1
|
He Y, You G, Zhou Y, Ai L, Liu W, Meng X, Wu Q. Integrative Machine Learning of Glioma and Coronary Artery Disease Reveals Key Tumour Immunological Links. J Cell Mol Med 2025; 29:e70377. [PMID: 39868675 PMCID: PMC11770474 DOI: 10.1111/jcmm.70377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 01/28/2025] Open
Abstract
It is critical to appreciate the role of the tumour-associated microenvironment (TME) in developing strategies for the effective therapy of cancer, as it is an important factor that determines the evolution and treatment response of tumours. This work combines machine learning and single-cell RNA sequencing (scRNA-seq) to explore the glioma tumour microenvironment's TME. With the help of genome-wide association studies (GWAS) and Mendelian randomization (MR), we found genetic variants associated with TME elements that affect cancer and cardiovascular disease outcomes. Using machine learning techniques high dimensional data was analysed to obtain new molecular sub-types and biomarkers that are important for prognosis and treatment response. F3 was identified as a top regulator and revealed potential angiogenic and immunogenic characteristics within the TME that could be harnessed in immunotherapy. These results demonstrate the potential of machine-learning approaches in identifying and dissecting TME heterogeneity and informing treatment in precision oncology. This work proposes improving the immunotherapeutic response through targeted modulation of relevant cellular and molecular interactions.
Collapse
Affiliation(s)
- Youfu He
- Medical CollegeGuizhou UniversityGuiyangGuizhou ProvinceChina
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhou ProvinceChina
| | - Ganhua You
- Department of ResearchThe Second People's Hospital of Guizhou ProvinceGuiyangGuizhou ProvinceChina
| | - Yu Zhou
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhou ProvinceChina
| | - Liqiong Ai
- Office of Student AffairsGuiyang Healthcare Vocational UniversityGuiyangGuizhou ProvinceChina
| | - Wei Liu
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhou ProvinceChina
| | - Xuantong Meng
- Department of PathologyArmy 79th Group HospitalLiaoyangLiaoning ProvinceChina
| | - Qiang Wu
- Department of CardiologyGuizhou Provincial People's HospitalGuiyangGuizhou ProvinceChina
| |
Collapse
|
2
|
Thirugnanam S, Wang C, Zheng C, Grasperge BF, Datta PK, Rappaport J, Qin X, Rout N. The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy. Int J Mol Sci 2024; 25:8702. [PMID: 39201388 PMCID: PMC11354606 DOI: 10.3390/ijms25168702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV.
Collapse
Affiliation(s)
- Siva Thirugnanam
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Chenxiao Wang
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Chen Zheng
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, LA 70433, USA;
| | - Prasun K. Datta
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jay Rappaport
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Xuebin Qin
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Division of Pathology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (C.W.); (C.Z.); (P.K.D.); (J.R.); (X.Q.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Thirugnanam S, Wang C, Zheng C, Grasperge BF, Datta PK, Rappaport J, Qin X, Rout N. High IL-1β and IL-18 Levels Associate with Gut Barrier Disruption and Monocyte Activation During Chronic SIV Infection with Long-Term Suppressive Antiretroviral Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599106. [PMID: 38948748 PMCID: PMC11212932 DOI: 10.1101/2024.06.14.599106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of HIV infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption and CVD pathogenesis. Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for biomarkers of intestinal epithelial barrier disruption (IEBD), inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). Higher plasma levels of IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP), during the chronic phase of treated SIV infection. Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10-12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV+ART phase along with a trend of increase in frequencies of activated CD14 + CD16 + intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could accelerate CVD pathogenesis. Further research is needed to understand mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated CVD and metabolic complications, enabling targeted interventions in people with HIV.
