1
|
Gómez Del Val A, Sánchez A, Freire-Agulleiro Ó, Martínez MP, Muñoz M, Olmos L, Medina JS, Comerma-Steffensen SG, Simonsen U, Rivera L, López M, Contreras C, Prieto D. Penile endothelial dysfunction, impaired redox metabolism and blunted mitochondrial bioenergetics in diet-induced obesity: Compensatory role of H 2O 2. Free Radic Biol Med 2025; 230:222-233. [PMID: 39929293 DOI: 10.1016/j.freeradbiomed.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered an early manifestation of cardiovascular disease (CVD), endothelial dysfunction being the link between CVD and vasculogenic ED. Mitochondrial reactive oxygen species (mtROS) have been involved in the vascular complications of metabolic disorders. The aim of this study was to assess the impact of obesity on endothelial function, redox metabolism and mitochondrial bioenergetics of penile erectile tissue. METHODS Wistar rats were fed a high-fat diet (HFD) or standard diet (STD), and penile vascular function was assessed in microvascular myographs. mtROS levels were measured by mitoSOX (O2.-) and Amplex Red (H2O2) fluorimetry, and the effect of the mitochondrial antioxidant mitoTempo on endothelium-dependent relaxations was tested. Mitochondrial respiration of intact microarteries was assessed with an Agilent Seahorse XF Pro analyzer, and the expression of mitochondria redox regulators was analysed by Western blot. RESULTS Endothelium-dependent relaxations to acetylcholine (ACh) and to the mitoKATP channel activator BMS191095 were reduced in penile arteries from HFD. mtROS levels were significantly increased and associated with upregulation of the endothelial NADPH oxidase 4 (Nox4) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in HFD erectile tissue. MitoTempo inhibited endothelial relaxations in control and HFD penile arteries. The bioenergetic profile was significantly reduced in HFD penile arteries compared to STD rats. CONCLUSIONS Mitochondrial dysfunction with impaired bioenergetics and reduced mitoKATP channel-mediated relaxation underlie endothelial and vascular dysfunction of erectile tissue in obesity, despite a compensatory mechanism that enhances Nox4-derived endothelial vasodilator mtROS. Therapeutic strategies aimed to stabilize mitochondria could restore redox balance and improve mitochondrial bioenergetics thus preventing oxidative stress and vascular dysfunction underlying metabolic disease associated ED.
Collapse
Affiliation(s)
| | - Ana Sánchez
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Óscar Freire-Agulleiro
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Pilar Martínez
- Department of Anatomy and Embriology, Madrid Complutense University, Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Lucia Olmos
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | | | | | - Ulf Simonsen
- Department of Biomedicine, Pulmonary and Cardiovascular Pharmacology, Aarhus University, Aarhus, Denmark
| | - Luis Rivera
- Department of Physiology, Madrid Complutense University, Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Dolores Prieto
- Department of Physiology, Madrid Complutense University, Madrid, Spain.
| |
Collapse
|
2
|
McCallinhart PE, Chade AR, Bender SB, Trask AJ. Expanding landscape of coronary microvascular disease in co-morbid conditions: Metabolic disease and beyond. J Mol Cell Cardiol 2024; 192:26-35. [PMID: 38734061 PMCID: PMC11340124 DOI: 10.1016/j.yjmcc.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Coronary microvascular disease (CMD) and impaired coronary blood flow control are defects that occur early in the pathogenesis of heart failure in cardiometabolic conditions, prior to the onset of atherosclerosis. In fact, recent studies have shown that CMD is an independent predictor of cardiac morbidity and mortality in patients with obesity and metabolic disease. CMD is comprised of functional, structural, and mechanical impairments that synergize and ultimately reduce coronary blood flow in metabolic disease and in other co-morbid conditions, including transplant, autoimmune disorders, chemotherapy-induced cardiotoxicity, and remote injury-induced CMD. This review summarizes the contemporary state-of-the-field related to CMD in metabolic and these other co-morbid conditions based on mechanistic data derived mostly from preclinical small- and large-animal models in light of available clinical evidence and given the limitations of studying these mechanisms in humans. In addition, we also discuss gaps in current understanding, emerging areas of interest, and opportunities for future investigations in this field.
Collapse
Affiliation(s)
- Patricia E McCallinhart
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Alejandro R Chade
- Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO, United States of America; Department of Medicine, University of Missouri School of Medicine, Columbia, MO, United States of America
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States of America; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States of America; Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, United States of America.
| | - Aaron J Trask
- Center for Cardiovascular Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| |
Collapse
|
3
|
Gómez Del Val A, Contreras C, Muñoz M, Sáenz-Medina J, Mohamed M, Rivera L, Sánchez A, Prieto D. Activation of mitoK ATP channels induces penile vasodilation and inhibits mitochondrial respiration and ROS production: Role of NO. Free Radic Biol Med 2024; 217:15-28. [PMID: 38522485 DOI: 10.1016/j.freeradbiomed.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024]
Abstract
OBJECTIVE Mitochondrial ATP-sensitive K+ (mitoKATP) channels are involved in neuronal and cardiac protection from ischemia and oxidative stress. Penile erection is a neurovascular event mediated by relaxation of the erectile tissue via nitric oxide (NO) released from nerves and endothelium. In the present study, we investigated whether mitoKATP channels play a role in the control of penile vascular tone and mitochondrial dynamics, and the involvement of NO. METHODS The effect of the selective mitoKATP activator BMS191095 was examined on vascular tone, on mitochondrial bioenergetics by real-time measurements with Agilent Seahorse and on ROS production by MitoSOX fluorescence in freshly isolated microarteries. RESULTS BMS191095 and diazoxide relaxed penile arteries, BMS191095 being one order of magnitude more potent. BMS191095-induced relaxations were reduced by mechanical endothelium removal and by inhibitors of the nitric oxide synthase (NOS) and PI3K enzymes. The NO-dependent component of the relaxation to BMS191095 was impaired in penile arteries from insulin resistant obese rats. The blockers of mitoKATP channel 5-HD, sarcolemma KATP (sarcKATP) channel glibenclamide, and large conductance Ca2+-activated K+ (BKCa) channel iberiotoxin, inhibited relaxations to BMS191095 and to the NO donor SNAP. BMS191095 reduced the mitochondrial bioenergetic profile of penile arteries and attenuated mitochondrial ROS production. Blockade of endogenous NO impaired and exogenous NO mimicked, respectively, the inhibitory effects of BMS191095 on basal respiration and oxygen consumed for ATP synthesis. Exogenous NO exhibited dual inhibitory/stimulatory effects on mitochondrial respiration. CONCLUSIONS These results demonstrate that selective activation of mitoKATP channels causes penile vasodilation, attenuates ROS production and inhibits mitochondrial respiration in part by releasing endothelial NO. These mechanisms couple blood flow and metabolism in penile arterial wall and suggest that activation of vascular mitoKATP channels may protect erectile tissue against ischemic injury.
Collapse
Affiliation(s)
- Alfonso Gómez Del Val
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Department of Urology, Puerta de Hierro-Majadahonda University Hospital, 28222, Majadahonda, Spain
| | - Mariam Mohamed
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
4
|
Sevilleja-Ortiz A, El Assar M, García-Gómez B, La Fuente JM, Alonso-Isa M, Romero-Otero J, Martínez-Salamanca JI, Fernández A, Rodríguez-Mañas L, Angulo J. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022; 19:1733-1749. [PMID: 36195535 DOI: 10.1016/j.jsxm.2022.08.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Stromal interaction molecule (STIM)/Orai calcium entry system appears to have a role in erectile dysfunction (ED) pathophysiology but its specific contribution to diabetic ED was not elucidated. AIM To evaluate STIM/Orai inhibition on functional alterations associated with diabetic ED in rat and human penile tissues and on in vivo erectile responses in diabetic rats. METHODS Rat corpus cavernosum (RCC) strips from nondiabetic (No DM) and streptozotocin-induced diabetic (DM) rats and human penile resistance arteries (HPRA) and corpus cavernosum (HCC) from ED patients undergoing penile prosthesis insertion were functionally evaluated in organ chambers and wire myographs. Erectile function in vivo in rats was assessed by intracavernosal pressure (ICP) responses to cavernous nerve electrical stimulation (CNES). Expression of STIM/Orai elements in HCC was determined by immunofluorescence and immunoblot. MAIN OUTCOME MEASURES Functional responses in RCC, HCC and HPRA and STIM/Orai protein expression in HCC. In vivo erectile responses to CNES. RESULTS Inhibition of Orai channels with YM-58483 (20 µM) significantly reduced adrenergic contractions in RCC but more effectively in DM. Thromboxane-induced and neurogenic contractions were reduced by STIM/Orai inhibition while defective endothelial, neurogenic and PDE5 inhibitor-induced relaxations were enhanced by YM-58483 (10 µM) in RCC from DM rats. In vivo, YM-58483 caused erections and attenuated diabetes-related impairment of erectile responses. YM-58483 potentiated the effects of PDE5 inhibition. In human tissues, STIM/Orai inhibition depressed adrenergic and thromboxane-induced contractions in ED patients more effectively in those with type 2 diabetes. Diabetes was associated with increased expression of Orai1 and Orai3 in ED patients. CLINICAL TRANSLATION Targeting STIM/Orai to alleviate diabetes-related functional alterations of penile vascular tissue could improve erectile function and potentiate therapeutic effects of PDE5 inhibitors in diabetic ED. STRENGTHS AND LIMITATIONS Improving effects of STIM/Orai inhibition on diabetes-related functional impairment was evidenced in vitro and in vivo in an animal model and validated in human tissues from ED patients. Functional findings were complemented with expression results. Main limitation was low numbers of human experiments due to limited human tissue availability. CONCLUSIONS STIM/Orai inhibition alleviated alterations of functional responses in vitro and improved erectile responses in vivo in diabetic rats, potentiating the effects of PDE5 inhibition. STIM/Orai inhibition was validated as a target to modulate functional alterations of human penile vascular tissue in diabetic ED where Orai1 and Orai3 channels were upregulated. STIM/Orai inhibition could be a potential therapeutic strategy to overcome poor response to conventional ED therapy in diabetic patients. Sevilleja-Ortiz A, El Assar M, García-Gómez B, et al. STIM/Orai Inhibition as a Strategy for Alleviating Diabetic Erectile Dysfunction Through Modulation of Rat and Human Penile Tissue Contractility and in vivo Potentiation of Erectile Responses. J Sex Med 2022;19:1733-1749.
Collapse
Affiliation(s)
- Alejandro Sevilleja-Ortiz
- Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal, Madrid, Spain; Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Mariam El Assar
- Fundación para la Investigación Biomédica del Hospital Universitario de Getafe, Getafe, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Borja García-Gómez
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - José M La Fuente
- Serviço de Urologia, Hospital Geral de Santo Antonio, Porto, Portugal
| | - Manuel Alonso-Isa
- Servicio de Urología, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | | | | | - Argentina Fernández
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Servicio de Histología-Investigación, Unidad de Investigación Traslacional en Cardiología (IRYCIS-UFV), Hospital Universitario Ramón y Cajal, Madrid, Spain; Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Yang CC, Liao PH, Cheng YH, Chien CY, Cheng KH, Chien CT. Diabetes associated with hypertension exacerbated oxidative stress-mediated inflammation, apoptosis and autophagy leading to erectile dysfunction in rats. J Chin Med Assoc 2022; 85:346-357. [PMID: 35019864 DOI: 10.1097/jcma.0000000000000691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
BACKGROUND Diabetes or hypertension contributes to erectile dysfunction (ED). We hypothesized that excess reactive oxygen species (ROS) production evoked by diabetes combined with hypertension may further suppress endothelial nitric oxide (NO) expression/activity and promote oxidative stress in the ED penis. METHODS Twenty-four adult male Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were divided into four groups: normal WKY, diabetic WKY, normal SHR and diabetic SHR. Intraperitoneal streptozotocin (65 mg/kg) was applied to induce type I diabetes. After 4-week diabetes and/or hypertension induction, we determined the intra-cavernous pressure (ICP) using electrical stimulation of cavernous nerves, intra-cavernosum NO amount using an electrochemical NO probe, and blood ROS using an ultrasensitive chemiluminescence-amplified analyzer. Western blot analysis and immunohistochemistry were used to explore the pathophysiologic mechanisms of inflammation, apoptosis and autophagy in the penis. A novel NO donor, CysaCysd Lu-5 (CCL5, (RCH2CH2S)(R'R"CHCH2S)Fe(NO)2, 1-4 µg), was intravenously administered to these ED rats for evaluating their ICP responses. RESULTS In the baseline status, the lucigenin- and luminol-amplified blood ROS were significantly enhanced in the diabetic SHR rats vs normal WKY rats. Significantly decreased ICP, eNOS expression and NO amount were found in the normal SHR, diabetic WKY, and diabetic SHR vs normal WKY rats. Intravenous NO donor L-Arginine markedly increased ICP and NO amount, whereas eNOS inhibitor, Nω-Nitro-L-Arginine methyl ester hydrochloride depressed ICP in all four groups. Diabetes and/or hypertension alone increased fibrosis, proinflammatory NF-kB/ICAM-1 expression, mast cell numbers, CD68 expression and infiltration, Caspase 3-mediated apoptosis, Beclin-1/LC3-II-mediated autophagy and mild Nrf-2/HO-1 expression and depressed eNOS expression in the ED penis. The novel NO donor, CCL5, was more efficient than L-arginine to improve diabetes and/or hypertension-induced ED by the significant increase of ICP. CONCLUSION Diabetes combined with hypertension synergistically exacerbated ED through enhanced oxidative stress, inflammation, apoptosis and autophagy and depressed eNOS activity and NO production.
