1
|
Ji Q, Zhang Y, Zhang H, Liu J, Cao C, Yuan Z, Ma Q, Zhang W. Effects of β-adrenoceptor activation on haemodynamics during hypoxic stress in rats. Exp Physiol 2020; 105:1660-1668. [PMID: 32706493 DOI: 10.1113/ep088669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/23/2020] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? The acute hypoxic compensatory reaction is based on haemodynamic changes, and β-adrenoceptors are involved in haemodynamic regulation. What is the role of β-adrenoceptors in haemodynamics during hypoxic exposure? What is the main finding and its importance? Activation of β2 -adrenoceptors attenuates the increase in pulmonary artery pressure during hypoxic exposure. This compensatory reaction activated by β2 -adrenoceptors during hypoxic stress is very important to maintain the activities of normal life. ABSTRACT The acute hypoxic compensatory reaction is accompanied by haemodynamic changes. We monitored the haemodynamic changes in rats undergoing acute hypoxic stress and applied antagonists of β-adrenoceptor (β-ARs) subtypes to reveal the regulatory role of β-ARs on haemodynamics. Sprague-Dawley rats were randomly divided into control, atenolol (β1 -AR antagonist), ICI 118,551 (β2 -AR antagonist) and propranolol (non-selective β-AR antagonist) groups. Rats were continuously recorded for changes in haemodynamic indexes for 10 min after administration. Then, a hypoxic ventilation experiment [15% O2 , 2200 m a.sl., 582 mmHg (0.765 Pa), P O 2 87.3 mmHg; Xining, China] was conducted, and the indexes were monitored for 5 min after induction of hypoxia. Plasma catecholamine concentrations were also measured. We found that, during normoxia, the mean arterial pressure, heart rate, ascending aortic blood flow and pulmonary artery pressure were reduced in the propranolol and atenolol groups. Catecholamine concentrations were increased significantly in the atenolol group compared with the control group. During hypoxia, mean arterial pressure and total peripheral resistance were decreased in the control, propranolol and ICI 118,551 groups. Pulmonary arterial pressure and pulmonary vascular resistance were increased in the propranolol and ICI 118,551 groups. During hypoxia, catecholamine concentrations were increased significantly in the control group, but decreased in β-AR antagonist groups. In conclusion, the β2 -AR is involved in regulation of pulmonary haemodynamics in the acute hypoxic compensatory reaction, and the activation of β2 -ARs attenuates the increase in pulmonary arterial pressure during hypoxic stress. This compensatory reaction activated by β2 -ARs during hypoxic stress is very important to maintain activities of normal life.
Collapse
Affiliation(s)
- Qiaorong Ji
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Yu Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Huan Zhang
- Department of Pathology, Weinan Central Hospital, Shengli street, Weinan, Shaanxi, 714000, China
| | - Jie Liu
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Chengzhu Cao
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Zhouyang Yuan
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Qianqian Ma
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| | - Wei Zhang
- Department of Basic Medicine, Medical College of Qinghai University, No.16 kunlun road, Xining, Qinghai, 810001, China.,Pathophysiology Laboratory, The Key Laboratory of Science and Technology for High Altitude Medicine, No.16 kunlun road, Xining, Qinghai, 810001, China
| |
Collapse
|
2
|
Entwistle J, Brown JG, Chooniedass S, Cizeau J, MacDonald GC. Preclinical Evaluation of VB6-845: An Anti-EpCAM Immunotoxin with Reduced Immunogenic Potential. Cancer Biother Radiopharm 2012; 27:582-92. [DOI: 10.1089/cbr.2012.1200.271] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Joycelyn Entwistle
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Jennifer G. Brown
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Shilpa Chooniedass
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Jeannick Cizeau
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| | - Glen C. MacDonald
- Department of Research, Viventia Biotechnologies, Inc., Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Zhang W, Shibamoto T, Kuda Y, Kurata Y, Shinomiya S, Kida M, Tsuchida H. Vascular perfusion limits mesenteric lymph flow during anaphylactic hypotension in rats. Am J Physiol Regul Integr Comp Physiol 2012; 302:R1191-6. [DOI: 10.1152/ajpregu.00695.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To determine fluid extravasation in the splanchnic vascular bed during anaphylactic hypotension, the mesenteric lymph flow (Qlym) was measured in anesthetized rats sensitized with ovalbumin, along with the systemic arterial pressure (Psa) and portal venous pressure (Ppv). When the antigen was injected into the sensitized rats ( n = 10), Psa decreased from 125 ± 4 to 37 ± 2 mmHg at 10 min with a gradual recovery, whereas Ppv increased by 16 mmHg at 2 min and returned to the baseline at 10 min. Qlym increased 3.3-fold from the baseline of 0.023 ± 0.002 g/min to the peak levels of 0.075 ± 0.009 g/min at 2 min and returned to the baseline within 12 min. The lymph protein concentrations increased after antigen, a finding indicating increased vascular permeability. To determine the role of the Ppv increase in the antigen-induced increase in Qlym, Ppv of the nonsensitized rats ( n = 10) was mechanically elevated in a manner similar to that of the sensitized rats by compressing the portal vein near the hepatic hilus. Unexpectedly, Ppv elevation alone produced a similar increase in Qlym, with the peak comparable to that of the sensitized rats. This finding aroused a question why the antigen-induced increase in Qlym was limited despite the presence of increased vascular permeability. Thus the changes in splanchnic vascular surface area were assessed by measuring the mesenteric arterial flow. The mesenteric arterial flow was decreased much more in the sensitized rats (75%; n = 5) than the nonsensitized Ppv elevated rats (50%; n = 5). In conclusion, mesenteric lymph flow increases transiently after antigen presumably due to increased capillary pressure of the splanchnic vascular bed via downstream Ppv elevation and perfusion and increased vascular permeability in anesthetized rats. However, this increased extravasation is subsequently limited by decreases in vascular surface area and filtration pressure.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Physiology II,