Collapse
|
4
|
Peterson TE, Shey M, Masina N, Wong LY, Shuldiner SR, Wolfson J, Jermy S, Saad H, Lumbamba MAJ, Singh A, Meintjes G, Ntusi NAB, Ntsekhe M, Baker JV. Myocardial extracellular volume fraction is positively associated with activated monocyte subsets among cART-treated persons living with HIV in South Africa. Int J Cardiol 2023; 392:131332. [PMID: 37673402 PMCID: PMC10591894 DOI: 10.1016/j.ijcard.2023.131332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/07/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Despite treatment with combination antiretroviral therapy (cART), persons living with HIV (PLWH) are at higher risk of cardiac structural abnormalities that may presage clinical heart failure, including myocardial fibrosis. This study assessed whether circulating cellular and soluble protein markers of immune activation cross-sectionally associate with myocardial fibrosis among cART-treated PLWH in South Africa. METHODS Participants were enrolled in Khayelitsha township near Cape Town, SA. Cardiac magnetic resonance imaging was performed. Plasma protein biomarkers were measured using enzyme-linked immunoassays and monocyte phenotypes were evaluated using flow cytometry. Associations were assessed using multivariable linear and logistic regression. RESULTS Among 69 cART-treated PLWH, mean (SD) age was 48 (10) years, 71% were female, and time since HIV diagnosis was 9 (6) years. Evidence of left ventricular fibrosis by late gadolinium enhancement was present in 74% of participants and mean (SD) extracellular volume fraction (ECV) was 30.9 (5.9)%. Degree of myocardial fibrosis/inflammation measured by ECV was positively associated with percentages of circulating non-classical and intermediate monocyte phenotypes reflecting inflammation and tissue injury. CONCLUSION These data generate hypotheses on possible immune mechanisms of HIV-associated non-ischemic myocardial disease, specifically among cART-treated PLWH in sub-Saharan Africa, where the majority of the HIV burden exists globally.
Collapse
Affiliation(s)
- Tess E Peterson
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Muki Shey
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Cape Town, South Africa
| | - Nomawethu Masina
- Wellcome Centre for Infectious Diseases Research in Africa, Cape Town, South Africa
| | - Lye-Yeng Wong
- Department of Surgery, Oregon Health and Science University, Portland, OR, USA
| | - Scott R Shuldiner
- Vascular and Interventional Radiology, Kaiser Permanente, Los Angeles Medical Center, Los Angeles, CA, USA
| | - Julian Wolfson
- School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Stephen Jermy
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Hadil Saad
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Achita Singh
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Graeme Meintjes
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Wellcome Centre for Infectious Diseases Research in Africa, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, UCT, Cape Town, South Africa
| | - Ntobeko A B Ntusi
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Mpiko Ntsekhe
- Department of Medicine, University of Cape Town, Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, UCT, Cape Town, South Africa
| | - Jason V Baker
- Hennepin Healthcare Research Institute, Division of Infectious Diseases, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Donkin R, Fung YL, Singh I. Fibrinogen, Coagulation, and Ageing. Subcell Biochem 2023; 102:313-342. [PMID: 36600138 DOI: 10.1007/978-3-031-21410-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The World Health Organization estimates that the world's population over 60 years of age will nearly double in the next 30 years. This change imposes increasing demands on health and social services with increased disease burden in older people, hereafter defined as people aged 60 years or more. An older population will have a greater incidence of cardiovascular disease partly due to higher levels of blood fibrinogen, increased levels of some coagulation factors, and increased platelet activity. These factors lead to a hypercoagulable state which can alter haemostasis, causing an imbalance in appropriate coagulation, which plays a crucial role in the development of cardiovascular diseases. These changes in haemostasis are not only affected by age but also by gender and the effects of hormones, or lack thereof in menopause for older females, ethnicity, other comorbidities, medication interactions, and overall health as we age. Another confounding factor is how we measure fibrinogen and coagulation through laboratory and point-of-care testing and how our decision-making on disease and treatment (including anticoagulation) is managed. It is known throughout life that in normal healthy individuals the levels of fibrinogen and coagulation factors change, however, reference intervals to guide diagnosis and management are based on only two life stages, paediatric, and adult ranges. There are no specific diagnostic guidelines based on reference intervals for an older population. How ageing relates to alterations in haemostasis and the impact of the disease will be discussed in this chapter. Along with the effect of anticoagulation, laboratory testing of fibrinogen and coagulation, future directions, and implications will be presented.
Collapse
Affiliation(s)
- Rebecca Donkin
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia. .,Griffith University, School of Medicine and Dentistry, Gold Coast, QLD, Australia.
