1
|
Ruijsink B, Velasco Forte MN, Duong P, Asner L, Pushparajah K, Frigiola A, Nordsletten D, Razavi R. Synergy in the heart: RV systolic function plays a key role in optimizing LV performance during exercise. Am J Physiol Heart Circ Physiol 2020; 319:H642-H650. [PMID: 32762556 DOI: 10.1152/ajpheart.00256.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The right ventricle (RV) is often overlooked in the evaluation of cardiac performance and treatment of left ventricular (LV) heart diseases. However, recent evidence suggests the RV may play an important role in maintaining systemic cardiac function and delivering stroke volume (SV). We used exercise cardiac magnetic resonance and biomechanical modeling to investigate the role of the RV in LV stroke volume regulation. We studied SV augmentation during exercise by pharmacologically inducing negative chronotropy (sHRi) in healthy volunteers and investigating training-induced SV augmentation in endurance athletes. SV augmentation during exercise after sHRi is achieved differently in the two ventricles. In the RV, the larger SV is driven by increasing contraction down to lower end-systolic volume (ESV; P < 0.001). In the LV, SV augmentation is achieved through an increase in end-diastolic volume (EDV; P < 0.001), avoiding contraction to a lower ESV. The same mechanism underlies the enhanced SV response observed in athletes. Changes in atrial area during SV augmentation suggest that the improved LV EDV response is sustained by the larger RV contractions. Using our biomechanical model, we explain this behavior by showing that the RV systolic function-driven regulation of LV SV optimizes the energetic cost of LV contraction and leads to minimization of the total costs of biventricular contraction. In conclusion, this work provides mechanistic understanding of the pivotal role of the RV in optimizing LV SV during exercise. It demonstrates why optimizing RV function needs to become a key part of therapeutic strategies in patients and training for athletes.NEW & NOTEWORTHY The right ventricle appears to have an important impact on maintaining systemic cardiac function and delivering stroke volume. However, its exact role in supporting left ventricular function has so far been unclear. This study demonstrates a new mechanism of ventricular interaction that provides mechanistic understanding of the key importance of the right ventricle in driving cardiac performance.
Collapse
Affiliation(s)
- B Ruijsink
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - M N Velasco Forte
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - P Duong
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - L Asner
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom
| | - K Pushparajah
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - A Frigiola
- Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - D Nordsletten
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Department of Biomedical Engineering and Cardiac Surgery, University of Michigan, Ann Arbor, Michigan
| | - R Razavi
- School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom.,Departments of Paediatric Cardiology and Adult Congenital Cardiology, Guy's and Saint Thomas' National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Chakraborty P, Rose RA, Nair K, Downar E, Nanthakumar K. The rationale for repurposing funny current inhibition for management of ventricular arrhythmia. Heart Rhythm 2020; 18:130-137. [PMID: 32738405 DOI: 10.1016/j.hrthm.2020.07.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/14/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022]
Abstract
Management of ventricular arrhythmia in structural heart disease is complicated by the toxicity of the limited antiarrhythmic options available. In others, proarrhythmia and deleterious hemodynamic and noncardiac effects prevent practical use. This necessitates new thinking in therapeutic agents for ventricular arrhythmia in structural heart disease. Ivabradine, a funny current (If) inhibitor, has proven safety in heart failure, angina, and inappropriate sinus tachycardia. Although it is commonly known that funny channels are primarily expressed in the sinoatrial node, atrioventricular node, and conducting system of the ventricle, ivabradine is known to exert effects on metabolism, ion homeostasis, and membrane electrophysiology of remodeled ventricular myocardium. This review considers novel concepts and evidence from clinical and experimental studies regarding this paradigm, with a potential role of ivabradine in ventricular arrhythmia.
