1
|
Edosuyi O, Igbe I, Oyekan A. Fumarate and its downstream signalling pathways in the cardiorenal system: Recent insights and novel expositions in the etiology of hypertension. Eur J Pharmacol 2023; 961:176186. [PMID: 37944846 PMCID: PMC10843741 DOI: 10.1016/j.ejphar.2023.176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Hypertension, a risk factor for cardiorenal disease has a huge global health impact. Hence, there is a continuous search for new therapeutic targets and putative antihypertensive ligands. This search has transcended into the realm of mitochondrial metabolism which has been reported to underline the etiology of certain diseases, including hypertension. Recently, genetic alterations in the tricarboxylic acid (TCA) cycle enzyme, fumarase, which converts fumarate to malate, reportedly worsened salt-sensitive hypertension. These novel expositions shifted focus into the activity of TCA in the pathogenesis of hypertension. There is now evidence to show that a mechanistic link exists between blood pressure regulation and intermediaries in the TCA cycle involving fumarate metabolism. Fumarate has been reported to mediate the actions of endogenous ligands such as nitric oxide (NO), and hypoxia inducible factor (HIF)-1α. Similarly, there has been upregulation of protective genes such as nuclear erythroid factor 2 (Nrf2) and reduction in the expression of certain markers like kidney injury molecule 1 (KIM-1). There are reports of interactions with endogenous enzymes such as catalase (CAT) and renin via the activation of GPR91. Fumarate has also been shown to modulate the actions of renal ion channels and by extension, natriuresis. These actions of fumarate have conferred a reno- and cardio-protective effect in hypertension. This review evaluates the role of the TCA cycle, its mechanistic links, and significant contribution to blood pressure regulation with a view to understanding the possibility of a new pathological axis which may be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Osaze Edosuyi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, PMB 1154, Benin City, Nigeria; Center for Cardiovascular Diseases, Gray Hall Suites, Rm 256, College of Pharmacy & Health Sciences, Texas Southern University, 3100, Cleburne Street, Houston, TX, USA.
| | - Ighodaro Igbe
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Benin, PMB 1154, Benin City, Nigeria
| | - Adebayo Oyekan
- Center for Cardiovascular Diseases, Gray Hall Suites, Rm 256, College of Pharmacy & Health Sciences, Texas Southern University, 3100, Cleburne Street, Houston, TX, USA
| |
Collapse
|
2
|
Zhou FQ. Advantages of pyruvate-based fluids in preclinical shock resuscitation-A narrative review. Front Physiol 2022; 13:1027440. [PMID: 36505043 PMCID: PMC9732738 DOI: 10.3389/fphys.2022.1027440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022] Open
Abstract
This review focuses on the innate beneficial effects of sodium pyruvate-based fluids, including pyruvate in intravenous solutions, oral rehydration solutions, and peritoneal dialysis solutions, on shock resuscitation with various animal models relative to current commercial fluids over the last two decades. Due to its superior pharmacological properties, pyruvate effectively sustains cytosolic glycolytic pathways and mitochondrial oxidative phosphorylation by restoration of redox potentials and reactivation of pyruvate dehydrogenase in hypoxia, even anoxia, and diabetes, reversing the Warburg effect and diabetic glucometabolic aberration. Pyruvate has been demonstrated to protect against multiorgan dysfunction and metabolic disturbance in numerous preclinical studies with various pathogenic injuries. The unique features of pyruvate potential clinical benefits encompass to efficiently correct lethal lactic acidosis via metabolically rapid consumption of intracellular [H+] and robustly protect multiorgan metabolism and function, particularly visceral organs in addition to the heart and brain, significantly prolonging survival in various animal models. Pyruvate protection of red blood cell function and preservation of the partial pressure of arterial oxygen should be highly concerned in further studies. Pyruvate is much advantageous over existing anions such as acetate, bicarbonate, chloride, and lactate in commercial fluids. Pyruvate-based fluids act as a therapeutic agent without causing iatrogenic resuscitation injury in addition to being a volume expander, indicating a potential novel generation of resuscitation fluids, including crystalloids and colloids. Pyruvate-based fluids have an enormous potential appeal for clinicians who face the ongoing fluid debate to readily select as the first resuscitation fluid. Clinical trials with pyruvate-based fluids in shock resuscitation are urgently warranted.
Collapse
Affiliation(s)
- Fang-Qiang Zhou
- Independent Researcher, Las Vegas, NV, United States,Fresenius Medical Care, Chicago, IL, United States,*Correspondence: Fang-Qiang Zhou,
| |
Collapse
|
3
|
Jung KT, Bapat A, Kim YK, Hucker WJ, Lee K. Therapeutic hypothermia for acute myocardial infarction: a narrative review of evidence from animal and clinical studies. Korean J Anesthesiol 2022; 75:216-230. [PMID: 35350095 PMCID: PMC9171548 DOI: 10.4097/kja.22156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Myocardial infarction (MI) is the leading cause of death from coronary heart disease and requires immediate reperfusion therapy with thrombolysis, primary percutaneous coronary intervention, or coronary artery bypass grafting. However, myocardial reperfusion therapy is often accompanied by cardiac ischemia/reperfusion (I/R) injury, which leads to myocardial injury with detrimental consequences. The causes of I/R injury are unclear, but are multifactorial, including free radicals, reactive oxygen species, calcium overload, mitochondria dysfunction, inflammation, and neutrophil-mediated vascular injury. Mild hypothermia has been introduced as one of the potential inhibitors of myocardial I/R injury. Although animal studies have demonstrated that mild hypothermia significantly reduces or delays I/R myocardium damage, human trials have not shown clinical benefits in acute MI (AMI). In addition, the practice of hypothermia treatment is increasing in various fields such as surgical anesthesia and intensive care units. Adequate sedation for anesthetic procedures and protection from body shivering has become essential during therapeutic hypothermia. Therefore, anesthesiologists should be aware of the effects of therapeutic hypothermia on the metabolism of anesthetic drugs. In this paper, we review the existing data on the use of therapeutic hypothermia for AMI in animal models and human clinical trials to better understand the discrepancy between perceived benefits in preclinical animal models and the absence thereof in clinical trials thus far.