Collapse
Affiliation(s)
- Chih-Ching Yang
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- Office of Public Relation of Ministry of Health and Welfare, Taipei, Taiwan, ROC
- Center for General Education, Mackay College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Pin-Hao Liao
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Yu-Hsiuan Cheng
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Chen-Yen Chien
- Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan, ROC
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
- Mackay Junior College of Medicine, Nursing and Management, New Taipei City, Taiwan, ROC
| | - Kuo-Hsin Cheng
- Division of General Surgery, Department of Surgery, Far-Eastern Memorial Hospital, New Taipei City, Taiwan, ROC
- Department of Electrical Engineering, Yuan Ze University, Taoyuan, Taiwan, ROC
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, College of Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| |
Collapse
|
6
|
Muñoz M, López-Oliva E, Pinilla E, Rodríguez C, Martínez MP, Contreras C, Gómez A, Benedito S, Sáenz-Medina J, Rivera L, Prieto D. Differential contribution of renal cytochrome P450 enzymes to kidney endothelial dysfunction and vascular oxidative stress in obesity. Biochem Pharmacol 2022; 195:114850. [PMID: 34822809 DOI: 10.1016/j.bcp.2021.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/22/2022]
Abstract
Arachidonic acid (AA)-derived cytochrome P450 (CYP) derivatives, epoxyeicosatrienoic acids (EETs) and 20-hidroxyeicosatetranoic acid (20-HETE), play a key role in kidney tubular and vascular functions and blood pressure. Altered metabolism of CYP epoxygenases and CYP hydroxylases has differentially been involved in the pathogenesis of metabolic disease-associated vascular complications, although the mechanisms responsible for the vascular injury are unclear. The present study aimed to assess whether obesity-induced changes in CYP enzymes may contribute to oxidative stress and endothelial dysfunction in kidney preglomerular arteries. Endothelial function and reactive oxygen species (ROS) production were assessed in interlobar arteries of obese Zucker rats (OZR) and their lean counterparts lean Zucker rats (LZR) and the effects of CYP2C and CYP4A inhibitors sulfaphenazole and HET0016, respectively, were examined on the endothelium-dependent relaxations and O2- and H2O2 levels of preglomerular arteries. Non-nitric oxide (NO) non-prostanoid endothelium-derived hyperpolarization (EDH)-type responses were preserved but resistant to the CYP epoxygenase blocker sulfaphenazole in OZR in contrast to those in LZR. Sulfaphenazole did not further inhibit reduced arterial H2O2 levels, and CYP2C11/CYP2C23 enzymes were downregulated in intrarenal arteries from OZR. Renal EDH-mediated relaxations were preserved in obese rats by the enhanced activity and expression of endothelial calcium-activated potassium channels (KCa). CYP4A blockade restored impaired NO-mediated dilatation and inhibited augmented O2- production in kidney arteries from OZR. The current data demonstrate that both decreased endothelial CYP2C11/ CYP2C23-derived vasodilator H2O2 and augmented CYP4A-derived 20-HETE contribute to endothelial dysfunction and vascular oxidative stress in obesity. CYP4A inhibitors ameliorate arterial oxidative stress and restore endothelial function which suggests its therapeutic potential for the vascular complications of obesity-associated kidney injury.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Estéfano Pinilla
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Claudia Rodríguez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Embriología, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Alfonso Gómez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Javier Sáenz-Medina
- Departamento de Urología, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| |
Collapse
|
7
|
Zelinskaya I, Kornushin O, Savochkina E, Dyachuk V, Vasyutina M, Galagudza M, Toropova Y. Vascular region-specific changes in arterial tone in rats with type 2 diabetes mellitus: Opposite responses of mesenteric and femoral arteries to acetylcholine and 5-hydroxytryptamine. Life Sci 2021; 286:120011. [PMID: 34606853 DOI: 10.1016/j.lfs.2021.120011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/30/2022]
Abstract
AIMS Type 2 diabetes mellitus (T2DM) ranks in the top 10 causes of mortality worldwide. The key factor of T2DM vascular complications is endothelial dysfunction. It is characterized by the vessels motor activity disruption and endothelium-derived factors imbalance. The blood vessels morphological and molecular heterogeneity greatly affects the changes occurring in T2DM. Therefore, we conducted a comparative study of vascular bed changes occurring in T2DM. MAIN METHODS Male Wistar rats were fed a high-fat diet for 20 weeks, followed by a single streptozotocin injection (20 mg/kg). T2DM was confirmed with an oral glucose tolerance test. KEY FINDINGS A dose-dependent contraction study showed an increase in third-order mesenteric arterioles response to serotonin but not to phenylephrine. These vessels also exhibited a decrease in acetylcholine-dependent relaxation and an increase in guanylate cyclase function. At the same time, the femoral arteries showed a tendency for increased acetylcholine-dependent relaxation. The blood plasma analysis revealed low bioavailable nitric oxide and high levels of endothelin-1 and ROS. SIGNIFICANCE This knowledge, in conjunction with the features of the T2DM course, can allow further targeted approaches development for the prevention and treatment of vascular complications occurring in the disease.
Collapse
Affiliation(s)
- Irina Zelinskaya
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Oleg Kornushin
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | | | | | - Marina Vasyutina
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| | - Michael Galagudza
- Almazov National Medical Research Centre, Saint Petersburg, Russia; Pavlov First Saint Petersburg State Medical University, Saint Petersburg, Russia
| | - Yana Toropova
- Almazov National Medical Research Centre, Saint Petersburg, Russia.
| |
Collapse
|
8
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
9
|
Climent B, Santiago E, Sánchez A, Muñoz-Picos M, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Metabolic syndrome inhibits store-operated Ca 2+ entry and calcium-induced calcium-release mechanism in coronary artery smooth muscle. Biochem Pharmacol 2020; 182:114222. [PMID: 32949582 DOI: 10.1016/j.bcp.2020.114222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND AND PURPOSE Metabolic syndrome causes adverse effects on the coronary circulation including altered vascular responsiveness and the progression of coronary artery disease (CAD). However the underlying mechanisms linking obesity with CAD are intricated. Augmented vasoconstriction, mainly due to impaired Ca2+ homeostasis in coronary vascular smooth muscle (VSM), is a critical factor for CAD. Increased calcium-induced calcium release (CICR) mechanism has been associated to pathophysiological conditions presenting persistent vasoconstriction while increased store operated calcium (SOC) entry appears to activate proliferation and migration in coronary vascular smooth muscle (VSM). We analyze here whether metabolic syndrome might alter SOC entry as well as CICR mechanism in coronary arteries, contributing thus to a defective Ca2+ handling and therefore accelerating the progression of CAD. EXPERIMENTAL APPROACH Measurements of intracellular Ca2+ ([Ca2+]i) and tension and of Ca2+ channels protein expression were performed in coronary arteries (CA) from lean Zucker rats (LZR) and obese Zucker rats (OZR). KEY RESULTS SOC entry stimulated by emptying sarcoplasmic reticulum (SR) Ca2+ store with cyclopiazonic acid (CPA) was decreased and associated to decreased STIM-1 and Orai1 protein expression in OZR CA. Further, CICR mechanism was blunted in these arteries but Ca2+ entry through voltage-dependent L-type channels was preserved contributing to maintain depolarization-induced increases in [Ca2+]i and vasoconstriction in OZR CA. These results were associated to increased expression of voltage-operated L-type Ca2+ channel alpha 1C subunit (CaV1.2) but unaltered ryanodine receptor (RyR) and sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) pump protein content in OZR CA. CONCLUSION AND IMPLICATIONS The present manuscript provides evidence of impaired Ca2+ handling mechanisms in coronary arteries in metabolic syndrome where a decrease in both SOC entry and CICR mechanism but preserved vasoconstriction are reported in coronary arteries from obese Zucker rats. Remarkably, OZR CA VSM at this state of metabolic syndrome seemed to have developed a compensation mechanism for impaired CICR by overexpressing CaV1.2 channels.
Collapse
Affiliation(s)
- Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain.
| | - Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Mercedes Muñoz-Picos
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
10
|
Sorop O, van de Wouw J, Chandler S, Ohanyan V, Tune JD, Chilian WM, Merkus D, Bender SB, Duncker DJ. Experimental animal models of coronary microvascular dysfunction. Cardiovasc Res 2020; 116:756-770. [PMID: 31926020 PMCID: PMC7061277 DOI: 10.1093/cvr/cvaa002] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/25/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Coronary microvascular dysfunction (CMD) is commonly present in patients with metabolic derangements and is increasingly recognized as an important contributor to myocardial ischaemia, both in the presence and absence of epicardial coronary atherosclerosis. The latter condition is termed 'ischaemia and no obstructive coronary artery disease' (INOCA). Notwithstanding the high prevalence of INOCA, effective treatment remains elusive. Although to date there is no animal model for INOCA, animal models of CMD, one of the hallmarks of INOCA, offer excellent test models for enhancing our understanding of the pathophysiology of CMD and for investigating novel therapies. This article presents an overview of currently available experimental models of CMD-with an emphasis on metabolic derangements as risk factors-in dogs, swine, rabbits, rats, and mice. In all available animal models, metabolic derangements are most often induced by a high-fat diet (HFD) and/or diabetes mellitus via injection of alloxan or streptozotocin, but there is also a wide variety of spontaneous as well as transgenic animal models which develop metabolic derangements. Depending on the number, severity, and duration of exposure to risk factors-all these animal models show perturbations in coronary microvascular (endothelial) function and structure, similar to what has been observed in patients with INOCA and comorbid conditions. The use of these animal models will be instrumental in identifying novel therapeutic targets and for the subsequent development and testing of novel therapeutic interventions to combat ischaemic heart disease, the number one cause of death worldwide.
Collapse
Affiliation(s)
- Oana Sorop
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Jens van de Wouw
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Selena Chandler
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Johnathan D Tune
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN, USA
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
- Walter Brendel Centre of Experimental Medicine, University Hospital, LMU Munich, Marchioninistr. 27, 81377 Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich, Munich Heart Alliance (MHA), 81377 Munich, Germany
| | - Shawn B Bender
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Research Service, Harry S Truman Memorial Veterans Hospital, Columbia, MO, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Dirk J Duncker
- Division of Experimental Cardiology, Department of Cardiology, Thoraxcenter, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
11
|
Stenosis coexists with compromised α1-adrenergic contractions in the ascending aorta of a mouse model of Williams-Beuren syndrome. Sci Rep 2020; 10:889. [PMID: 31965005 PMCID: PMC6972706 DOI: 10.1038/s41598-020-57803-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/07/2020] [Indexed: 11/08/2022] Open
Abstract
Williams-Beuren syndrome (WBS) is a rare disorder caused by a heterozygous deletion of 26–28 contiguous genes that affects the brain and cardiovascular system. Here, we investigated whether WBS affects aortic structure and function in the complete deletion (CD) mouse model harbouring the most common deletion found in WBS patients. Thoracic aortas from 3–4 months-old male CD mice and wild-type littermates were mounted in wire myographs or were processed for histomorphometrical analysis. Nitric oxide synthase (NOS) isoforms and oxidative stress levels were assessed. Ascending aortas from young adult CD mice showed moderate (50%) luminal stenosis, whereas endothelial function and oxidative stress were comparable to wild-type. CD mice showed greater contractions to KCl. However, α1-adrenergic contractions to phenylephrine, but not with a thromboxane analogue, were compromised. Decreased phenylephrine responses were not affected by selective inducible NOS blockade with 1400 W, but were prevented by the non-selective NOS inhibitor L-NAME and the selective neuronal NOS inhibitor SMTC. Consistently, CD mice showed increased neuronal NOS expression in aortas. Overall, aortic stenosis in CD mice coexists with excessive nNOS-derived NO signaling that compromises ascending aorta α1-adrenergic contractions. We suggest that increased neuronal NOS signaling may act as a physiological ‘brake’ against the detrimental effects of stenosis.