Collapse
Affiliation(s)
- Praloy Chakraborty
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Robert A Rose
- Libin Cardiovascular Institute of Alberta, An entity of the University of Calgary and Alberta Health Services, Calgary, Alberta, Canada
| | - Krishnakumar Nair
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Eugene Downar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada
| | - Kumaraswamy Nanthakumar
- The Hull Family Cardiac Fibrillation Management Laboratory, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada; University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Olson AK, Bouchard B, Zhu WZ, Chatham JC, Des Rosiers C. First characterization of glucose flux through the hexosamine biosynthesis pathway (HBP) in ex vivo mouse heart. J Biol Chem 2020; 295:2018-2033. [PMID: 31915250 PMCID: PMC7029105 DOI: 10.1074/jbc.ra119.010565] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 01/06/2020] [Indexed: 12/31/2022] Open
Abstract
The hexosamine biosynthesis pathway (HBP) branches from glycolysis and forms UDP-GlcNAc, the moiety for O-linked β-GlcNAc (O-GlcNAc) post-translational modifications. An inability to directly measure HBP flux has hindered our understanding of the factors regulating protein O-GlcNAcylation. Our goals in this study were to (i) validate a LC-MS method that assesses HBP flux as UDP-GlcNAc (13C)-molar percent enrichment (MPE) and concentration and (ii) determine whether glucose availability or workload regulate cardiac HBP flux. For (i), we perfused isolated murine working hearts with [U-13C6]glucosamine (1, 10, 50, or 100 μm), which bypasses the rate-limiting HBP enzyme. We observed a concentration-dependent increase in UDP-GlcNAc levels and MPE, with the latter reaching a plateau of 56.3 ± 2.9%. For (ii), we perfused isolated working hearts with [U-13C6]glucose (5.5 or 25 mm). Glycolytic efflux doubled with 25 mm [U-13C6]glucose; however, the calculated HBP flux was similar among the glucose concentrations at ∼2.5 nmol/g of heart protein/min, representing ∼0.003–0.006% of glycolysis. Reducing cardiac workload in beating and nonbeating Langendorff perfusions had no effect on the calculated HBP flux at ∼2.3 and 2.5 nmol/g of heart protein/min, respectively. To the best of our knowledge, this is the first direct measurement of glucose flux through the HBP in any organ. We anticipate that these methods will enable foundational analyses of the regulation of HBP flux and protein O-GlcNAcylation. Our results suggest that in the healthy ex vivo perfused heart, HBP flux does not respond to acute changes in glucose availability or cardiac workload.
Collapse
Affiliation(s)
- Aaron K Olson
- Division of Cardiology, Department of Pediatrics, University of Washington, Seattle, Washington 98105; Seattle Children's Research Institute, Seattle, Washington 98101.
| | - Bertrand Bouchard
- Montreal Heart Institute Research Center and Department of Nutrition, Université de Montréal, Montreal, Québec H1T 1C8, Canada
| | - Wei Zhong Zhu
- Seattle Children's Research Institute, Seattle, Washington 98101
| | - John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama, Birmingham, Alabama 35294
| | - Christine Des Rosiers
- Montreal Heart Institute Research Center and Department of Nutrition, Université de Montréal, Montreal, Québec H1T 1C8, Canada
| |
Collapse
|
4
|
Fragasso G, Margonato A, Spoladore R, Lopaschuk GD. Metabolic effects of cardiovascular drugs. Trends Cardiovasc Med 2019; 29:176-187. [DOI: 10.1016/j.tcm.2018.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 01/04/2023]
|
5
|
Bakkehaug JP, Naesheim T, Torgersen Engstad E, Kildal AB, Myrmel T, How OJ. Reversing dobutamine-induced tachycardia using ivabradine increases stroke volume with neutral effect on cardiac energetics in left ventricular post-ischaemia dysfunction. Acta Physiol (Oxf) 2016; 218:78-88. [PMID: 27145482 DOI: 10.1111/apha.12704] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/03/2016] [Accepted: 05/02/2016] [Indexed: 12/01/2022]
Abstract
AIM Compensatory tachycardia can potentially be deleterious in acute heart failure. In this study, we tested a therapeutic strategy of combined inotropic support (dobutamine) and selective heart rate (HR) reduction through administration of ivabradine. METHODS In an open-chest pig model (n = 12) with left ventricular (LV) post-ischaemia dysfunction, cardiac function was assessed by LV pressure catheter and sonometric crystals. Coronary flow and blood samples from the coronary sinus were used to measure myocardial oxygen consumption (MVO2 ). LV energetics was assessed by comparing MVO2 with cardiac work at a wide range of workloads. RESULTS In the post-ischaemia heart, dobutamine (5 μg kg(-1) min(-1) ) increased cardiac output (CO) by increasing HR from 102 ± 21 to 131 ± 16 bpm (beats per min; P < 0.05). Adding ivabradine (0.5 mg kg(-1) ) slowed HR back to 100 ± 9 bpm and increased stroke volume from 30 ± 5 to 36 ± 5 mL (P < 0.05) by prolonging diastolic filling time and increasing end-diastolic dimensions. Adding ivabradine had no adverse effects on CO, mean arterial pressure and cardiac efficiency. Similar findings on efficiency and LV function were also seen using an ex vivo working mouse heart protocol. CONCLUSIONS A combined infusion of dobutamine and ivabradine had a neutral effect on post-ischaemia LV efficiency and increased left ventricular output without an increase in HR.
