1
|
Taghizadeh M, Brothers RM, Labrecque L, Roy MA, Gagnon D, Smirl JD, Crandall CG, Brassard P. Directional sensitivity analysis of the cerebral pressure-flow relationship during normothermia and moderate hyperthermia. J Appl Physiol (1985) 2025; 138:1079-1087. [PMID: 40139656 DOI: 10.1152/japplphysiol.00712.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/14/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Dynamic cerebral autoregulation (dCA) reacts differently when mean arterial pressure (MAP) increases versus decreases (i.e., directional sensitivity). Although heat stress alters dCA, its influence on directional sensitivity remains unclear. This analysis investigated the impact of moderate hyperthermia on the directional sensitivity in the cerebral pressure-flow relationship. Ten healthy participants (7 males; age: 37 ± 12 yr; body mass: 75 ± 9 kg) underwent 6 min of oscillatory lower body negative pressure (OLBNP) to induce large MAP fluctuations at 0.03 and 0.10 Hz under normothermic and moderately hyperthermic conditions (+1.0°C increase in core temperature) induced via a water-perfused suit. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to MAP to compute absolute and relative ratios adjusted for time intervals during each OLBNP-induced MAP increase (ΔMCAvT/[Formula: see text]; %MCAvT/[Formula: see text]) and decrease (ΔMCAvT/[Formula: see text]; %MCAvT/[Formula: see text]). Thereafter, we compared average absolute and relative ratios. There was no main effect of MAP direction on ΔMCAvT/ΔMAPT or %MCAvT/%MAPT during either 0.03 Hz (P = 0.291, P = 0.281) or 0.10 Hz (P = 0.295, P = 0.178) OLBNP. Regardless of MAP direction, ΔMCAvT/[Formula: see text] (0.65 ± 0.17 vs. 0.84 ± 0.22 cm·s-1·mmHg-1), ΔMCAvT/[Formula: see text] (0.70 ± 0.15 vs. 0.85 ± 0.18 cm·s-1·mmHg-1) (thermal state: P = 0.009), %MCAvT/[Formula: see text] (0.92 ± 0.22 vs. 1.33 ± 0.60), and %MCAvT/[Formula: see text] (1.01 ± 0.27 vs. 1.30 ± 0.51) (thermal state: P = 0.001) were lower in hyperthermia at 0.03-Hz OLBNP. Regardless of thermal states, these findings suggest an absence of dCA directional sensitivity. Reduced directional sensitivity metrics during hyperthermia may indicate more efficient dCA at very low frequency.NEW & NOTEWORTHY Recent evidence highlights the importance of considering directional sensitivity in dynamic cerebral autoregulation. The current analysis found no directional sensitivity in the cerebral pressure-flow relationship during 0.03- and 0.10-Hz oscillatory lower body negative pressure in normothermia or moderate hyperthermia in healthy participants. However, reduced directional sensitivity metrics during moderate hyperthermia suggest that dynamic cerebral autoregulation may become more efficient under moderate heat stress.
Collapse
Affiliation(s)
- Mahmoudreza Taghizadeh
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - R Matthew Brothers
- Department of Kinesiology, The University of Texas at Arlington, Arlington, Texas, United States
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Daniel Gagnon
- School of Kinesiology and Exercise Science, Université de Montreal, Montreal, Quebec, Canada
- Montreal Heart Institute, Montreal, Quebec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada
| | - Craig G Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
2
|
Korad S, Mündel T, Perry BG. Larger reductions in blood pressure during post-exercise standing, but not middle cerebral artery blood velocity, in resistance-trained versus untrained individuals. Exp Physiol 2025; 110:424-437. [PMID: 39721042 PMCID: PMC11868030 DOI: 10.1113/ep092327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/28/2024]
Abstract
Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure, with hypotension and cerebral hypoperfusion commonly observed immediately following RE. Whether the cerebral vasculature adapts to these regular blood pressure challenges is unclear. This study examined the cerebrovascular response to post-dynamic RE orthostasis. RE-trained (n = 15, female = 4) and healthy untrained individuals (n = 15, female = 12) completed five stands: one after seated rest, with each of the subsequent four stands occurring immediately following a set of 10 repetitions of unilateral leg extension exercise at 60% of their one repetition maximum. Beat-to-beat blood pressure, mean middle cerebral artery blood velocity (MCAvmean) and end-tidal carbon dioxide were measured throughout. During standing the mean arterial blood pressure (MAP) and MCAvmean nadirs were identified. There was no difference between groups for age (mean ± SD, 26 ± 7 RE-trained vs. 25 ± 6 years untrained, P = 0.683) or weight (78 ± 15 vs. 71 ± 15 kg, P = 0.683). At MAP nadir during the post-exercise stand, a greater reduction in MAP was observed in the RE-trained group (e.g., set 4, -45 ± 11 vs. -36 ± 6 mmHg, training effect P = 0.026). However, post-exercise stand MCAvmean at MCAvmean nadir was not different (e.g., set 4, -20 ± 7 vs. -17 ± 6 cm/s, interaction effect P = 0.478). Rate of regulation was higher in the RE-trained group (set 1, 0.301 ± 0.170 vs. 0.167 ± 0.009, training effect P = 0.023). Despite RE-trained individuals demonstrating greater absolute reductions in MAP during orthostasis following RE, there were no differences in MCAvmean, suggesting that habitual RE may mitigate post-exercise cerebral hypoperfusion.
Collapse
Affiliation(s)
- Stephanie Korad
- School of Health SciencesMassey UniversityWellingtonNew Zealand
| | - Toby Mündel
- School of Sport, Exercise and NutritionMassey UniversityPalmerston NorthNew Zealand
- Department of KinesiologyBrock UniversitySt CatharinesCanada
| | - Blake G. Perry
- School of Health SciencesMassey UniversityWellingtonNew Zealand
| |
Collapse
|
3
|
Burma JS, Johnson NE, Oni IK, Lapointe AP, Debert CT, Schneider KJ, Dunn JF, Smirl JD. A multimodal neuroimaging study of cerebrovascular regulation: protocols and insights of combining electroencephalography, functional near-infrared spectroscopy, transcranial Doppler ultrasound, and physiological parameters. J Neural Eng 2025; 22:016003. [PMID: 39746304 DOI: 10.1088/1741-2552/ada4de] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 01/02/2025] [Indexed: 01/04/2025]
Abstract
Objective. The current paper describes the creation of a simultaneous trimodal neuroimaging protocol. The authors detail their methodological design for a subsequent large-scale study, demonstrate the ability to obtain the expected physiologically induced responses across cerebrovascular domains, and describe the pitfalls experienced when developing this approach.Approach. Electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and transcranial Doppler ultrasound (TCD) were combined to provide an assessment of neuronal activity, microvascular oxygenation, and upstream artery velocity, respectively. Real-time blood pressure, capnography, and heart rate were quantified to control for the known confounding influence of cardiorespiratory variables. The EEG-fNIRS-TCD protocol was attached to a 21 year-old male who completed neurovascular coupling/functional hyperemia (finger tapping and 'Where's Waldo/Wally?'), dynamic cerebral autoregulation (squat-stand maneuvers), and cerebrovascular reactivity tasks (end-tidal clamping during hypocapnia/hypercapnia).Main results. In a pilot participant, the Waldo task produced robust hemodynamic responses within the occipital microvasculature and the posterior cerebral artery. A ∼90% decrease in alpha band power was seen in the occipital cortical region compared between the eyes closed and eyes opened protocol, compared to the frontal, central, and parietal regions (∼80% reduction). A modest increase in motor oxygenated hemoglobin was seen during the finger tapping task, with a harmonious alpha decrease of ∼15% across all cortical regions. No change in the middle or posterior cerebral arteries were noted during finger tapping. During cerebral autoregulatory challenges, sinusoidal oscillations were produced in hemodynamics at 0.05 and 0.10 Hz, while a decrease and increase in TCD and fNIRS metrics were elicited during hypocapnia and hypercapnia protocols, respectively.Significance. All neuroimaging modalities have their inherent limitations; however, these can be minimized by employing multimodal neuroimaging approaches. This EEG-fNIRS-TCD protocol enables a comprehensive assessment of cerebrovascular regulation across the association between electrical activity and cerebral hemodynamics during tasks with a mild degree of body and/or head movement.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nathan E Johnson
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Ibukunoluwa K Oni
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Chantel T Debert
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Kathryn J Schneider
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Jeff F Dunn
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Lab, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Hospital Res*earch Institute, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Panerai RB, Davies A, Alshehri A, Beishon LC, Minhas JS. Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation. Am J Physiol Heart Circ Physiol 2025; 328:H37-H46. [PMID: 39570199 DOI: 10.1152/ajpheart.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Emergency Medical Services Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
5
|
Wang Y, Payne SJ. Static autoregulation in humans. J Cereb Blood Flow Metab 2024; 44:1191-1207. [PMID: 37933742 PMCID: PMC11542139 DOI: 10.1177/0271678x231210430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 10/04/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
The process by which cerebral blood flow (CBF) remains approximately constant in response to short-term variations in arterial blood pressure (ABP) is known as cerebral autoregulation. This classic view, that it remains constant over a wide range of ABP, has however been challenged by a growing number of studies. To provide an updated understanding of the static cerebral pressure-flow relationship and to characterise the autoregulation curve more rigorously, we conducted a comprehensive literature research. Results were based on 143 studies in healthy individuals aged 18 to 65 years. The mean sensitivities of CBF to changes in ABP were found to be 1.47 ± 0.71%/% for decreased ABP and 0.37 ± 0.38%/% for increased ABP. The significant difference in CBF directional sensitivity suggests that cerebral autoregulation appears to be more effective in buffering increases in ABP than decreases in ABP. Regression analysis of absolute CBF and ABP identified an autoregulatory plateau of approximately 20 mmHg (ABP between 80 and 100 mmHg), which is much smaller than the widely accepted classical view. Age and sex were found to have no effect on autoregulation strength. This data-driven approach provides a quantitative method of analysing static autoregulation that can be easily updated as more experimental data become available.
Collapse
Affiliation(s)
- Yufan Wang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
6
|
Labrecque L, Roy MA, Soleimani Dehnavi S, Taghizadeh M, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure. J Cereb Blood Flow Metab 2024; 44:1827-1839. [PMID: 38613236 PMCID: PMC11494849 DOI: 10.1177/0271678x241247633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/08/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
A directional sensitivity of the cerebral pressure-flow relationship has been described using repeated squat-stands. Oscillatory lower body negative pressure (OLBNP) is a reproducible method to characterize dynamic cerebral autoregulation (dCA). It could represent a safer method to examine the directional sensitivity of the cerebral pressure-flow relationship within clinical populations and/or during pharmaceutical administration. Therefore, examining the cerebral pressure-flow directional sensitivity during an OLBNP-induced cyclic physiological stress is crucial. We calculated changes in middle cerebral artery mean blood velocity (MCAv) per alterations to mean arterial pressure (MAP) to compute ratios adjusted for time intervals (ΔMCAvT/ΔMAPT) with respect to the minimum-to-maximum MCAv and MAP, for each OLBNP transition (0 to -90 Torr), during 0.05 Hz and 0.10 Hz OLBNP. We then compared averaged ΔMCAvT/ΔMAPT during OLBNP-induced MAP increases (INC) (ΔMCAvT/Δ MAP T INC ) and decreases (DEC) (ΔMCAvT/Δ MAP T DEC ). Nineteen healthy participants [9 females; 30 ± 6 years] were included. There were no differences in ΔMCAvT/ΔMAPT between INC and DEC at 0.05 Hz. ΔMCAvT/Δ MAP T INC (1.06 ± 0.35 vs. 1.33 ± 0.60 cm⋅s-1/mmHg; p = 0.0076) was lower than ΔMCAvT/Δ MAP T DEC at 0.10 Hz. These results support OLBNP as a model to evaluate the directional sensitivity of the cerebral pressure-flow relationship.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Shahrzad Soleimani Dehnavi
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Mahmoudreza Taghizadeh
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
7
|
Qin W, Fukuie M, Hoshi D, Mori S, Tomoto T, Sugawara J, Tarumi T. Dynamic cerebral autoregulation during repeated handgrip exercise: comparisons with spontaneous rest and sit-stand maneuvers. J Appl Physiol (1985) 2024; 137:718-727. [PMID: 39116347 DOI: 10.1152/japplphysiol.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Induced arterial pressure oscillation may improve the assessment of dynamic cerebral autoregulation (dCA) with transfer function analysis (TFA). This study investigated dCA during repeated handgrip exercise (RHE) compared with spontaneous rest and sit-stand maneuvers (SSM), often used in cerebrovascular research. After a 5-min rest, 20 healthy young adults (10 women and 10 men) underwent 5 min of RHE (30% maximal voluntary contraction) and SSM at 0.05 Hz and 0.10 Hz each in random order. Power spectral density (PSD) and TFA gain, phase, coherence of mean arterial pressure (MAP), and blood velocity in the middle cerebral artery (MCAvmean) were measured in very low (VLF: 0.02-0.07 Hz) and low (LF: 0.07-0.20 Hz) frequencies. End-tidal CO2 (EtCO2) was continuously recorded throughout data collection. Compared with rest, RHE increased the PSD of MAP and MCAvmean in VLF (444% and 273%, respectively) and LF (1,571% and 1,765%, respectively) (all P < 0.001). Coherence increased during RHE (VLF: 131%, LF: 128%) and SSM (VLF: 166%, LF: 136%) compared with rest (all P < 0.05). TFA gain and phase were similar between RHE and rest, but VLF gain was higher, whereas VLF and LF phases were lower during SSM than RHE (all P < 0.05). EtCO2 was higher during SSM than rest and RHE (both P < 0.05), with the individual EtCO2 changes positively correlated with VLF gain (r = 0.538, P < 0.001). These results indicate that RHE significantly increases arterial pressure oscillation and TFA coherence and may improve dCA assessment in individuals unable to perform repeated postural changes.NEW & NOTEWORTHY This is the first study investigating dynamic cerebral autoregulation (dCA) during light-intensity repeated handgrip exercise (RHE) compared with rest and sit-stand maneuvers (SSM) using transfer function analysis (TFA). Compared with rest, RHE significantly increased oscillations of arterial blood pressure and cerebral blood velocity and coherence, whereas SSM exhibited the highest oscillations and coherence. These findings suggest that RHE may serve as an alternative method for assessing dCA in individuals unable to perform repeated postural changes.