| | - Yoke Lin Fung
- The University of the Sunshine Coast, School of Health and Behavioural Sciences, Sippy Downs, QLD, Australia
| | - Indu Singh
- Griffith University, School of Pharmacy and Medical Science, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Mathur P, Kottilil S, Pallikkuth S, Frasca D, Ghosh A. Persistent CD38 Expression on CD8 + T Lymphocytes Contributes to Altered Mitochondrial Function and Chronic Inflammation in People With HIV, Despite ART. J Acquir Immune Defic Syndr 2022; 91:410-418. [PMID: 36000933 PMCID: PMC9613598 DOI: 10.1097/qai.0000000000003080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Age-associated comorbidities are higher in people with HIV (PWH) than HIV-negative individuals. This is partially attributed to immune activation and CD38 expression on T cells driving chronic inflammation. However, the exact contribution of CD38-expressing T cells on the proinflammatory response is not completely understood. METHODS CD38-expressing CD8 + T lymphocytes were measured from PWH and HIV-negative individuals. Mitochondrial mass, superoxide content, membrane depolarization of CD4 + and CD8 + T lymphocytes, and cytokine production after HIV(Gag)-specific peptide stimulation from CD38 + CD8 + T lymphocytes of PWH were measured to link biological effects of CD38 expression on cellular metabolism. RESULTS The frequency of activated CD8 + CD38 + T cells persists in PWH on ART compared with HIV-negative individuals. Higher CD38 expression is associated with mitochondrial biogenesis and HIV(Gag)-specific proinflammatory cytokine production in PWH. Blockade of CD38 results in lower Gag-specific cytokine production. CONCLUSIONS ART only partially reduced HIV-induced CD38 expression on CD8 + T cells. CD8 + CD38 + T cells are highly activated in vivo, and HIV-specific stimulation in vitro augments CD38 expression, contributing to a proinflammatory response despite virologic control with ART. Therefore, CD38 is a potential therapeutic target for mitigating chronic inflammation that likely drives cellular aging, comorbidities, and end-organ disease in PWH.
Collapse
Affiliation(s)
- Poonam Mathur
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shyamasundaran Kottilil
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology and Miami Center for AIDS Research, University of Miami Miller School of Medicine
| | - Daniela Frasca
- Department of Microbiology and Immunology and Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine
| | - Alip Ghosh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Teer E, Dominick L, Mukonowenzou NC, Essop MF. HIV-Related Myocardial Fibrosis: Inflammatory Hypothesis and Crucial Role of Immune Cells Dysregulation. Cells 2022; 11:cells11182825. [PMID: 36139400 PMCID: PMC9496784 DOI: 10.3390/cells11182825] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Although the underlying mechanisms driving human immunodeficiency virus (HIV)-mediated cardiovascular diseases (CVD) onset and progression remain unclear, the role of chronic immune activation as a significant mediator is increasingly being highlighted. Chronic inflammation is a characteristic feature of CVD and considered a contributor to diastolic dysfunction, heart failure, and sudden cardiac death. This can trigger downstream effects that result in the increased release of pro-coagulant, pro-fibrotic, and pro-inflammatory cytokines. Subsequently, this can lead to an enhanced thrombotic state (by platelet activation), endothelial dysfunction, and myocardial fibrosis. Of note, recent studies have revealed that myocardial fibrosis is emerging as a mediator of HIV-related CVD. Together, such factors can eventually result in systolic and diastolic dysfunction, and an increased risk for CVD. In light of this, the current review article will focus on (a) the contributions of a chronic inflammatory state and persistent immune activation, and (b) the role of immune cells (mainly platelets) and cardiac fibrosis in terms of HIV-related CVD onset/progression. It is our opinion that such a focus may lead to the development of promising therapeutic targets for the treatment and management of CVD in HIV-positive patients.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Leanne Dominick
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Nyasha C. Mukonowenzou
- Centre for Cardio-Metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - M. Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
- Correspondence: ; Tel.: +27-21-938-9388
| |
Collapse
|
8
|