Collapse
|
12
|
Garcés-Rimón M, González C, Hernanz R, Herradón E, Martín A, Palacios R, Alonso MJ, Uranga JA, López-Miranda V, Miguel M. Egg white hydrolysates improve vascular damage in obese Zucker rats by its antioxidant properties. J Food Biochem 2019; 43:e13062. [PMID: 31571257 DOI: 10.1111/jfbc.13062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Metabolic Syndrome (MS) is related to increased risk of early death due to cardiovascular complications, among others. Dietary intervention has been suggested as the safest and most cost-effective alternative for treatment of those alterations in patients with MS. The aim of this study was to investigate the effects of different egg white hydrolysates (HEW1 and HEW2) in obese Zucker rats, focus on the development of cardiovascular complications. Blood pressure, heart rate, basal cardiac function and vascular reactivity in aorta and mesenteric resistance arteries were evaluated. Reactive oxygen species production by dihydroethidium-emitted fluorescence, NOX-1 mRNA levels by qRT-PCR, angiotensin-converting enzyme activity by fluorimetry and kidney histopathology were also analysed. Both hydrolysates improve the endothelial dysfunction occurring in resistance arteries. Additionally, HEW2 reduced vascular oxidative stress. PRACTICAL APPLICATIONS: Egg white is a good source of bioactive peptides, some of them with high antioxidant activity. They may be used as functional foods ingredients and could serve as an alternative therapeutic option to decrease some Metabolic Syndrome-related complications. This study suggests that these hydrolysates could be an interesting non-pharmacological tool to control cardiovascular complications related to Metabolic Syndrome.
Collapse
Affiliation(s)
- Marta Garcés-Rimón
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain.,Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain
| | - Cristina González
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Raquel Hernanz
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Esperanza Herradón
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Angela Martín
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Roberto Palacios
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - María Jesús Alonso
- Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - José Antonio Uranga
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Visitación López-Miranda
- Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain.,Dpto, de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Alcorcón, Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación en Ciencias de Alimentación (CIAL, CSIC-UAM), Madrid, Spain.,Grupo de Investigación en Nutrición y Farmacología (URJC), Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación (CSIC), Madrid, Spain
| |
Collapse
|
13
|
Wan ZH, Zhang YJ, Chen L, Guo YL, Li GH, Wu D, Wang Y. G protein-coupled receptor kinase 2 inhibition improves erectile function through amelioration of endothelial dysfunction and oxidative stress in a rat model of type 2 diabetes. Asian J Androl 2019; 21:74-79. [PMID: 30226217 PMCID: PMC6337949 DOI: 10.4103/aja.aja_69_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a common cause of erectile dysfunction (ED). It has been demonstrated that G protein-coupled receptor kinase 2 (GRK2) overexpression contributes to diabetic endothelial dysfunction and oxidative stress, which also underlies ED in T2DM. We hypothesized that GRK2 overexpressed and attenuated endothelial function of the cavernosal tissue in a rat model of T2DM. T2DM rats were established by feeding with a high-fat diet (HFD) for 2 weeks and then administering two intraperitoneal (IP) injections of a low dose of streptozotocin (STZ), followed by continuous feeding with a HFD for 6 weeks. GRK2 was inhibited by IP injection of paroxetine, a selective GRK2 inhibitor, after STZ injection. Insulin challenge tests, intracavernous pressure (ICP), GRK2 expression, the protein kinase B (Akt)/endothelial nitric oxide synthase (eNOS) pathway, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunit gp91 phox , nitric oxide (NO), reactive oxygen species (ROS) production, and apoptosis in cavernosal tissue were examined. Less response to insulin injection was observed in T2DM rats 2 weeks after HFD. Markedly increased GRK2 expression, along with impaired Akt/eNOS pathway, reduced NO production, increased gp91 phox expression and ROS generation, increased apoptosis and impaired erectile function were found in T2DM rats. Inhibition of GRK2 with paroxetine ameliorated Akt/eNOS signaling, restored NO production, downregulated NADPH oxidase, subsequently inhibited ROS generation and apoptosis, and ultimately preserved erectile function. These results indicated that GRK2 upregulation may be an important mechanism underlying T2DM ED, and GRK2 inhibition may be a potential therapeutic strategy for T2DM ED.
Collapse
Affiliation(s)
- Zhi-Hua Wan
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yuan-Jie Zhang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Lin Chen
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yong-Lian Guo
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Guo-Hao Li
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Ding Wu
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| | - Yong Wang
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, China
| |
Collapse
|
14
|
Demirtaş Şahin T, Yazir Y, Utkan T, Gacar G, Halbutoğulları ZS, Gocmez SS. Depression induced by chronic stress leads to penile cavernosal dysfunction: protective effect of anti-TNF-α treatment. Can J Physiol Pharmacol 2018; 96:933-942. [PMID: 30052465 DOI: 10.1139/cjpp-2017-0778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Psychological stress may lead to erectile dysfunction (ED), and inflammation has been evaluated as a major contributing factor. The goal of this study was to investigate the effects of etanercept (ETN), an anti-tumor necrosis factor α (TNF-α) protein, on cavernosal function in the unpredictable chronic mild stress (UCMS) rat model of depression. Animals were divided into 4 groups: animals not exposed to UCMS, animals not exposed to UCMS and treated with ETN, animals exposed to UCMS, and animals treated with ETN while exposed to UCMS. UCMS significantly impaired the neurogenic and endothelium-dependent relaxation responses; reduced cavernosal endothelial nitric oxide (NO) synthase (eNOS) and neuronal NO synthase (nNOS) expressions; decreased testosterone levels; enhanced systemic levels of corticosterone, TNF-α, interleukin 1β (IL-1β), interleukin 6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule 1 (ICAM-1); and also increased cavernosal levels of TNF-α, IL-1β, and IL-6 in rats. ETN administration restored NO-mediated neurogenic and endothelium-dependent relaxation responses of the corpus cavernosum, increased cavernosal eNOS and nNOS expressions, enhanced testosterone levels, and decreased corticosterone levels in UCMS-exposed rats. Also, systemic inflammatory markers and cavernosal proinflammatory cytokine levels were reduced by ETN. Our results demonstrate the role of TNF-α-mediated inflammation in the development of depression and ED in rats exposed to chronic stress.
Collapse
Affiliation(s)
- Tuğçe Demirtaş Şahin
- a Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Yusufhan Yazir
- b Department of Histology and Embryology, Medical Faculty, Kocaeli University, Kocaeli, Turkey.,c Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | - Tijen Utkan
- a Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| | - Gulcin Gacar
- c Stem Cell and Gene Therapy Research and Application Center, Kocaeli University, Kocaeli, Turkey
| | | | - Semil Selcen Gocmez
- a Department of Pharmacology, Medical Faculty, Kocaeli University, Kocaeli, Turkey
| |
Collapse
|
15
|
Ruan Y, Zhou J, Kang N, Reed-Maldonado AB, Tamaddon A, Wang B, Wang HS, Wang G, Banie L, Lin G, Liu J, Lue TF. The effect of low-intensity extracorporeal shockwave therapy in an obesity-associated erectile dysfunction rat model. BJU Int 2018; 122:133-142. [PMID: 29573106 PMCID: PMC9848222 DOI: 10.1111/bju.14202] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES To investigate the feasibility of the Zucker fatty (ZF) rat as a model for research in to obesity-associated erectile dysfunction (OAED) and to determine the effect of low-intensity extracorporeal shockwave therapy (Li-ESWT) on penile tissue and function in these rats. MATERIALS AND METHODS Eight new-born male Zucker lean (ZL group) rats (ZUC-Leprfa 186) and 16 new-born male ZF rats (ZUC-Leprfa 185) were injected with 5-ethynyl-2'-deoxyuridine (EdU) at birth to identify and monitor endogenous stem cells. Insulin tolerance testing was performed at 10 weeks of age. Beginning at 12 weeks of age, eight ZF rats were kept as controls, and the remaining eight ZF rats were treated with Li-ESWT (0.02 mJ/mm2 , 3 Hz, 500 pulses; ZF + SW group) twice a week for 4 weeks. Following a 1-week washout period, erectile function was evaluated by measuring intracavernosal pressure (ICP) and mean arterial pressure (MAP). Penile tissues were then harvested for histological study to assess smooth muscle/collagen content and endothelium content in the corpora cavernosum. LipidTOX™ staining was used to evaluate lipid accumulation. EdU, as a marker of cell activation, and phosphorylated histone 3 (H3P), as a marker of cell mitosis, were also assessed. RESULTS The ICP/MAP indicated that erectile function was severely impaired in the ZF group as compared with the ZL group. In the ZF + SW group, erectile function was significantly improved (P < 0.05). Muscle atrophy was seen in the ZF group, while Li-ESWT increased the muscle content in ZF + SW group. Moreover, the penile endothelium was damaged in the ZF group, and Li-ESWT enhanced the regeneration of endothelial cells (P < 0.01) in the ZF + SW group. Lipid accumulation was seen in the penile tissue of ZF rats. Li-ESWT significantly reduced both the amount and the distribution pattern of LipidTOX, suggesting decreased overall lipid infiltration. Furthermore, Li-ESWT increased EdU-positive cells and markedly enhanced the phosphorylation level of H3P at Ser-10 in the ZF + SW group. Most H3P-positive cells were located within smooth muscle cells, with some located in the endothelium suggesting that these tissues are the reservoirs of penile stem/progenitor cells. CONCLUSION ZF rats can serve as an animal model in which to study OAED. This study reveals that obesity impairs erectile function by causing smooth muscle atrophy, endothelial dysfunction, and lipid accumulation in the corpus cavernosum. Li-ESWT restored penile haemodynamic parameters in the ZF rats by restoring smooth muscle and endothelium content and reducing lipid accumulation. The underlying mechanism of Li-ESWT appears to be activation of stem/progenitor cells, which prompts cellular proliferation and accelerates penile tissue regeneration. Our findings are of interest, not just as a validation of this emerging treatment for erectile dysfunction, but also as a novel and potentially significant method to modulate endogenous stem/progenitor cells in other disease processes.
Collapse
Affiliation(s)
- Yajun Ruan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Ning Kang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Amanda B. Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Arianna Tamaddon
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Bohan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Hsun Shuan Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Correspondence: Tom F. Lue, MD, Department of Urology, University of California, San Francisco, 400 Parnassus Ave., Ste A-633, San Francisco, CA 94143-0738, USA, Phone: 415-476-1611, Fax: 415-476-8849, , Jihong Liu, MD, PhD, Department of Urology, Tongji Hospital, Huazhong University of Science and Technology,Wuhan 430030, China
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, CA, USA.,Correspondence: Tom F. Lue, MD, Department of Urology, University of California, San Francisco, 400 Parnassus Ave., Ste A-633, San Francisco, CA 94143-0738, USA, Phone: 415-476-1611, Fax: 415-476-8849, , Jihong Liu, MD, PhD, Department of Urology, Tongji Hospital, Huazhong University of Science and Technology,Wuhan 430030, China
| |
Collapse
|
16
|
Sánchez A, Contreras C, Climent B, Gutiérrez A, Muñoz M, García-Sacristán A, López M, Rivera L, Prieto D. Impaired Ca 2+ handling in resistance arteries from genetically obese Zucker rats: Role of the PI3K, ERK1/2 and PKC signaling pathways. Biochem Pharmacol 2018; 152:114-128. [PMID: 29574066 DOI: 10.1016/j.bcp.2018.03.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/20/2018] [Indexed: 01/12/2023]
Abstract
The impact of obesity on vascular smooth muscle (VSM) Ca2+ handling and vasoconstriction, and its regulation by the phosphatidylinositol 3-kinase (PI3K), mitogen activated protein kinase (MAPK) and protein kinase C (PKC) were assessed in mesenteric arteries (MA) from obese Zucker rats (OZR). Simultaneous measurements of intracellular Ca2+ ([Ca2+]i) and tension were performed in MA from OZR and compared to lean Zucker rats (LZR), and the effects of selective inhibitors of PI3K, ERK-MAPK kinase and PKC were assessed on the functional responses of VSM voltage-dependent L-type Ca2+ channels (CaV1.2). Increases in [Ca2+]i induced by α1-adrenoceptor activation and high K+ depolarization were not different in arteries from LZR and OZR although vasoconstriction was enhanced in OZR. Blockade of the ryanodine receptor (RyR) and of Ca2+ release from the sarcoplasmic reticulum (SR) markedly reduced depolarization-induced Ca2+ responses in arteries from lean but not obese rats, suggesting impaired Ca2+-induced Ca2+ release (CICR) from SR in arteries from OZR. Enhanced Ca2+ influx after treatment with ryanodine was abolished by nifedipine and coupled to up-regulation of CaV1.2 channels in arteries from OZR. Increased activation of ERK-MAPK and up-regulation of PI3Kδ, PKCβ and δ isoforms were associated to larger inhibitory effects of PI3K, MAPK and PKC blockers on VSM L-type channel Ca2+ entry in OZR. Changes in arterial Ca2+ handling in obesity involve SR Ca2+ store dysfunction and enhanced VSM Ca2+ entry through L-type channels, linked to a compensatory up-regulation of CaV1.2 proteins and increased activity of the ERK-MAPK, PI3Kδ and PKCβ and δ, signaling pathways.