Collapse
Affiliation(s)
- J. P. Bakkehaug
- Cardiovascular Research Group; Institute of Medical Biology; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
| | - T. Naesheim
- Institute of Clinical Medicine; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
| | - E. Torgersen Engstad
- Cardiovascular Research Group; Institute of Medical Biology; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
| | - A. B. Kildal
- Cardiovascular Research Group; Institute of Medical Biology; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
| | - T. Myrmel
- Institute of Clinical Medicine; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
- Department of Cardiothoracic and Vascular Surgery; Heart and Lung Clinic; University Hospital of North Norway; Tromsø Norway
| | - O.-J. How
- Cardiovascular Research Group; Institute of Medical Biology; Faculty of Health Sciences; UiT; The Arctic University of Norway; Tromsø Norway
| |
Collapse
|
6
|
Vaillant F, Lauzier B, Ruiz M, Shi Y, Lachance D, Rivard ME, Bolduc V, Thorin E, Tardif JC, Des Rosiers C. Ivabradine and metoprolol differentially affect cardiac glucose metabolism despite similar heart rate reduction in a mouse model of dyslipidemia. Am J Physiol Heart Circ Physiol 2016; 311:H991-H1003. [PMID: 27496881 DOI: 10.1152/ajpheart.00789.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/30/2016] [Indexed: 01/30/2023]
Abstract
While heart rate reduction (HRR) is a target for the management of patients with heart disease, contradictory results were reported using ivabradine, which selectively inhibits the pacemaker If current, vs. β-blockers like metoprolol. This study aimed at testing whether similar HRR with ivabradine vs. metoprolol differentially modulates cardiac energy substrate metabolism, a factor determinant for cardiac function, in a mouse model of dyslipidemia (hApoB+/+;LDLR-/-). Following a longitudinal study design, we used 3- and 6-mo-old mice, untreated or treated for 3 mo with ivabradine or metoprolol. Cardiac function was evaluated in vivo and ex vivo in working hearts perfused with 13C-labeled substrates to assess substrate fluxes through energy metabolic pathways. Compared with 3-mo-old, 6-mo-old dyslipidemic mice had similar cardiac hemodynamics in vivo but impaired (P < 0.001) contractile function (aortic flow: -45%; cardiac output: -34%; stroke volume: -35%) and glycolysis (-24%) ex vivo. Despite inducing a similar 10% HRR, ivabradine-treated hearts displayed significantly higher stroke volume values and glycolysis vs. their metoprolol-treated counterparts ex vivo, values for the ivabradine group being often not significantly different from 3-mo-old mice. Further analyses highlighted additional significant cardiac alterations with disease progression, namely in the total tissue level of proteins modified by O-linked N-acetylglucosamine (O-GlcNAc), whose formation is governed by glucose metabolism via the hexosamine biosynthetic pathway, which showed a similar pattern with ivabradine vs. metoprolol treatment. Collectively, our results emphasize the implication of alterations in cardiac glucose metabolism and signaling linked to disease progression in our mouse model. Despite similar HRR, ivabradine, but not metoprolol, preserved cardiac function and glucose metabolism during disease progression.