Collapse
Affiliation(s)
- Wenxing Qin
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Marina Fukuie
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Daisuke Hoshi
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Shoya Mori
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tsubasa Tomoto
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Jun Sugawara
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Tarumi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| |
Collapse
|
8
|
Korad S, Mündel T, Perry BG. The effects of habitual resistance exercise training on cerebrovascular responses to lower body dynamic resistance exercise: A cross-sectional study. Exp Physiol 2024; 109:1478-1491. [PMID: 38888986 PMCID: PMC11363110 DOI: 10.1113/ep091707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Dynamic resistance exercise (RE) produces sinusoidal fluctuations in blood pressure with simultaneous fluctuations in middle cerebral artery blood velocity (MCAv). Some evidence indicates that RE may alter cerebrovascular function. This study aimed to examine the effects of habitual RE training on the within-RE cerebrovascular responses. RE-trained (n = 15, Female = 4) and healthy untrained individuals (n = 15, Female = 12) completed four sets of 10 paced repetitions (15 repetitions per minute) of unilateral leg extension exercise at 60% of predicted 1 repetition maximum. Beat-to-beat blood pressure, MCAv and end-tidal carbon dioxide were measured throughout. Zenith, nadir and zenith-to-nadir difference in mean arterial blood pressure (MAP) and mean MCAv (MCAvmean) for each repetition were averaged across each set. Two-way ANOVA was used to analyse dependent variables (training × sets), Bonferroni corrected t-tests were used for post hoc pairwise comparisons. Group age (26 ± 7 trained vs. 25 ± 6 years untrained, P = 0.683) and weight (78 ± 15 vs. 71 ± 15 kg, P = 0.683) were not different. During exercise average MAP was greater for the RE-trained group in sets 2, 3 and 4 (e.g., set 4: 101 ± 11 vs. 92 ± 7 mmHg for RE trained and untrained, respectively, post hoc tests all P = < 0.012). Zenith MAP and zenith-to-nadir MAP difference demonstrated a training effect (P < 0.039). Average MCAvmean and MCAvmean zenith-to-nadir difference was not different between groups (interaction effect P = 0.166 and P = 0.459, respectively). Despite RE-trained individuals demonstrating greater fluctuations in MAP during RE compared to untrained, there were no differences in MCAvmean. Regular RE may lead to vascular adaptations that stabilise MCAv during RE.
Collapse
Affiliation(s)
- Stephanie Korad
- School of Health SciencesMassey UniversityWellingtonNew Zealand
| | - Toby Mündel
- School of Sport, Exercise and NutritionMassey UniversityPalmerston NorthNew Zealand
- Department of KinesiologyBrock UniversitySt CatharinesOntarioCanada
| | - Blake G. Perry
- School of Health SciencesMassey UniversityWellingtonNew Zealand
| |
Collapse
|
9
|
Kostoglou K, Bello-Robles F, Brassard P, Chacon M, Claassen JAHR, Czosnyka M, Elting JW, Hu K, Labrecque L, Liu J, Marmarelis VZ, Payne SJ, Shin DC, Simpson D, Smirl J, Panerai RB, Mitsis GD. Time-domain methods for quantifying dynamic cerebral blood flow autoregulation: Review and recommendations. A white paper from the Cerebrovascular Research Network (CARNet). J Cereb Blood Flow Metab 2024; 44:1480-1514. [PMID: 38688529 PMCID: PMC11418733 DOI: 10.1177/0271678x241249276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - Felipe Bello-Robles
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Max Chacon
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Jurgen AHR Claassen
- Department of Geriatrics, Radboud University Medical Center, Research Institute for Medical Innovation and Donders Institute, Nijmegen, The Netherlands
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Marek Czosnyka
- Department of Clinical Neurosciences, Neurosurgery Department, University of Cambridge, Cambridge, UK
| | - Jan-Willem Elting
- Department of Neurology and Clinical Neurophysiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Kun Hu
- Medical Biodynamics Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec, QC, Canada
- Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Quebec, QC, Canada
| | - Jia Liu
- Laboratory for Engineering and Scientific Computing, Institute of Advanced Computing and Digital Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Vasilis Z Marmarelis
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan
| | - Dae Cheol Shin
- Department Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - David Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Jonathan Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation, Glenfield Hospital, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Burma JS, Roy MA, Kennedy CM, Labrecque L, Brassard P, Smirl JD. A systematic review, meta-analysis and meta-regression amalgamating the driven approaches used to quantify dynamic cerebral autoregulation. J Cereb Blood Flow Metab 2024; 44:1271-1297. [PMID: 38635887 PMCID: PMC11342731 DOI: 10.1177/0271678x241235878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/29/2023] [Accepted: 01/16/2024] [Indexed: 04/20/2024]
Abstract
Numerous driven techniques have been utilized to assess dynamic cerebral autoregulation (dCA) in healthy and clinical populations. The current review aimed to amalgamate this literature and provide recommendations to create greater standardization for future research. The PubMed database was searched with inclusion criteria consisting of original research articles using driven dCA assessments in humans. Risk of bias were completed using Scottish Intercollegiate Guidelines Network and Methodological Index for Non-Randomized Studies. Meta-analyses were conducted for coherence, phase, and gain metrics at 0.05 and 0.10 Hz using deep-breathing, oscillatory lower body negative pressure (OLBNP), sit-to-stand maneuvers, and squat-stand maneuvers. A total of 113 studies were included, with 40 of these incorporating clinical populations. A total of 4126 participants were identified, with younger adults (18-40 years) being the most studied population. The most common techniques were squat-stands (n = 43), deep-breathing (n = 25), OLBNP (n = 20), and sit-to-stands (n = 16). Pooled coherence point estimates were: OLBNP 0.70 (95%CI:0.59-0.82), sit-to-stands 0.87 (95%CI:0.79-0.95), and squat-stands 0.98 (95%CI:0.98-0.99) at 0.05 Hz; and deep-breathing 0.90 (95%CI:0.81-0.99); OLBNP 0.67 (95%CI:0.44-0.90); and squat-stands 0.99 (95%CI:0.99-0.99) at 0.10 Hz. This review summarizes clinical findings, discusses the pros/cons of the 11 unique driven techniques included, and provides recommendations for future investigations into the unique physiological intricacies of dCA.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Whitaker AA, Waghmare S, Montgomery RN, Aaron SE, Eickmeyer SM, Vidoni ED, Billinger SA. Lower middle cerebral artery blood velocity during low-volume high-intensity interval exercise in chronic stroke. J Cereb Blood Flow Metab 2024; 44:627-640. [PMID: 37708242 PMCID: PMC11197145 DOI: 10.1177/0271678x231201472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
High-intensity interval training (HIIE) may present unique challenges to the cerebrovascular system in individuals post-stroke. We hypothesized lower middle cerebral artery blood velocity (MCAv) in individuals post-stroke: 1) during 10 minutes of HIIE, 2) immediately following HIIE, and 3) 30 minutes after HIIE, compared to age- and sex-matched controls (CON). We used a recumbent stepper submaximal exercise test to determine workloads for high-intensity and active recovery. Our low volume HIIE protocol consisted of 1-minute intervals for 10 minutes. During HIIE, we measured MCAv, mean arterial pressure (MAP), heart rate (HR), and end tidal carbon dioxide (PETCO2). We assessed carotid-femoral pulse wave velocity as a measure of arterial stiffness. Fifty participants completed the study (25 post-stroke, 76% ischemic, 32% moderate disability). Individuals post-stroke had lower MCAv during HIIE compared to CON (p = 0.03), which remained 30 minutes after HIIE. Individuals post-stroke had greater arterial stiffness (p = 0.01) which was moderately associated with a smaller MCAv responsiveness during HIIE (r = -0.44). No differences were found for MAP, HR, and PETCO2. This study suggests individuals post-stroke had a lower MCAv during HIIE compared to their peers, which remained during recovery up to 30 minutes. Arterial stiffness may contribute to the lower cerebrovascular responsiveness post-stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Whitaker AA, Aaron SE, Chertoff M, Brassard P, Buchanan J, Nguyen K, Vidoni ED, Waghmare S, Eickmeyer SM, Montgomery RN, Billinger SA. Lower dynamic cerebral autoregulation following acute bout of low-volume high-intensity interval exercise in chronic stroke compared to healthy adults. J Appl Physiol (1985) 2024; 136:707-720. [PMID: 38357728 PMCID: PMC11286270 DOI: 10.1152/japplphysiol.00635.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Fluctuating arterial blood pressure during high-intensity interval exercise (HIIE) may challenge dynamic cerebral autoregulation (dCA), specifically after stroke after an injury to the cerebrovasculature. We hypothesized that dCA would be attenuated at rest and during a sit-to-stand transition immediately after and 30 min after HIIE in individuals poststroke compared with age- and sex-matched control subjects (CON). HIIE switched every minute between 70% and 10% estimated maximal watts for 10 min. Mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) were recorded. dCA was quantified during spontaneous fluctuations in MAP and MCAv via transfer function analysis. For sit-to-stand, time delay before an increase in cerebrovascular conductance index (CVCi = MCAv/MAP), rate of regulation, and % change in MCAv and MAP were measured. Twenty-two individuals poststroke (age 60 ± 12 yr, 31 ± 16 mo) and twenty-four CON (age 60 ± 13 yr) completed the study. Very low frequency (VLF) gain (P = 0.02, η2 = 0.18) and normalized gain (P = 0.01, η2 = 0.43) had a group × time interaction, with CON improving after HIIE whereas individuals poststroke did not. Individuals poststroke had lower VLF phase (P = 0.03, η2 = 0.22) after HIIE compared with CON. We found no differences in the sit-to-stand measurement of dCA. Our study showed lower dCA during spontaneous fluctuations in MCAv and MAP following HIIE in individuals poststroke compared with CON, whereas the sit-to-stand response was maintained.NEW & NOTEWORTHY This study provides novel insights into poststroke dynamic cerebral autoregulation (dCA) following an acute bout of high-intensity interval exercise (HIIE). In people after stroke, dCA appears attenuated during spontaneous fluctuations in mean arterial pressure (MAP) and middle cerebral artery blood velocity (MCAv) following HIIE. However, the dCA response during a single sit-to-stand transition after HIIE showed no significant difference from controls. These findings suggest that HIIE may temporarily challenge dCA after exercise in individuals with stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Mark Chertoff
- Department of Hearing and Speech, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Jake Buchanan
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Katherine Nguyen
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, Kansas, United States
- University of Kansas Alzheimer's Disease Research Center, Fairway, Kansas, United States
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, Kansas, United States
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
13
|
Wallis WEG, Al-Alem Q, Lorimer H, Smail OJ, Williams GKR, Bond B. The acute influence of amateur boxing on dynamic cerebral autoregulation and cerebrovascular reactivity to carbon dioxide. Eur J Appl Physiol 2024; 124:993-1003. [PMID: 37768343 PMCID: PMC10879355 DOI: 10.1007/s00421-023-05324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE The purpose of this study was to investigate the acute effect of head impacts, sustained over the course of three rounds of amateur boxing, on indices of cerebrovascular function. METHODS Eighteen university amateur boxers (six female) completed three experimental trials in a randomised order; (1) three rounds of boxing (BOX), (2) an equivalent bout of pad boxing (where no blows to the head were sustained; PAD), and (3) a time-matched seated control trial (CON). Indices of cerebrovascular function were determined immediately before and 45 min after each trial. Specifically, dynamic cerebral autoregulation (dCA) was determined by considering the relationship between changes in cerebral blood velocity and mean arterial pressure during 5 min of squat-stand manoeuvres at 0.05 and 0.10 Hz. Cerebrovascular reactivity was determined using serial breath holding and hyperventilation attempts. RESULTS Participants received an average of 40 ± 16 punches to the head during the BOX trial. Diastolic, mean and systolic dCA phase during squat stand manoeuvres at 0.05 Hz was lower after BOX compared to pre BOX (P ≤ 0.02, effect size (d) ≥ 0.74). No other alterations in dCA outcomes were observed at 0.05 or 0.10 Hz. The number of head impacts received during the BOX trial was associated with the change in systolic phase (r = 0.50, P = 0.03). No differences in cerebrovascular reactivity to breath holding or hyperventilation were observed. CONCLUSIONS A typical bout of amateur boxing (i.e., three rounds) can subtly alter cerebral pressure-flow dynamics, and the magnitude of this change may be related to head impact exposure.