Collapse
Affiliation(s)
- Ki Tae Jung
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Anesthesiology and Pain Medicine, College of Medicine and Medical School, Chosun University, Gwangju, Korea
| | - Aneesh Bapat
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Young-Kug Kim
- Department of Anesthesiology and Pain Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - William J. Hucker
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| | - Kichang Lee
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
4
|
Acetyl-CoA Metabolism and Histone Acetylation in the Regulation of Aging and Lifespan. Antioxidants (Basel) 2021; 10:antiox10040572. [PMID: 33917812 PMCID: PMC8068152 DOI: 10.3390/antiox10040572] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/16/2022] Open
Abstract
Acetyl-CoA is a metabolite at the crossroads of central metabolism and the substrate of histone acetyltransferases regulating gene expression. In many tissues fasting or lifespan extending calorie restriction (CR) decreases glucose-derived metabolic flux through ATP-citrate lyase (ACLY) to reduce cytoplasmic acetyl-CoA levels to decrease activity of the p300 histone acetyltransferase (HAT) stimulating pro-longevity autophagy. Because of this, compounds that decrease cytoplasmic acetyl-CoA have been described as CR mimetics. But few authors have highlighted the potential longevity promoting roles of nuclear acetyl-CoA. For example, increasing nuclear acetyl-CoA levels increases histone acetylation and administration of class I histone deacetylase (HDAC) inhibitors increases longevity through increased histone acetylation. Therefore, increased nuclear acetyl-CoA likely plays an important role in promoting longevity. Although cytoplasmic acetyl-CoA synthetase 2 (ACSS2) promotes aging by decreasing autophagy in some peripheral tissues, increased glial AMPK activity or neuronal differentiation can stimulate ACSS2 nuclear translocation and chromatin association. ACSS2 nuclear translocation can result in increased activity of CREB binding protein (CBP), p300/CBP-associated factor (PCAF), and other HATs to increase histone acetylation on the promoter of neuroprotective genes including transcription factor EB (TFEB) target genes resulting in increased lysosomal biogenesis and autophagy. Much of what is known regarding acetyl-CoA metabolism and aging has come from pioneering studies with yeast, fruit flies, and nematodes. These studies have identified evolutionary conserved roles for histone acetylation in promoting longevity. Future studies should focus on the role of nuclear acetyl-CoA and histone acetylation in the control of hypothalamic inflammation, an important driver of organismal aging.
Collapse
|
5
|
Kumar VHS, Gugino S, Nielsen L, Chandrasekharan P, Koenigsknecht C, Helman J, Lakshminrusimha S. Protection from systemic pyruvate at resuscitation in newborn lambs with asphyxial cardiac arrest. Physiol Rep 2020; 8:e14472. [PMID: 32596995 PMCID: PMC7322497 DOI: 10.14814/phy2.14472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/04/2020] [Accepted: 05/10/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Infants with hypoxic-ischemic injury often require cardiopulmonary resuscitation. Mitochondrial failure to generate adenosine triphosphate (ATP) during hypoxic-ischemic reperfusion injury contributes to cellular damage. Current postnatal strategies to improve outcome in hypoxic-ischemic injury need sophisticated equipment to perform servo-controlled cooling. Administration of intravenous pyruvate, an antioxidant with favorable effects on mitochondrial bioenergetics, is a simple intervention that can have a global impact. We hypothesize that the administration of pyruvate following the return of spontaneous circulation (ROSC) would improve cardiac function, systemic hemodynamics, and oxygen utilization in the brain in newborn lambs with cardiac arrest (CA). METHODS Term lambs were instrumented, delivered by C-section and asphyxia induced by umbilical cord occlusion along with clamping of the endotracheal tube until asystole; Lambs resuscitated following 5 min of CA; upon ROSC, lambs were randomized to receive pyruvate or saline infusion over 90 min and ventilated for 150 min postinfusion. Pulmonary and systemic hemodynamics and arterial gases monitored. We measured plasma pyruvate, tissue lactate, and ATP levels (heart and brain) in both groups. RESULTS Time to ROSC was not different between the two groups. Systolic and diastolic blood pressures, stroke volume, arterial oxygen content, and cerebral oxygen delivery were similar between the two groups. The cerebral metabolic rate of oxygen was higher following pyruvate infusion; higher oxygen consumption in the brain was associated with lower plasma levels but higher brain ATP levels compared to the saline group. CONCLUSIONS Pyruvate promotes energy generation accompanied by efficient oxygen utilization in the brain and may facilitate additional neuroprotection in the presence of hypoxic-ischemic injury.
Collapse
Affiliation(s)
| | - Sylvia Gugino
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | - Lori Nielsen
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | | | | | - Justin Helman
- Department of PediatricsUniversity at BuffaloBuffaloNYUSA
| | | |
Collapse
|
6
|
van Westrhenen R, Zweers MM, Kunne C, de Waart DR, van der Wal AC, Krediet RT. A Pyruvate-Buffered Dialysis Fluid Induces Less Peritoneal Angiogenesis and Fibrosis than a Conventional Solution. Perit Dial Int 2020. [DOI: 10.1177/089686080802800512] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BackgroundConventional lactate-buffered peritoneal dialysis (PD) fluids containing glucose and glucose degradation products are believed to contribute to the development of fibrosis and angiogenesis in the dialyzed peritoneum. To reduce potential negative effects of lactate, pyruvate was substituted as a buffer and its effects on peritoneal pathological alterations were studied in a chronic peritoneal exposure model in the rat.Methods20 Wistar rats were infused intraperitoneally with pyruvate-buffered ( n = 9) or lactate-buffered PD fluid. After 20 weeks of daily infusion, peritoneal function was assessed. In omental peritoneal tissue, the number of blood vessels was analyzed following alpha-smooth muscle actin staining. The degree of fibrosis was quantitated in Picro Sirius Red-stained sections and by assessment of the hydroxyproline content. Plasma lactate/pyruvate and beta-hydroxybutyrate/acetoacetate (BBA/AA) ratios were determined. Plasma and dialysate vascular endothelial growth factor (VEGF) levels were quantitated by ELISA.ResultsThe mass transfer area coefficient of creatinine was higher and the dialysate-to-plasma ratio of sodium was lower in pyruvate-treated animals compared to the lactatetreated group (0.11 vs 0.05 mL/min, p < 0.05, and 78% vs 89%, p < 0.05). The BBA/AA ratio tended to be lower in the pyruvate animals ( p = 0.07). The number of blood vessels was lower in pyruvate-treated animals (16 vs 37 per field, p < 0.001). Total surface area, luminal area, and wall/total area of the vessels were larger in the pyruvate group. The degree of fibrosis was lower in intersegmental and perivascular areas of pyruvate-exposed animals. Effluent VEGF was higher in the pyruvate group.ConclusionsReplacement of lactate by pyruvate resulted in changes in peritoneal solute transport, accompanied by a reduction in both peritoneal membrane angiogenesis and fibrosis, suggesting potentially novel mechanisms to reduce glucose-driven alterations to the peritoneal membrane in PD patients.