Collapse
Affiliation(s)
- Ana Sánchez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Cristina Contreras
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Belén Climent
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Gutiérrez
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes Muñoz
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Albino García-Sacristán
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Miguel López
- NeurObesity Group, Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), 15706, Spain
| | - Luis Rivera
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Dolores Prieto
- Department of Physiology, School of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Ruan Y, Lin G, Kang N, Tamaddon A, Zhou J, Wang B, Wang HS, Wang G, Banie L, Xin Z, Liu J, Lue TF. In Situ Activation and Preservation of Penile Progenitor Cells Using Icariside II in an Obesity-Associated Erectile Dysfunction Rat Model. Stem Cells Dev 2018; 27:207-215. [PMID: 29179669 DOI: 10.1089/scd.2017.0220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Obesity-associated erectile dysfunction (ED) involves pathologic change that may be related to deficit of the penile endogenous stem/progenitor cells. Therefore, an in-depth study of the penile stem/progenitor cells in the pathogenesis of ED is warranted. For this study, eight Zucker Lean (ZUC-Leprfa 186; ZL group) and 16 Zucker Fatty (ZUC-Leprfa 185; ZF) male rats received an intraperitoneal injection of 5-ethynyl-2-deoxyuridine (EdU) to track endogenous stem cells. Twelve weeks later, the ZF rats were randomized to gavage feeding with 1.5 mg/kg/day of icariside II (ZF + ICA II group) or the solvent (ZF group). Treatment lasted 4 weeks and was followed by a 1-week washout period. ZF rats had impaired erectile function with related pathologic changes compared with ZL rats. ICA II treatment restored erectile function and prevented smooth muscle atrophy, endothelial dysfunction, and lipid accumulation compared with no treatment. EdU label-retaining cell levels were higher in the ZF + ICA II group compared with the ZF group. Histone 3 phosphorylation at Ser 10, a specific mitotic cell marker, was additionally used to identify dividing cells. ICA II activated more penile stem cells to proliferate in ZF rats compared with ZL rats. These results suggest that ZF rats can be used as a model for obesity-associated ED and that ICA II improves erectile function and pathologic changes through endogenous progenitor cell preservation and proliferation.
Collapse
Affiliation(s)
- Yajun Ruan
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California.,2 Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Guiting Lin
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Ning Kang
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Arianna Tamaddon
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Jun Zhou
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Bohan Wang
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Hsun Shuan Wang
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Guifang Wang
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Lia Banie
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| | - Zhongcheng Xin
- 3 Department of Urology, Andrology Center, Peking University , Beijing, China
| | - Jihong Liu
- 2 Department of Urology , Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan, China
| | - Tom F Lue
- 1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, San Francisco, California
| |
Collapse
|
18
|
Climent B, Sánchez A, Moreno L, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Underlying mechanisms preserving coronary basal tone and NO-mediated relaxation in obesity: Involvement of β1 subunit-mediated upregulation of BKCa channels. Atherosclerosis 2017; 263:227-236. [DOI: 10.1016/j.atherosclerosis.2017.06.354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/23/2017] [Accepted: 06/20/2017] [Indexed: 12/21/2022]
|
19
|
Labazi H, Trask AJ. Coronary microvascular disease as an early culprit in the pathophysiology of diabetes and metabolic syndrome. Pharmacol Res 2017; 123:114-121. [PMID: 28700893 DOI: 10.1016/j.phrs.2017.07.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/19/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
Metabolic syndrome (MetS) is a group of cardio-metabolic risk factors that includes obesity, insulin resistance, hypertension, and dyslipidemia; these are also a combination of independent coronary artery disease (CAD) risk factors. Alarmingly, the prevalence of MetS risk factors are increasing and a leading cause for mortality. In the vasculature, complications from MetS and type 2 diabetes (T2D) can be divided into microvascular (retinopathy and nephropathy) and macrovascular (cardiovascular diseases and erectile dysfunction). In addition to vascular and endothelial dysfunction, vascular remodeling and stiffness are also hallmarks of cardiovascular disease (CVD), and well-characterized vascular changes that are observed in the early stages of hypertension, T2D, and obesity [1-3]. In the heart, the link between obstructive atherosclerosis of coronary macrovessels and myocardial ischemia (MI) is well established. However, recent studies show that abnormalities in the coronary microcirculation are associated with functional and structural changes in coronary microvessels (classically defined as being ≤150-200μm internal diameter), which may cause or contribute to MI even in the absence of obstractive CAD. This suggests a prognostic value of an abnormal coronary microcirculation as an early sub-clinical culprit in the pathogenesis and progression of heart disease in T2D and MetS. The aim of this review is to summarize recent studies investigating the coronary microvascular remodeling in an early pre-atherosclerotic phase of MetS and T2D, and to explore potential mechanisms associated with the timing of coronary microvascular remodeling relative to that of the macrovasculature.
Collapse
Affiliation(s)
- Hicham Labazi
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States
| | - Aaron J Trask
- Center for Cardiovascular Research and The Heart Center, The Research Institute at Nationwide Children's Hospital Columbus, OH, United States; Department of Pediatrics, The Ohio State University Columbus, OH, United States.
| |
Collapse
|
20
|
Santiago E, Martínez MP, Climent B, Muñoz M, Briones AM, Salaices M, García-Sacristán A, Rivera L, Prieto D. Augmented oxidative stress and preserved vasoconstriction induced by hydrogen peroxide in coronary arteries in obesity: role of COX-2. Br J Pharmacol 2016; 173:3176-3195. [PMID: 27535007 DOI: 10.1111/bph.13579] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxidative stress plays a key role in the vascular and metabolic abnormalities associated with obesity. Herein, we assessed whether obesity can increase coronary vasoconstriction induced by hydrogen peroxide (H2 O2 ) and the signalling pathways involving COX-2 and superoxide (O2.- ) generation. EXPERIMENTAL APPROACH Contractile responses to H2 O2 and O2.- generation were measured in coronary arteries from genetically obese Zucker rats (OZR) and compared to lean Zucker rats (LZR). KEY RESULTS Both basal and H2 O2 -stimulated O2.- production were enhanced in coronary arteries from OZR, but H2 O2 -induced vasoconstriction was unchanged. The selective COX-2 inhibitor NS398 significantly reduced H2 O2 -induced contractions in endothelium-denuded arteries from LZR and OZR, but only in endothelium-intact arteries from LZR. PGI2 (IP) receptor antagonism modestly reduced the vasoconstrictor action of H2 O2 while antagonism of the PGE2 receptor 4 (EP4 ) enhanced H2 O2 contractions in arteries from OZR but not LZR. Basal release of COX-2-derived PGE2 was higher in coronary arteries from OZR where the selective agonist of EP4 receptors TCS 2519 evoked potent relaxations. COX-2 was up-regulated after acute exposure to H2 O2 in coronary endothelium and vascular smooth muscle (VSM) and inhibition of COX-2 markedly reduced H2 O2 -elicited O2.- generation in coronary arteries and myocardium. Expression of Nox subunits in VSM and NADPH-stimulated O2.- generation was enhanced and contributed to H2 O2 vasoconstriction in arteries from obese rats. CONCLUSION AND IMPLICATIONS COX-2 contributes to cardiac oxidative stress and to the endothelium-independent O2.- -mediated coronary vasoconstriction induced by H2 O2 in obesity, which is offset by the release of COX-2-derived endothelial PGE2 acting on EP4 vasodilator receptors.
Collapse
Affiliation(s)
- Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Pilar Martínez
- Departamento de Anatomía and Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana María Briones
- Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Mercedes Salaices
- Departamento de Farmacología, Facultad de Medicina, Instituto de Investigación Hospital Universitario La Paz (IdiPAZ), Universidad Autónoma de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
21
|
Fadini GP, Ciciliot S, Albiero M. Concise Review: Perspectives and Clinical Implications of Bone Marrow and Circulating Stem Cell Defects in Diabetes. Stem Cells 2016; 35:106-116. [PMID: 27401837 DOI: 10.1002/stem.2445] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus is a complex systemic disease characterized by severe morbidity and excess mortality. The burden of its multiorgan complications relies on an imbalance between hyperglycemic cell damage and defective endogenous reparative mechanisms. Inflammation and abnormalities in several hematopoietic components are typically found in diabetes. The discovery that diabetes reduces circulating stem/progenitor cells and impairs their function has opened an entire new field of study where diabetology comes into contact with hematology and regenerative medicine. It is being progressively recognized that such rare circulating cell populations mirror finely regulated processes involved in hematopoiesis, immunosurveillance, and peripheral tissue homeostasis. From a clinical perspective, pauperization of circulating stem cells predicts adverse outcomes and death. Furthermore, studies in murine models and humans have identified the bone marrow (BM) as a previously neglected site of diabetic end-organ damage, characterized by microangiopathy, neuropathy, fat deposition, and inflammation. As a result, diabetes impairs the mobilization of BM stem/progenitor cells, a defect known as mobilopathy or myelokathexis, with negative consequences for physiologic hematopoiesis, immune regulation, and tissue regeneration. A better understanding of the molecular and cellular processes that govern the BM stem cell niche, cell mobilization, and kinetics in peripheral tissues may uncover new therapeutic strategies for patients with diabetes. This concise review summarizes the current knowledge on the interplay between the BM, circulating stem cells, and diabetes, and sets the stages for future developments in the field. Stem Cells 2017;35:106-116.
Collapse
Affiliation(s)
- Gian Paolo Fadini
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Stefano Ciciliot
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| | - Mattia Albiero
- Department of Medicine, University of Padova, and Venetian Institute of Molecular Medicine, Padova, 35128, Italy
| |
Collapse
|
22
|
Musicki B, Hannan JL, Lagoda G, Bivalacqua TJ, Burnett AL. Mechanistic link between erectile dysfunction and systemic endothelial dysfunction in type 2 diabetic rats. Andrology 2016; 4:977-83. [PMID: 27153512 DOI: 10.1111/andr.12218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 03/09/2016] [Accepted: 04/13/2016] [Indexed: 12/21/2022]
Abstract
Men with type 2 diabetes mellitus (T2DM) and erectile dysfunction (ED) have greater risk of cardiovascular events than T2DM men without ED, suggesting ED as a predictor of cardiovascular events in diabetic men. However, molecular mechanisms underlying endothelial dysfunction in the diabetic penis explaining these clinical observations are not known. We evaluated whether the temporal relationship between ED and endothelial dysfunction in the systemic vasculature in T2DM involves earlier redox imbalance and endothelial nitric oxidase synthase (eNOS) dysfunction in the penis than in the systemic vasculature, such as the carotid artery. Rats were rendered T2DM by high-fat diet for 2 weeks, followed by an injection with low-dose streptozotocin. After 3 weeks, erectile function (intracavernosal pressure) was measured and penes and carotid arteries were collected for molecular analyses of eNOS uncoupling, protein S-glutathionylation, oxidative stress (4-hydroxy-2-nonenal, 4-HNE), protein expression of NADPH oxidase subunit gp91(phox) , endothelium-dependent vasodilation in the carotid artery, and non-adrenergic, non-cholinergic (NANC)-mediated cavernosal relaxation. Erectile response to electrical stimulation of the cavernous nerve and NANC-mediated cavernosal relaxation was decreased (p < 0.05), while relaxation of the carotid artery to acetylcholine was not impaired in T2DM rats. eNOS monomerization, protein expressions of 4-HNE and gp91(phox) , and protein S-glutathionylation, were increased (p < 0.05) in the penis, but not in the carotid artery, of T2DM compared to non-diabetic rats. In conclusion, redox imbalance, increased oxidative stress by NADPH oxidase, and eNOS uncoupling, occur early in T2DM in the penis, but not in the carotid artery. These molecular changes contribute to T2DM ED, while vascular function in the systemic vasculature remains preserved.