Collapse
Affiliation(s)
- W E G Wallis
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - Q Al-Alem
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - H Lorimer
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - O J Smail
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - G K R Williams
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK
| | - B Bond
- Exeter Head Impacts, Brain Injury and Trauma (ExHIBIT) research group, Sport and Health Sciences, Baring Court, St Luke's Campus, University of Exeter, Exeter, EX1 2LU, UK.
| |
Collapse
|
14
|
Panerai RB, Davies A, Clough RH, Beishon LC, Robinson TG, Minhas JS. The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex. J Cereb Blood Flow Metab 2024; 44:272-283. [PMID: 37747437 PMCID: PMC10993882 DOI: 10.1177/0271678x231203475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The cerebral circulation responds differently to increases in mean arterial pressure (MAP), compared to reductions in MAP. We tested the hypothesis that this directional sensitivity is reduced by hypercapnia. Retrospective analysis of 104 healthy subjects (46 male (44%), age range 19-74 years), with five minute recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), non-invasive MAP (Finometer) and end-tidal CO2 (capnography) at rest, during both poikilocapnia and hypercapnia (5% CO2 breathing in air) produced MCAv step responses allowing estimation of the classical Autoregulation Index (ARIORIG), and corresponding values for both positive (ARI+D) and negative (ARI-D) changes in MAP. Hypercapnia led to marked reductions in ARIORIG, ARI+D and ARI-D (p < 0.0001, all cases). Females had a lower value of ARIORIG compared to males (p = 0.030) at poikilocapnia (4.44 ± 1.74 vs 4.74 ± 1.48) and hypercapnia (2.44 ± 1.93 vs 3.33 ± 1.61). The strength of directional sensitivity (ARI+D-ARI-D) was not influenced by hypercapnia (p = 0.46), sex (p = 0.76) or age (p = 0.61). During poikilocapnia, ARI+D decreased with age in females (p = 0.027), but not in males. Directional sensitivity was not affected by hypercapnia, suggesting that its origins are more likely to be inherent to the mechanics of vascular smooth muscle than to myogenic pathways.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
15
|
Skinner BD, Lucas RAI, Lucas SJE. Exposure to passive heat and cold stress differentially modulates cerebrovascular-CO 2 responsiveness. J Appl Physiol (1985) 2024; 136:23-32. [PMID: 37969086 PMCID: PMC11550999 DOI: 10.1152/japplphysiol.00494.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023] Open
Abstract
Heat and cold stress influence cerebral blood flow (CBF) regulatory factors (e.g., arterial CO2 partial pressure). However, it is unclear whether the CBF response to a CO2 stimulus (i.e., cerebrovascular-CO2 responsiveness) is maintained under different thermal conditions. This study aimed to compare cerebrovascular-CO2 responsiveness between normothermia, passive heat, and cold stress conditions. Sixteen participants (8 females; 25 ± 7 yr) completed two experimental sessions (randomized) comprising normothermic and either passive heat or cold stress conditions. Middle and posterior cerebral artery velocity (MCAv, PCAv) were measured during rest, hypercapnia (5% CO2 inhalation), and hypocapnia (voluntary hyperventilation to an end-tidal CO2 of 30 mmHg). The linear slope of the cerebral blood velocity (CBv) response to changing end-tidal CO2 was calculated to measure cerebrovascular-CO2 responsiveness, and cerebrovascular conductance (CVC) was used to examine responsiveness independent of blood pressure. CBv-CVC-CO2 responsiveness to hypocapnia was greater during heat stress compared with cold stress (MCA: +0.05 ± 0.08 cm/s/mmHg/mmHg, P = 0.04; PCA: +0.02 ± 0.02 cm/s/mmHg/mmHg, P = 0.002). CBv-CO2 responsiveness to hypercapnia decreased during heat stress (MCA: -0.67 ± 0.89 cm/s/mmHg, P = 0.02; PCA: -0.64 ± 0.62 cm/s/mmHg; P = 0.01) and increased during cold stress (MCA: +0.98 ± 1.33 cm/s/mmHg, P = 0.03; PCA: +1.00 ± 0.82 cm/s/mmHg; P = 0.01) compared with normothermia. However, CBv-CVC-CO2 responsiveness to hypercapnia was not different between thermal conditions (P > 0.08). Overall, passive heat, but not cold, stress challenges the maintenance of cerebral perfusion. A greater cerebrovascular responsiveness to hypocapnia during heat stress likely reduces an already impaired cerebrovascular reserve capacity and may contribute to adverse events (e.g., syncope).NEW & NOTEWORTHY This study demonstrates that thermoregulatory-driven perfusion pressure changes, from either cold or heat stress, impact cerebrovascular responsiveness to hypercapnia. Compared with cold stress, heat stress poses a greater challenge to the maintenance of cerebral perfusion during hypocapnia, challenging cerebrovascular reserve capacity while increasing cerebrovascular-CO2 responsiveness. This likely exacerbates cerebral hypoperfusion during heat stress since hyperthermia-induced hyperventilation results in hypocapnia. No regional differences in middle and posterior cerebral artery responsiveness were found with thermal stress.
Collapse
Affiliation(s)
- Bethany D Skinner
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Rebekah A I Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Human Brain Health, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
16
|
Brassard P, Roy MA, Burma JS, Labrecque L, Smirl JD. Quantification of dynamic cerebral autoregulation: welcome to the jungle! Clin Auton Res 2023; 33:791-810. [PMID: 37758907 DOI: 10.1007/s10286-023-00986-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE Patients with dysautonomia often experience symptoms such as dizziness, syncope, blurred vision and brain fog. Dynamic cerebral autoregulation, or the ability of the cerebrovasculature to react to transient changes in arterial blood pressure, could be associated with these symptoms. METHODS In this narrative review, we go beyond the classical view of cerebral autoregulation to discuss dynamic cerebral autoregulation, focusing on recent advances pitfalls and future directions. RESULTS Following some historical background, this narrative review provides a brief overview of the concept of cerebral autoregulation, with a focus on the quantification of dynamic cerebral autoregulation. We then discuss the main protocols and analytical approaches to assess dynamic cerebral autoregulation, including recent advances and important issues which need to be tackled. CONCLUSION The researcher or clinician new to this field needs an adequate comprehension of the toolbox they have to adequately assess, and interpret, the complex relationship between arterial blood pressure and cerebral blood flow in healthy individuals and clinical populations, including patients with autonomic disorders.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada.
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada
- Research center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
- Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
17
|
Lia A, Di Spiezio A, Speggiorin M, Zonta M. Two decades of astrocytes in neurovascular coupling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1162757. [PMID: 37078069 PMCID: PMC10106690 DOI: 10.3389/fnetp.2023.1162757] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023]
Abstract
The brain is a highly energy demanding organ, which accounts in humans for the 20% of total energy consumption at resting state although comprising only 2% of the body mass. The necessary delivery of nutrients to brain parenchyma is ensured by the cerebral circulatory system, through the exchange of glucose and oxygen (O2) at the capillary level. Notably, a tight spatial and temporal correlation exists between local increases in neuronal activity and the subsequent changes in regional cerebral blood flow. The recognized concept of neurovascular coupling (NVC), also named functional hyperemia, expresses this close relationship and stands at the basis of the modern functional brain imaging techniques. Different cellular and molecular mechanisms have been proposed to mediate this tight coupling. In this context, astrocytes are ideally positioned to act as relay elements that sense neuronal activity through their perisynaptic processes and release vasodilator agents at their endfeet in contact with brain parenchymal vessels. Two decades after the astrocyte involvement in neurovascular coupling has been proposed, we here review the experimental evidence that contributed to unraveling the molecular and cellular mechanisms underlying cerebral blood flow regulation. While traveling through the different controversies that moved the research in this field, we keep a peculiar focus on those exploring the role of astrocytes in neurovascular coupling and conclude with two sections related to methodological aspects in neurovascular research and to some pathological conditions resulting in altered neurovascular coupling.
Collapse
Affiliation(s)
- Annamaria Lia
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| | - Alessandro Di Spiezio
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Micaela Zonta
- Neuroscience Institute, National Research Council (CNR), Padua, Italy
| |
Collapse
|
18
|
Washio T, Hissen SL, Takeda R, Manabe K, Akins JD, Sanchez B, D'Souza AW, Nelson DB, Khan S, Tomlinson AR, Babb TG, Fu Q. Effects of posture changes on dynamic cerebral autoregulation during early pregnancy in women with obesity and/or sleep apnea. Clin Auton Res 2023; 33:121-131. [PMID: 37115467 PMCID: PMC11384342 DOI: 10.1007/s10286-023-00939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
The incidence of syncope during orthostasis increases in early human pregnancy, which may be associated with cerebral blood flow (CBF) dysregulation in the upright posture. In addition, obesity and/or sleep apnea per se may influence CBF regulation due to their detrimental impacts on cerebrovascular function. However, it is unknown whether early pregnant women with obesity and/or sleep apnea could have impaired CBF regulation in the supine position and whether this impairment would be further exacerbated in the upright posture. Dynamic cerebral autoregulation (CA) was evaluated using transfer function analysis in 33 women during early pregnancy (13 with obesity, 8 with sleep apnea, 12 with normal weight) and 15 age-matched nonpregnant women during supine rest. Pregnant women also underwent a graded head-up tilt (30° and 60° for 6 min each). We found that pregnant women with obesity or sleep apnea had a higher transfer function low-frequency gain compared with nonpregnant women in the supine position (P = 0.026 and 0.009, respectively) but not normal-weight pregnant women (P = 0.945). Conversely, the transfer function low-frequency phase in all pregnancy groups decreased during head-up tilt (P = 0.001), but the phase was not different among pregnant groups (P = 0.180). These results suggest that both obesity and sleep apnea may have a detrimental effect on dynamic CA in the supine position during early pregnancy. CBF may be more vulnerable to spontaneous blood pressure fluctuations in early pregnant women during orthostatic stress compared with supine rest due to less efficient dynamic CA, regardless of obesity and/or sleep apnea.
Collapse
Affiliation(s)
- Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ryosuke Takeda
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Akins
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
| | - Andrew W D'Souza
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, ON, Canada
| | - David B Nelson
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Safia Khan
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andrew R Tomlinson
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tony G Babb
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
19
|
Panerai RB, Barnes SC, Batterham AP, Robinson TG, Haunton VJ. Directional sensitivity of dynamic cerebral autoregulation during spontaneous fluctuations in arterial blood pressure at rest. J Cereb Blood Flow Metab 2023; 43:552-564. [PMID: 36420777 PMCID: PMC10063834 DOI: 10.1177/0271678x221142527] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Directional sensitivity, the more efficient response of cerebral autoregulation to increases, compared to decreases, in mean arterial pressure (MAP), has been demonstrated with repeated squat-stand maneuvers (SSM). In 43 healthy subjects (26 male, 23.1 ± 4.2 years old), five min. recordings of cerebral blood velocity (bilateral Doppler ultrasound), MAP (Finometer), end-tidal CO2 (capnograph), and heart rate (ECG) were obtained during sitting (SIT), standing (STA) and SSM. A new analytical procedure, based on autoregressive-moving average models, allowed distinct estimates of the autoregulation index (ARI) by separating the MAP signal into its positive (MAP+D) and negative (MAP-D) derivatives. ARI+D was higher than ARI-D (p < 0.0001), SIT: 5.61 ± 1.58 vs 4.31 ± 2.16; STA: 5.70 ± 1.24 vs 4.63 ± 1.92; SSM: 4.70 ± 1.11 vs 3.31 ± 1.53, but the difference ARI+D-ARI-D was not influenced by the condition. A bootstrap procedure determined the critical number of subjects needed to identify a significant difference between ARI+D and ARI-D, corresponding to 24, 37 and 38 subjects, respectively, for SSM, STA and SIT. Further investigations are needed on the influences of sex, aging and other phenotypical characteristics on the phenomenon of directional sensitivity of dynamic autoregulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Sam C Barnes
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Angus P Batterham
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK.,NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
20
|
O’Sullivan AM, Corey EM, Collet EN, Helminen J, Curry RA, MacIntyre C, Linnansaari T. Timing and frequency of high temperature events bend the onset of behavioural thermoregulation in Atlantic salmon ( Salmo salar). CONSERVATION PHYSIOLOGY 2023; 11:coac079. [PMID: 36685329 PMCID: PMC9845963 DOI: 10.1093/conphys/coac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/25/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
The role of temperature on biological activities and the correspondent exponential relationship with temperature has been known for over a century. However, lacking to date is knowledge relating to (a) the recovery of ectotherms subjected to extreme temperatures in the wild, and (b) the effects repeated extreme temperatures have on the temperatures that induce behavioural thermoregulation (aggregations). We examined these questions by testing the hypothesis that thermal thresholds which initiate aggregations in juvenile Atlantic salmon (AS) (Salmo salar) are not static, but are temporally dynamic across a summer and follow a hysteresis loop. To test our hypothesis, we deployed custom-made underwater camera (UWC) systems in known AS thermal refuges to observe the timing of aggregation events in a natural system and used these data to develop and test models that predict the temperatures that induce thermal aggregations. Consistent with our hypothesis our UWC observations revealed a range of aggregation onset temperatures (AOT) ranging from 24.2°C to 27.1°C, thus confirming our hypothesis that AOTs are dynamic across summer. Our models suggest it take ~ 11 days of non-thermally taxing temperatures for the AOT to rebound in the study river. Conversely, we found that as the frequency of events increased, the AOT declined, from 27.1°C to 24.2°C. Integrating both model components led to more robust model performance. Further, when these models were tested against an independent data set from the same river, the results remained robust. Our findings illustrate the complexity underlying behavioural thermoregulation in AS-a complexity that most likely extends to other salmonids. The frequency of extreme heat events is predicted to increase, and this has the capacity to decrease AOT thresholds in AS, ultimately reducing their resilience to extreme temperature events.