Collapse
Affiliation(s)
- Fanny Vaillant
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Lauzier
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Matthieu Ruiz
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Yanfen Shi
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| | - Dominic Lachance
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Eve Rivard
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada
| | - Virginie Bolduc
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada; and
| | - Eric Thorin
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Surgery, Université de Montréal, Montreal, Quebec, Canada; and
| | - Jean-Claude Tardif
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Christine Des Rosiers
- Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada; Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada;
| |
Collapse
|
7
|
Luong L, Duckles H, Schenkel T, Mahmoud M, Tremoleda JL, Wylezinska-Arridge M, Ali M, Bowden NP, Villa-Uriol MC, van der Heiden K, Xing R, Gijsen FJ, Wentzel J, Lawrie A, Feng S, Arnold N, Gsell W, Lungu A, Hose R, Spencer T, Halliday I, Ridger V, Evans PC. Heart rate reduction with ivabradine promotes shear stress-dependent anti-inflammatory mechanisms in arteries. Thromb Haemost 2016; 116:181-90. [PMID: 27075869 DOI: 10.1160/th16-03-0214] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 03/28/2016] [Indexed: 01/24/2023]
Abstract
Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Paul C Evans
- Prof. Paul Evans, Department of Cardiovascular Science, Faculty of Medicine, Dentistry & Health, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK, Tel.: +44 114 271 2591, Fax: +44 114 271 1863, E-mail:
| |
Collapse
|
8
|
Vaillant F, Magat J, Bour P, Naulin J, Benoist D, Loyer V, Vieillot D, Labrousse L, Ritter P, Bernus O, Dos Santos P, Quesson B. Magnetic resonance-compatible model of isolated working heart from large animal for multimodal assessment of cardiac function, electrophysiology, and metabolism. Am J Physiol Heart Circ Physiol 2016; 310:H1371-80. [PMID: 26968545 DOI: 10.1152/ajpheart.00825.2015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 03/04/2016] [Indexed: 11/22/2022]
Abstract
To provide a model close to the human heart, and to study intrinsic cardiac function at the same time as electromechanical coupling, we developed a magnetic resonance (MR)-compatible setup of isolated working perfused pig hearts. Hearts from pigs (40 kg, n = 20) and sheep (n = 1) were blood perfused ex vivo in the working mode with and without loaded right ventricle (RV), for 80 min. Cardiac function was assessed by measuring left intraventricular pressure and left ventricular (LV) ejection fraction (LVEF), aortic and mitral valve dynamics, and native T1 mapping with MR imaging (1.5 Tesla). Potential myocardial alterations were assessed at the end of ex vivo perfusion from late-Gadolinium enhancement T1 mapping. The ex vivo cardiac function was stable across the 80 min of perfusion. Aortic flow and LV-dP/dtmin were significantly higher (P < 0.05) in hearts perfused with loaded RV, without differences for heart rate, maximal and minimal LV pressure, LV-dP/dtmax, LVEF, and kinetics of aortic and mitral valves. T1 mapping analysis showed a spatially homogeneous distribution over the LV. Simultaneous recording of hemodynamics, LVEF, and local cardiac electrophysiological signals were then successfully performed at baseline and during electrical pacing protocols without inducing alteration of MR images. Finally, (31)P nuclear MR spectroscopy (9.4 T) was also performed in two pig hearts, showing phosphocreatine-to-ATP ratio in accordance with data previously reported in vivo. We demonstrate the feasibility to perfuse isolated pig hearts in the working mode, inside an MR environment, allowing simultaneous assessment of cardiac structure, mechanics, and electrophysiology, illustrating examples of potential applications.