Collapse
Affiliation(s)
- B Musicki
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - J L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - G Lagoda
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - T J Bivalacqua
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| | - A L Burnett
- Department of Urology, The Johns Hopkins School of Medicine, The James Buchanan Brady Urological Institute, Baltimore, MD, USA
| |
Collapse
|
23
|
Musicki B, Bella AJ, Bivalacqua TJ, Davies KP, DiSanto ME, Gonzalez-Cadavid NF, Hannan JL, Kim NN, Podlasek CA, Wingard CJ, Burnett AL. Basic Science Evidence for the Link Between Erectile Dysfunction and Cardiometabolic Dysfunction. J Sex Med 2015; 12:2233-55. [PMID: 26646025 DOI: 10.1111/jsm.13069] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Although clinical evidence supports an association between cardiovascular/metabolic diseases (CVMD) and erectile dysfunction (ED), scientific evidence for this link is incompletely elucidated. AIM This study aims to provide scientific evidence for the link between CVMD and ED. METHODS In this White Paper, the Basic Science Committee of the Sexual Medicine Society of North America assessed the current literature on basic scientific support for a mechanistic link between ED and CVMD, and deficiencies in this regard with a critical assessment of current preclinical models of disease. RESULTS A link exists between ED and CVMD on several grounds: the endothelium (endothelium-derived nitric oxide and oxidative stress imbalance); smooth muscle (SM) (SM abundance and altered molecular regulation of SM contractility); autonomic innervation (autonomic neuropathy and decreased neuronal-derived nitric oxide); hormones (impaired testosterone release and actions); and metabolics (hyperlipidemia, advanced glycation end product formation). CONCLUSION Basic science evidence supports the link between ED and CVMD. The Committee also highlighted gaps in knowledge and provided recommendations for guiding further scientific study defining this risk relationship. This endeavor serves to develop novel strategic directions for therapeutic interventions.
Collapse
Affiliation(s)
- Biljana Musicki
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Anthony J Bella
- Division of Urology, Department of Surgery and Department of Neuroscience, Ottawa Hospital Research Institute at the University of Ottawa, Ottawa, ON, Canada
| | - Trinity J Bivalacqua
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kelvin P Davies
- Department of Urology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael E DiSanto
- Department of Surgery/Division of Urology, Cooper University Hospital, Camden, NJ, USA
| | - Nestor F Gonzalez-Cadavid
- Division of Urology, Department of Surgery, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA, USA.,Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Johanna L Hannan
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Noel N Kim
- Institute for Sexual Medicine, San Diego, CA, USA
| | - Carol A Podlasek
- Departments of Urology, Physiology, and Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher J Wingard
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Arthur L Burnett
- The James Buchanan Brady Urological Institute and Department of Urology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
24
|
Santiago E, Climent B, Muñoz M, García-Sacristán A, Rivera L, Prieto D. Hydrogen peroxide activates store-operated Ca(2+) entry in coronary arteries. Br J Pharmacol 2015; 172:5318-32. [PMID: 26478127 DOI: 10.1111/bph.13322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/20/2015] [Accepted: 09/06/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Abnormal Ca(2+) metabolism has been involved in the pathogenesis of vascular dysfunction associated with oxidative stress. Here, we have investigated the actions of H2 O2 on store-operated Ca(2+) (SOC) entry in coronary arteries and assessed whether it is impaired in arteries from a rat model of metabolic syndrome. EXPERIMENTAL APPROACH Simultaneous measurements of intracellular Ca(2+) concentration and contractile responses were made in coronary arteries from Wistar and obese Zucker rats, mounted in microvascular myographs, and the effects of H2 O2 were assessed. KEY RESULTS H2 O2 raised intracellular Ca(2+) concentrations, accompanied by simultaneous vasoconstriction that was markedly reduced in a Ca(2+) -free medium. Upon Ca(2+) re-addition, a nifedipine-resistant sustained Ca(2+) entry, not coupled to contraction, was obtained in endothelium-denuded coronary arteries. The effect of H2 O2 on this voltage-independent Ca(2+) influx was concentration-dependent, and high micromolar H2 O2 concentrations were inhibitory and reduced SOC entry evoked by inhibition of the sarcoplasmic reticulum ATPase (SERCA). H2 O2 -induced increases in Fura signals were mimicked by Ba(2+) and reduced by heparin, Gd(3+) ions and by Pyr6, a selective inhibitor of the Orai1-mediated Ca(2+) entry,. In coronary arteries from obese Zucker rats, intracellular Ca(2+) mobilization and SOC entry activated by acute exposure to H2 O2 were augmented and associated with local oxidative stress. CONCLUSION AND IMPLICATIONS H2 O2 exerted dual concentration-dependent stimulatory/inhibitory effects on store-operated, IP3 receptor-mediated and Orai1-mediated Ca(2+) entry, not coupled to vasoconstriction in coronary vascular smooth muscle. SOC entry activated by H2 O2 was enhanced and associated with vascular oxidative stress in coronary arteries in metabolic syndrome.
Collapse
Affiliation(s)
- Elvira Santiago
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
25
|
Pernow J, Kiss A, Tratsiakovich Y, Climent B. Tissue-specific up-regulation of arginase I and II induced by p38 MAPK mediates endothelial dysfunction in type 1 diabetes mellitus. Br J Pharmacol 2015; 172:4684-98. [PMID: 26140333 PMCID: PMC4594272 DOI: 10.1111/bph.13242] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/13/2015] [Accepted: 06/26/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Emerging evidence suggests a selective up-regulation of arginase I in diabetes causing coronary artery disease; however, the mechanisms behind this up-regulation are still unknown. Activated p38 MAPK has been reported to increase arginase II in various cardiovascular diseases. We therefore tested the role of p38 MAPK in the regulation of arginase I and II expression and its effect on endothelial dysfunction in diabetes mellitus. EXPERIMENTAL APPROACH Endothelial function was determined in septal coronary (SCA), left anterior descending coronary (LAD) and mesenteric (MA) arteries from healthy and streptozotocin-induced diabetic Wistar rats by wire myographs. Arginase activity and protein levels of arginase I, II, phospho-p38 MAPK and phospho-endothelial NOS (eNOS) (Ser(1177) ) were determined in these arteries from diabetic and healthy rats treated with a p38 MAPK inhibitor in vivo. KEY RESULTS Diabetic SCA and MA displayed impaired endothelium-dependent relaxation, which was prevented by arginase and p38 MAPK inhibition while LAD relaxation was not affected. Arginase I, phospho-p38 MAPK and eNOS protein expression was increased in diabetic coronary arteries. In diabetic MA, however, increased expression of arginase II and phospho-p38 MAPK, increased arginase activity and decreased expression of eNOS were observed. All these effects were reversed by p38 MAPK inhibition. CONCLUSIONS AND IMPLICATIONS Diabetes-induced activation of p38 MAPK causes endothelial dysfunction via selective up-regulation of arginase I expression in coronary arteries and arginase II expression in MA. Therefore, regional differences appear to exist in the arginase isoforms contributing to endothelial dysfunction in type 1 diabetes mellitus.
Collapse
Affiliation(s)
- J Pernow
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - A Kiss
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Y Tratsiakovich
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - B Climent
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
26
|
Animal models of erectile dysfunction. J Pharmacol Toxicol Methods 2015; 76:43-54. [PMID: 26279495 DOI: 10.1016/j.vascn.2015.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/02/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
Abstract
Erectile dysfunction (ED) is a prevalent male sexual dysfunction with profound adverse effects on the physical and the psychosocial health of men and, subsequently, on their partners. The expanded use of various types of rodent models has produced some advances in the study of ED, and neurophysiological studies using various animal models have provided important insights into human sexual dysfunction. At present, animal models play a key role in exploring and screening novel drugs designed to treat ED.
Collapse
|
27
|
Sánchez A, Martínez P, Muñoz M, Benedito S, García-Sacristán A, Hernández M, Prieto D. Endothelin-1 contributes to endothelial dysfunction and enhanced vasoconstriction through augmented superoxide production in penile arteries from insulin-resistant obese rats: role of ET(A) and ET(B) receptors. Br J Pharmacol 2015; 171:5682-95. [PMID: 25091502 DOI: 10.1111/bph.12870] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/21/2014] [Accepted: 07/26/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE We assessed whether endothelin-1 (ET-1) inhibits NO and contributes to endothelial dysfunction in penile arteries in a model of insulin resistance-associated erectile dysfunction (ED). EXPERIMENTAL APPROACH Vascular function was assessed in penile arteries, from obese (OZR) and lean (LZR) Zucker rats, mounted in microvascular myographs. Changes in basal and stimulated levels of superoxide (O2 (-) ) were detected by lucigenin-enhanced chemiluminescence and ET receptor expression was determined by immunohistochemistry. KEY RESULTS ET-1 stimulated acute O2 (-) production that was blunted by tempol and the NADPH oxidase inhibitor, apocynin, but markedly enhanced in obese animals. ET-1 inhibited the vasorelaxant effects of ACh and of the NO donor S-nitroso-N-acetyl-DL-penicillamine in arteries from both LZR and OZR. Selective ETA (BQ123) or ETB receptor (BQ788) antagonists reduced both basal and ET-1-stimulated superoxide generation and reversed ET-1-induced inhibition of NO-mediated relaxations in OZR, while only BQ-123 antagonized ET-1 actions in LZR. ET-1-induced vasoconstriction was markedly enhanced by NO synthase blockade and reduced by endothelium removal and apocynin. In endothelium-denuded penile arteries, apocynin blunted augmented ET-1-induced contractions in OZR. Both ETA and ETB receptors were expressed in smooth muscle and the endothelial layer and up-regulated in arteries from OZR. CONCLUSIONS AND IMPLICATIONS ET-1 stimulates ETA -mediated NADPH oxidase-dependent ROS generation, which inhibits endothelial NO bioavailability and contributes to ET-1-induced contraction in healthy penile arteries. Enhanced vascular expression of ETB receptors contributes to augmented ROS production, endothelial dysfunction and increased vasoconstriction in erectile tissue from insulin-resistant obese rats. Hence, antagonism of ETB receptors might improve the ED associated with insulin-resistant states.
Collapse
Affiliation(s)
- A Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Muñoz M, Sánchez A, Pilar Martínez M, Benedito S, López-Oliva ME, García-Sacristán A, Hernández M, Prieto D. COX-2 is involved in vascular oxidative stress and endothelial dysfunction of renal interlobar arteries from obese Zucker rats. Free Radic Biol Med 2015; 84:77-90. [PMID: 25841778 DOI: 10.1016/j.freeradbiomed.2015.03.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/09/2015] [Accepted: 03/23/2015] [Indexed: 02/07/2023]
Abstract
Obesity is related to vascular dysfunction through inflammation and oxidative stress and it has been identified as a risk factor for chronic renal disease. In the present study, we assessed the specific relationships among reactive oxygen species (ROS), cyclooxygenase 2 (COX-2), and endothelial dysfunction in renal interlobar arteries from a genetic model of obesity/insulin resistance, the obese Zucker rats (OZR). Relaxations to acetylcholine (ACh) were significantly reduced in renal arteries from OZR compared to their counterpart, the lean Zucker rat (LZR), suggesting endothelial dysfunction. Blockade of COX with indomethacin and with the selective blocker of COX-2 restored the relaxations to ACh in obese rats. Selective blockade of the TXA2/PGH2 (TP) receptor enhanced ACh relaxations only in OZR, while inhibition of the prostacyclin (PGI2) receptor (IP) enhanced basal tone and inhibited ACh vasodilator responses only in LZR. Basal production of superoxide was increased in arteries of OZR and involved NADPH and xanthine oxidase activation and NOS uncoupling. Under conditions of NOS blockade, ACh induced vasoconstriction and increased ROS generation that were augmented in arteries from OZR and blunted by COX-2 inhibition and by the ROS scavenger tempol. Hydrogen peroxide (H2O2) evoked both endothelium- and vascular smooth muscle (VSM)-dependent contractions, as well as ROS generation that was reduced by COX-2 inhibition. In addition, COX-2 expression was enhanced in both VSM and endothelium of renal arteries from OZR. These results suggest that increased COX-2-dependent vasoconstriction contributes to renal endothelial dysfunction through enhanced (ROS) generation in obesity. COX-2 activity is in turn upregulated by ROS.