Collapse
Affiliation(s)
- Antóin M O’Sullivan
- Corresponding author: FOREM, University of New Brunswick, Fredericton, Fredericton, New Brunswick, NB E3B 5A3, Canada
| | - Emily M Corey
- Canadian Rivers Institute, University of New Brunswick, New Brunswick, NB E3B 5A3, Canada
- Biology, University of New Brunswick, Fredericton, Canada
| | - Elise N Collet
- FOREM, University of New Brunswick, Fredericton, Fredericton, New Brunswick, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, New Brunswick, NB E3B 5A3, Canada
| | - Jani Helminen
- Natural Resources InstituteFinland, Helsinki, Uusimaa, 00790, Finland
| | - R Allen Curry
- FOREM, University of New Brunswick, Fredericton, Fredericton, New Brunswick, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, New Brunswick, NB E3B 5A3, Canada
- Biology, University of New Brunswick, Fredericton, Canada
| | - Chris MacIntyre
- FOREM, University of New Brunswick, Fredericton, Fredericton, New Brunswick, NB E3B 5A3, Canada
| | - Tommi Linnansaari
- FOREM, University of New Brunswick, Fredericton, Fredericton, New Brunswick, NB E3B 5A3, Canada
- Canadian Rivers Institute, University of New Brunswick, New Brunswick, NB E3B 5A3, Canada
- Biology, University of New Brunswick, Fredericton, Canada
| |
Collapse
|
21
|
Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J Cereb Blood Flow Metab 2023; 43:3-25. [PMID: 35962478 PMCID: PMC9875346 DOI: 10.1177/0271678x221119760] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jurgen Ahr Claassen
- Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Samuel Je Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel D Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jonathan D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | |
Collapse
|
22
|
Labrecque L, Smirl JD, Tzeng YC, Brassard P. Point/counterpoint: We should take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 2022; 42:2351-2353. [PMID: 35619230 PMCID: PMC9670010 DOI: 10.1177/0271678x221104868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Accumulating evidence suggests asymmetrical responses of cerebral blood flow during large transient changes in mean arterial pressure. Specifically, the augmentation in cerebral blood flow is attenuated when mean arterial pressure acutely increases, compared with declines in cerebral blood flow when mean arterial pressure acutely decreases. However, common analytical tools to quantify dynamic cerebral autoregulation assume autoregulatory responses to be symmetric, which does not seem to be the case. Herein, we provide the rationale supporting the notion we need to consider the directional sensitivity of large and transient mean arterial pressure changes when characterizing dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada
| | - Yu-Chieh Tzeng
- Department of Surgery & Anesthesia, University of Otago, Wellington School of Medicine & Health Sciences, Wellington, New Zealand
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
23
|
Kostoglou K, Simpson DM, Payne SJ. Point/counterpoint: We should not take the direction of blood pressure change into consideration for dynamic cerebral autoregulation quantification. J Cereb Blood Flow Metab 2022; 42:2354-2356. [PMID: 36113047 PMCID: PMC9670004 DOI: 10.1177/0271678x221123442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past years, a wide range of studies have provided evidence of asymmetry in the response of static and dynamic cerebral autoregulation (CA) during increasing and decreasing pressure challenges. The main message is that CA is stronger during transient increases of arterial blood pressure rather than decreases. Here we do not argue against the presence of CA asymmetry but we seek to raise questions regarding the measurement of the effect and whether this effect needs to be taken into account, especially in clinical settings.
Collapse
Affiliation(s)
- Kyriaki Kostoglou
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | - David M Simpson
- ISVR, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| |
Collapse
|
24
|
Sahota IS, Lucci VEM, McGrath MS, Ravensbergen HJC(R, Claydon VE. Cardiovascular and cerebrovascular responses to urodynamics testing after spinal cord injury: The influence of autonomic injury. Front Physiol 2022; 13:977772. [PMID: 36187786 PMCID: PMC9525190 DOI: 10.3389/fphys.2022.977772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Autonomic dysfunction is a prominent concern following spinal cord injury (SCI). In particular, autonomic dysreflexia (AD; paroxysmal hypertension and concurrent bradycardia in response to sensory stimuli below the level of injury) is common in autonomically-complete injuries at or above T6. AD is currently defined as a >20 mmHg increase in systolic arterial pressure (SAP) from baseline, without heart rate (HR) criteria. Urodynamics testing (UDS) is performed routinely after SCI to monitor urological sequelae, often provoking AD. We, therefore, aimed to assess the cardiovascular and cerebrovascular responses to UDS and their association with autonomic injury in individuals with chronic (>1 year) SCI. Following blood draw (plasma norepinephrine [NE]), continuous SAP, HR, and middle cerebral artery blood flow velocity (MCAv) were recorded at baseline (10-minute supine), during standard clinical UDS, and recovery (10-minute supine) (n = 22, age 41.1 ± 2 years, 15 male). Low frequency variability in systolic arterial pressure (LF SAP; a marker of sympathetic modulation of blood pressure) and cerebral resistance were determined. High-level injury (≥T6) with blunted/absent LF SAP (<1.0 mmHg2) and/or low plasma NE (<0.56 nmol•L−1) indicated autonomically-complete injury. Known electrocardiographic markers of atrial (p-wave duration variability) and ventricular arrhythmia (T-peak–T-end variability) were evaluated at baseline and during UDS. Nine participants were determined as autonomically-complete, yet 20 participants had increased SAP >20 mmHg during UDS. Qualitative autonomic assessment did not discriminate autonomic injury. Maximum SAP was higher in autonomically-complete injuries (207.1 ± 2.3 mmHg) than autonomically-incomplete injuries (165.9 ± 5.3 mmHg) during UDS (p < 0.001). HR during UDS was reduced compared to baseline (p = 0.056) and recovery (p = 0.048) only in autonomically-complete lesions. MCAv was not different between groups or phases (all p > 0.05). Cerebrovascular resistance index was increased during UDS in autonomically-complete injuries compared to baseline (p < 0.001) and recovery (p < 0.001) reflecting intact cerebral autoregulation. Risk for both atrial and ventricular arrhythmia increased during UDS compared to baseline (p < 0.05), particularly in autonomically-complete injuries (p < 0.05). UDS is recommended yearly in chronic SCI but is associated with profound AD and an increased risk of arrhythmia, highlighting the need for continued monitoring during UDS. Our data also highlight the need for HR criteria in the definition of AD and the need for quantitative consideration of autonomic function after SCI.
Collapse
Affiliation(s)
- Inderjeet S. Sahota
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Vera-Ellen M. Lucci
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Maureen S. McGrath
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - H. J. C. (Rianne) Ravensbergen
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Victoria E. Claydon
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Victoria E. Claydon,
| |
Collapse
|
25
|
Iannarelli NJ, Vos NG, Gibson AJ. 'History doesn't repeat itself, but it often rhymes': Have coincidental microneurographic recordings yet again illuminated human sympathetic neurocirculatory control? J Physiol 2022; 600:4261-4263. [PMID: 36047532 DOI: 10.1113/jp283593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Nathaniel J Iannarelli
- Sympathetic Neurocirculatory Regulation Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Human Hemodynamics Laboratory, Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Naomi G Vos
- Sympathetic Neurocirculatory Regulation Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.,Human Hemodynamics Laboratory, Department of Health Sciences, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Alexander J Gibson
- Sympathetic Neurocirculatory Regulation Laboratory, Department of Kinesiology, Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
26
|
Abbariki F, Roy M, Labrecque L, Drapeau A, Imhoff S, Smirl JD, Brassard P. Influence of high-intensity interval training to exhaustion on the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men. Physiol Rep 2022; 10:e15384. [PMID: 35822439 PMCID: PMC9277516 DOI: 10.14814/phy2.15384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023] Open
Abstract
We previously reported subtle dynamic cerebral autoregulation (dCA) alterations following 6 weeks of high-intensity interval training (HIIT) to exhaustion using transfer function analysis (TFA) on forced mean arterial pressure (MAP) oscillations in young endurance-trained men. However, accumulating evidence suggests the cerebrovasculature better buffers cerebral blood flow changes when MAP acutely increases compared to when MAP acutely decreases. Whether HIIT affects the directional sensitivity of the cerebral pressure-flow relationship in these athletes is unknown. In 18 endurance-trained men (age: 27 ± 6 years, VO2 max: 55.5 ± 4.7 ml·kg-1 ·min-1 ), we evaluated the impact of 6 weeks of HIIT to exhaustion on dCA directionality using induced MAP oscillations during 5-min 0.05 and 0.10 Hz repeated squat-stands. We calculated time-adjusted changes in middle cerebral artery mean blood velocity (MCAv) per change in MAP (ΔMCAvT /ΔMAPT ) for each squat transition. Then, we compared averaged ΔMCAvT /ΔMAPT during MAP increases and decreases. Before HIIT, ΔMCAvT /ΔMAPT was comparable between MAP increases and decreases during 0.05 Hz repeated squat-stands (p = 0.518). During 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT was lower during MAP increases versus decreases (0.87 ± 0.17 vs. 0.99 ± 0.23 cm·s-1 ·mmHg-1 , p = 0.030). Following HIIT, ΔMCAvT /ΔMAPT was superior during MAP increases over decreases during 0.05 Hz repeated squat-stands (0.97 ± 0.38 vs. 0.77 ± 0.35 cm·s-1 ·mmHg-1 , p = 0.002). During 0.10 Hz repeated squat-stands, dCA directional sensitivity disappeared (p = 0.359). These results suggest the potential for HIIT to influence the directional sensitivity of the cerebral pressure-flow relationship in young endurance-trained men.
Collapse
Affiliation(s)
- Faezeh Abbariki
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Marc‐Antoine Roy
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Sarah Imhoff
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| | - Jonathan D. Smirl
- Cerebrovascular Concussion Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Sport Injury Prevention Research Centre, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Human Performance Laboratory, Faculty of KinesiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryAlbertaCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryAlbertaCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryAlbertaCanada
- Concussion Research Laboratory, Faculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBritish ColumbiaCanada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of MedicineUniversité LavalQuébec CityQuébecCanada
- Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de QuébecQuébec CityQuébecCanada
| |
Collapse
|
27
|
Korad S, Mündel T, Fan JL, Perry BG. Cerebral autoregulation across the menstrual cycle in eumenorrheic women. Physiol Rep 2022; 10:e15287. [PMID: 35524340 PMCID: PMC9076937 DOI: 10.14814/phy2.15287] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/20/2022] Open
Abstract
There is emerging evidence that ovarian hormones play a significant role in the lower stroke incidence observed in pre‐menopausal women compared with men. However, the role of ovarian hormones in cerebrovascular regulation remains to be elucidated. We examined the blood pressure‐cerebral blood flow relationship (cerebral autoregulation) across the menstrual cycle in eumenorrheic women (n = 12; mean ± SD: age, 31 ± 7 years). Participants completed sit‐to‐stand and Valsalva maneuvers (VM, mouth pressure of 40 mmHg for 15 s) during the early follicular (EF), late follicular (LF), and mid‐luteal (ML) menstrual cycle phases, confirmed by serum measurement of progesterone and 17β‐estradiol. Middle cerebral artery blood velocity (MCAv), arterial blood pressure and partial pressure of end‐tidal carbon dioxide were measured. Cerebral autoregulation was assessed by transfer function analysis during spontaneous blood pressure oscillations, rate of regulation (RoR) during sit‐to‐stand maneuvers, and Tieck’s autoregulatory index during VM phases II and IV (AI‐II and AI‐IV, respectively). Resting mean MCAv (MCAvmean), blood pressure, and cerebral autoregulation were unchanged across the menstrual cycle (all p > 0.12). RoR tended to be different (EF, 0.25 ± 0.06; LF; 0.19 ± 0.04; ML, 0.18 ± 0.12 sec−1; p = 0.07) and demonstrated a negative relationship with 17β‐estradiol (R2 = 0.26, p = 0.02). No changes in AI‐II (EF, 1.95 ± 1.20; LF, 1.67 ± 0.77 and ML, 1.20 ± 0.55) or AI‐IV (EF, 1.35 ± 0.21; LF, 1.27 ± 0.26 and ML, 1.20 ± 0.2) were observed (p = 0.25 and 0.37, respectively). Although, a significant interaction effect (p = 0.02) was observed for the VM MCAvmean response. These data indicate that the menstrual cycle has limited impact on cerebrovascular autoregulation, but individual differences should be considered.
Collapse
Affiliation(s)
- Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Toby Mündel
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North, New Zealand
| | - Jui-Lin Fan
- Department of Physiology, Faculty of Medical and Health Sciences, Manaaki Manawa, The Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand
| |
Collapse
|
28
|
Cerebrovascular function and its association with systemic artery function and stiffness in older adults with and without mild cognitive impairment. Eur J Appl Physiol 2022; 122:1843-1856. [PMID: 35522276 PMCID: PMC9287231 DOI: 10.1007/s00421-022-04956-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023]
Abstract
PURPOSE Our aim was to compare cerebrovascular and systemic vascular function between older adults with and without mild cognitive impairment (MCI), and to determine which measures of vascular function best predict the presence of MCI. METHODS In 41 adults with MCI and 33 adults without MCI (control) we compared middle cerebral artery velocity (MCAv) and cerebrovascular pulsatility index (PI) at rest, cerebrovascular reactivity to CO2, and responsiveness to changes in blood pressure (%∆MCAv/%∆MAP). Systemic vascular function was assessed by flow-mediated dilation (FMD) and stiffness by pulse wave velocity (PWV). RESULTS Cerebrovascular PI was higher in MCI compared with control (mean ± SD: 1.17 ± 0.27 vs. 1.04 ± 0.21), and MCI exhibited a lower %∆MCAv/%∆MAP (1.26 ± 0.44 vs. 1.50 ± 0.55%). Absolute (p = 0.76) and relative cerebrovascular reactivity to CO2 (p = 0.34) was similar between MCI and control. When age was included as a covariate the significant difference in cerebral PI between groups was lost. PWV was higher (13.2 ± 2.2 vs. 11.3 ± 2.5 m s-1) and FMD% (4.41 ± 1.70 vs. 5.43 ± 2.15%) was lower in MCI compared with control. FMD% was positively associated with PI across the cohort. Logistic regression analysis indicated that FMD and PWV significantly discriminated between MCI and controls, independent of age, whereas the inclusion of cerebrovascular measures did not improve the predictive accuracy of the model. CONCLUSION These findings raise the possibility that early changes in systemic vascular stiffness and endothelial function may contribute to altered cerebrovascular haemodynamics and impaired cognitive function, and present potential targets for prevention and treatment strategies in people with MCI.