Collapse
Affiliation(s)
- Fanny Vaillant
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Julie Magat
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Pierre Bour
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Jérôme Naulin
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - David Benoist
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Virginie Loyer
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Delphine Vieillot
- Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France
| | - Louis Labrousse
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Bordeaux University Hospital (CHU), Cardiothoracic Pole, F-33600 Pessac, France
| | - Philippe Ritter
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Bordeaux University Hospital (CHU), Cardiothoracic Pole, F-33600 Pessac, France
| | - Olivier Bernus
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| | - Pierre Dos Santos
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and Bordeaux University Hospital (CHU), Cardiothoracic Pole, F-33600 Pessac, France
| | - Bruno Quesson
- IHU Liryc, Electrophysiology and Heart Modeling Institute, foundation Bordeaux Université, F-33600 Pessac- Bordeaux, France; Univ. Bordeaux, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000, Bordeaux, France; INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, F-33000 Bordeaux, France; and
| |
Collapse
|
9
|
Melgari D, Brack KE, Zhang C, Zhang Y, El Harchi A, Mitcheson JS, Dempsey CE, Ng GA, Hancox JC. hERG potassium channel blockade by the HCN channel inhibitor bradycardic agent ivabradine. J Am Heart Assoc 2015; 4:jah3927. [PMID: 25911606 PMCID: PMC4579960 DOI: 10.1161/jaha.115.001813] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Ivabradine is a specific bradycardic agent used in coronary artery disease and heart failure, lowering heart rate through inhibition of sinoatrial nodal HCN‐channels. This study investigated the propensity of ivabradine to interact with KCNH2‐encoded human Ether‐à‐go‐go–Related Gene (hERG) potassium channels, which strongly influence ventricular repolarization and susceptibility to torsades de pointes arrhythmia. Methods and Results Patch clamp recordings of hERG current (IhERG) were made from hERG expressing cells at 37°C. IhERG was inhibited with an IC50 of 2.07 μmol/L for the hERG 1a isoform and 3.31 μmol/L for coexpressed hERG 1a/1b. The voltage and time‐dependent characteristics of IhERG block were consistent with preferential gated‐state‐dependent channel block. Inhibition was partially attenuated by the N588K inactivation‐mutant and the S624A pore‐helix mutant and was strongly reduced by the Y652A and F656A S6 helix mutants. In docking simulations to a MthK‐based homology model of hERG, the 2 aromatic rings of the drug could form multiple π‐π interactions with the aromatic side chains of both Y652 and F656. In monophasic action potential (MAP) recordings from guinea‐pig Langendorff‐perfused hearts, ivabradine delayed ventricular repolarization and produced a steepening of the MAPD90 restitution curve. Conclusions Ivabradine prolongs ventricular repolarization and alters electrical restitution properties at concentrations relevant to the upper therapeutic range. In absolute terms ivabradine does not discriminate between hERG and HCN channels: it inhibits IhERG with similar potency to that reported for native If and HCN channels, with S6 binding determinants resembling those observed for HCN4. These findings may have important implications both clinically and for future bradycardic drug design.
Collapse
Affiliation(s)
- Dario Melgari
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Kieran E Brack
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Chuan Zhang
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.)
| | - Yihong Zhang
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - Aziza El Harchi
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| | - John S Mitcheson
- Department of Cell Physiology and Pharmacology, Maurice Shock Medical Sciences Building, Leicester, United Kingdom (J.S.M.)
| | | | - G André Ng
- Department of Cardiovascular Sciences, Cardiology Group, Glenfield Hospital, University of Leicester, United Kingdom (K.E.B., C.Z., A.N.) NIHR Leicester Cardiovascular Biomedical Research Unit, Leicester, United Kingdom (A.N.)
| | - Jules C Hancox
- School of Physiology & Pharmacology, Medical Sciences Building, Bristol, United Kingdom (D.M., Y.Z., A.E.H., J.C.H.)