Collapse
Affiliation(s)
- Mercedes Muñoz
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - María Pilar Martínez
- Departamento de Anatomía and Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense, Madrid 28040, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | | | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid 28040, Spain.
| |
Collapse
|
29
|
Bender SB, Laughlin MH. Modulation of endothelial cell phenotype by physical activity: impact on obesity-related endothelial dysfunction. Am J Physiol Heart Circ Physiol 2015; 309:H1-8. [PMID: 25934096 DOI: 10.1152/ajpheart.00177.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/28/2015] [Indexed: 01/26/2023]
Abstract
Increased levels of physical activity are associated with reduced cardiovascular disease (CVD) risk and mortality in obesity and diabetes. Available evidence suggests that local factors, including local hemodynamics, account for a significant portion of this CVD protection, and numerous studies have interrogated the therapeutic benefit of physical activity/exercise training in CVD. Less well established is whether basal differences in endothelial cell phenotype between/among vasculatures related to muscle recruitment patterns during activity may account for reports of nonuniform development of endothelial dysfunction in obesity. This is the focus of this review. We highlight recent work exploring the vulnerability of two distinct vasculatures with established differences in endothelial cell phenotype. Specifically, based largely on dramatic differences in underlying hemodynamics, arteries perfusing soleus muscle (slow-twitch muscle fibers) and those perfusing gastrocnemius muscle (fast-twitch muscle fibers) in the rat exhibit an exercise training-like versus an untrained endothelial cell phenotype, respectively. In the context of obesity, therefore, arteries to soleus muscle exhibit protection from endothelial dysfunction compared with vulnerable arteries to gastrocnemius muscle. This disparate vulnerability is consistent with numerous animal and human studies, demonstrating increased skeletal muscle blood flow heterogeneity in obesity coincident with reduced muscle function and exercise intolerance. Mechanistically, we highlight emerging areas of inquiry exploring novel aspects of hemodynamic-sensitive signaling in endothelial cells and the time course of physical activity-associated endothelial adaptations. Lastly, further exploration needs to consider the impact of endothelial heterogeneity on the development of endothelial dysfunction because endothelial dysfunction independently predicts CVD events.
Collapse
Affiliation(s)
- Shawn B Bender
- Research, Harry S Truman Memorial Veterans Hospital, Columbia, Missouri; Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and
| | - M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; and Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, Missouri
| |
Collapse
|
30
|
Silva FH, Lanaro C, Leiria LO, Rodrigues RL, Davel AP, Claudino MA, Toque HA, Antunes E. Oxidative stress associated with middle aging leads to sympathetic hyperactivity and downregulation of soluble guanylyl cyclase in corpus cavernosum. Am J Physiol Heart Circ Physiol 2014; 307:H1393-400. [DOI: 10.1152/ajpheart.00708.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impairment of nitric oxide (NO)-mediated cavernosal relaxations in middle age contributes to erectile dysfunction. However, little information is available about the alterations of sympathetic neurotransmission and contraction in erectile tissue at middle age. This study aimed to evaluate the alterations of the contractile machinery associated with tyrosine hydroxylase (TH) in rat corpus cavernosum (RCC) at middle age, focusing on the role of superoxide anion. Male Wistar young (3.5-mo) and middle-aged (10-mo) rats were used. Electrical-field stimulation (EFS)- and phenylephrine-induced contractions were obtained in RCC strips. Levels of reactive-oxygen species (ROS) and TH mRNA expression, as well as protein expressions for α1/β1-subunits of soluble guanylyl cyclase (sGC), in RCC were evaluated. The neurogenic contractile responses elicited by EFS (4–32 Hz) were greater in RCC from the middle-aged group that was accompanied by elevated TH mRNA expression ( P < 0.01). Phenylephrine-induced contractions were also greater in the middle-aged group. A 62% increase in ROS generation in RCC from middle-aged rats was observed. The mRNA expression for the α1A-adrenoceptor remained unchanged among groups. Protein levels of α1/β1-sGC subunits were decreased in RCC from the middle-aged compared with young group. The NADPH oxidase inhibitor apocynin (85 mg·rat−1·day−1, 4 wk) fully restored the enhanced ROS production, TH mRNA expressions, and α1/β1-subunit sGC expression, indicating that excess of superoxide anion plays a major role in the sympathetic hyperactivity and hypercontractility in erectile tissue at middle age. Reduction of oxidative stress by dietary antioxidants may be an interesting approach to treat erectile dysfunction in aging population.
Collapse
Affiliation(s)
- Fábio H. Silva
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Carolina Lanaro
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Luiz Osório Leiria
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Renata Lopes Rodrigues
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Ana Paula Davel
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Mário A. Claudino
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| | - Haroldo A. Toque
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia
| | - Edson Antunes
- Department of Pharmacology, Faculty of Medical Sciences and Department of Anatomy, Cellular Biology, Physiology and Biophysics, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil; and
| |
Collapse
|
31
|
Climent B, Moreno L, Martínez P, Contreras C, Sánchez A, Pérez-Vizcaíno F, García-Sacristán A, Rivera L, Prieto D. Upregulation of SK3 and IK1 channels contributes to the enhanced endothelial calcium signaling and the preserved coronary relaxation in obese Zucker rats. PLoS One 2014; 9:e109432. [PMID: 25302606 PMCID: PMC4193814 DOI: 10.1371/journal.pone.0109432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/01/2014] [Indexed: 12/19/2022] Open
Abstract
Background and Aims Endothelial small- and intermediate-conductance KCa channels, SK3 and IK1, are key mediators in the endothelium-derived hyperpolarization and relaxation of vascular smooth muscle and also in the modulation of endothelial Ca2+ signaling and nitric oxide (NO) release. Obesity is associated with endothelial dysfunction and impaired relaxation, although how obesity influences endothelial SK3/IK1 function is unclear. Therefore we assessed whether the role of these channels in the coronary circulation is altered in obese animals. Methods and Results In coronary arteries mounted in microvascular myographs, selective blockade of SK3/IK1 channels unmasked an increased contribution of these channels to the ACh- and to the exogenous NO- induced relaxations in arteries of Obese Zucker Rats (OZR) compared to Lean Zucker Rats (LZR). Relaxant responses induced by the SK3/IK1 channel activator NS309 were enhanced in OZR and NO- endothelium-dependent in LZR, whereas an additional endothelium-independent relaxant component was found in OZR. Fura2-AM fluorescence revealed a larger ACh-induced intracellular Ca2+ mobilization in the endothelium of coronary arteries from OZR, which was inhibited by blockade of SK3/IK1 channels in both LZR and OZR. Western blot analysis showed an increased expression of SK3/IK1 channels in coronary arteries of OZR and immunohistochemistry suggested that it takes place predominantly in the endothelial layer. Conclusions Obesity may induce activation of adaptive vascular mechanisms to preserve the dilator function in coronary arteries. Increased function and expression of SK3/IK1 channels by influencing endothelial Ca2+ dynamics might contribute to the unaltered endothelium-dependent coronary relaxation in the early stages of obesity.
Collapse
Affiliation(s)
- Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
- * E-mail: (BC); (DP)
| | - Laura Moreno
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | - Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | | | - Luis Rivera
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
- * E-mail: (BC); (DP)
| |
Collapse
|
32
|
Martínez AC, Hernández M, Novella S, Martínez MP, Pagán RM, Hermenegildo C, García-Sacristán A, Prieto D, Benedito S. Diminished neurogenic femoral artery vasoconstrictor response in a Zucker obese rat model: differential regulation of NOS and COX derivatives. PLoS One 2014; 9:e106372. [PMID: 25216050 PMCID: PMC4162543 DOI: 10.1371/journal.pone.0106372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/03/2014] [Indexed: 01/21/2023] Open
Abstract
Objective Peripheral arterial disease is one of the macrovascular complications of type 2 diabetes mellitus. This study addresses femoral artery regulation in a prediabetic model of obese Zucker rats (OZR) by examining cross-talk between endothelial and neural factors. Methods and Results Arterial preparations from lean (LZR) and OZR were subjected to electrical field stimulation (EFS) on basal tone. Nitric oxide synthase (NOS) and cyclooxygenase (COX) isoform expression patterns were determined by immunohistochemical labelling and Western blotting. Results indicate significantly reduced noradrenergic contractions in preparations from OZR compared with those of LZR. Functional inhibition of endothelial NOS (eNOS) indicated a predominant role of this isoform in LZR and its modified activity in OZR. Neural (nNOS) and inducible NOS (iNOS) were activated and their expression was higher in femoral arteries from OZR. Neurotransmission modulated by large-conductance Ca2+-activated (BKCa) or voltage-dependent (KV) K+ channels did not seem compromised in the obese animals. Endothelial COX-1 and COX-2 were expressed in LZR and an additional adventitial location of COX-2 was also observed in OZR, explaining the higher COX-2 protein levels detected in this group. Prostanoids derived from both isoforms helped maintain vasoconstriction in LZR while in OZR only COX-2 was active. Superoxide anion inhibition reduced contractions in endothelium-intact arteries from OZR. Conclusions Endothelial dysfunction led to reduced neurogenic vasoconstriction in femoral arteries from OZR. In a setting of obesity, NO-dependent nNOS and iNOS dilation activity could be an alternative mechanism to offset COX-2- and reactive oxygen species-mediated vasoconstriction, along with impaired endothelial NO relaxation.
Collapse
Affiliation(s)
- Ana Cristina Martínez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Susana Novella
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa María Pagán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Hermenegildo
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
33
|
Sánchez A, Contreras C, Martínez P, Muñoz M, Martínez AC, García-Sacristán A, Hernández M, Prieto D. Endothelin A (ETA) Receptors Are Involved in Augmented Adrenergic Vasoconstriction and Blunted Nitric Oxide-Mediated Relaxation of Penile Arteries from Insulin-Resistant Obese Zucker Rats. J Sex Med 2014; 11:1463-74. [DOI: 10.1111/jsm.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
34
|
Yilmaz D, Bayatli N, Un O, Kadowitz PJ, Sikka SC, Gur S. The Effect of Intracavernosal Avanafil, a Newer Phosphodiesterase-5 Inhibitor, on Neonatal Type 2 Diabetic Rats With Erectile Dysfunction. Urology 2014; 83:508.e7-12. [DOI: 10.1016/j.urology.2013.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 10/05/2013] [Accepted: 10/08/2013] [Indexed: 11/30/2022]
|
35
|
Vendrame S, Kristo AS, Schuschke DA, Klimis-Zacas D. Wild blueberry consumption affects aortic vascular function in the obese Zucker rat. Appl Physiol Nutr Metab 2013; 39:255-61. [PMID: 24476483 DOI: 10.1139/apnm-2013-0249] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study evaluates the effect of wild blueberry (WB) consumption on the biomechanical properties of the aorta in the obese Zucker rat (OZR), a model of the metabolic syndrome. Thirty-six OZRs and 36 lean controls (lean Zucker rats) were placed either on a WB-enriched or a control (C) diet for 8 weeks. Phenylephrine (Phe)-mediated vasoconstriction and acetylcholine (Ach)-mediated vasorelaxation in the aortic vessel were investigated, as well as the contribution of the nitric oxide synthase and cyclooxygenase (COX) pathways in each of the above responses by using specific inhibitors. Obese Zucker rats exhibited a reduced vasocontstrictor response to Phe and an exaggerated vasorelaxant response to Ach. The WB diet partially restored Phe-induced constrictor responses and attenuated Ach-induced relaxant responses in OZR. Plasma nitric oxide was significantly attenuated (22.1 ± 1.1 μmol·L(-1), WB vs 25.6 ± 1.4 μmol·L(-1), C, p ≤ 0.05) with the WB diet. Thromboxane A2 levels in the aortic effluent were not significantly affected in the WB diet group, while PGI2 concentration significantly increased (766.5 ± 92.2 pg·mg(-1) aorta in the WB vs 571.7 ± 37.8 pg·g(-1) aorta in the C group, p ≤ 0.05). Downregulation of inducible nitric oxide synthase and COX2 expression in the OZR aorta was observed in the WB diet group. In conclusion, WB consumption altered the biomechanical properties of the OZR aorta by partially restoring the impaired Phe-induced constrictor responses and attenuating the exaggerated response to Ach-induced vasorelaxation.