Collapse
Affiliation(s)
| | | | - Cindy Kunne
- Division of Nephrology, Department of Medicine
| | - Dirk R. de Waart
- Department of Experimental Hepatology Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Allard C. van der Wal
- Department of Cardiovascular Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
7
|
Alvarez-Elizondo MB, Barenholz-Cohen T, Weihs D. Sodium pyruvate pre-treatment prevents cell death due to localised, damaging mechanical strains in the context of pressure ulcers. Int Wound J 2019; 16:1153-1163. [PMID: 31407500 DOI: 10.1111/iwj.13173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022] Open
Abstract
We demonstrate sodium pyruvate (NaPy) pre-treatment as a successful approach for pressure ulcer (PU) prevention by averting their aetiological origin-cell-level damage and death by large, sustained mechanical loads. We evaluated the NaPy pre-treatment effect on permeability changes in the cell's plasma membrane (PM) following application of in vitro damaging-level strains. Fibroblasts or myoblasts, respectively, models for superficial or deep-tissue damage were grown in 0 or 1 mM NaPy, emulating typical physiological or cell culture conditions. Cells were pre-treated for 4 hours with 0 to 5 mM NaPy prior to 3-hour sustained, damaging-level loads (12% strain). PM permeability was quantified by the cell uptake of small (4 kDa), fluorescent dextran compared with unstrained control using fluorescence-activated cell sorting (FACS). Pre-treatment with 1 mM, and especially 5 mM, NaPy significantly reduces damage to PM integrity. Long-term NaPy pre-exposure can improve protective treatment, affecting fibroblasts and myoblasts differently. Pre-treating with NaPy, a natural cell metabolite, allows cells under damaging-level mechanical loads to maintain their PM integrity, that is, to avoid loss of homeostasis and inevitable, eventual cell death, by preventing initial, microscale stages of PU formation. This pre-treatment may be applied prior to planned periods of immobility, for example, planned surgery or transport, to prolong safe time in a position by preventing initial cell damage that can cascade and lead to PU formation.
Collapse
Affiliation(s)
| | - Tamar Barenholz-Cohen
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Daphne Weihs
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
8
|
Levy A, Kottner J, Gefen A. Release of sodium pyruvate from sacral prophylactic dressings: A computational model. Int Wound J 2019; 16:1000-1008. [PMID: 31063243 DOI: 10.1111/iwj.13137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/09/2019] [Accepted: 04/22/2019] [Indexed: 12/29/2022] Open
Abstract
The use of sacral dressings for pressure ulcer prevention is growing rapidly. In addition to their passive biomechanical role in pressure and shear reduction, in the near future, prophylactic dressings may also provide active tissue protection by releasing preventive agents or drugs into skin and deeper tissues. We investigated delivery of sodium pyruvate (NaPy) from an active dressing to potentially protect the sacral skin and underlying tissues in addition. We used four finite element model variants describing different skin roughness levels to determine time profiles of NaPy diffusion from the dressing into the skin layers. The NaPy concentrations for the different modelled cases stabilised after 1 to 6.5 hours from the time of application of the dressings, at 1% to 3% of the NaPy concentration in the dressing reservoir, which is considered potent. We conclude that prophylactic sacral dressings have the potential to deliver NaPy into skin and subdermally, to potentially increase soft tissue tolerance to sustained bodyweight-caused cell and tissue deformations. The time durations to achieve the steady-state potent NaPy dermal concentrations are clinically feasible, for example, for preparation of patients for surgery or for use in intensive care units.
Collapse
Affiliation(s)
- Ayelet Levy
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Jan Kottner
- Charité-Universitätsmedizin Berlin, Department of Dermatology and Allergy, Clinical Research Center for Hair and Skin Science, Berlin, Germany
| | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
Effenberger-Neidnicht K, Brauckmann S, Jägers J, Patyk V, Waack IN, Kirsch M. Protective Effects of Sodium Pyruvate during Systemic Inflammation Limited to the Correction of Metabolic Acidosis. Inflammation 2018; 42:598-605. [PMID: 30357579 DOI: 10.1007/s10753-018-0917-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protective effects by exogenous sodium pyruvate already have been described in various experimental models of injury, among others during intestinal ischemia-reperfusion injury, hemorrhagic shock, and shock secondary to systemic inflammation (endotoxemic shock). Low doses of sodium pyruvate reduced signs of inflammation, enhanced systemic blood pressure, and ameliorated metabolic acidosis when administered in a prophylactic manner during endotoxemic shock. In the present study, we investigated whether low-dosed infusions of sodium pyruvate exhibited beneficial effects when applied therapeutically after the induction of systemic inflammation. Lipopolysaccharide was infused at a rate of 0.5 mg/kg × h over a period of 360 min to induce systemic inflammation in male Wistar rats. Sodium pyruvate (single dose 50 mg/kg × 15 min) was administered intravenously 180 and 270 min after starting of the lipopolysaccharide infusion. Systemic/vital parameters (e.g., systemic blood pressure and breathing rate) and blood/plasma parameters (e.g., acid-base parameters; electrolytes; glucose and lactate concentration; hemolysis; aminotransferase activities; and parameters of coagulation) were determined in regular intervals. Lipopolysaccharide infusion led to metabolic acidosis, hypoglycemia, electrolyte as well as hemostatic disturbances, and hemolysis. Except for the acid-base status (amelioration of metabolic acidosis) and the plasma chloride concentration (reduction of hyperchloremia), the additional infusion of sodium pyruvate failed in significantly improving lipopolysaccharide-dependent alterations (e.g. vital, blood and plasma parameters). Protective effects of a delayed administration of the metabolizable anion pyruvate during systemic inflammation, hence, are limited to its function as alkalizer to counteract metabolic acidosis.
Collapse
Affiliation(s)
| | - Stephan Brauckmann
- Clinic for Anesthesiology and Intensive Care, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Johannes Jägers
- Institute of Physiology, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Vivien Patyk
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Indra Naemi Waack
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| | - Michael Kirsch
- Institute of Physiological Chemistry, University Hospital Essen, Hufelandstraße 55, 45122, Essen, Germany
| |
Collapse
|
10
|
Zabielska MA, Adamus J, Kowalski R, Gebicki J, Slominska EM, Khalpey Z, Smolenski RT. Cardioprotective effect of N-methylnicotinamide salt of pyruvate in experimental model of cardiac hypoxia. Pharmacol Rep 2018; 70:378-384. [PMID: 29477947 DOI: 10.1016/j.pharep.2017.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/22/2017] [Accepted: 09/29/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pyruvate improves contractility of normal, hypoxic, and post-ischemic myocardium. However, sodium overload is a major problem with its therapeutic application if sodium pyruvate is used. Development of alternative forms such as N-1-methylnicotinamide (MNA) pyruvate may help to overcome this problem. The aim of the study was to investigate the effect of MNA pyruvate in a murine model of cardiac ischemia. METHODS Seven month old male ApoE-/-LDLr-/- mice that develop myocardial infarction when exposed to hypoxic stress, were used in this study. Hypoxia (8% O2 in inspired air) was maintained for 8min and was followed by reoxygenation (21% O2 in inspired air). Four groups of mice were treated 10min before the hypoxic event by intravenous injection of MNA, MNA pyruvate, sodium pyruvate, and saline as control. The myocardial ischemia and damage was recorded by ECG. Four hours following the hypoxic episode serum troponin T and creatine kinase activity were measured. RESULTS Significant hypernatremia was found in the sodium pyruvate group. During hypoxia, control and MNA group developed profound STU depressions on ECG while no changes were observed in MNA pyruvate and sodium pyruvate group. Creatine kinase activity and troponin T content in the mice plasma were significantly higher in the control and MNA group as compared to the MNA pyruvate and sodium pyruvate group. CONCLUSIONS This study demonstrated that administration of MNA pyruvate prior to a hypoxia-induced cardiac event was cardioprotective. This intervention did not cause hypernatremia in contrast to sodium pyruvate.