| |
Collapse
|
10
|
Vaillant F, Lauzier B, Poirier I, Gélinas R, Rivard ME, Robillard Frayne I, Thorin E, Des Rosiers C. Mouse strain differences in metabolic fluxes and function of ex vivo working hearts. Am J Physiol Heart Circ Physiol 2013; 306:H78-87. [PMID: 24186097 DOI: 10.1152/ajpheart.00465.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In mice, genetic background is known to influence various parameters, including cardiac function. Its impact on cardiac energy substrate metabolism-a factor known to be closely related to function and contributes to disease development-is, however, unclear. This was examined in this study. In commonly used control mouse substrains SJL/JCrNTac, 129S6/SvEvTac, C57Bl/6J, and C57Bl/6NCrl, we assessed the functional and metabolic phenotypes of 3-mo-old working mouse hearts perfused ex vivo with physiological concentrations of (13)C-labeled carbohydrates (CHO) and a fatty acid (FA). Marked variations in various functional and metabolic flux parameters were observed among all mouse substrains, although the pattern observed differed for these parameters. For example, among all strains, C57Bl/6NCrl hearts had a greater cardiac output (+1.7-fold vs. SJL/JCrNTac and C57Bl/6J; P < 0.05), whereas at the metabolic level, 129S6/SvEvTac hearts stood out by displaying (vs. all 3 strains) a striking shift from exogenous FA (~-3.5-fold) to CHO oxidation as well as increased glycolysis (+1.7-fold) and FA incorporation into triglycerides (+2-fold). Correlation analyses revealed, however, specific linkages between 1) glycolysis, FA oxidation, and pyruvate metabolism and 2) cardiac work, oxygen consumption with heart rate, respectively. This implies that any genetically determined factors affecting a given metabolic flux parameter may impact on the associated functional parameters. Our results emphasize the importance of selecting the appropriate control strain for cardiac metabolic studies using transgenic mice, a factor that has often been neglected. Understanding the molecular mechanisms underlying the diversity of strain-specific cardiac metabolic and functional profiles, particularly the 129S6/SvEvTac, may ultimately disclose new specific metabolic targets for interventions in heart disease.
Collapse
Affiliation(s)
- Fanny Vaillant
- Departments of Nutrition, Montreal Heart Institute and Université de Montréal, Montreal, Quebec, Canada; and
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vaillant F, Dehina L, Dizerens N, Bui-Xuan B, Tabib A, Lauzier B, Chevalier P, Descotes J, Timour Q. Ivabradine but not propranolol delays the time to onset of ischaemia-induced ventricular fibrillation by preserving myocardial metabolic energy status. Resuscitation 2013; 84:384-90. [DOI: 10.1016/j.resuscitation.2012.07.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/25/2012] [Accepted: 07/13/2012] [Indexed: 10/27/2022]
|
12
|
Dodd MS, Ball V, Bray R, Ashrafian H, Watkins H, Clarke K, Tyler DJ. In vivo mouse cardiac hyperpolarized magnetic resonance spectroscopy. J Cardiovasc Magn Reson 2013; 15:19. [PMID: 23414451 PMCID: PMC3599631 DOI: 10.1186/1532-429x-15-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/21/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Alterations in cardiac metabolism accompany many diseases of the heart. The advent of cardiac hyperpolarized magnetic resonance spectroscopy (MRS), via dynamic nuclear polarization (DNP), has enabled a greater understanding of the in vivo metabolic changes that occur as a consequence of myocardial infarction, hypertrophy and diabetes. However, all cardiac studies performed to date have focused on rats and larger animals, whereas more information could be gained through the study of transgenic mouse models of heart disease. Translation from the rat to the mouse is challenging, due in part to the reduced heart size (1/10(th)) and the increased heart rate (50%) in the mouse compared to the rat. METHODS AND RESULTS In this study, we have investigated the in vivo metabolism of [1-(13)C]pyruvate in the mouse heart. To demonstrate the sensitivity of the method to detect alterations in pyruvate dehydrogenase (PDH) flux, two well characterised methods of PDH modulation were performed; overnight fasting and infusion of sodium dichloroacetate (DCA). Fasting resulted in an 85% reduction in PDH flux, whilst DCA infusion increased PDH flux by 123%. A comparison of three commonly used control mouse strains was performed revealing significant metabolic differences between strains. CONCLUSIONS We have successfully demonstrated a hyperpolarized DNP protocol to investigate in vivo alterations within the diseased mouse heart. This technique offers a significant advantage over existing in vitro techniques as it reduces animal numbers and decreases biological variability. Thus [1-(13)C]pyruvate can be used to provide an in vivo cardiac metabolic profile of transgenic mice.