Kausalya B, Saravanan S, Pallikkuth S, Pahwa R, Saini SR, Iqbal S, Solomon S, Murugavel KG, Poongulali S, Kumarasamy N, Pahwa S. Immune correlates of cardiovascular co-morbidity in HIV infected participants from South India. BMC Immunol 2022; 23:24. [PMID: 35581554 PMCID: PMC9115939 DOI: 10.1186/s12865-022-00498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding the immune correlates of cardiovascular disease (CVD) risk in HIV infection is an important area of investigation in the current era of aging with HIV infection. Less is known about CVD risk and HIV infection in developing nations where additional risk factors may be playing a role in the CVD development. In this study, we assessed the effects of systemic inflammation, microbial translocation (MT), T cell immune activation (IA), and nadir CD4 counts on cardiac function and arterial stiffness as markers of subclinical atherosclerosis in HIV-infected individuals. METHODS People with HIV (PWH) who were ART naïve (n = 102) or virally suppressed on ART (n = 172) were stratified on nadir CD4 counts and compared to HIV-uninfected controls (n = 64). Determination was made of cardiac function via radial pulse wave and carotid intima thickness (C-IMT) measurements. Plasma biomarkers of inflammation and MT by ELISA or multiplex assays, and immune activation (IA) of T cells based HLA-DR and CD38 expression were investigated by flow cytometry. T-test, Mann-Whitney U test, and Spearman correlation were used to analyze study parameters. RESULTS Reduction in cardiac function with lower cardiac ejection time (p < 0.001), stroke volume (p < 0.001), cardiac output (p = 0.007), higher arterial stiffness (p < 0.05) were identified in ART-naïve participants, compared to PWH on ART (p < 0.05). No significant difference in C-IMT values were noted. Higher inflammatory and MT markers were found in the ART-naïve group compared to treated group who were comparable to uninfected participants, except for having higher TNF-α (p < 0.001) and sCD14 (p < 0.001). Immune activation of CD4 and CD8 T-cells was greater in ART-naïve participants compared to ART-treated and uninfected controls (p < 0.05). Lower nadir CD4 counts, higher inflammation, and higher MT predicted poor cardiac measures in the ART-naïve with nadir CD4 < 200cells/mm3 manifesting the highest arterial stiffness, and lowest cardiac function, whereas ART-treated, even with nadir < 200 cells/mm3 were similar to uninfected in these measures. CONCLUSIONS In HIV-infected individuals, initiation of ART even at nadir of < 200 cells/mm3 may prevent or reverse cardiovascular disease outcomes that are easily measurable in low income countries.
Collapse
Affiliation(s)
| | | | - Suresh Pallikkuth
- University of Miami Miller School of Medicine, 1580 NW 10th Avenue; BCRI 712, Miami, FL, 33136, USA
| | - Rajendra Pahwa
- University of Miami Miller School of Medicine, 1580 NW 10th Avenue; BCRI 712, Miami, FL, 33136, USA
| | - Shelly Rani Saini
- University of Miami Miller School of Medicine, 1580 NW 10th Avenue; BCRI 712, Miami, FL, 33136, USA
| | - Syed Iqbal
- YRG Centre for AIDS Research and Education (YRG CARE), Chennai, India
| | - Sunil Solomon
- YRG Centre for AIDS Research and Education (YRG CARE), Chennai, India.,Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Nagalingeswaran Kumarasamy
- YRG Centre for AIDS Research and Education (YRG CARE), Chennai, India.,Johns Hopkins University School of Medicine, Baltimore, MD, USA.,VHS-Infectious Diseases Medical Centre, Chennai, India
| | - Savita Pahwa
- University of Miami Miller School of Medicine, 1580 NW 10th Avenue; BCRI 712, Miami, FL, 33136, USA.
| |
Collapse
|
9
|
Bai R, Li Z, Lv S, Wang R, Hua W, Wu H, Dai L. Persistent Inflammation and Non-AIDS Comorbidities During ART: Coming of the Age of Monocytes. Front Immunol 2022; 13:820480. [PMID: 35479083 PMCID: PMC9035604 DOI: 10.3389/fimmu.2022.820480] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Monocytes are innate immune cells that serve as the first line of defense against pathogens by engulfing and destroying pathogens or by processing and presenting antigens to initiate adaptive immunity and stimulate immunological responses. Monocytes are classified into three types: classical, intermediate, and non-classical monocytes, each of which plays a particular function in response to pathogens. Human immunodeficiency virus type 1 (HIV-1) infection disrupts the balance of monocyte subsets, and the quantity and function of monocytes will not fully recover even with long-term antiretroviral therapy (ART). Monocytes are vital for the establishment and maintenance of HIV-1 latent viral reservoirs and are closely related to immune dysfunction even after ART. Therefore, the present review focuses on the phenotypic function of monocytes and their functions in HIV-1 infection to elucidate their roles in HIV patients.