Collapse
Affiliation(s)
- Magdalena A Zabielska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland; Department of Physiology, Medical University of Gdansk, Gdańsk, Poland
| | - Jan Adamus
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Łódź, Poland
| | - Robert Kowalski
- Department of Therapy Monitoring and Pharmacogenetics, Medical University of Gdansk, Gdańsk, Poland
| | - Jerzy Gebicki
- Institute of Applied Radiation Chemistry, Technical University of Lodz, Łódź, Poland
| | - Ewa M Slominska
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Zain Khalpey
- Department of Surgery, Division of Cardiothoracic Surgery, University of Arizona, College of Medicine, Tuscon, USA
| | | |
Collapse
|
11
|
Haque MZ, McIntosh VJ, Abou Samra AB, Mohammad RM, Lasley RD. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility. PLoS One 2016; 11:e0154151. [PMID: 27441649 PMCID: PMC4956108 DOI: 10.1371/journal.pone.0154151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 04/09/2016] [Indexed: 01/14/2023] Open
Abstract
Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility.
Collapse
Affiliation(s)
- Mohammed Z. Haque
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, United States of America
- * E-mail:
| | - Victoria J. McIntosh
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| | - Abdul B. Abou Samra
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M. Mohammad
- Interim Translational Research Institute, Department of Internal Medicine, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Robert D. Lasley
- Department of Physiology, Wayne State University School of Medicine, 1104 Elliman Bldg., 421 East Canfield, Detroit, MI 48201, United States of America
| |
Collapse
|
12
|
Park S, Choi SG, Yoo SM, Nah J, Jeong E, Kim H, Jung YK. Pyruvate stimulates mitophagy via PINK1 stabilization. Cell Signal 2015; 27:1824-30. [DOI: 10.1016/j.cellsig.2015.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/13/2015] [Accepted: 05/20/2015] [Indexed: 11/30/2022]
|
13
|
Hu S, Lin ZL, Zhao ZK, Liu R, Ma L, Luo HM, Zhou FQ, Bai XD. Pyruvate Is Superior to Citrate in Oral Rehydration Solution in the Protection of Intestine via Hypoxia-Inducible Factor-1 Activation in Rats With Burn Injury. JPEN J Parenter Enteral Nutr 2015; 40:924-33. [PMID: 25802304 DOI: 10.1177/0148607115577817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 02/02/2015] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies have suggested that pyruvate-enriched oral rehydration solution (Pyr-ORS) may be superior to the standard bicarbonate-based ORS in the protection of intestine from ischemic injury. The aim of this study was to compare the effects of Pyr-ORS with citrate-enriched ORS (Cit-ORS) on the intestinal hypoxia-inducible factor-1 (HIF-1)-erythropoietin (EPO) signaling pathway for enteral rehydration in a rat model of burn injury. METHODS Rats were randomly assigned to 4 groups (N = 20, 2 subgroups each: n = 10): scald sham (group SS), scald with no fluid resuscitation (group SN), scald and resuscitation with enteral Cit-ORS (group SC), and scald and resuscitation with enteral Pyr-ORS (group SP). At 2.5 and 4.5 hours after a 35% total body surface area (TBSA) scald, intestinal mucosal blood flow (IMBF), contents of HIF-1, EPO, endothelial nitric oxide synthase (eNOS), nitric oxide (NO), barrier protein (ZO-1), levels of serum diamine oxidase (DAO), and intestinal mucosal histology injury score were determined. RESULTS Serum DAO activities in the scalded groups were significantly elevated, but less raised in group SP than in group SC, at 2.5 hours and at 4.5 hours after the scald. Further, group SP more profoundly preserved intestinal HIF-1 expression compared with group SC at the 2 time points. Compared with group SC, group SP had markedly elevated intestinal EPO, eNOS, and NO levels at the same time points, respectively (P < .05). Similarly, IMBF and ZO-1 levels were significantly higher in group SP than in group SC. Intestinal mucosal histopathological scores were statistically higher at 2.5 hours and 4.5 hours after scalding but were more attenuated in group SP than in group SC (P < .05). Immunofluorescence expression of intestinal mucosal ZO-1 was consistent with the above changes. The above parameters were also significantly different between groups SC and SN (all P < .05). CONCLUSION Pyr-ORS provides a superior option to Cit-ORS for the preservation of intestinal blood flow and barrier function and the attenuation of histopathological alterations in enteral resuscitation of rats with burn injury. Its underlying mechanism may be closely related to the pyruvate in activation of intestinal HIF-1-EPO signaling cascades.
Collapse
Affiliation(s)
- Sen Hu
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Zhi-Long Lin
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | | | - Rui Liu
- Department of Burns and Plastic Surgery, The Fifth Hospital of Harbin, Harbin, Heilongjiang Province, China
| | - Li Ma
- Department of Burns and Plastic Surgery, the Armed Police General Hospital of People's Liberation Army, Beijing, China
| | - Hong-Min Luo
- Key Research Laboratory of Tissue Repair and Regeneration of PLA and Beijing Key Research Laboratory of Skin Injury and Repair Regeneration, First Hospital Affiliated to the Chinese PLA General Hospital, Beijing, China
| | - Fang-Qiang Zhou
- Fresenius Dialysis Centers at Chicago, Rolling Meadows, IL, USA Shanghai Sandai Pharmaceutical R&D Company, Pudong, Shanghai, China
| | - Xiao-Dong Bai
- Department of Burns and Plastic Surgery, the Armed Police General Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
14
|
Trendeleva TA, Aliverdieva DA, Zvyagilskaya RA. Mechanisms of sensing and adaptive responses to low oxygen conditions in mammals and yeasts. BIOCHEMISTRY (MOSCOW) 2014; 79:750-60. [DOI: 10.1134/s0006297914080033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Bonazzola P, Ragone MI, Consolini AE. Effects of pyruvate on the energetics of rat ventricles stunned by ischemia–reperfusion. Can J Physiol Pharmacol 2014; 92:386-98. [DOI: 10.1139/cjpp-2013-0473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pyruvate (Pyr) was proposed as an additive to cold high-K+–low-Ca2+ cardioplegia (CPG) to protect the heart during surgery. We explored whether Pyr and CPG would work synergistically to protect rat hearts from stunning during ischemia–reperfusion (I/R). We measured the heat release and contractility of perfused ventricles during I/R, and the cytosolic and mitochondrial [Ca2+] in cardiomyocytes by confocal microscopy. We found that under cold-CPG (30 °C), 10 mmol·L−1 Pyr reduced the post-ischemic contractile recovery (PICR) as well as muscle economy, when added either before ischemia or during I/R, which was reversed by blockade of UCam. In noncardioplegic hearts, Pyr was cardioprotective when it was present during I/R, more so at 37 °C than at 30 °C, with improved economy. In cardiomyocytes, the addition of Pyr to CPG slightly increased the mitochondrial [Ca2+] but decreased cytosolic [Ca2+]. The results suggest that Pyr only protects hearts from stunning when present before ischemia and during reperfusion, and that it dampens the cardioprotective properties of CPG. The mechanisms underlying such different behavior depend on the dynamic balance between Pyr stimulation of the energetic state and mitochondrial Ca2+ uptake. Our results support the use of Pyr in stunned hearts, but not in cold high-K+ cardioplegia.