Collapse
Affiliation(s)
- Michael S Dodd
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vicky Ball
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Rosalind Bray
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Houman Ashrafian
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kieran Clarke
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| | - Damian J Tyler
- Cardiac Metabolism Research Group, Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Lauzier B, Vaillant F, Merlen C, Gélinas R, Bouchard B, Rivard ME, Labarthe F, Dolinsky VW, Dyck JRB, Allen BG, Chatham JC, Des Rosiers C. Metabolic effects of glutamine on the heart: anaplerosis versus the hexosamine biosynthetic pathway. J Mol Cell Cardiol 2012. [PMID: 23201305 DOI: 10.1016/j.yjmcc.2012.11.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutamine, the most abundant amino acid in plasma, has attracted considerable interest for its cardioprotective properties. The primary effect of glutamine in the heart is commonly believed to be mediated via its anaplerotic metabolism to citric acid cycle (CAC) intermediates; however, there is little direct evidence to support this concept. Another potential candidate is the hexosamine biosynthetic pathway (HBP), which has recently been shown to modulate cardiomyocyte function and metabolism. Therefore, the goal of this study was to evaluate the contribution of anaplerosis and the HBP to the acute metabolic effects of glutamine in the heart. Normoxic ex vivo working rat hearts were perfused with (13)C-labeled substrates to assess relevant metabolic fluxes either with a physiological mixture of carbohydrates and a fatty acid (control) or under conditions of restricted pyruvate anaplerosis. Addition of a physiological concentration of glutamine (0.5mM) had no effect on contractile function of hearts perfused under the control condition, but improved that of hearts perfused under restricted pyruvate anaplerosis. Changes in CAC intermediate concentrations as well as (13)C-enrichment from [U-(13)C]glutamine did not support a major role of glutamine anaplerosis under any conditions. Under the control condition, however, glutamine significantly increased the contribution of exogenous oleate to β-oxidation, 1.6-fold, and triglyceride formation, 2.8-fold. Glutamine had no effect on malonyl-CoA or AMP kinase activity levels; however, it resulted in a higher plasma membrane level of the fatty acid transporter CD36. These metabolic effects of glutamine were reversed by azaserine, which inhibits glucose entry into the HPB. Our results reveal a metabolic role of physiological concentration of glutamine in the healthy working heart beyond anaplerosis. This role appears to involve the HBP and regulation of fatty acid entry and metabolism via CD36. This article is part of a Special Issue entitled "Focus on Cardiac Metabolism".
Collapse
Affiliation(s)
- Benjamin Lauzier
- Montreal Heart Institute and Department of Nutrition and Medicine, Université de Montréal, Canada H1T 1C8
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Lugenbiel P, Bauer A, Kelemen K, Schweizer PA, Becker R, Katus HA, Thomas D. Biological Heart Rate Reduction Through Genetic Suppression of Gα(s) Protein in the Sinoatrial Node. J Am Heart Assoc 2012; 1:jah3-e000372. [PMID: 23130123 PMCID: PMC3487376 DOI: 10.1161/jaha.111.000372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 02/24/2012] [Indexed: 11/16/2022]
Abstract
BACKGROUND Elevated heart rate represents an independent risk factor for cardiovascular outcome in patients with heart disease. In the sinoatrial node, rate increase is mediated by β(1) adrenoceptor mediated activation of the Gα(s) pathway. We hypothesized that genetic inactivation of the stimulatory Gα(s) protein in the sinoatrial node would provide sinus rate control and would prevent inappropriate heart rate acceleration during β-adrenergic activation. METHODS AND RESULTS Domestic pigs (n=10) were evenly assigned to receive either Ad-small interfering RNA (siRNA)-Gα(s) gene therapy to inactivate Gα(s) or adenovirus encoding for green fluorescent protein (Ad-GFP) as control. Adenoviruses were applied through virus injection into the sinoatrial node followed by epicardial electroporation, and heart rates were evaluated for 7 days. Genetic inhibition of Gα(s) protein significantly reduced mean heart rates on day 7 by 16.5% compared with control animals (110±8.8 vs 131±9.4 beats per minute; P<0.01). On β-adrenergic stimulation with isoproterenol, we observed a tendency toward diminished rate response in the Ad-siRNA-Gα(s) group (Ad-siRNA-Gα(s), +79.3%; Ad-GFP, +61.7%; n=3 animals per group; P= 0.294). Adverse effects of gene transfer on left ventricular ejection fraction (LVEF) were not detected following treatment (LVEF(Ad-siRNA-Gαs), 66%; LVEF(Ad-GFP), 60%). CONCLUSIONS In this preclinical proof-of-concept study targeted Ad-siRNA-Gα(s) gene therapy reduced heart rates during normal sinus rhythm compared with Ad-GFP treatment and prevented inappropriate rate increase after β-adrenergic stimulation. Gene therapy may provide an additional therapeutic option for heart rate reduction in cardiac disease. (J Am Heart Assoc. 2012;1:jah3-e000372 doi: 10.1161/JAHA.111.000372).