Collapse
Affiliation(s)
- Stefano Vendrame
- a Department of Food Science and Human Nutrition, University of Maine, Orono, ME 04469, USA
| | | | | | | |
Collapse
|
36
|
Soria G, Tudela R, Márquez-Martín A, Camón L, Batalle D, Muñoz-Moreno E, Eixarch E, Puig J, Pedraza S, Vila E, Prats-Galino A, Planas AM. The ins and outs of the BCCAo model for chronic hypoperfusion: a multimodal and longitudinal MRI approach. PLoS One 2013; 8:e74631. [PMID: 24058609 PMCID: PMC3776744 DOI: 10.1371/journal.pone.0074631] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023] Open
Abstract
Cerebral hypoperfusion induced by bilateral common carotid artery occlusion (BCCAo) in rodents has been proposed as an experimental model of white matter damage and vascular dementia. However, the histopathological and behavioral alterations reported in this model are variable and a full characterization of the dynamic alterations is not available. Here we implemented a longitudinal multimodal magnetic resonance imaging (MRI) design, including time-of-flight angiography, high resolution T1-weighted images, T2 relaxometry mapping, diffusion tensor imaging, and cerebral blood flow measurements up to 12 weeks after BCCAo or sham-operation in Wistar rats. Changes in MRI were related to behavioral performance in executive function tasks and histopathological alterations in the same animals. MRI frequently (70%) showed various degrees of acute ischemic lesions, ranging from very small to large subcortical infarctions. Independently, delayed MRI changes were also apparent. The patterns of MRI alterations were related to either ischemic necrosis or gliosis. Progressive microstructural changes revealed by diffusion tensor imaging in white matter were confirmed by observation of myelinated fiber degeneration, including severe optic tract degeneration. The latter interfered with the visually cued learning paradigms used to test executive functions. Independently of brain damage, BCCAo induced progressive arteriogenesis in the vertebrobasilar tree, a process that was associated with blood flow recovery after 12 weeks. The structural alterations found in the basilar artery were compatible with compensatory adaptive changes driven by shear stress. In summary, BCCAo in rats induces specific signatures in multimodal MRI that are compatible with various types of histological lesion and with marked adaptive arteriogenesis.
Collapse
Affiliation(s)
- Guadalupe Soria
- Experimental T MRI Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail:
| | - Raúl Tudela
- Experimental T MRI Unit, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Group of Biomedical Imaging of the University of Barcelona, Barcelona, Spain
| | - Ana Márquez-Martín
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Lluïsa Camón
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Dafnis Batalle
- Fetal and Perinatal Medicine Research Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Emma Muñoz-Moreno
- Fetal and Perinatal Medicine Research Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisenda Eixarch
- Fetal and Perinatal Medicine Research Group, Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Josep Puig
- IDI, Radiology Department, Hospital Universitario Dr. Josep Trueta. IDIBGI. Universitat de Girona, Girona, Spain
| | - Salvador Pedraza
- IDI, Radiology Department, Hospital Universitario Dr. Josep Trueta. IDIBGI. Universitat de Girona, Girona, Spain
| | - Elisabet Vila
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alberto Prats-Galino
- Laboratory of Surgical Neuroanatomy (LSNA), Human Anatomy and Embryology Unit, Faculty of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Anna M. Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d’Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| |
Collapse
|
37
|
Contreras C, Sánchez A, Martínez P, Climent B, Benedito S, García-Sacristán A, Hernández M, Prieto D. Impaired Endothelin Calcium Signaling Coupled to Endothelin Type B Receptors in Penile Arteries from Insulin-Resistant Obese Zucker Rats. J Sex Med 2013; 10:2141-53. [DOI: 10.1111/jsm.12234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
La Favor JD, Anderson EJ, Hickner RC, Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2012; 10:694-703. [PMID: 23170997 DOI: 10.1111/jsm.12001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction. It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim. The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods. Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures. Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50 ) of the ACh response. Results. The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions. These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. La Favor JD, Anderson EJ, Hickner RC, and Wingard CJ. Erectile dysfunction precedes coronary artery endothelial dysfunction in rats fed a high-fat, high-sucrose, Western pattern diet. J Sex Med 2013;10:694-703.
Collapse
Affiliation(s)
- Justin D La Favor
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC 27834, USA
| | | | | | | |
Collapse
|
39
|
Howitt L, Grayson TH, Morris MJ, Sandow SL, Murphy TV. Dietary obesity increases NO and inhibits BKCa-mediated, endothelium-dependent dilation in rat cremaster muscle artery: association with caveolins and caveolae. Am J Physiol Heart Circ Physiol 2012; 302:H2464-76. [DOI: 10.1152/ajpheart.00965.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Obesity is a risk factor for hypertension and other vascular disease. The aim of this study was to examine the effect of diet-induced obesity on endothelium-dependent dilation of rat cremaster muscle arterioles. Male Sprague-Dawley rats (213 ± 1 g) were fed a cafeteria-style high-fat or control diet for 16–20 wk. Control rats weighed 558 ± 7 g compared with obese rats 762 ± 12 g ( n = 52–56; P < 0.05). Diet-induced obesity had no effect on acetylcholine (ACh)-induced dilation of isolated, pressurized (70 mmHg) arterioles, but sodium nitroprusside (SNP)-induced vasodilation was enhanced. ACh-induced dilation of arterioles from control rats was abolished by a combination of the KCa blockers apamin, 1-[(2-chlorophenyl)diphenylmethyl]-1H-pyrazole (TRAM-34), and iberiotoxin (IBTX; all 0.1 μmol/l), with no apparent role for nitric oxide (NO). In arterioles from obese rats, however, IBTX had no effect on responses to ACh while the NO synthase (NOS)/guanylate cyclase inhibitors Nω-nitro-l-arginine methyl ester (l-NAME; 100 μmol/l)/1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 μmol/l) partially inhibited ACh-induced dilation. Furthermore, NOS activity (but not endothelial NOS expression) was increased in arteries from obese rats. l-NAME/ODQ alone or removal of the endothelium constricted arterioles from obese but not control rats. Expression of caveolin-1 and -2 oligomers (but not monomers or caveolin-3) was increased in arterioles from obese rats. The number of caveolae was reduced in the endothelium of arteries, and caveolae density was increased at the ends of smooth muscle cells from obese rats. Diet-induced obesity abolished the contribution of large-conductance Ca2+-activated K+ channel to ACh-mediated endothelium-dependent dilation of rat cremaster muscle arterioles, while increasing NOS activity and inducing an NO-dependent component.
Collapse
Affiliation(s)
- Lauren Howitt
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| | - T. Hilton Grayson
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Margaret J. Morris
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Shaun L. Sandow
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
- Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Timothy V. Murphy
- Department of Physiology, School of Medical Sciences, University of New South Wales, Sydney, Australia; and
| |
Collapse
|
40
|
Sánchez A, Contreras C, Martínez MP, Climent B, Benedito S, García-Sacristán A, Hernández M, Prieto D. Role of neural NO synthase (nNOS) uncoupling in the dysfunctional nitrergic vasorelaxation of penile arteries from insulin-resistant obese Zucker rats. PLoS One 2012; 7:e36027. [PMID: 22540017 PMCID: PMC3335073 DOI: 10.1371/journal.pone.0036027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/28/2012] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Erectile dysfunction (ED) is considered as an early sign of vascular disease due to its high prevalence in patients with cardiovascular risk factors. Endothelial and neural dysfunction involving nitric oxide (NO) are usually implicated in the pathophysiology of the diabetic ED, but the underlying mechanisms are unclear. The present study assessed the role of oxidative stress in the dysfunctional neural vasodilator responses of penile arteries in the obese Zucker rat (OZR), an experimental model of metabolic syndrome/prediabetes. METHODS AND RESULTS Electrical field stimulation (EFS) under non-adrenergic non-cholinergic (NANC) conditions evoked relaxations that were significantly reduced in penile arteries of OZR compared with those of lean Zucker rats (LZR). Blockade of NO synthase (NOS) inhibited neural relaxations in both LZR and OZR, while saturating concentrations of the NOS substrate L-arginine reversed the inhibition and restored relaxations in OZR to levels in arteries from LZR. nNOS expression was unchanged in arteries from OZR compared to LZR and nNOS selective inhibition decreased the EFS relaxations in LZR but not in OZR, while endothelium removal did not alter these responses in either strain. Superoxide anion production and nitro-tyrosine immunostaining were elevated in the erectile tissue from OZR. Treatment with the NADPH oxidase inhibitor apocynin or acute incubation with the NOS cofactor tetrahydrobiopterin (BH4) restored neural relaxations in OZR to levels in control arteries, while inhibition of the enzyme of BH4 synthesis GTP-cyclohydrolase (GCH) reduced neural relaxations in arteries from LZR but not OZR. The NO donor SNAP induced decreases in intracellular calcium that were impaired in arteries from OZR compared to controls. CONCLUSIONS The present study demonstrates nitrergic dysfunction and impaired neural NO signalling due to oxidative stress and nNOS uncoupling in penile arteries under conditions of insulin resistance. This dysfunction likely contributes to the metabolic syndrome-associated ED, along with the endothelial dysfunction also involving altered NO signalling.
Collapse
Affiliation(s)
- Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - María Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
41
|
Chung E, De Young L, Brock GB. Investigative Models in Erectile Dysfunction: A State‐of‐the‐Art Review of Current Animal Models. J Sex Med 2011; 8:3291-305. [DOI: 10.1111/j.1743-6109.2011.02505.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
42
|
Márquez-Martín A, Jiménez-Altayó F, Dantas AP, Caracuel L, Planas AM, Vila E. Middle cerebral artery alterations in a rat chronic hypoperfusion model. J Appl Physiol (1985) 2011; 112:511-8. [PMID: 22096118 DOI: 10.1152/japplphysiol.00998.2011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Chronic cerebral hypoperfusion (CHP) induces microvascular changes that could contribute to the progression of vascular cognitive impairment and dementia in the aging brain. This study aimed to analyze the effects of CHP on structural, mechanical, and myogenic properties of the middle cerebral artery (MCA) after bilateral common carotid artery occlusion (BCCAO) in adult male Wistar rats. Sham animals underwent a similar surgical procedure without carotid artery (CA) ligation. After 15 days of occlusion, MCA and CA were dissected and MCA structural, mechanical, and myogenic properties were assessed by pressure myography. Collagen I/III expression was determined by immunofluorescence in MCA and CA and by Western blot in CA. mRNA levels for 1A1, 1A2, and 3A1 collagen subunits were quantified by quantitative real-time PCR in CA. Matrix metalloproteinase (MMP-1, MMP-2, MMP-9, and MMP-13) and hypoxia-inducible factor-1α (HIF-1α) protein expression were determined in CA by Western blot. BCCAO diminished cross-sectional area, wall thickness, and wall-to-lumen ratio. Nevertheless, whereas wall stress was increased, stiffness was not modified and myogenic response was diminished. Hypoperfusion triggered HIF-1α expression. Collagen I/III protein expression diminished in MCA and CA after BCCAO, despite increased mRNA levels for 1A1 and 3A1 collagen subunits. Therefore, the reduced collagen expression might be due to proteolytic degradation, since the expression of MMP-1 and MMP-9 increased in the CA. These data suggest that BCCAO induces hypotrophic remodeling by a mechanism that involves a reduction of collagen I/III in association with increased MMP-1 and MMP-9 and that decreases myogenic tone in major arteries supplying the brain.
Collapse
Affiliation(s)
- Ana Márquez-Martín
- Departament de Farmacologia, Terapèutica i Toxicologia, Institut de Neurociències, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Ferrini MG, Moon J, Rivera S, Rajfer J, Gonzalez-Cadavid NF. Amelioration of diabetes-induced cavernosal fibrosis by antioxidant and anti-transforming growth factor-β1 therapies in inducible nitric oxide synthase-deficient mice. BJU Int 2011; 109:586-93. [PMID: 21851542 DOI: 10.1111/j.1464-410x.2011.10397.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE • To investigate whether sustained long-term separate treatments of diabetic inducible nitric oxide synthase knockout (iNOSKo) mice with allopurinol, an antioxidant inhibiting xanthine oxidoreductase, decorin, a transforming growth factor-β1 (TGFβ1) -binding antagonist, and molsidomine, a long-life nitric oxide donor, prevent the processes of diabetes-induced cavernosal fibrosis. MATERIALS AND METHODS • Eight week old male iNOS knock out (iNOSKo) mice were made diabetic by injecting 150 mg/kg B.W Streptozotocin (1P) with were either left untreated or treated with the oral antioxidant allopurinol (40 mg/kg/day), or decoin (50 mg, 1P, twice), as an anti-TGFβ1 agent (n = 8/group). • Glycemia and oxidative stress markers were determined in blood and urine. • Paraffin-embedded tissue sections from the penile shaft were subjected to Masson trichrome staining for the smooth muscle (smc)/collagen ratio, and imunostaining for smc content, profibrotic factors, oxidative stress, cell replication and cell death markers followed by quantitative image analysis. RESULTS • Eight-week treatment with either allopurinol or decorin counteracted the decrease in smooth muscle cells and the increase in apoptosis and local oxidative stress within the corpora tissue. • Decorin but not allopurinol increased the smooth muscle cell/collagen ratio, whereas allopurinol but not decorin inhibited systemic oxidative stress. • Molsidomine was effective in reducing both local and systemic oxidative stress, but did not prevent corporal fibrosis. CONCLUSION • Both allopurinol and decorin appear as promising approaches either as a single or a combined pharmacological modality for protecting the diabetic corpora from undergoing apoptosis and fibrosis although their functional effects still need to be defined.