Collapse
Affiliation(s)
- Patricia Bonazzola
- Cátedra de Biofísica, Facultad de Odontología e Instituto de Investigaciones Cardiológicas (CONICET, Facultad de Medicina), Universidad de Buenos Aires (UBA), Argentina
| | - María Inés Ragone
- Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, Argentina
| | - Alicia E. Consolini
- Cátedra de Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
16
|
Yang J, Zhao JX, Wang Y, Chen G, Cheng WN, Luo X, Pei XT, Zhao L, Su Q, Zhou H. Effects of sodium pyruvate on ameliorating metabolic acidosis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2014; 44:48-55. [PMID: 24697727 DOI: 10.3109/21691401.2014.901335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 03/03/2014] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To examine the effects of sodium pyruvate (SP) on metabolic acidosis. METHODS For the in vivo experiments, we evaluated effects of SP on an ammonium chloride (NH4Cl)-induced hyperchloremic acidosis rat model. SP was infused at overall doses of 2, 4, and 6 mmol·kg(- 1) for the SP1, SP2, and SP3 groups, respectively. Treatment with sodium bicarbonate (SB) was used as a positive control (2 mmol·kg(- 1)), and treatment with normal saline (NS) was used as a volume control (2 mL·kg(- 1)). Blood was sampled from the ophthalmic venous plexus for pH, blood gases, electrolytes, glucose, creatinine (Cr), and urea analysis after injection. For the in vitro experiment, propionate was applied to induce intracellular acidosis in human endothelial cells. Intracellular pH (pHi) was fluorimetrically measured after the addition of SP. RESULTS In the in vivo study, the pH of SP1 group showed no significant difference compared with that of the NS group. The SP2 and SP3 groups had a higher pH than the NS group (P < 0.01). The SP3 group had a higher pH than the SB group (P < 0.05) and SP1 group (P < 0.05). Moreover, SP treatment ameliorated the abnormality of calcium and decreased the blood potassium levels. The SP3 group had higher glucose levels than SP1 group (P < 0.05). No significant differences were observed between all the groups in the plasma Cr and urea levels. In the in vitro study, the pHi increased immediately after the addition of SP. CONCLUSION The data suggest that intravascular treatment with SP represents a novel therapeutic strategy to ameliorate metabolic acidosis.
Collapse
Affiliation(s)
- Jing Yang
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Jing-Xiang Zhao
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Ying Wang
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Gan Chen
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Wei-Na Cheng
- b Department of Biological Engineering , College of Environment and Chemical Engineering, Yanshan University , Qinhuangdao , P. R. China
| | - Xin Luo
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Xue-Tao Pei
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Lian Zhao
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| | - Qin Su
- c The First Affiliated Hospital of General Hospital of PLA , Beijing , P. R. China
| | - Hong Zhou
- a Institute of Transfusion Medicine, Academy of Military Medical Sciences , Beijing , P.R. China
| |
Collapse
|
17
|
Kovac S, Abramov AY, Walker MC. Energy depletion in seizures: anaplerosis as a strategy for future therapies. Neuropharmacology 2012; 69:96-104. [PMID: 22659085 DOI: 10.1016/j.neuropharm.2012.05.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 05/08/2012] [Accepted: 05/11/2012] [Indexed: 01/11/2023]
Abstract
Seizure activity can lead to energy failure and neuronal injury, resulting in neurological and cognitive sequelae. Moreover, mutations affecting genes encoding for proteins that maintain energy homeostasis within the cell often result in an epileptic phenotype, implying that energy failure can contribute to epileptogenesis. Indeed, there is evidence to indicate that the efficacy of the ketogenic diet, a treatment for refractory epilepsy, can be partly explained by its effect on increasing energetic substrates. The ATP level, reflecting the energy level of a cell, is maintained by the potential gradient across the mitochondrial membrane. This potential gradient is maintained by NADH/H(+) equivalents, produced by reactions within the tricarboxylic acid cycle (TCA-cycle). Anaplerosis, the replenishment of TCA-cycle substrates, therefore represents an appealing strategy to address energy failure such as occurs in seizures. There is accumulating evidence that pyruvate, a classical anaplerotic substrate, has seizure suppressive effects and protects against seizure induced cell death. This review summarizes the evidence for the contribution of TCA cycle deficits in generating seizures. We highlight the role for TCA substrate supplementation in protecting against seizures and seizure induced cell death, and propose that these are important targets for future translational research addressing energy depletion in seizures. This article is part of the Special Issue entitled 'New Targets and Approaches to the Treatment of Epilepsy'.