Collapse
Affiliation(s)
- Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Orman MA, Berthiaume F, Androulakis IP, Ierapetritou MG. Advanced stoichiometric analysis of metabolic networks of mammalian systems. Crit Rev Biomed Eng 2012; 39:511-34. [PMID: 22196224 DOI: 10.1615/critrevbiomedeng.v39.i6.30] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metabolic engineering tools have been widely applied to living organisms to gain a comprehensive understanding about cellular networks and to improve cellular properties. Metabolic flux analysis (MFA), flux balance analysis (FBA), and metabolic pathway analysis (MPA) are among the most popular tools in stoichiometric network analysis. Although application of these tools into well-known microbial systems is extensive in the literature, various barriers prevent them from being utilized in mammalian cells. Limited experimental data, complex regulatory mechanisms, and the requirement of more complex nutrient media are some major obstacles in mammalian cell systems. However, mammalian cells have been used to produce therapeutic proteins, to characterize disease states or related abnormal metabolic conditions, and to analyze the toxicological effects of some medicinally important drugs. Therefore, there is a growing need for extending metabolic engineering principles to mammalian cells in order to understand their underlying metabolic functions. In this review article, advanced metabolic engineering tools developed for stoichiometric analysis including MFA, FBA, and MPA are described. Applications of these tools in mammalian cells are discussed in detail, and the challenges and opportunities are highlighted.
Collapse
Affiliation(s)
- Mehmet A Orman
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
17
|
Bolduc V, Drouin A, Gillis MA, Duquette N, Thorin-Trescases N, Frayne-Robillard I, Des Rosiers C, Tardif JC, Thorin E. Heart rate-associated mechanical stress impairs carotid but not cerebral artery compliance in dyslipidemic atherosclerotic mice. Am J Physiol Heart Circ Physiol 2011; 301:H2081-92. [PMID: 21926346 DOI: 10.1152/ajpheart.00706.2011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cardiac cycle imposes a mechanical stress that dilates elastic carotid arteries, while shear stress largely contributes to the endothelium-dependent dilation of downstream cerebral arteries. In the presence of dyslipidemia, carotid arteries stiffen while the endothelial function declines. We reasoned that stiffening of carotid arteries would be prevented by reducing resting heart rate (HR), while improving the endothelial function would regulate cerebral artery compliance and function. Thus we treated or not 3-mo-old male atherosclerotic mice (ATX; LDLr(-/-):hApoB(+/+)) for 3 mo with the sinoatrial pacemaker current inhibitor ivabradine (IVA), the β-blocker metoprolol (METO), or subjected mice to voluntary physical training (PT). Arterial (carotid and cerebral artery) compliance and endothelium-dependent flow-mediated cerebral dilation were measured in isolated pressurized arteries. IVA and METO similarly reduced (P < 0.05) 24-h HR by ≈15%, while PT had no impact. As expected, carotid artery stiffness increased (P < 0.05) in ATX mice compared with wild-type mice, while cerebral artery stiffness decreased (P < 0.05); this paradoxical increase in cerebrovascular compliance was associated with endothelial dysfunction and an augmented metalloproteinase-9 (MMP-9) activity (P < 0.05), without changing the lipid composition of the wall. Reducing HR (IVA and METO) limited carotid artery stiffening, but plaque progression was prevented by IVA only. In contrast, IVA maintained and PT improved cerebral endothelial nitric oxide synthase-dependent flow-mediated dilation and wall compliance, and both interventions reduced MMP-9 activity (P < 0.05); METO worsened endothelial dysfunction and compliance and did not reduce MMP-9 activity. In conclusion, HR-dependent mechanical stress contributes to carotid artery wall stiffening in severely dyslipidemic mice while cerebrovascular compliance is mostly regulated by the endothelium.
Collapse
Affiliation(s)
- Virginie Bolduc
- Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|