Collapse
Affiliation(s)
- Ruojing Bai
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Zhen Li
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Shiyun Lv
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Wei Hua
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Lili Dai
- Travel Clinic, Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Immune Mechanism, Gene Module, and Molecular Subtype Identification of Astragalus Membranaceus in the Treatment of Dilated Cardiomyopathy: An Integrated Bioinformatics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2252832. [PMID: 34567206 PMCID: PMC8457948 DOI: 10.1155/2021/2252832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Astragalus membranaceus has complex components as a natural drug and has multilevel, multitarget, and multichannel effects on dilated cardiomyopathy (DCM). However, the immune mechanism, gene module, and molecular subtype of astragalus membranaceus in the treatment of DCM are still not revealed. Microarray information of GSE84796 was downloaded from the GEO database, including RNA sequencing data of seven normal cardiac tissues and ten DCM cardiac tissues. A total of 4029 DCM differentially expressed genes were obtained, including 1855 upregulated genes and 2174 downregulated genes. GO/KEGG/GSEA analysis suggested that the activation of T cells and B cells was the primary cause of DCM. WGCNA was used to obtain blue module genes. The blue module genes are primarily ADCY7, BANK1, CD1E, CD19, CD38, CD300LF, CLEC4E, FLT3, GPR18, HCAR3, IRF4, LAMP3, MRC1, SYK, and TLR8, which successfully divided DCM into three molecular subtypes. Based on the CIBERSORT algorithm, the immune infiltration profile of DCM was analyzed. Many immune cell subtypes, including the abovementioned immune cells, showed different levels of increased infiltration in the myocardial tissue of DCM. However, this infiltration pattern was not obviously correlated with clinical characteristics, such as age, EF, and sex. Based on network pharmacology and ClueGO, 20 active components of Astragalus membranaceus and 40 components of DMCTGS were obtained from TCMSP. Through analysis of the immune regulatory network, we found that Astragalus membranaceus effectively regulates the activation of immune cells, such as B cells and T cells, cytokine secretion, and other processes and can intervene in DCM at multiple components, targets, and levels. The above mechanisms were verified by molecular docking results, which confirmed that AKT1, VEGFA, MMP9, and RELA are promising potential targets of DCM.
Collapse
|
11
|
Grobbelaar L, Venter C, Vlok M, Ngoepe M, Laubscher G, Lourens P, Steenkamp J, Kell D, Pretorius E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep 2021; 41:BSR20210611. [PMID: 34328172 PMCID: PMC8380922 DOI: 10.1042/bsr20210611] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/13/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet-poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to β and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.
Collapse
Affiliation(s)
- Lize M. Grobbelaar
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Chantelle Venter
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Mare Vlok
- Central Analytical Facility: Mass Spectrometry Stellenbosch University, Tygerberg Campus, Room 6054, Clinical Building, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa
| | - Malebogo Ngoepe
- Department of Mechanical Engineering, Faculty of Engineering and the Built Environment, University of Cape Town, Cape Town, Rondebosch 7701, South Africa
- Stellenbosch Institute for Advanced Study, Wallenberg Research Centre, Stellenbosch University, Stellenbosch, South Africa
| | | | | | - Janami Steenkamp
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- PathCare Laboratories, PathCare Business Centre, PathCare Park, Neels Bothma Street, N1 City 7460, South Africa
| | - Douglas B. Kell
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool L69 7ZB, U.K
- The Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Kemitorvet 200, Kgs Lyngby 2800, Denmark
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
12
|
Teer E, Joseph DE, Dominick L, Glashoff RH, Essop MF. Expansion of GARP-Expressing CD4 +CD25 -FoxP3 + T Cells and SATB1 Association with Activation and Coagulation in Immune Compromised HIV-1-Infected Individuals in South Africa. Virol Sin 2021; 36:1133-1143. [PMID: 33974229 DOI: 10.1007/s12250-021-00386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 02/23/2021] [Indexed: 11/24/2022] Open
Abstract
Although antiretroviral treatment lowers the burden of human immunodeficiency virus (HIV)-related disease, it does not always result in immunological recovery. This manifests as persistent chronic inflammation, immune activation or exhaustion that can promote the onset of co-morbidities. As the exact function of regulatory T (Treg) cells in HIV remains unclear, this cross-sectional study investigated three expression markers (Forkhead box protein P3 [FOXP3], glycoprotein A repetitions predominant [GARP], special AT-rich sequence binding protein 1 [SATB1]) and compared their expansion between CD4+CD25- and CD4+CD25++ T cells. Age-matched study subjects were recruited (Western Cape, South Africa) and sub-divided: HIV-negative subjects (n = 12), HIV-positive naïve treated (n = 22), HIV-positive treated based on CD4 count cells/µL (CD4 > 500 and CD4 < 500) (n = 34) and HIV-treated based on viral load (VL) copies/mL (VL < 1000 and VL > 1000) (n = 34). Markers of immune activation (CD38) and coagulation (CD142) on T cells (CD8) were assessed by flow cytometry together with FOXP3, GARP and SATB1 expression on CD4+CD25- and CD4+CD25++ T cells. Plasma levels of interleukin-10 (IL-10; anti-inflammatory marker), IL-6 (inflammatory marker) and D-dimer (coagulation marker) were assessed. This study revealed three major findings in immuno-compromised patients with virological failure (CD4 < 500; VL > 1000): (1) the expansion of the unconventional Treg cell subset (CD4+CD25-FOXP3+) is linked with disease progression markers; (2) increased GARP expression in the CD4+CD25- and CD4+CD25++ subsets; and (3) the identification of a strong link between CD4+CD25-SATB1+ cells and markers of immune activation (CD8+CD38+) and coagulation (CD8+CD142+ and D-dimer).