Collapse
|
29
|
Marshall RA, Luchkanych AMS, Morton JS, Boyes NG, Zhai A, Marciniuk DD, Mei Y, Allison EY, Shoemaker JK, Al-Khazraji BK, Allen MD, Tomczak CR, Olver TD. Cerebral haemodynamics during arrhythmia in health, ischaemic heart disease and heart failure with reduced ejection fraction, and in a preclinical swine model. J Physiol 2022; 600:2311-2325. [PMID: 35389526 DOI: 10.1113/jp283112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022] Open
Abstract
Ventricular arrhythmias are associated with neurological impairment and could represent a source of cerebral hypoperfusion. In the present study, data from healthy individuals (n = 11), patients with ischaemic heart disease (IHD; ejection fraction >40%; n = 9) and patients with heart failure with reduced ejection fraction (HFrEF; EF = 31 (5)%, n = 11), as well as data from swine surgeries, where spontaneous ventricular arrhythmias were observed during cerebrovascular examination (transcranial Doppler ultrasound in humans and laser Doppler in swine) were analysed retrospectively to investigate the effect of arrhythmia on cerebral microvascular haemodynamics. A subset of participants also completed the Montreal Cognitive Assessment (MoCA). Middle cerebral artery mean blood velocity (MCAVmean ) decreased during premature ventricular contraction (PVC) in all groups, and data from swine indicate PVCs reduced cerebral microvascular perfusion. Overall MCAVmean was decreased in the HFrEF vs. control group. Further, %∆MCAVmean /%∆mean arterial pressure during the PVC was greater in the HFrEF vs. control group and was correlated with decreased MoCA scores. Subanalysis of HFrEF data revealed that during bigeminy MCAVmean decreased owing to reductions during irregular beats only. During non-sustained ventricular tachycardia, MCAVmean decreased but recovered above baseline upon return to sinus rhythm. Also, haemodynamic perturbations during and following the PVC were greater in the brachial artery vs. the MCA. Therefore, ventricular arrhythmias decreased indices of cerebral perfusion irrespective of IHD or HFrEF. The relative magnitude of arrhythmia-induced haemodynamic perturbations appears to be population specific and arrhythmia type and organ dependent. The cumulative burden of arrhythmia-induced deficits may exacerbate existing cerebral hypoperfusion in HFrEF and contribute to neurological abnormalities in this population. KEY POINTS: Irregular heartbeats are often considered benign in isolation, but individuals who experience them frequently have a higher prevalence of cerebrovascular and/or cognitive associated disorders. How irregular heartbeats affect blood pressure and cerebral haemodynamics in healthy and cardiovascular disease patients, those with and without reduced ejection fraction, remains unknown. Here it was found that in the absence of symptoms associated with irregular heartbeats, such as dizziness or hypotension, single, multiple non-sustained and sustained irregular heartbeats influence cerebral haemodynamics in a population-specific, arrhythmia-type and organ-dependent manner. Relative deficits in the index of cerebral blood flow normalized to relative deficits in blood pressure were greatest in patients with heart failure with reduced ejection and inversely related with cognitive performance. Chronic arrhythmias may exacerbate existing cerebral hypoperfusion in heart failure with reduced ejection fraction, thereby providing a mechanistic link between otherwise benign irregular heartbeats and cognitive dysfunction, independent of embolism.
Collapse
Affiliation(s)
- Rory A Marshall
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Adam M S Luchkanych
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jude S Morton
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Natasha G Boyes
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alexander Zhai
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Darcy D Marciniuk
- College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yixue Mei
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Elric Y Allison
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | | | - Baraa K Al-Khazraji
- Department of Kinesiology, Faculty of Science, McMaster University, Hamilton, Ontario, Canada
| | - Matti D Allen
- Department of Physical Medicine and Rehabilitation, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Corey R Tomczak
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - T Dylan Olver
- Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
30
|
Washio T, Watanabe H, Suzuki K, Saito S, Ogoh S. Site-specific different dynamic cerebral autoregulation and cerebrovascular response to carbon dioxide in posterior cerebral circulation during isometric exercise in healthy young men. Auton Neurosci 2022; 238:102943. [PMID: 35086019 DOI: 10.1016/j.autneu.2022.102943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 11/23/2022]
Abstract
Different cerebral blood flow (CBF) responses to exercise between the posterior cerebral artery (PCA) and vertebral artery (VA) have been previously observed, though the physiological mechanisms remain unknown. There is regional heterogeneity in sympathetic innervation between the PCA and VA, which may affect CBF regulation, especially during sympathoexcitation. Thus, in the present study, we hypothesized that different CBF regulatory mechanisms between PCA and VA contribute to heterogeneous CBF responses to isometric exercise. To test this hypothesis, in thirteen healthy young men, dynamic cerebral autoregulation (CA) and cerebrovascular CO2 reactivity (CVR), were identified in each artery during a 2-min isometric handgrip (IHG) exercise at 30% of maximum voluntary contraction. Similar to previous data, PCA cerebrovascular conductance (CVC) index was decreased from rest (P < 0.004), but not VA CVC during IHG exercise (P > 0.084). Dynamic CA in both PCA and VA were unaltered during the IHG exercise (P = 0.129). On the other hand, PCA CVR was increased during the IHG exercise (P < 0.001) while VA CVR was unchanged (P = 0.294). In addition, individual exercise-induced changes in end-tidal partial pressure of CO2 was related to the individual change in PCA blood velocity (P < 0.046), but was not observed for VA blood flow (P > 0.420). Therefore, these exercise-induced differences in CVR between PCA and VA may contribute to exercise-induced heterogeneous CBF response in the posterior cerebral circulation. These findings indicate that the site-specific posterior CBF should be considered in further research for assessing posterior cerebral circulation.
Collapse
Affiliation(s)
- Takuro Washio
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Kazuya Suzuki
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan; Neurovascular Research Laboratory, University of South Wales, UK.
| |
Collapse
|
31
|
Roy MA, Labrecque L, Perry BG, Korad S, Smirl JD, Brassard P. Directional sensitivity of the cerebral pressure-flow relationship in young healthy individuals trained in endurance and resistance exercise. Exp Physiol 2022; 107:299-311. [PMID: 35213765 DOI: 10.1113/ep090159] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Does habitual exercise modality affect the directionality of the cerebral pressure-flow relationship? What is the main finding and its importance? These data suggest the hysteresis-like pattern of dynamic cerebral autoregulation appears present in long-term sedentary and endurance-trained individuals, but absent in resistance-trained individuals. This is the first study to expand knowledge on the directional sensitivity of the cerebral pressure-flow relationship to trained populations. ABSTRACT Evidence suggests the cerebrovasculature may be more efficient at dampening cerebral blood flow (CBF) variations when mean arterial pressure (MAP) transiently increases, compared to when it decreases. Despite divergent MAP and CBF responses to acute endurance and resistance training, the long-term impact of habitual exercise modality on the directionality of dynamic cerebral autoregulation (dCA) is currently unknown. Thirty-six young healthy participants [sedentary (n = 12), endurance-trained (n = 12) and resistance-trained (n = 12)] undertook a 5-min repeated squat-stand protocol at two forced MAP oscillation frequencies (0.05 Hz and 0.10 Hz). Middle cerebral artery mean blood velocity (MCAv) and MAP were continuously monitored. We calculated absolute (ΔMCAvT /ΔMAPT ) and relative (%MCAvT /%MAPT ) changes in MCAv and MAP with respect to the transition time intervals of both variables to compute a time-adjusted ratio in each MAP direction, averaged over the 5-min repeated squat-stand protocols. At 0.10 Hz repeated squat-stands, ΔMCAvT /ΔMAPT and %MCAvT /%MAPT were lower when MAP increased compared with when MAP decreased for sedentary (ΔMCAvT /ΔMAPT : p = 0.032; %MCAvT /%MAPT : p = 0.040) and endurance-trained individuals (ΔMCAvT /ΔMAPT : p = 0.012; %MCAvT /%MAPT : p = 0.007), but not in the resistance-trained (ΔMCAvT /ΔMAPT : p = 0.512; %MCAvT /%MAPT : p = 0.666). At 0.05 Hz repeated squat-stands, time-adjusted ratios were similar for all groups (all p>0.605). These findings suggest exercise training modality does influence the directionality of the cerebral pressure-flow relationship and support the presence of a hysteresis-like pattern during 0.10 Hz repeated squat-stands in sedentary and endurance-trained participants, but not in resistance-trained individuals. In future studies, assessment of elite endurance and resistance training habits may further elucidate modality-dependent discrepancies on directional dCA measurements. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Stephanie Korad
- School of Health Sciences, Massey University, Wellington, New Zealand.,School of Sport, Exercise and Nutrition, Massey University, Wellington, New Zealand
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
32
|
Labrecque L, Burma JS, Roy MA, Smirl JD, Brassard P. Reproducibility and diurnal variation of the directional sensitivity of the cerebral pressure-flow relationship in men and women. J Appl Physiol (1985) 2021; 132:154-166. [PMID: 34855525 DOI: 10.1152/japplphysiol.00653.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cerebral pressure-flow relationship has directional sensitivity, meaning the augmentation in cerebral blood flow is attenuated when mean arterial pressure (MAP) increases vs MAP decreases. We employed repeated squat-stands (RSS) to quantify it using a novel metric. However, its within-day reproducibility and the impacts of diurnal variation and biological sex are unknown. Study aims were to evaluate this metric for: 1) within-day reproducibility and diurnal variation in middle (MCA; ∆MCAvT/∆MAPT) and posterior cerebral arteries (PCA; ∆PCAvT/∆MAPT); 2) sex differences. ∆MCAvT/∆MAPT and ∆PCAvT/∆MAPT were calculated at seven time-points (08:00-17:00) in 18 participants (8 women; 24 ± 3 yrs) using the minimum-to-maximum MCAv or PCAv and MAP for each RSS at 0.05 Hz and 0.10 Hz. Relative metric values were also calculated (%MCAvT/%MAPT, %PCAvT/%MAPT). Intraclass correlation coefficient (ICC) evaluated reproducibility, which was good (0.75-0.90) to excellent (>0.90). Time-of-day impacted ∆MCAvT/∆MAPT (0.05 Hz: p = 0.002; 0.10 Hz: p = 0.001), %MCAvT/%MAPT (0.05 Hz: p = 0.035; 0.10 Hz: p = 0.009), and ∆PCAvT/∆MAPT (0.05 Hz: p = 0.024), albeit with small/negligible effect sizes. MAP direction impacted both arteries' metric at 0.10 Hz (all p < 0.024). Sex differences in the MCA only (p = 0.003) vanished when reported in relative terms. These findings demonstrate this metric is reproducible throughout the day in the MCA and PCA and is not impacted by biological sex.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Marc-Antoine Roy
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| | - Jonathan David Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada
| |
Collapse
|
33
|
Burma JS, Kennedy CM, Penner LC, Miutz LN, Galea OA, Ainslie PN, Smirl JD. Long-term heart transplant recipients: heart rate-related effects on augmented transfer function coherence during repeated squat-stand maneuvers in males. Am J Physiol Regul Integr Comp Physiol 2021; 321:R925-R937. [PMID: 34730005 DOI: 10.1152/ajpregu.00177.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous research has highlighted that squat-stand maneuvers (SSMs) augment coherence values within the cerebral pressure-flow relationship to ∼0.99. However, it is not fully elucidated if mean arterial pressure (MAP) leads to this physiological entrainment independently, or if heart rate (HR) and/or the partial pressure of carbon dioxide (Pco2) also have contributing influences. A 2:1 control-to-case model was used in the present investigation [participant number (n) = 40; n = 16 age-matched (AM); n = 16 donor control (DM); n = 8 heart transplant recipients (HTRs)]. The latter group was used to mechanistically isolate the extent to which HR influences the cerebral pressure-flow relationship. Participants completed 5 min of squat-stand maneuvers at 0.05 Hz (10 s) and 0.10 Hz (5 s). Linear transfer function analysis (TFA) examined the relationship between different physiological inputs (i.e., MAP, HR, and Pco2) and output [cerebral blood velocity (CBV)] during SSM; and cardiac baroreceptor sensitivity (BRS). Compared with DM, cardiac BRS was reduced in AM (P < 0.001), which was further reduced in HTR (P < 0.045). In addition, during the SSM, HR was elevated in HTR compared with both control groups (P < 0.001), but all groups had near-maximal coherence metrics ≥0.98 at 0.05 Hz and ≥0.99 at 0.10 Hz (P ≥ 0.399). In contrast, the mean HR-CBV/Pco2-CBV relationships ranged from 0.38 (HTR) to 0.81 (DM). Despite near abolishment of BRS and blunted HR following heart transplantation, long-term HTR exhibited near-maximal coherence within the MAP-CBV relationship, comparable with AM and DM. Therefore, these results show that the augmented coherence with SSM is driven by blood pressure, whereas elevations in TFA coherence as a result of HR contribution are likely correlational in nature.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Courtney M Kennedy
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Linden C Penner
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Olivia A Galea
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Calgary, Alberta, Canada.,Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, Faculty of Health and Social Development, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
34
|
Koep JL, Taylor CE, Coombes JS, Bond B, Ainslie PN, Bailey TG. Autonomic control of cerebral blood flow: fundamental comparisons between peripheral and cerebrovascular circulations in humans. J Physiol 2021; 600:15-39. [PMID: 34842285 DOI: 10.1113/jp281058] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023] Open
Abstract
Understanding the contribution of the autonomic nervous system to cerebral blood flow (CBF) control is challenging, and interpretations are unclear. The identification of calcium channels and adrenoreceptors within cerebral vessels has led to common misconceptions that the function of these receptors and actions mirror those of the peripheral vasculature. This review outlines the fundamental differences and complex actions of cerebral autonomic activation compared with the peripheral circulation. Anatomical differences, including the closed nature of the cerebrovasculature, and differential adrenoreceptor subtypes, density, distribution and sensitivity, provide evidence that measures on peripheral sympathetic nerve activity cannot be extrapolated to the cerebrovasculature. Cerebral sympathetic nerve activity seems to act opposingly to the peripheral circulation, mediated at least in part by changes in intracranial pressure and cerebral blood volume. Additionally, heterogeneity in cerebral adrenoreceptor distribution highlights region-specific autonomic regulation of CBF. Compensatory chemo- and autoregulatory responses throughout the cerebral circulation, and interactions with parasympathetic nerve activity are unique features to the cerebral circulation. This crosstalk between sympathetic and parasympathetic reflexes acts to ensure adequate perfusion of CBF to rising and falling perfusion pressures, optimizing delivery of oxygen and nutrients to the brain, while attempting to maintain blood volume and intracranial pressure. Herein, we highlight the distinct similarities and differences between autonomic control of cerebral and peripheral blood flow, and the regional specificity of sympathetic and parasympathetic regulation within the cerebrovasculature. Future research directions are outlined with the goal to further our understanding of autonomic control of CBF in humans.