Collapse
Affiliation(s)
- Stjepana Kovac
- UCL Institute of Neurology, University College London, Queen Square, WC1N 3BG London, UK.
| | | | | |
Collapse
|
18
|
Petrat F, Rönn T, de Groot H. Protection by Pyruvate Infusion in a Rat Model of Severe Intestinal Ischemia-Reperfusion Injury. J Surg Res 2011; 167:e93-e101. [DOI: 10.1016/j.jss.2009.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 11/03/2009] [Accepted: 12/08/2009] [Indexed: 11/30/2022]
|
19
|
Ojha S, Goyal S, Kumari S, Arya DS. Pyruvate attenuates cardiac dysfunction and oxidative stress in isoproterenol-induced cardiotoxicity. ACTA ACUST UNITED AC 2010; 64:393-9. [PMID: 21050735 DOI: 10.1016/j.etp.2010.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/25/2010] [Accepted: 10/07/2010] [Indexed: 11/24/2022]
Abstract
Pyruvate, a potent endogenous antioxidant and an important metabolic fuel is essential for the cardiac function and tissue defense mechanism. The present study was evaluated to investigate whether pyruvate attenuates the development of cardiotoxicity in isoproterenol (ISO)-induced myocardial infarction by assessing hemodynamic, biochemical and histopathological parameters. Subcutaneous injection of ISO (85 mg/kg) administered for 2 days at an interval of 24h was used for induction of cardiotoxicity. ISO administration significantly decreased arterial pressure indices, heart rate, contractility {(+)LVdP/dt} and relaxation {(-)LVdP/dt} and increased left ventricular end-diastolic pressure. In addition, a significant reduction in activities of myocardial creatine phosphokinase-MB, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione levels along with increase in thiobarbituric acid reactive substances were also observed following ISO administration. However, pretreatment with pyruvate (0.25, 0.5 and 1.0 g/kg, p.o.) favorably modulated all most every studied parameters in ISO-induced myocardial injury. Furthermore, protective effect of pyruvate was confirmed by histopathological studies. Rats pretreated only with pyruvate did not produce significant change in hemodynamic, biochemical and histopathological parameters. Pyruvate at 0.50 and 1.0 g/kg doses was found to exert optimal cardioprotective effect against ISO-induced myocardial infarction. The results of our study suggest that pyruvate possessing antioxidant activity has a significant cardioprotective effect against ISO-induced myocardial injury.
Collapse
Affiliation(s)
- Shreesh Ojha
- Cardiovascular Laboratory, Department of Pharmacology, All India Institute of Medical Sciences, New Delhi 29, India.
| | | | | | | |
Collapse
|
20
|
Moreno KX, Sabelhaus SM, Merritt ME, Sherry AD, Malloy CR. Competition of pyruvate with physiological substrates for oxidation by the heart: implications for studies with hyperpolarized [1-13C]pyruvate. Am J Physiol Heart Circ Physiol 2010; 298:H1556-64. [PMID: 20207817 DOI: 10.1152/ajpheart.00656.2009] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carbon 13 nuclear magnetic resonance (NMR) isotopomer analysis was used to measure the rates of oxidation of long-chain fatty acids, ketones, and pyruvate to determine the minimum pyruvate concentration ([pyruvate]) needed to suppress oxidation of these alternative substrates. Substrate mixtures were chosen to represent either the fed or fasted state. At physiological [pyruvate], fatty acids and ketones supplied the overwhelming majority of acetyl-CoA. Under conditions mimicking the fed state, 3 mM pyruvate provided approximately 80% of acetyl-CoA, but under fasting conditions 6 mM pyruvate contributed only 33% of acetyl-CoA. Higher [pyruvate], 10-25 mM, was associated with transient reduced cardiac output, but overall hemodynamic performance was unchanged after equilibration. These observations suggested that 3-6 mM pyruvate in the coronary arteries would be an appropriate target for studies with hyperpolarized [1-(13)C]pyruvate. However, the metabolic products of 3 mM hyperpolarized [1-(13)C]pyruvate could not be detected in the isolated heart during perfusion with a physiological mixture of substrates including 3% albumin. In the presence of albumin even at high concentrations of pyruvate, 20 mM, hyperpolarized H(13)CO(3)(-) could be detected only in the absence of competing substrates. Highly purified albumin (but not albumin from plasma) substantially reduced the longitudinal relaxation time of [1-(13)C]pyruvate. In conclusion, studies of cardiac metabolism using hyperpolarized [1-(13)C]pyruvate are sensitive to the effects of competing substrates on pyruvate oxidation.
Collapse
Affiliation(s)
- Karlos X Moreno
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
21
|
PDK-1 regulates lactate production in hypoxia and is associated with poor prognosis in head and neck squamous cancer. Br J Cancer 2008; 98:1975-84. [PMID: 18542064 PMCID: PMC2441961 DOI: 10.1038/sj.bjc.6604356] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Here we describe the expression and function of a HIF-1-regulated protein pyruvate dehydrogenase kinase-1 (PDK-1) in head and neck squamous cancer (HNSCC). Using RNAi to downregulate hypoxia-inducible PDK-1, we found that lactate and pyruvate excretion after 16-48 h of hypoxia was suppressed to normoxic levels. This indicates that PDK-1 plays an important role in maintaining glycolysis. Knockdown had no effect on proliferation or survival under hypoxia. The immunohistochemical expression of PDK-1 was assessed in 140 cases of HNSCC. PDK-1 expression was not expressed in normal tissues but was upregulated in HNSCC and found to be predominantly cytoplasmic with occasional strong focal nuclear expression. It was strongly related to poor outcome (P=0.005 split by median). These results indicate that HIF regulation of PDK-1 has a key role in maintaining lactate production in human cancer and that the investigation of PDK-1 inhibitors should be investigated for antitumour effects.
Collapse
|
22
|
Ballard-Croft C, Locklar AC, Keith BJ, Mentzer RM, Lasley RD. Oxidative stress and adenosine A1 receptor activation differentially modulate subcellular cardiomyocyte MAPKs. Am J Physiol Heart Circ Physiol 2008; 294:H263-71. [DOI: 10.1152/ajpheart.01067.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism by which distinct stimuli activate the same mitogen-activated protein kinases (MAPKs) is unclear. We examined compartmentalized MAPK signaling and altered redox state as possible mechanisms. Adult rat cardiomyocytes were exposed to the adenosine A1 receptor agonist 2-chloro- N6-cyclopentyladenosine (CCPA; 500 nM) or H2O2 (100 μM) for 15 min. Nuclear/myofilament, cytosolic, Triton-soluble membrane, and Triton-insoluble membrane fractions were generated. CCPA and H2O2 activated p38 MAPK and p44/p42 ERKs in cytosolic fractions. In Triton-soluble membrane fractions, H2O2 activated p38 MAPK and p42 ERK, whereas CCPA had no effect on MAPK activation in this fraction. The greatest difference between H2O2 and CCPA was in the Triton-insoluble membrane fraction, where H2O2 increased p38 and p42 activation and CCPA reduced MAPK activation. CCPA also increased protein phosphatase 2A activity in the Triton-insoluble membrane fraction, suggesting that the activation of this phosphatase may mediate CCPA effects in this fraction. The Triton-insoluble membrane fraction was enriched in the caveolae marker caveolin-3, and >85% of p38 MAPK and p42 ERK was bound to this scaffolding protein in these membranes, suggesting that caveolae may play a role in the divergence of MAPK signals from different stimuli. The antioxidant N-2-mercaptopropionyl glycine (300 μM) reduced H2O2-mediated MAPK activation but failed to attenuate CCPA-induced MAPK activation. H2O2 but not CCPA increased reactive oxygen species (ROS). Thus the adenosine A1 receptor and oxidative stress differentially modulate subcellular MAPKs, with the main site of divergence being the Triton-insoluble membrane fraction. However, the adenosine A1 receptor-mediated MAPK activation does not involve ROS formation.