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Leanne Dominick
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology and Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-Metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
13
|
van Welzen BJ, Oomen PGA, Hoepelman AIM. Dual Antiretroviral Therapy-All Quiet Beneath the Surface? Front Immunol 2021; 12:637910. [PMID: 33643320 PMCID: PMC7906996 DOI: 10.3389/fimmu.2021.637910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with the human immunodeficiency virus (HIV) is characterized by progressive depletion of CD4+ lymphocytes cells as a result of chronic immune activation. Next to the decreases in the number of CD4+ cells which leads to opportunistic infections, HIV-related immune activation is associated with several prevalent comorbidities in the HIV-positive population such as cardiovascular and bone disease. Traditionally, combination antiretroviral therapy (cART) consists of three drugs with activity against HIV and is highly effective in diminishing the degree of immune activation. Over the years, questions were raised whether virological suppression could also be achieved with fewer antiretroviral drugs, i.e., dual- or even monotherapy. This is an intriguing question considering the fact that antiretroviral drugs should be used lifelong and their use could also induce cardiovascular and bone disease. Therefore, the equilibrium between drug-induced toxicity and immune activation related comorbidity is delicate. Recently, two large clinical trials evaluating two-drug cART showed non-inferiority with respect to virological outcomes when compared to triple-drug regimens. This led to adoption of dual antiretroviral therapy in current HIV treatment guidelines. However, it is largely unknown whether dual therapy is also able to suppress immune activation to the same degree as triple therapy. This poses a risk for an imbalance in the delicate equilibrium. This mini review gives an overview of the current available evidence concerning immune activation in the setting of cART with less than three antiretroviral drugs.
Collapse
Affiliation(s)
- Berend J van Welzen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Patrick G A Oomen
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Andy I M Hoepelman
- Department of Internal Medicine and Infectious Diseases, University Medical Centre Utrecht, Utrecht, Netherlands
| |
Collapse
|
14
|
Marked Changes in Serum Amyloid A Distribution and High-Density Lipoprotein Structure during Acute Inflammation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9241259. [PMID: 33575357 PMCID: PMC7861920 DOI: 10.1155/2021/9241259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
High-density lipoprotein- (HDL-) cholesterol measurements are generally used in the diagnosis of cardiovascular diseases. However, HDL is a complicated heterogeneous lipoprotein, and furthermore, it can be converted into dysfunctional forms during pathological conditions including inflammation. Therefore, qualitative analysis of pathophysiologically diversified HDL forms is important. A recent study demonstrated that serum amyloid A (SAA) can remodel HDL and induce atherosclerosis not only over long periods of time, such as during chronic inflammation, but also over shorter periods. However, few studies have investigated rapid HDL remodeling. In this study, we analyzed HDL samples from patients undergoing orthopedic surgery inducing acute inflammation. We enrolled 13 otherwise healthy patients who underwent orthopedic surgery. Plasma samples were obtained on preoperative day and postoperative days (POD) 1-7. SAA, apolipoprotein A-I (apoA-I), and apolipoprotein A-II (apoA-II) levels in the isolated HDL were determined. HDL particle size, surface charge, and SAA and apoA-I distributions were also analyzed. In every patient, plasma SAA levels peaked on POD3. Consistently, the HDL apoA-I : apoA-II ratio markedly decreased at this timepoint. Native-polyacrylamide gel electrophoresis and high-performance liquid chromatography revealed the loss of small HDL particles during acute inflammation. Furthermore, HDL had a decreased negative surface charge on POD3 compared to the other timepoints. All changes observed were SAA-dependent. SAA-dependent rapid changes in HDL size and surface charge were observed after orthopedic surgery. These changes might affect the atheroprotective functions of HDL, and its analysis can be available for the qualitative HDL assessment.