Collapse
Affiliation(s)
- Monica G Ferrini
- Department of Internal Medicine, Charles R. Drew University Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | | | | | | | |
Collapse
|
44
|
Villalba N, Contreras C, Hernández M, García-Sacristán A, Prieto D. Impaired Ca2+ handling in penile arteries from prediabetic Zucker rats: involvement of Rho kinase. Am J Physiol Heart Circ Physiol 2011; 300:H2044-53. [DOI: 10.1152/ajpheart.01204.2010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Diabetes is associated with an increased vascular tone usually involved in the pathogenesis of diabetic cardiovascular complications such as hypertension, stroke, coronary artery disease, or erectile dysfunction (ED). Enhanced contractility of penile erectile tissue has been associated with augmented activity of the RhoA/Rho kinase (RhoK) pathway in models of diabetes-associated ED. The present study assessed whether abnormal vasoconstriction in penile arteries from prediabetic obese Zucker rats (OZRs) is due to changes in the intracellular Ca2+ concentration ([Ca2+]i) and/or in myofilament Ca2+ sensitivity. Penile arteries from OZRs and lean Zucker rats (LZRs) were mounted on microvascular myographs for simultaneous measurements of [Ca2+]i and tension. The relationships between [Ca2+]i and contraction for the α1-adrenergic vasoconstrictor phenylephrine (PE) were left shifted and steeper in OZRs compared with LZRs, although the magnitude of the contraction was similar in both groups. In contrast, the vasoconstriction induced by the thromboxane A2 receptor agonist U-46619 was augmented in arteries from OZRs, and this increase was associated with an increase in both the sensitivity and maximum responses to Ca2+. The RhoK inhibitor Y-27632 (10 μM) reduced the vasoconstriction induced by PE to a greater extent in OZRs than in LZRs, without altering Ca2+. Y-27632 inhibited with a greater potency the contraction elicited by high KCl in arteries from OZRs compared with LZRs without changing [Ca2+]i. RhoK-II expression was augmented in arteries from OZRs. These results suggest receptor-specific changes in the Ca2+ handling of penile arteries under conditions of metabolic syndrome. Whereas augmented vasoconstriction upon activation of the thromboxane A2 receptor is coupled to enhanced Ca2+ entry, a RhoK-mediated enhancement of myofilament Ca2+ sensitivity is coupled with the α1-adrenergic vasoconstriction in penile arteries from OZRs.
Collapse
Affiliation(s)
- Nuria Villalba
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | - Medardo Hernández
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| | | | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense, Madrid, Spain
| |
Collapse
|
45
|
Moral-Sanz J, Menendez C, Moreno L, Moreno E, Cogolludo A, Perez-Vizcaino F. Pulmonary arterial dysfunction in insulin resistant obese Zucker rats. Respir Res 2011; 12:51. [PMID: 21513515 PMCID: PMC3111360 DOI: 10.1186/1465-9921-12-51] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 04/22/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Insulin resistance and obesity are strongly associated with systemic cardiovascular diseases. Recent reports have also suggested a link between insulin resistance with pulmonary arterial hypertension. The aim of this study was to analyze pulmonary vascular function in the insulin resistant obese Zucker rat. METHODS Large and small pulmonary arteries from obese Zucker rat and their lean counterparts were mounted for isometric tension recording. mRNA and protein expression was measured by RT-PCR or Western blot, respectively. KV currents were recorded in isolated pulmonary artery smooth muscle cells using the patch clamp technique. RESULTS Right ventricular wall thickness was similar in obese and lean Zucker rats. Lung BMPR2, KV1.5 and 5-HT2A receptor mRNA and protein expression and KV current density were also similar in the two rat strains. In conductance and resistance pulmonary arteries, the similar relaxant responses to acetylcholine and nitroprusside and unchanged lung eNOS expression revealed a preserved endothelial function. However, in resistance (but not in conductance) pulmonary arteries from obese rats a reduced response to several vasoconstrictor agents (hypoxia, phenylephrine and 5-HT) was observed. The hyporesponsiveness to vasoconstrictors was reversed by L-NAME and prevented by the iNOS inhibitor 1400W. CONCLUSIONS In contrast to rat models of type 1 diabetes or other mice models of insulin resistance, the obese Zucker rats did not show any of the characteristic features of pulmonary hypertension but rather a reduced vasoconstrictor response which could be prevented by inhibition of iNOS.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Departamento de Farmacologia, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Contreras C, Sánchez A, García-Sacristán A, Martínez MC, Andriantsitohaina R, Prieto D. Preserved insulin vasorelaxation and up-regulation of the Akt/eNOS pathway in coronary arteries from insulin resistant obese Zucker rats. Atherosclerosis 2011; 217:331-9. [PMID: 21514935 DOI: 10.1016/j.atherosclerosis.2011.03.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/14/2011] [Accepted: 03/26/2011] [Indexed: 11/16/2022]
Abstract
Obesity is associated with insulin resistance in the peripheral vasculature and is an important risk factor for coronary artery disease. The current study assessed whether the vascular effects and the signaling pathways of insulin are impaired in coronary arteries from a rat model of genetic obesity. Intramyocardial arteries from obese Zucker rats (OZR) and lean Zucker rats (LZR) were mounted in microvascular myographs to assess insulin vasoactive effects and the proteins of the insulin pathway were determined by Western blotting. The endothelium-dependent and nitric oxide (NO)-mediated vasorelaxant effect of insulin was similar in arteries from LZR and OZR and blunted by inhibition of phosphatidylinositol 3-kinase (PI3K) and endothelial NO synthase (eNOS), but unaltered by either mitogen activated protein kinase (MAPK) or endothelin (ET) receptor blockade. Basal levels of phospho-eNOS Ser(1177) and phospho-Akt Ser(473) were up-regulated in OZR, and insulin increased phosphorylation of eNOS and Akt in both LZR and OZR. Moreover, insulin enhanced Akt expression in LZR. Basal and insulin-stimulated levels of phospho-MAPK p42/p44 were lower in OZR and palmitic acid reduced these levels in LZR. Coronary arteries are protected from vascular IR. The results underscore the fact that preservation of insulin-mediated vasorelaxation along with an up-regulation of the Akt/eNOS pathway and an impairment of the MAPK cascade account for this protection.
Collapse
Affiliation(s)
- Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Enhanced cyclooxygenase 2-mediated vasorelaxation in coronary arteries from insulin-resistant obese Zucker rats. Atherosclerosis 2010; 213:392-9. [DOI: 10.1016/j.atherosclerosis.2010.09.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 09/13/2010] [Accepted: 09/17/2010] [Indexed: 01/02/2023]
|
48
|
Kagota S, Fukushima K, Umetani K, Tada Y, Nejime N, Nakamura K, Mori H, Sugimura K, Kunitomo M, Shinozuka K. Coronary vascular dysfunction promoted by oxidative-nitrative stress in SHRSP.Z-Leprfa/IzmDmcr rats with metabolic syndrome. Clin Exp Pharmacol Physiol 2010; 37:1035-43. [DOI: 10.1111/j.1440-1681.2010.05432.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
49
|
Contreras C, Sánchez A, Martínez P, Raposo R, Climent B, García-Sacristán A, Benedito S, Prieto D. Insulin resistance in penile arteries from a rat model of metabolic syndrome. Br J Pharmacol 2010; 161:350-64. [PMID: 20735420 PMCID: PMC2989587 DOI: 10.1111/j.1476-5381.2010.00825.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/15/2010] [Accepted: 04/11/2010] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Metabolic and cardiovascular abnormalities accompanying metabolic syndrome, such as obesity, insulin resistance and hypertension, are all associated with endothelial dysfunction and are independent risk factors for erectile dysfunction. The purpose of the present study was to investigate the vascular effects of insulin in penile arteries and whether these effects are impaired in a rat model of insulin resistance and metabolic syndrome. EXPERIMENTAL APPROACH Penile arteries from obese Zucker rats (OZR) and their counterpart, lean Zucker rats (LZR), were mounted on microvascular myographs and the effects of insulin were assessed in the absence and presence of endothelium and of specific inhibitors of nitric oxide (NO) synthesis, phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK). Insulin-induced changes in intracellular Ca(2+) concentration [Ca(2+)](i) were also examined. KEY RESULTS OZR exhibited mild hyperglycaemia, hypercholesterolemia, hypertryglyceridemia and hyperinsulinemia. Insulin induced endothelium- and NO-dependent relaxations in LZR that were impaired in OZR. Inhibition of PI3K reduced relaxation induced by insulin and by the beta-adrenoceptor agonist isoprenaline, mainly in arteries from LZR. Antagonism of endothelin 1 (ET-1) receptors did not alter insulin-induced relaxation in either LZR or OZR, but MAPK blockade increased the responses in OZR. Insulin decreased [Ca(2+)](i), a response impaired in OZR. CONCLUSIONS AND IMPLICATIONS Insulin-induced relaxation was impaired in penile arteries of OZR due to altered NO release through the PI3K pathway and unmasking of a MAPK-mediated vasoconstriction. This vascular insulin resistance is likely to contribute to the endothelial dysfunction and erectile dysfunction associated with insulin resistant states.
Collapse
Affiliation(s)
- Cristina Contreras
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Ana Sánchez
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Pilar Martínez
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Universidad Complutense de MadridMadrid, Spain
| | - Rafaela Raposo
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Belén Climent
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Albino García-Sacristán
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Sara Benedito
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Dolores Prieto
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
50
|
Prieto D, Kaminski PM, Bagi Z, Ahmad M, Wolin MS. Hypoxic relaxation of penile arteries: involvement of endothelial nitric oxide and modulation by reactive oxygen species. Am J Physiol Heart Circ Physiol 2010; 299:H915-24. [PMID: 20581086 DOI: 10.1152/ajpheart.00382.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although obesity-related cardiovascular disease and hypoxia are associated with erectile dysfunction, little is known about the direct effects of hypoxia on penile arteries. In the present study, the effects of acute hypoxia (Po(2) = approximately 10 Torr, 20 min) were investigated in isolated penile arteries to determine the influence of endothelium removal, nitric oxide (NO) synthase (NOS), cyclooxygenase (COX), NADPH oxidase, changes in reactive oxygen species (ROS), and a high-fat diet. Hypoxia-relaxed penile arteries contracted with phenylephrine by approximately 50%. Relaxation to hypoxia and acetylcholine was reduced by endothelium removal and by inhibition of NOS (N(omega)-nitro-l-arginine) and COX (indomethacin) but was enhanced by Tempol and by NADPH oxidase inhibition with apocynin and gp91ds-tat. Basal superoxide levels detected by lucigenin chemiluminescence were reduced by Tempol and gp91ds-tat and were enhanced by NOS blockade. Hypoxic relaxant responses were enhanced by catalase and ebselen. Exogenous peroxide evoked relaxations of penile arteries, which were partially inhibited by endothelium removal and by the inhibition of COX and extracellular signal-regulated mitogen-activated protein kinase (MAPK) but enhanced by p38 MAPK blockade. The NO-dependent component of relaxation to hypoxia was impaired in penile arteries from high-fat diet-fed, obese rats associated with increased superoxide production. Thus hypoxic relaxation of penile arteries is partially mediated by endothelial NO in a manner that is normally attenuated by endogenous ROS production. Obesity further increases superoxide production and impairs the influence of NO. Therefore, cardiovascular disease involving decreased NO bioavailability and/or enhanced ROS generation may contribute to erectile dysfunction through impairing the relaxation of penile arteries to hypoxia.
Collapse
Affiliation(s)
- Dolores Prieto
- Dept. of Physiology, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040-Madrid, Spain.
| | | | | | | | | |
Collapse
|