Collapse
|
23
|
Brunengraber H, Roe CR. Anaplerotic molecules: current and future. J Inherit Metab Dis 2006; 29:327-31. [PMID: 16763895 DOI: 10.1007/s10545-006-0320-1] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 03/03/2006] [Indexed: 11/28/2022]
Abstract
This review presents the concepts of anaplerosis and cataplerosis in relation to the regulation of citric acid cycle operation. Anaplerosis is the re-filling of the catalytic intermediates of the cycle that carry acetyl-CoA as it is oxidized. The main anaplerotic substrates are pyruvate, glutamine/glutamate and precursors of propionyl-CoA (odd-chain fatty acids, specific amino acids, C(5)-ketone bodies). Cataplerosis balances anaplerosis by removing excess intermediates from the citric acid cycle. The properties of the main anaplerotic substrates are reviewed from the point of view of potential clinical applications to the treatment of some inherited and acquired conditions.
Collapse
Affiliation(s)
- Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4906, USA.
| | | |
Collapse
|
24
|
Harmon RC, Kiningham KK, Valentovic MA. Pyruvate reduces 4-aminophenol in vitro toxicity. Toxicol Appl Pharmacol 2005; 213:179-86. [PMID: 16343575 DOI: 10.1016/j.taap.2005.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 11/19/2022]
Abstract
Pyruvate has been observed to reduce the nephrotoxicity of some agents by maintaining glutathione status and preventing lipid peroxidation. This study examined the mechanism for pyruvate protection of p-aminophenol (PAP) nephrotoxicity. Renal cortical slices from male Fischer 344 rats were incubated for 30-120 min with 0, 0.1, 0.25 or 0.5 mM PAP in oxygenated Krebs buffer containing 0 or 10 mM pyruvate or glucose (1.28 or 5.5 mM). LDH leakage was increased above control by 0.25 and 0.5 mM PAP beginning at 60 min and by 0.1 mM PAP at 120 min. Pyruvate prevented an increase in LDH leakage at 60- and 120-min exposure to 0.1 and 0.25 mM PAP. Pyruvate also prevented a decline in ATP levels. Glucose (1.28 and 5.5 mM) provided less protection than pyruvate from PAP toxicity. Total glutathione levels were diminished by 0.1 and 0.25 mM PAP within 60 and 30 min, respectively. Pyruvate prevented the decline in glutathione by 0.1 mM PAP at both time periods and at 30 min for 0.25 mM PAP. Pyruvate reduced the magnitude of glutathione depletion by 0.25 mM PAP following a 60-min incubation. Glutathione disulfide (GSSG) levels in renal slices were increased at 60 min by exposure to 0.25 mM PAP, while pyruvate prevented increased GSSG levels by PAP. Pyruvate also reduced the extent of 4-hydroxynonenal (4-HNE)-adducted proteins present after a 90-min incubation with PAP. These results indicate that pyruvate provided protection for PAP toxicity by providing an energy substrate and reducing oxidative stress.
Collapse
Affiliation(s)
- R Christopher Harmon
- Department of Pharmacology, Marshall University Joan C. Edwards School of Medicine, 1542 Spring Valley Drive, Huntington, WV 25704-9388, USA
| | | | | |
Collapse
|
25
|
Sharma AB, Knott EM, Bi J, Martinez RR, Sun J, Mallet RT. Pyruvate improves cardiac electromechanical and metabolic recovery from cardiopulmonary arrest and resuscitation. Resuscitation 2005; 66:71-81. [PMID: 15993732 DOI: 10.1016/j.resuscitation.2004.12.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/05/2004] [Accepted: 12/05/2004] [Indexed: 12/20/2022]
Abstract
Severe depletion of myocardial energy and antioxidant resources during cardiac arrest culminates in electromechanical dysfunction following recovery of spontaneous circulation (ROSC). A metabolic fuel and natural antioxidant, pyruvate augments myocardial energy and antioxidant redox states in parallel with its enhancement of contractile performance of stunned and oxidant-challenged hearts. This study tested whether pyruvate improves post-arrest cardiac function and metabolism. Beagles were subjected to 5 min cardiac arrest and 5 min open-chest cardiac compression (OCCC: 80 compressions min(-1); aortic pressure 60-70 mmHg), then epicardial dc countershocks (5-10 J) were applied to restore sinus rhythm. Pyruvate was infused i.v. throughout OCCC and the first 25 min ROSC to a steady-state arterial concentration of 3.6+/-0.2 mM. Control experiments received NaCl infusions. Phosphocreatine phosphorylation potential (approximately PCr) and glutathione/glutathione disulfide ratio (GSH/GSSG), measured in snap-frozen left ventricle, indexed energy and antioxidant redox states, respectively. In control experiments, left ventricular pressure development, dP/dt and carotid flow initially recovered upon defibrillation, but then fell 40-50% by 3 h ROSC. ST segment displacement in lead II ECG persisted throughout ROSC. Approximately PCr collapsed and GSH/GSSG fell 61% during arrest. Both variables recovered partially during OCCC and completely during ROSC. Pyruvate temporarily increased approximately PCr and GSH/GSSG during OCCC and the first 25 min ROSC and enhanced pressure development, dP/dt and carotid flow at 15-25 min ROSC. Contractile function stabilized and ECG normalized at 2-3 h ROSC, despite post-infusion pyruvate clearance and waning of its metabolic benefits. In conclusion, intravenous pyruvate therapy increases energy reserves and antioxidant defenses of resuscitated myocardium. These temporary metabolic improvements support post-arrest recovery of cardiac electromechanical performance.
Collapse
Affiliation(s)
- Arti B Sharma
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | |
Collapse
|
26
|
Yoshimura Y, Kristo G, Keith BJ, Jahania SA, Mentzer RM, Lasley RD. The p38 MAPK inhibitor SB203580 blocks adenosine A(1) receptor-induced attenuation of in vivo myocardial stunning. Cardiovasc Drugs Ther 2005; 18:433-40. [PMID: 15770430 DOI: 10.1007/s10557-004-6220-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
There is considerable evidence implicating a key role for p38 mitogen-activated protein kinase (MAPK) in ischemic and pharmacological preconditioning against myocardial infarction. However, there have been few, if any, studies examining the role of p38 MAPK in the protection of stunned myocardium. The purpose of this study was to determine whether p38 MAPK plays a role in the adenosine A(1) receptor anti-stunning effect in in vivo porcine myocardium. Regional myocardial stunning in anesthetized, open-chest pigs was induced by 15 min of left anterior descending coronary artery (LAD) occlusion and 3 h of reperfusion (RP). Animals were treated with either vehicle (n = 5), AMP579 (70 microg/kg i.v.; 25 microg/kg bolus + 1.5 microg/kg/min for 30 min prior to ischemia, n = 5), the p38 MAPK inhibitor SB203580 (0.25 mg/kg i.v. bolus, n = 4) or a combination of SB203580 plus AMP579 (n = 5). Regional ventricular function was monitored by measurements of segment shortening and load insensitive parameters including preload recruitable stroke work (PRSW) and PRSW area (PRSWA). The ischemic area at risk was similar in all groups and there was no necrosis in any heart. Treatment with AMP579 significantly improved reperfusion regional PRSW and PRSWA compared to vehicle controls. The p38 inhibitor SB203580 alone did not alter the extent of myocardial stunning, but it abolished the beneficial effect of AMP579 pretreatment. These results provide the first evidence that p38 MAPK activation may play an important role in the mechanism by which adenosine agonists attenuate myocardial stunning.
