BDNF for 2 h exhibited a reduced IA in a manner similar to that of Ang II treatment as demonstrated by whole-cell patch-clamp analysis. Inhibiting BDNF signaling by pretreating neurons with an antibody against BDNF significantly attenuated the Ang II-induced reduction of IA. Inhibition of a common component of both BDNF and Ang II signaling, p38 MAPK, with SB-203580 attenuated the BDNF-mediated reductions in IA. These results implicate the involvement of BDNF signaling in Ang II-induced reductions of IA, which may cause increases in neuronal sensitivity and excitability. We therefore propose that BDNF may be a necessary component of the mechanism by which Ang II reduces IA in CATH.a cells.
Collapse
Affiliation(s)
- Bryan K Becker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Han-Jun Wang
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Changhai Tian
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Irving H Zucker
- Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
37
|
Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells. Biochem Biophys Res Commun 2015; 467:683-9. [PMID: 26498528 DOI: 10.1016/j.bbrc.2015.10.084] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/16/2015] [Indexed: 11/20/2022]
Abstract
Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope. Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells.
Collapse
|
38
|
Erdos B, Clifton RR, Liu M, Li H, McCowan ML, Sumners C, Scheuer DA. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am J Physiol Heart Circ Physiol 2015; 309:H634-45. [PMID: 26071542 DOI: 10.1152/ajpheart.00207.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 μg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Rebekah R Clifton
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Meng Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
39
|
Pandit S, Jo JY, Lee SU, Lee YJ, Lee SY, Ryu PD, Lee JU, Kim HW, Jeon BH, Park JB. Enhanced astroglial GABA uptake attenuates tonic GABAA inhibition of the presympathetic hypothalamic paraventricular nucleus neurons in heart failure. J Neurophysiol 2015; 114:914-26. [PMID: 26063771 DOI: 10.1152/jn.00080.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/03/2015] [Indexed: 01/08/2023] Open
Abstract
γ-Aminobutyric acid (GABA) generates persistent tonic inhibitory currents (Itonic) and conventional inhibitory postsynaptic currents in the hypothalamic paraventricular nucleus (PVN) via activation of GABAA receptors (GABAARs). We investigated the pathophysiological significance of astroglial GABA uptake in the regulation of Itonic in the PVN neurons projecting to the rostral ventrolateral medulla (PVN-RVLM). The Itonic of PVN-RVLM neurons were significantly reduced in heart failure (HF) compared with sham-operated (SHAM) rats. Reduced Itonic sensitivity to THIP argued for the decreased function of GABAAR δ subunits in HF, whereas similar Itonic sensitivity to benzodiazepines argued against the difference of γ2 subunit-containing GABAARs in SHAM and HF rats. HF Itonic attenuation was reversed by a nonselective GABA transporter (GAT) blocker (nipecotic acid, NPA) and a GAT-3 selective blocker, but not by a GAT-1 blocker, suggesting that astroglial GABA clearance increased in HF. Similar and minimal Itonic responses to bestrophin-1 blockade in SHAM and HF neurons further argued against a role for astroglial GABA release in HF Itonic attenuation. Finally, the NPA-induced inhibition of spontaneous firing was greater in HF than in SHAM PVN-RVLM neurons, whereas diazepam induced less inhibition of spontaneous firing in HF than in SHAM neurons. Overall, our results showed that combined with reduced GABAARs function, the enhanced astroglial GABA uptake-induced attenuation of Itonic in HF PVN-RVLM neurons explains the deficit in tonic GABAergic inhibition and increased sympathetic outflow from the PVN during heart failure.
Collapse
Affiliation(s)
- Sudip Pandit
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Yoon Jo
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Ung Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Young Jae Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - So Yeong Lee
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Pan Dong Ryu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine and Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jung Un Lee
- Department of Anesthesiology and Pain Medicine, Brain Research Institute, School of Medicine, Chungnam National University, Daejeon, Republic of Korea; and
| | - Hyun-Woo Kim
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Byeong Hwa Jeon
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jin Bong Park
- Department of Physiology, School of Medicine, Chungnam National University, Daejeon, Republic of Korea;
| |
Collapse
|