Collapse
Affiliation(s)
- Jodie L Koep
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Chloe E Taylor
- School of Health Sciences, Western Sydney University, Sydney, Australia
| | - Jeff S Coombes
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Bert Bond
- Children's Health and Exercise Research Centre, Sport and Health Sciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Sciences, University of British Columbia - Okanagan, Kelowna, British Columbia, Canada
| | - Tom G Bailey
- Physiology and Ultrasound Laboratory in Science and Exercise, Centre for Research on Exercise, Physical Activity and Health, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.,School of Nursing, Midwifery and Social Work, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
35
|
Skow RJ, Labrecque L, Rosenberger JA, Brassard P, Steinback CD, Davenport MH. Prenatal exercise and cardiovascular health (PEACH) study: impact of acute and chronic exercise on cerebrovascular hemodynamics and dynamic cerebral autoregulation. J Appl Physiol (1985) 2021; 132:247-260. [PMID: 34818074 DOI: 10.1152/japplphysiol.00446.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed a randomised controlled trial measuring dynamic cerebral autoregulation (dCA) using a sit-to-stand maneuver before (SS1) and following (SS2) an acute exercise test at 16-20 weeks gestation (trimester 2; TM2) and then again at 34-37 weeks gestation (third trimester; TM3). Following the first assessment, women were randomised into exercise training or control (standard care) groups; women in the exercise training group were prescribed moderate intensity aerobic exercise for 25-40 minutes on 3-4 days per week for 14±1weeks. Resting seated mean blood velocity in the middle cerebral artery (MCAvmean) was lower in TM3 compared to TM2 but not impacted by exercise training intervention. dCA was not impacted by gestational age, or exercise training during SS1. During SS2, dCA was altered such that there were greater absolute and relative decreases in mean arterial blood pressure (MAP) and MCAvmean, but this was not impacted by the intervention. There was also no difference in the relationship between the decrease in MCAvmean compared to the decrease in MAP (%/%), or the onset of the regulatory response with respect to acute exercise, gestational age, or intervention; however, rate of regulation was faster in women in the exercise group following acute exercise (interaction effect, p=0.048). These data highlight the resilience of the cerebral circulation in that dCA was well maintained or improved in healthy pregnant women between TM2 and TM3. However, future work addressing the impact of acute and chronic exercise on dCA in women who are at risk for cardiovascular complications during pregnancy is needed.
Collapse
Affiliation(s)
- Rachel J Skow
- Program for Pregnancy and Postpartum Health, Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Lawrence Labrecque
- Department of Kinesiology and Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Jade A Rosenberger
- Program for Pregnancy and Postpartum Health, Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology and Research center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, Canada
| | - Craig D Steinback
- Program for Pregnancy and Postpartum Health, Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Margie H Davenport
- Program for Pregnancy and Postpartum Health, Neurovascular Health Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
36
|
Barnes SC, Haunton VJ, Beishon L, Llwyd O, Robinson TG, Panerai RB. Extremes of cerebral blood flow during hypercapnic squat-stand maneuvers. Physiol Rep 2021; 9:e15021. [PMID: 34617685 PMCID: PMC8495794 DOI: 10.14814/phy2.15021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Squat-stand maneuvers (SSMs) are a popular method of inducing blood pressure (BP) oscillations to reliably assess dynamic cerebral autoregulation (dCA), but their effects on the cerebral circulation remain controversial. We designed a protocol whereby participants would perform SSMs under hypercapnic conditions. Alarmingly high values of cerebral blood flow velocity (CBFV) were recorded, leading to early study termination after the recruitment of a single participant. One healthy subject underwent recordings at rest (5 min sitting, 5 min standing) and during two SSMs (fixed and random frequency). Two sets of recordings were collected; one while breathing room air, one while breathing 5% CO2 . Continuous recordings of bilateral CBFV (transcranial Doppler), heart rate (ECG), BP (Finometer), and end-tidal CO2 (capnography) were collected. Peak values of systolic CBFV were significantly higher during hypercapnia (p < 0.01), and maximal values exceeded 200 cm.s-1 . Estimates of dCA (ARI) during hypercapnia were impaired relative to poikilocapnia (p = 0.03). The phase was significantly reduced under hypercapnic conditions (p = 0.03). Here we report extremely high values of CBFV in response to repeated SSMs during induced hypercapnia, in an otherwise healthy subject. Our findings suggest that protocols performing hypercapnic SSMs are potentially dangerous. We, therefore, urge caution if other research groups plan to undertake similar protocols.
Collapse
Affiliation(s)
- Samuel C. Barnes
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Victoria J. Haunton
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreUniversity of LeicesterLeicesterUK
| | - Lucy Beishon
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Osian Llwyd
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
| | - Thompson G. Robinson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreUniversity of LeicesterLeicesterUK
| | - Ronney B. Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- National Institute for Health Research (NIHR) Leicester Biomedical Research CentreUniversity of LeicesterLeicesterUK
| |
Collapse
|
37
|
Brassard P, Labrecque L, Smirl JD, Tymko MM, Caldwell HG, Hoiland RL, Lucas SJE, Denault AY, Couture EJ, Ainslie PN. Losing the dogmatic view of cerebral autoregulation. Physiol Rep 2021; 9:e14982. [PMID: 34323023 PMCID: PMC8319534 DOI: 10.14814/phy2.14982] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
In 1959, Niels Lassen illustrated the cerebral autoregulation curve in the classic review article entitled Cerebral Blood Flow and Oxygen Consumption in Man. This concept suggested a relatively broad mean arterial pressure range (~60-150 mmHg) wherein cerebral blood flow remains constant. However, the assumption that this wide cerebral autoregulation plateau could be applied on a within-individual basis is incorrect and greatly variable between individuals. Indeed, each data point on the autoregulatory curve originated from independent samples of participants and patients and represented interindividual relationships between cerebral blood flow and mean arterial pressure. Nonetheless, this influential concept remains commonly cited and illustrated in various high-impact publications and medical textbooks, and is frequently taught in medical and science education without appropriate nuances and caveats. Herein, we provide the rationale and additional experimental data supporting the notion we need to lose this dogmatic view of cerebral autoregulation.
Collapse
Affiliation(s)
- Patrice Brassard
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQCCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecQCCanada
| | - Lawrence Labrecque
- Department of KinesiologyFaculty of MedicineUniversité LavalQuébecQCCanada
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecQCCanada
| | - Jonathan D. Smirl
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Cerebrovascular Concussion LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
- Alberta Children’s Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryABCanada
| | - Michael M. Tymko
- Neurovascular Health LaboratoryUniversity of AlbertaEdmontonABCanada
| | - Hannah G. Caldwell
- Center for Heart, Lung and Vascular HealthSchool of Health and Exercise SciencesUniversity of British Columbia – OkanaganKelownaBCCanada
| | - Ryan L. Hoiland
- Department of Cellular and Physiological SciencesFaculty of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverBCCanada
| | - Samuel J. E. Lucas
- School of Sport, Exercise and Rehabilitation SciencesCollege of Life and Environmental SciencesUniversity of BirminghamBirminghamUnited Kingdom
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUnited Kingdom
| | - André Y. Denault
- Department of Anesthesiology and Critical Care DivisionMontreal Heart InstituteMontrealQCCanada
- Division of Critical Care MedicineCentre Hospitalier de l’Université de MontréalMontrealQCCanada
| | - Etienne J. Couture
- Research center of the Institut universitaire de cardiologie et de pneumologie de QuébecQuébecQCCanada
| | - Philip N. Ainslie
- Center for Heart, Lung and Vascular HealthSchool of Health and Exercise SciencesUniversity of British Columbia – OkanaganKelownaBCCanada
| |
Collapse
|
38
|
Labrecque L, Smirl JD, Brassard P. Utilization of the repeated squat-stand model for studying the directional sensitivity of the cerebral pressure-flow relationship. J Appl Physiol (1985) 2021; 131:927-936. [PMID: 34264130 DOI: 10.1152/japplphysiol.00269.2021] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hysteresis in the cerebral pressure-flow relationship describes the superior ability of the cerebrovasculature to buffer cerebral blood flow changes when mean arterial pressure (MAP) increases compared with when MAP decreases. This phenomenon can be evaluated by comparing the change in middle cerebral artery mean blood velocity (MCAv) per change in MAP during either acute increases or decreases in MAP induced by repeated squat-stands (RSS). However, no real baseline can be used for this particular protocol as there is no true stable reference point. Herein, we characterized a novel metric using the greatest MAP oscillations induced by RSS without using an independent baseline value and adjusted for time intervals (ΔMCAvT/ΔMAPT). We also examined whether this metric during each RSS transition was comparable between each other over a 5-min period. ΔMCAvT/ΔMAPT was calculated using the minimum to maximum MCAv and MAP for each RSS performed at 0.05 Hz and 0.10 Hz. We compared averaged ΔMCAvT/ΔMAPT during MAP increases and decreases in 74 healthy participants [9 women; 26 (20-74) yr]. ΔMCAvT/ΔMAPT was lower for MAP increases than MAP decreases at 0.10 Hz RSS only (0.91 ± 0.34 vs. 1.01 ± 0.44 cm·s-1/mmHg; P = 0.0013). For both frequency and MAP direction, time during RSS had no effect on ΔMCAvT/ΔMAPT. This novel analytical method supports the use of the RSS model to evaluate the directional sensitivity of the pressure-flow relationship. These results contribute to the importance of considering the direction of MAP changes, depending on the oscillations frequency when evaluating dynamic cerebral autoregulation.NEW & NOTEWORTHY Repeated squat-stand maneuvers are able to examine the directional sensitivity of the cerebral pressure-flow relationship. These maneuvers induce stable physiological cyclic changes where brain blood flow changes with blood pressure increases are buffered more than blood pressure decreases. These results highlight the importance of considering directional blood pressure changes within cerebral autoregulation.
Collapse
Affiliation(s)
- Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| | - Jonathan D Smirl
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, British Columbia, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec City, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, Québec, Canada
| |
Collapse
|
39
|
Perry BG, Lucas SJE. The Acute Cardiorespiratory and Cerebrovascular Response to Resistance Exercise. SPORTS MEDICINE-OPEN 2021; 7:36. [PMID: 34046740 PMCID: PMC8160070 DOI: 10.1186/s40798-021-00314-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022]
Abstract
Resistance exercise (RE) is a popular modality for the general population and athletes alike, due to the numerous benefits of regular participation. The acute response to dynamic RE is characterised by temporary and bidirectional physiological extremes, not typically seen in continuous aerobic exercise (e.g. cycling) and headlined by phasic perturbations in blood pressure that challenge cerebral blood flow (CBF) regulation. Cerebral autoregulation has been heavily scrutinised over the last decade with new data challenging the effectiveness of this intrinsic flow regulating mechanism, particularly to abrupt changes in blood pressure over the course of seconds (i.e. dynamic cerebral autoregulation), like those observed during RE. Acutely, RE can challenge CBF regulation, resulting in adverse responses (e.g. syncope). Compared with aerobic exercise, RE is relatively understudied, particularly high-intensity dynamic RE with a concurrent Valsalva manoeuvre (VM). However, the VM alone challenges CBF regulation and generates additional complexity when trying to dissociate the mechanisms underpinning the circulatory response to RE. Given the disparate circulatory response between aerobic and RE, primarily the blood pressure profiles, regulation of CBF is ostensibly different. In this review, we summarise current literature and highlight the acute physiological responses to RE, with a focus on the cerebral circulation.