Collapse
Affiliation(s)
- Yukihiro Yoshimura
- Department of Surgery, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | | | | | | | |
Collapse
|
27
|
Mallet RT, Sun J, Knott EM, Sharma AB, Olivencia-Yurvati AH. Metabolic cardioprotection by pyruvate: recent progress. Exp Biol Med (Maywood) 2005; 230:435-43. [PMID: 15985618 DOI: 10.1177/153537020523000701] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Pyruvate, a natural metabolic fuel and antioxidant in myocardium and other tissues, exerts a variety of cardioprotective actions when provided at supraphysiological concentrations. Pyruvate increases cardiac contractile performance and myocardial energy state, bolsters endogenous antioxidant systems, and protects myocardium from ischemia-reperfusion injury and oxidant stress. This article reviews and discusses basic and clinically oriented research conducted over the last several years that has yielded fundamental information on pyruvate's inotropic and cardioprotective mechanisms. Particular attention is placed on pyruvate's enhancement of sarcoplasmic reticular Ca2+ transport, its antioxidant properties, and its ability to mitigate reversible and irreversible myocardial injury. These research efforts are establishing the essential foundation for clinical application of pyruvate therapy in numerous settings including cardiopulmonary bypass surgery, cardiopulmonary resuscitation, myocardial stunning, and cardiac failure.
Collapse
Affiliation(s)
- Robert T Mallet
- Department of Integrative Physiology, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107-2699, USA.
| | | | | | | | | |
Collapse
|
28
|
Ballard-Croft C, Kristo G, Yoshimura Y, Reid E, Keith BJ, Mentzer RM, Lasley RD. Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments. Am J Physiol Heart Circ Physiol 2004; 288:H1359-66. [PMID: 15539417 DOI: 10.1152/ajpheart.01006.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although acute adenosine preconditioning (PC) is well established, the signaling pathways mediating this cardioprotection remain unclear. Because adenosine receptor agonists activate p38 MAPK and this kinase has been implicated in ischemic and pharmacological PC, the purpose of this study was to determine the role of p38 MAPK in acute adenosine receptor PC. The role of p38 MAPK activation in discrete subcellular compartments during ischemia-reperfusion was also determined. The following groups were used in an in vivo rat ischemia-reperfusion model: 1) control (10% DMSO i.v.), 2) the A(1)/A(2a) adenosine receptor AMP-579 (50 microg/kg i.v.), 3) AMP-579 + the A(1) receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX, 100 microg/kg i.v.), 4) AMP-579 + the p38 MAPK inhibitor SB-203580 (1 mg/kg i.v.), and 5) SB-203580 alone. p38 MAPK activation was measured by Western blot analysis in cytosolic, mitochondrial, membrane, and nuclear/myofilament fractions obtained from hearts at preischemic, ischemic, and reperfusion time points. A significant reduction in infarct size was observed with AMP-579 PC, an effect blocked by DPCPX or SB-203580 pretreatment. AMP-579 treatment was associated with a significant increase in p38 MAPK activation in the nuclear/myofilament fraction before ischemia, whereas no activation of this kinase occurred during ischemia or reperfusion. In contrast, p38 MAPK was activated in the mitochondrial fraction by ischemia and in the cytosolic, mitochondrial, and membrane fractions by reperfusion in the control group. SB-203580 blocked the AMP-579-induced increase in phosphorylation of the downstream p38 substrate activating transcription factor-2. These results suggest a role for p38 MAPK activation in discrete subcellular compartments in acute adenosine A(1) receptor PC.
Collapse
Affiliation(s)
- Cherry Ballard-Croft
- Cardiothoracic Division, Department of Surgery, University of Kentucky, Lexington, Kentucky 40536-0298, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Kristo G, Yoshimura Y, Keith BJ, Stevens RM, Jahania SA, Mentzer RM, Lasley RD. Adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Am J Physiol Heart Circ Physiol 2004; 287:H2746-53. [PMID: 15271662 DOI: 10.1152/ajpheart.00493.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine whether the adenosine A1/A2a receptor agonist AMP-579 induces acute and delayed preconditioning against in vivo myocardial stunning. Regional stunning was produced by 15 min of coronary artery occlusion and 3 h of reperfusion (RP) in anesthetized open-chest pigs. In acute protection studies, animals were pretreated with saline, low-dose AMP-579 (15 microg/kg iv bolus 10 min before ischemia), or high-dose AMP-579 (50 microg/kg iv at 14 microg/kg bolus + 1.2 microg.kg(-1).min(-1) for 30 min before coronary occlusion). The delayed preconditioning effects of AMP-579 were evaluated 24 h after administration of saline vehicle or high-dose AMP-579 (50 microg/kg iv). Load-insensitive contractility was assessed by measuring regional preload recruitable stroke work (PRSW) and PRSW area. Acute preconditioning with AMP-579 dose dependently improved regional PRSW: 129 +/- 5 and 100 +/- 2% in high- and low-dose AMP-579 groups, respectively, and 78 +/- 5% in the control group at 3 h of RP. Administration of the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (0.7 mg/kg) blocked the acute protective effect of high-dose AMP-579, indicating that these effects are mediated through A1 receptor activation. Delayed preconditioning with AMP-579 significantly increased recovery of PRSW area: 64 +/- 5 vs. 33 +/- 5% in control at 3 h of RP. In isolated perfused rat heart studies, kinetics of the onset and washout of AMP-579 A1 and A2a receptor-mediated effects were distinct compared with those of other adenosine receptor agonists. The unique nature of the adenosine agonist AMP-579 may play a role in its ability to induce delayed preconditioning against in vivo myocardial stunning.
Collapse
Affiliation(s)
- Gentian Kristo
- Dept. of Surgery, Univ. of Kentucky College of Medicine, 800 Rose St., Lexington, KY 40536-0298, USA
| | | | | | | | | | | | | |
Collapse
|