Collapse
|
15
|
Teer E, Joseph DE, Glashoff RH, Faadiel Essop M. Monocyte/Macrophage-Mediated Innate Immunity in HIV-1 Infection: From Early Response to Late Dysregulation and Links to Cardiovascular Diseases Onset. Virol Sin 2021; 36:565-576. [PMID: 33400091 DOI: 10.1007/s12250-020-00332-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Although monocytes and macrophages are key mediators of the innate immune system, the focus has largely been on the role of the adaptive immune system in the context of human immunodeficiency virus (HIV) infection. Thus more attention and research work regarding the innate immune system-especially the role of monocytes and macrophages during early HIV-1 infection-is required. Blood monocytes and tissue macrophages are both susceptible targets of HIV-1 infection, and the early host response can determine whether the nature of the infection becomes pathogenic or not. For example, monocytes and macrophages can contribute to the HIV reservoir and viral persistence, and influence the initiation/extension of immune activation and chronic inflammation. Here the expansion of monocyte subsets (classical, intermediate and non-classical) provide an increased understanding of the crucial role they play in terms of chronic inflammation and also by increasing the risk of coagulation during HIV-1 infection. This review discusses the role of monocytes and macrophages during HIV-1 pathogenesis, starting from the early response to late dysregulation that occurs as a result of persistent immune activation and chronic inflammation. Such changes are also linked to downstream targets such as increased coagulation and the onset of cardiovascular diseases.
Collapse
Affiliation(s)
- Eman Teer
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Danzil E Joseph
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Richard H Glashoff
- Division of Medical Microbiology & Immunology, Department of Pathology, Stellenbosch University and NHLS, Cape Town, 7505, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa (CARMA), Department of Physiological Sciences, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
16
|
Hudson P, Woudberg NJ, Kamau F, Strijdom H, Frias MA, Lecour S. HIV-related cardiovascular disease: any role for high-density lipoproteins? Am J Physiol Heart Circ Physiol 2020; 319:H1221-H1226. [PMID: 33006917 DOI: 10.1152/ajpheart.00445.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The introduction of antiretroviral therapy (ART) has improved the life expectancy of patients infected with human immunodeficiency virus (HIV). However, this population is at an increased risk for noncommunicable diseases, including atherosclerotic cardiovascular disease (CVD). Both ART and viral infection may be potential contributors to the pathophysiology of HIV-related CVD. The mechanisms behind this remain unclear, but it is critical to delineate early biomarkers of cardiovascular risk in the HIV population. In this review, we postulate that potential biomarkers could include alterations to high-density lipoprotein (HDL). Indeed, recent data suggest that HIV and ART may induce structural changes of HDL, thus resulting in shifts in HDL subclass distribution and HDL functionality.
Collapse
Affiliation(s)
- Peter Hudson
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Nicholas J Woudberg
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| | - Festus Kamau
- Faculty of Medicine and Health Sciences, Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Hans Strijdom
- Faculty of Medicine and Health Sciences, Centre for Cardio-metabolic Research in Africa, Division of Medical Physiology, Stellenbosch University, Stellenbosch, South Africa
| | - Miguel A Frias
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Sandrine Lecour
- Department of Medicine, Faculty of Health Sciences, Hatter Institute for Cardiovascular Research in Africa, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Dominick L, Midgley N, Swart LM, Sprake D, Deshpande G, Laher I, Joseph D, Teer E, Essop MF. HIV-related cardiovascular diseases: the search for a unifying hypothesis. Am J Physiol Heart Circ Physiol 2020; 318:H731-H746. [PMID: 32083970 DOI: 10.1152/ajpheart.00549.2019] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although the extensive rollout of antiretroviral (ARV) therapy resulted in a longer life expectancy for people living with human immunodeficiency virus (PLHIV), such individuals display a relatively increased occurrence of cardiovascular diseases (CVD). This health challenge stimulated significant research interests in the field, leading to an improved understanding of both lifestyle-related risk factors and the underlying mechanisms of CVD onset in PLHIV. However, despite such progress, the precise role of various risk factors and mechanisms underlying the development of HIV-mediated CVD still remains relatively poorly understood. Therefore, we review CVD onset in PLHIV and focus on 1) the spectrum of cardiovascular complications that typically manifest in such persons and 2) underlying mechanisms that are implicated in this process. Here, the contributions of such factors and modulators and underlying mechanisms are considered in a holistic and integrative manner to generate a unifying hypothesis that includes identification of the core pathways mediating CVD onset. The review focuses on the sub-Saharan African context, as there are relatively high numbers of PLHIV residing within this region, indicating that the greater CVD risk will increasingly threaten the well-being and health of its citizens. It is our opinion that such an approach helps point the way for future research efforts to improve treatment strategies and/or lifestyle-related modifications for PLHIV.