Collapse
Affiliation(s)
- Blake G Perry
- School of Health Sciences, Massey University, Wellington, New Zealand.
| | - Samuel J E Lucas
- School of Sport, Exercise and Rehabilitation Sciences & Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
40
|
Burma JS, Miutz LN, Newel KT, Labrecque L, Drapeau A, Brassard P, Copeland P, Macaulay A, Smirl JD. What recording duration is required to provide physiologically valid and reliable dynamic cerebral autoregulation transfer functional analysis estimates? Physiol Meas 2021; 42. [PMID: 33761474 DOI: 10.1088/1361-6579/abf1af] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/24/2021] [Indexed: 12/31/2022]
Abstract
Objective. Currently, a recording of 300 s is recommended to obtain accurate dynamic cerebral autoregulation estimates using transfer function analysis (TFA). Therefore, this investigation sought to explore the concurrent validity and the within- and between-day reliability of TFA estimates derived from shorter recording durations from squat-stand maneuvers.Approach. Retrospective analyses were performed on 70 young, recreationally active or endurance-trained participants (17 females; age: 26 ± 5 years, [range: 20-39 years]; body mass index: 24 ± 3 kg m-2). Participants performed 300 s of squat-stands at frequencies of 0.05 and 0.10 Hz, where shorter recordings of 60, 120, 180, and 240 s were extracted. Continuous transcranial Doppler ultrasound recordings were taken within the middle and posterior cerebral arteries. Coherence, phase, gain, and normalized gain metrics were derived. Bland-Altman plots with 95% limits of agreement (LOA), repeated measures ANOVA's, two-tailed paired t-tests, coefficient of variation, Cronbach's alpha, intraclass correlation coefficients, and linear regressions were conducted.Main results. When examining the concurrent validity across different recording durations, group differences were noted within coherence (F(4155) > 11.6,p < 0.001) but not phase (F(4155) < 0.27,p > 0.611), gain (F(4155) < 0.61,p > 0.440), or normalized gain (F(4155) < 0.85,p > 0.359) parameters. The Bland-Altman 95% LOA measuring the concurrent validity, trended to narrow as recording duration increased (60 s: < ±0.4, 120 s: < ±0.3, 180 s < ±0.3, 240 s: < ±0.1). The validity of the 180 and 240 s recordings further increased when physiological covariates were included within regression models.Significance. Future studies examining autoregulation should seek to have participants perform 300 s of squat-stand maneuvers. However, valid and reliable TFA estimates can be drawn from 240 s or 180 s recordings if physiological covariates are controlled.
Collapse
Affiliation(s)
- Joel S Burma
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lauren N Miutz
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada
| | - Kailey T Newel
- Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Lawrence Labrecque
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Audrey Drapeau
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Paige Copeland
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Alannah Macaulay
- Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Jonathan D Smirl
- Cerebrovascular Concussion Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.,Integrated Concussion Research Program, University of Calgary, Calgary, AB, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada.,Libin Cardiovascular Institute of Alberta, University of Calgary, Alberta, Canada.,Concussion Research Laboratory, Faculty of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
41
|
Panerai RB, Batterham A, Robinson TG, Haunton VJ. Determinants of cerebral blood flow velocity change during squat-stand maneuvers. Am J Physiol Regul Integr Comp Physiol 2021; 320:R452-R466. [PMID: 33533312 DOI: 10.1152/ajpregu.00291.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The large changes in mean arterial blood pressure (MABP) and cerebral blood flow velocity (CBFV) induced by squat-stand maneuvers (SSM) make this approach particularly suited for studying dynamic cerebral autoregulation (CA). However, the role of other systemic determinants of CBFV has not been described and could provide alternative physiological interpretations of SSM results. In 32 healthy subjects (16 female), continuous recordings of MABP (Finometer), bilateral CBFV (transcranial Doppler, MCA), end-tidal CO2 (EtCO2; capnography), and heart rate (HR; electrocardiogram) were performed for 5 min standing at rest, and during 15 SSM at the frequency of 0.05 Hz. A time-domain, multivariate dynamic model estimated the CBFV variance explained by different inputs, corresponding to significant contributions from MABP (P < 0.00001), EtCO2 (P < 0.0001), and HR (P = 0.041). The autoregulation index (ARI; range 0-9) was estimated from the CBFV response to a step change in MABP. At rest, ARI values (typically 5.7) were independent of the number of model inputs, but during SSM, ARI was reduced compared with baseline (P < 0.0001), and the three input model yielded lower values for the right and left MCA (3.4 ± 1.2, 3.1 ± 1.3) when compared with the single-input MABP-CBFV model (4.1 ± 1.1, 3.9 ± 1.0; P < 0.0001). The high coherence of the MABP-CBFV transfer function at 0.05 Hz (typically 0.98) was considerably reduced (around 0.71-0.73; P < 0.0001) when the contribution of CBFV covariates was taken into account. Not taking into consideration other determinants of CBFV, in addition to MABP, could be misleading and introduce biases in physiological and clinical studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Angus Batterham
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Victoria J Haunton
- Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,National Institute for Health Research Leicester Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
42
|
Kaufman CS, Bai SX, Eickmeyer SM, Billinger SA. Chronic hyperglycemia before acute ischemic stroke impairs the bilateral cerebrovascular response to exercise during the subacute recovery period. Brain Behav 2021; 11:e01990. [PMID: 33295148 PMCID: PMC7882183 DOI: 10.1002/brb3.1990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Chronic hyperglycemia contributes to cerebrovascular dysfunction by damaging blood vessels. Poor glucose control has been tied to impairments in cerebral blood flow, which may be particularly detrimental for people recovering from major cerebrovascular events such as acute ischemic stroke. In this secondary analysis, we explore for the first time the connection between chronic hyperglycemia before acute stroke and the cerebrovascular response (CVR) to exercise 3 and 6 month into the subacute recovery period. METHODS We recorded middle cerebral artery velocity (MCAv) using transcranial Doppler ultrasound bilaterally at rest and during moderate-intensity exercise in stroke patients at 3 (n = 19) and 6 (n = 12) months post-stroke. We calculated CVR as the difference between MCAv during steady-state exercise and resting MCAv. We obtained hemoglobin A1c levels (HbA1c; a measure of blood glucose over the prior 3 months) from the electronic medical record (EMR) and divided participants by HbA1c greater or less than 7%. RESULTS Participants with high HbA1c (>7%) at the time of acute stroke had significantly lower CVR to exercise for both the stroke-affected (p = .009) and non-affected (p = .007) hemispheres at 3 months post-stroke. These differences remained significant at 6 months post-stroke (stroke-affected, p = .008; non-affected, p = .016). CONCLUSIONS Patients with chronic hyperglycemia before acute ischemic stroke demonstrated impaired cerebrovascular function during exercise months into the subacute recovery period. These findings highlight the importance of maintaining tight glucose control to reduce morbidity and improve recovery post-stroke and could have implications for understanding cerebrovascular pathophysiology.
Collapse
Affiliation(s)
- Carolyn S Kaufman
- Department of Molecular and Integrative Physiology, University of Kansas, Medical Center, Kansas City, KS, USA.,Department of Physical Therapy and Rehabilitation Science, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Stephen X Bai
- Department of Physical Medicine and Rehabilitation, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas, Medical Center, Kansas City, KS, USA
| | - Sandra A Billinger
- Department of Molecular and Integrative Physiology, University of Kansas, Medical Center, Kansas City, KS, USA.,Department of Physical Therapy and Rehabilitation Science, University of Kansas, Medical Center, Kansas City, KS, USA.,Department of Physical Medicine and Rehabilitation, University of Kansas, Medical Center, Kansas City, KS, USA.,Department of Neurology, University of Kansas, Medical Center, Kansas City, KS, USA
| |
Collapse
|
43
|
Sugawara J, Tarumi T, Xing C, Liu J, Tomoto T, Pasha EP, Zhang R. Older age and male sex are associated with higher cerebrovascular impedance. J Appl Physiol (1985) 2021; 130:172-181. [PMID: 33151779 DOI: 10.1152/japplphysiol.00396.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral blood flow (CBF) becomes pulsatile in response to the pulsatile change in perfusion pressure that is regulated by cerebrovascular impedance. In this study, we aimed to characterize age-related differences in cerebrovascular impedance across the adult lifespan. Carotid artery pressure [(CAP), via applanation tonometry] and CBF velocity (CBFV) in the middle cerebral artery (via transcranial Doppler) were measured in 148 healthy adults (21-79 yr, 62% women). Cerebrovascular impedance was quantified using transfer function analysis. Coherence between changes in CBFV and CAP was >0.90 in the frequency range of 0.78-2.73 Hz, suggesting a linear dynamic relationship between these two variables. Impedance modulus at the first harmonics (0.78-1.56 Hz) of CBFV and CAP oscillations (Z1), reflecting mainly heart rate frequency, was 20% higher in the old (>64 yr, P = 0.002) and 13% higher in the middle-aged (45-64 yr, P = 0.08) than in young individuals (<45 yr). In addition, Z1 was 24% higher in men than in women (P < 0.001). Multiple linear regression analysis revealed that Z1 is negatively associated with systolic (β = -0.470), diastolic (β = -0.418), pulsatile (β = -0.374), and mean CBFV (β = -0.473; P < 0.001 for all) after adjustment for age, sex, and body mass index (BMI). These results suggest that older age and male sex are associated with higher cerebrovascular impedance than young individuals, which may contribute to brain hypoperfusion.NEW & NOTEWORTHY Impedance modulus at the first harmonics of cerebral blood flow velocity (CBFV) and carotid artery pressure oscillations (Z1) was higher in the old (>64 yr) than in the young individuals (<45 yr), and it was higher in men than in women. Z1 is negatively associated with CBFV after adjustment for age, sex, and body mass index. Increases in cerebrovascular impedance with age may buffer systemic arterial pressure fluctuations at the cost of increased brain hypoperfusion risk.
Collapse
Affiliation(s)
- Jun Sugawara
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Takashi Tarumi
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas.,Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Changyang Xing
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jie Liu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tsubasa Tomoto
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Evan P Pasha
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| | - Rong Zhang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas.,University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
44
|
Stefanidis KB, Isbel B, Klein T, Lagopoulos J, Askew CD, Summers MJ. Reduced cerebral pressure-flow responses are associated with electrophysiological markers of attention in healthy older adults. J Clin Neurosci 2020; 81:167-172. [PMID: 33222909 DOI: 10.1016/j.jocn.2020.09.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 09/13/2020] [Indexed: 11/27/2022]
Abstract
The aim of this study was to determine the effect of age on the relationship between cerebrovascular function and the neural bases of sustained attention. Twenty-seven healthy young adults (aged 18-30 years) and 24 older adults (60-75 years) underwent assessments of cerebrovascular function and sustained attention. Blood flow velocity of the middle cerebral artery was assessed via Transcranial Doppler Ultrasound, during seated rest, in response to hypocapnic breathing (cerebrovascular reactivity) and during a repeated sit-to-stand procedure (pressure-flow response). Attentional processing was assessed using the N2 and P3 components of the event-related potential during a two-tone auditory oddball task. Poorer pressure-flow responses were significantly associated with reductions in N2 and P3 amplitude in the old group (b = -0.50, p = .029 and b = -0.46, p = .045), but not the young group. These results suggest that alterations in the brain's capacity to combat reductions in perfusion pressure are associated with age-related differences in attentional processing, supporting the hypothesis that cerebrovascular hemodynamic disturbances play a role in age-related cognitive decline.
Collapse
Affiliation(s)
- Kayla B Stefanidis
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia.
| | - Ben Isbel
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Timo Klein
- Vasoactive Group, School of Health & Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Jim Lagopoulos
- Sunshine Coast Mind and Neuroscience - Thompson Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
| | - Christopher D Askew
- Vasoactive Group, School of Health & Sport Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia; Sunshine Coast Health Institute, Sunshine Coast Hospital and Health Service, Australia
| | - Mathew J Summers
- Discipline of Psychology, School of Social Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
45
|
Pappelis K, Choritz L, Jansonius NM. Microcirculatory model predicts blood flow and autoregulation range in the human retina: in vivo investigation with laser speckle flowgraphy. Am J Physiol Heart Circ Physiol 2020; 319:H1253-H1273. [PMID: 32986964 DOI: 10.1152/ajpheart.00404.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we mathematically predict retinal vascular resistance (RVR) and retinal blood flow (RBF), we test predictions using laser speckle flowgraphy (LSFG), we estimate the range of vascular autoregulation, and we examine the relationship of RBF with the retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC). Fundus, optical coherence tomography (OCT), and OCT-angiography images, systolic/diastolic blood pressure (SBP/DBP), and intraocular pressure (IOP) measurements were obtained from 36 human subjects. We modeled two circulation markers (RVR and RBF) and estimated individualized lower/higher autoregulation limits (LARL/HARL), using retinal vessel calibers, fractal dimension, perfusion pressure, and population-based hematocrit values. Quantitative LSFG waveforms were extracted from vessels of the same eyes, before and during IOP elevation. LSFG metrics explained most variance in RVR (R2 = 0.77/P = 6.9·10-9) and RBF (R2 = 0.65/P = 1.0·10-6), suggesting that the markers strongly reflect blood flow physiology. Higher RBF was associated with thicker RNFL (P = 4.0·10-4) and GCC (P = 0.003), thus also verifying agreement with structural measurements. LARL was at SBP/DBP of 105/65 mmHg for the average subject without arterial hypertension and at 115/75 mmHg for the average hypertensive subject. Moreover, during IOP elevation, changes in RBF were more pronounced than changes in RVR. These observations physiologically imply that healthy subjects are already close to LARL, thus prone to hypoperfusion. In conclusion, we modeled two clinical markers and described a novel method to predict individualized autoregulation limits. These findings could improve understanding of retinal perfusion and pave the way for personalized intervention decisions, when treating patients with coexisting ophthalmic and cardiovascular pathologies.NEW & NOTEWORTHY We describe and test a new approach to quantify retinal blood flow, based on standard clinical examinations and imaging techniques, linked together with a physiological model. We use these findings to generate individualized estimates of the autoregulation range. We provide evidence that healthy subjects are closer to the lower autoregulation limit than thought before. This suggests that some retinas are less prepared to withstand hypoperfusion, even after small intraocular pressure rises or blood pressure drops.