Collapse
Affiliation(s)
- Leanne Dominick
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Natasha Midgley
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Lisa-Mari Swart
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Devon Sprake
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Gaurang Deshpande
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ismail Laher
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.,Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danzil Joseph
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Eman Teer
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - M Faadiel Essop
- Centre for Cardio-metabolic Research in Africa, Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
18
|
de Magalhães MC, Sánchez-Arcila JC, Lyra ACDB, Long LFB, Vasconcellos de Souza I, Ferry FRDA, de Almeida AJ, Alves-Leon SV. Hemostasis in elderly patients with human immunodeficiency virus (HIV) infection-Cross-sectional study. PLoS One 2020; 15:e0227763. [PMID: 32049963 PMCID: PMC7015422 DOI: 10.1371/journal.pone.0227763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Introduction: Aging and chronic HIV infection are clinical conditions that share the states of inflammation and hypercoagulability. The life expectancy of the world population has increased in the last decades, bringing as complications the occurrence of diseases that undergoing metabolic, bone, cardiological, vascular and neurological alterations. HIV-infected patients experience these changes early and are living longer due to the success of antiretroviral therapy. The objectives of this study was to evaluate some changes in the plasma hemostatic profile of 115 HIV-reactive elderly individuals over 60 years old in the chronic phase of infection, and compare with 88 healthy uninfected elderly individuals. Plasma determinations of D-dimers, Fibrinogen, von Willebrand Factor, Antithrombin, Prothrombin Time, Activated Partial Thromboplastin Time, and platelet count were performed. In the HIV-reactive group, these variables were analyzed according to viral load, protease inhibitor use and CD4+ T lymphocyte values. After adjusted values for age and sex, the results showed higher levels of Antithrombin (103%; 88%, p = 0.0001) and Prothrombin Time activities (92.4%; 88.2%, p = 0.019) in the HIV group compared to the control group. We observed higher values of Fibrinogen in protease inhibitor users in both the male (p = 0.043) and female (p = 0.004) groups, and in the female HIV group with detected viral load (p = 0.015). The male HIV group with a CD4+ count> 400 cells / mm3 presented higher von Willebrand Factor values (p = 0.036). D-Dimers had higher values in the older age groups (p = 0.003; p = 0.042, respectively). Conclusion: Our results suggest that the elderly with chronic HIV infection with few comorbidities had a better hemostatic profile than negative control group, reflecting the success of treatment. Protease inhibitor use and age punctually altered this profile.
Collapse
Affiliation(s)
- Marilza Campos de Magalhães
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | | | - Ana Carolina de Brito Lyra
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Luiz Felipe Boufleur Long
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Isabelle Vasconcellos de Souza
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Fernando Raphael de Almeida Ferry
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Adilson José de Almeida
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
- Viral Immunology Laboratory, Oswaldo Cruz Institute (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - Soniza Vieira Alves-Leon
- Gaffrée and Guinle University Hospital, Postgraduate Program in Neuroscience / Neurology, Federal University of Rio de Janeiro State—UNIRIO, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
19
|
Ilatovskaya DV, Halade GV, DeLeon-Pennell KY. Adaptive immunity-driven inflammation and cardiovascular disease. Am J Physiol Heart Circ Physiol 2019; 317:H1254-H1257. [PMID: 31702971 DOI: 10.1152/ajpheart.00642.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adaptive immune response has recently emerged as an important factor in a wide variety of cardiovascular disorders including atherosclerosis, hypertension, cardiac remodeling, and heart failure; however, its role is not fully understood. Since an assortment of innate responsive cells, e.g., neutrophils and monocytes/macrophages, coordinate with adaptive immunity, e.g., T cells, dendritic cells, and B cells, the temporal response and descriptions pertinent to the cellular phenotype and inflammation processes, in general, need additional investigation, clarification, and consensus particularly in cardiovascular disease. This Perspectives article reviews the contributions of 15 articles (including 7 reviews) published in the American Journal of Physiology-Heart and Circulatory Physiology in response to the Call for Papers: Adaptive Immunity in Cardiovascular Disease. Here, we summarize the crucial reported findings at the cardiac, vascular, immune, and molecular levels and discuss the translational feasibility and benefits of future prospective research into the adaptive immune response. Readers are encouraged to evaluate the data and learn from this collection of novel studies.
Collapse
Affiliation(s)
- Daria V Ilatovskaya
- Division of Nephrology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.,Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Ganesh V Halade
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Kristine Y DeLeon-Pennell
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina.,Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina
| |
Collapse
|