Collapse
Affiliation(s)
- Konstantinos Pappelis
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, The Netherlands
| | - Lars Choritz
- University Eye Clinic, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Nomdo M Jansonius
- Department of Ophthalmology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
46
|
Batterham AP, Panerai RB, Robinson TG, Haunton VJ. Does depth of squat-stand maneuver affect estimates of dynamic cerebral autoregulation? Physiol Rep 2020; 8:e14549. [PMID: 32812372 PMCID: PMC7435029 DOI: 10.14814/phy2.14549] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/16/2020] [Accepted: 07/29/2020] [Indexed: 12/02/2022] Open
Abstract
Repeated squat-stand maneuvers (SSM) are an effective way of measuring dynamic cerebral autoregulation (dCA), but the depth of SSM required to improve dCA estimations has never been studied. We compared beat-to-beat cerebral hemodynamic parameters between maximal depth SSM (SSMD ) and a shallower alternative (SSMS ) in two age groups (younger [20-34 years] vs. older [50-71 years]) at a frequency of 0.05 Hz. Cerebral blood flow velocity, continuous blood pressure (BP) and end-tidal CO2 (EtCO2 ) were measured using transcranial Doppler ultrasound, the Finometer device, and capnography, respectively. Coherence (at 0.05 Hz) was significantly higher in both SSM recordings compared to spontaneous BP oscillations at baseline standing (BS ). Median (IQR) autoregulation index (ARI) was reduced during SSMD (4.46 [4.03-5.22], p < .01) compared to SSMS (5.96 [5.40-6.69]) and BS (6.03 [5.20-6.49], p < .01) with similar relative differences also observed for phase (at 0.05 Hz). End-tidal CO2 was increased in SSMD (38.3 ± 3.7 mmHg, p < .01) compared to both SSMS (36.6 ± 3.6 mmHg) and BS (35.5 ± 3.2 mmHg). The older group demonstrated significantly lower ARI and phase estimates during SSM and found SSMS more effortful than SSMD . In conclusion, both SSMD and SSMS are effective at estimating dCA, and dCA appears to be less efficient during maximal depth SSM compared to baseline rest or a shallower alternative.
Collapse
Affiliation(s)
| | - Ronney B. Panerai
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- Biomedical Research Unit in Cardiovascular SciencesNational Institute for Health ResearchClinical Sciences WingGlenfield HospitalLeicesterUK
| | - Thompson G. Robinson
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- Biomedical Research Unit in Cardiovascular SciencesNational Institute for Health ResearchClinical Sciences WingGlenfield HospitalLeicesterUK
| | - Victoria J. Haunton
- Department of Cardiovascular SciencesUniversity of LeicesterLeicesterUK
- Biomedical Research Unit in Cardiovascular SciencesNational Institute for Health ResearchClinical Sciences WingGlenfield HospitalLeicesterUK
| |
Collapse
|
47
|
Burma JS, Copeland P, Macaulay A, Khatra O, Smirl JD. Comparison of diurnal variation, anatomical location, and biological sex within spontaneous and driven dynamic cerebral autoregulation measures. Physiol Rep 2020; 8:e14458. [PMID: 32537905 PMCID: PMC7293969 DOI: 10.14814/phy2.14458] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 01/31/2023] Open
Abstract
Presently, the literature describing the influence of diurnal variation on dynamic cerebral autoregulation (dCA) metrics is sparse. Additionally, there is little data with respect to dCA comparisons between anterior/posterior circulation beds and biological sexes using squat-stand maneuvers. Eight male and eight female participants (n = 16) performed 5 min of spontaneous upright rest and squat-stand maneuvers at 0.05 and 0.10 Hz across seven time points throughout the day. All testing sessions commenced at 8:00 a.m. each day and dCA parameters were quantified across the cardiac cycle (diastole, mean, and systole) using transcranial Doppler ultrasound to insonate cerebral blood velocity within the middle and posterior cerebral arteries (MCA, PCA). No cardiac cycle alternations were seen spontaneous (all p > .207) while a trend was noted in some driven (all p > .051) dCA metrics. Driven dCA produced much lower coefficient of variances (all <21%) compared with spontaneous (all <58%). Moreover, no sex differences were found within driven metrics (all p > .096). Between vessels, PCA absolute gain was reduced within all spontaneous and driven measures (all p < .014) whereas coherence, phase, and normalized gain were unchanged (all p > .099). There appears to be little influence of diurnal variation on dCA measures across the day (8:00 a.m. to 6:00 p.m.). Absolute gain was blunted in the PCA relative to the MCA and consistent with previous literature, driven methods demonstrated vastly improved reproducibility metrics compared to spontaneous methods. Finally, no dCA differences were found between biological sexes, demonstrating that males and females regulate in a harmonious manner, when females are tested within the early follicular phase of the menstrual cycle.
Collapse
Affiliation(s)
- Joel S. Burma
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
| | - Paige Copeland
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
| | - Alannah Macaulay
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
| | - Omeet Khatra
- Faculty of MedicineUniversity of British ColumbiaVancouverBCCanada
| | - Jonathan D. Smirl
- Concussion Research LaboratoryFaculty of Health and Exercise ScienceUniversity of British ColumbiaKelownaBCCanada
- Sport Injury Prevention Research CentreFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Human Performance LaboratoryFaculty of KinesiologyUniversity of CalgaryCalgaryABCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryABCanada
- Integrated Concussion Research ProgramUniversity of CalgaryCalgaryABCanada
- Alberta Children's Hospital Research InstituteUniversity of CalgaryCalgaryABCanada
- Libin Cardiovascular Institute of AlbertaUniversity of CalgaryCalgaryABCanada
| |
Collapse
|
48
|
Moir ME, Klassen SA, Zamir M, Shoemaker JK. Rapid changes in vascular compliance contribute to cerebrovascular adjustments during transient reductions in blood pressure in young, healthy adults. J Appl Physiol (1985) 2020; 129:27-35. [PMID: 32463732 DOI: 10.1152/japplphysiol.00272.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Characterization of dynamic cerebral autoregulation has focused primarily on adjustments in cerebrovascular resistance in response to blood pressure (BP) alterations. However, the role of vascular compliance in dynamic autoregulatory processes remains elusive. The present study examined changes in cerebrovascular compliance and resistance during standing-induced transient BP reductions in nine young, healthy adults (3 women). Brachial artery BP (Finometer) and middle cerebral artery blood velocity (BV; Multigon) waveforms were collected. Beginning 20 beats before standing and continuing 40 beats after standing, individual BP and BV waveforms of every second heartbeat were extracted and input into a four-element modified Windkessel model to calculate indexes of cerebrovascular resistance (Ri) and compliance (Ci). Standing elicited a transient reduction in mean BP of 20 ± 9 mmHg. In all participants, a large increase in Ci (165 ± 84%; P < 0.001 vs. seated baseline) occurred 2 ± 2 beats following standing. Reductions in Ri occurred 11 ± 3 beats after standing (Ci vs. Ri delay: P < 0.001). The increase in Ci contributed to maintained systolic BV before the decrease in Ri. The present results demonstrate rapid, large but transient increases in Ci that precede reductions in Ri, in response to standing-induced reductions in BP. Therefore, Ci represents a discreet component of cerebrovascular responses during acute decreases in BP and, consequently, dynamic autoregulation.NEW & NOTEWORTHY Historically, dynamic cerebral autoregulation has been characterized by adjustments in cerebrovascular resistance following systematic changes in blood pressure. However, with the use of Windkessel modeling approaches, this study revealed rapid and large increases in cerebrovascular compliance that preceded reductions in cerebrovascular resistance following standing-induced blood pressure reductions. Importantly, the rapid cerebrovascular compliance response contributed to preservation of systolic blood velocity during the transient hypotensive phase. These results broaden our understanding of dynamic cerebral autoregulation.
Collapse
Affiliation(s)
- M Erin Moir
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Stephen A Klassen
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Mair Zamir
- Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, University of Western Ontario, London, Ontario, Canada
| | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
49
|
Klein T, Bailey TG, Wollseiffen P, Schneider S, Askew CD. The effect of age on cerebral blood flow responses during repeated and sustained stand to sit transitions. Physiol Rep 2020; 8:e14421. [PMID: 32378357 PMCID: PMC7202987 DOI: 10.14814/phy2.14421] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/20/2020] [Accepted: 03/21/2020] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Aging is associated with impaired cerebrovascular blood flow and function, attributed to reduced vasodilatory capacity of the cerebrovascular network. Older adults may also have an impaired relationship between changes in blood pressure and cerebral blood flow; however, previous reports conflict. This study aimed to compare the blood pressure and cerebral blood flow responses to both repeated and sustained stand-to-sit transitions in young and older adults, and to assess the relationship with cerebrovascular reactivity. METHODS In 20 young (age: 24 ± 4 years) and 20 older (age: 71 ± 7 years) adults we compared middle cerebral artery flow velocity (MCAv), end-tidal partial pressure of carbon dioxide (PET CO2 ), and blood pressure (mean arterial blood pressure [MAP]) during repeated stand-to-sit (10 s standing and 10 s sitting) and sustained stand-to-sit (3 min standing followed by 2 min sitting) transitions. Cerebrovascular reactivity to changes in carbon dioxide levels was assessed using a repeated breath-hold test. RESULTS The % change in MCAv per % change in MAP (%∆MCAv/%∆MAP) was higher in the older adults than in the young adults during repeated stand-to-sit transitions. During the sustained protocol the %∆MCAv/%∆MAP response was similar in both age groups. A high %∆MCAv/%∆MAP response during the repeated stand-to-sit protocol was associated with low cerebrovascular reactivity to CO2 (r = -.39; p < .01), which was significantly lower in the older adults. CONCLUSION These findings suggest that the higher %∆MCAv/%∆MAP during repeated stand-sit transitions was associated with impaired cerebrovascular reactivity. Impairments in endothelial function and vascular stiffness with age may contribute to the altered transient cerebral pressure-flow responses in older adults.
Collapse
Affiliation(s)
- Timo Klein
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Tom G. Bailey
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Centre for Research on ExercisePhysical Activity and HealthSchool of Human Movement and Nutrition SciencesThe University of QueenslandBrisbaneQLDAustralia
| | - Petra Wollseiffen
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Stefan Schneider
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Institute of Movement and NeuroscienceGerman Sport University CologneCologneGermany
| | - Christopher D. Askew
- VasoActive Research GroupSchool of Health and Sport SciencesUniversity of the Sunshine CoastMaroochydore DCQLDAustralia
- Sunshine Coast Health InstituteSunshine Coast Hospital and Health ServiceBirtinyaQLDAustralia
| |
Collapse
|
50
|
Rosenberg AJ, Schroeder EC, Grigoriadis G, Wee SO, Bunsawat K, Heffernan KS, Fernhall B, Baynard T. Aging reduces cerebral blood flow regulation following an acute hypertensive stimulus. J Appl Physiol (1985) 2020; 128:1186-1195. [PMID: 32240012 DOI: 10.1152/japplphysiol.00137.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aging increases arterial stiffness, which has a negative impact on cerebral blood flow (CBF) regulation (decreases CBF and increases CBF pulsatility). The association between arterial stiffness and CBF pulsatility may, in part, explain the relationship between elevated blood pressure (BP) fluctuations and end-organ disease with aging. To understand the mechanisms by which large BP alterations influence cerebral blood flow regulation in both young and old, we examined the effects of age on central and cerebral blood flow regulation following an acute hypertensive stimulus [resistance-exercise (RE)]. Measurements were obtained pre and immediately, 5, and 30 min post-RE in young (n = 35) and older (n = 26) adults. Measurements included cerebral blood velocity (CBv), CBv pulsatility, central pulse-wave velocity (PWV), beta-stiffness index (β), and carotid blood flow pulsatility. Central hemodynamics and BP were continuously recorded. Mean CBv increased immediately post-RE only in the young and decreased below baseline at 5 min post-RE in both groups (interaction, P < 0.05). Older adults had a greater increase in CBv pulsatility immediately post-RE compared with the young (interaction, P < 0.05). Mean BP was higher and carotid pulsatility was lower in the older group and increased immediately post-RE in both groups (P < 0.05). PWV increased immediately post-RE (P < 0.05). There were no changes in β. In conclusion, with aging, greater central arterial stiffness leads to a greater transmission of pulsatile blood velocity from the systemic circulation to the cerebral circulation following an acute hypertensive stress.NEW & NOTEWORTHY Reductions in cerebral blood flow and increases in flow pulsatility with aging are associated to cerebrovascular disease; however, little is known about how an acute hypertensive stimulus effects cerebral blood flow regulation in an aged population. Following the hypertensive stimulus, older adults elicit an attenuated increase in cerebral blood velocity and greater transmission of pulsatile velocity to the brain compared with young adults, demonstrating reduced cerebral blood flow regulation to elevated blood pressure responses with aging.
Collapse
Affiliation(s)
- Alexander J Rosenberg
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois
| | - Elizabeth C Schroeder
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois
| | - Georgios Grigoriadis
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois
| | - Sang Ouk Wee
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois.,Department of Kinesiology, California State University, San Bernardino, California
| | - Kanokwan Bunsawat
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois.,Department of Internal Medicine, Division of Geriatrics, University of Utah; Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Kevin S Heffernan
- Department of Exercise Science, Human Performance Laboratory, Syracuse University, Syracuse, New York
| | - Bo Fernhall
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois
| | - Tracy Baynard
- Department of Kinesiology and Nutrition, Integrative Physiology Laboratory, University of Illinois, Chicago, Illinois
| |
Collapse
|