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | | | | | | | | | - Masahiro Kida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| | - Hideaki Tsuchida
- Anesthesiology, Kanazawa Medical University, Uchinada, Japan; and
| |
Collapse
|
4
|
Kamikado C, Shibamoto T, Zhang W, Kuda Y, Ohmukai C, Kurata Y. Portacaval shunting attenuates portal hypertension and systemic hypotension in rat anaphylactic shock. J Physiol Sci 2011; 61:161-6. [PMID: 21181324 PMCID: PMC10717408 DOI: 10.1007/s12576-010-0123-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/18/2010] [Indexed: 11/30/2022]
Abstract
Anaphylactic shock in rats is characterized by antigen-induced hepatic venoconstriction and the resultant portal hypertension. We determined the role of portal hypertension in anaphylactic hypotension by using the side-to-side portacaval shunt- and sham-operated rats sensitized with ovalbumin (1 mg). We measured the mean arterial blood pressure (MAP), portal venous pressure (PVP), and central venous pressure (CVP) under pentobarbital anesthesia and spontaneous breathing. Anaphylactic hypotension was induced by an intravenous injection of ovalbumin (0.6 mg). In sham rats, the antigen caused not only an increase in PVP from 11.3 cmH(2)O to the peak of 27.9 cmH(2)O but also a decrease in MAP from 103 mmHg to the lowest value of 41 mmHg. CVP also decreased significantly after the antigen. In the portacaval shunt rats, in response to the antigen, PVP increased slightly, but significantly, to the peak of 17.5 cmH(2)O, CVP did not decrease, and MAP decreased to a lesser degree with the lowest value being 60 mmHg. These results suggest that the portacaval shunt attenuated anaphylactic portal hypertension and venous return decrease, partially preventing anaphylactic hypotension. In conclusion, portal hypertension is involved in rat anaphylactic hypotension presumably via splanchnic congestion resulting in decreased venous return and thus systemic arterial hypotension.
Collapse
Affiliation(s)
- Chiaki Kamikado
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Toshishige Shibamoto
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Wei Zhang
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
- Department of Pathophysiology, Medical College of Qinghai University, Xining, 810001 China
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Chieko Ohmukai
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada Ishikawa, 920-0293 Japan
| |
Collapse
|
7
|
Schiemann F, Grimm TA, Hoch J, Gross R, Lindner B, Petersen F, Bulfone-Paus S, Brandt E. Mast cells and neutrophils proteolytically activate chemokine precursor CTAP-III and are subject to counterregulation by PF-4 through inhibition of chymase and cathepsin G. Blood 2006; 107:2234-42. [PMID: 16317101 DOI: 10.1182/blood-2005-06-2424] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe CXC chemokines platelet factor 4 (PF-4/CXCL4) and connective tissue-activating peptide III (CTAP-III) are released by activated human platelets in micromolar concentrations. So far, neutrophils have been recognized to cleave the precursor CTAP-III to form the active chemokine neutrophil-activating peptide 2 (NAP-2/CXCL7) through limited proteolysis by membrane-associated cathepsin G. Here we show for the first time that activated human skin mast cells (MCs) convert CTAP-III into biologically active NAP-2 through proteolytic cleavage by released chymase. A direct comparison on a cell number basis revealed that unstimulated MCs exceed the CTAP-III–processing potency of neutrophils about 30-fold, whereas MCs activated by IgE cross-linking exhibit even 1000-fold higher CTAP-III–processing capacity than fMLP-stimulated neutrophils. Intriguingly, PF-4 counteracted MC- as well as neutrophil-mediated NAP-2 generation at physiologically relevant concentrations. Addressing the underlying mechanism, we obtained evidence that PF-4 acts as an inhibitor of the CTAP-III–processing enzymes cathepsin G and chymase without becoming cleaved itself as a competitive substrate. Because cleavage of the CTAP-III–unrelated substrate substance P was also affected by PF-4, our results suggest a regulatory role for PF-4 not only in NAP-2 generation but also in neutrophil- and MC-mediated processing of other physiologically relevant inflammatory mediators.
Collapse
Affiliation(s)
- Florian Schiemann
- Department of Immunology and Cell Biology, Forschungszentrum Borstel, Parkallee 22, D-23485 Borstel, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Yamamoto C, Tsuru D, Oda-Ueda N, Ohno M, Hattori S, Kim ST. Flavoxobin, a serine protease from Trimeresurus flavoviridis (habu snake) venom, independently cleaves Arg726-Ser727 of human C3 and acts as a novel, heterologous C3 convertase. Immunology 2002; 107:111-7. [PMID: 12225369 PMCID: PMC1782768 DOI: 10.1046/j.1365-2567.2002.01490.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently shown that crude Trimeresurus flavoviridis (habu snake) venom has a strong capability for activating the human alternative complement system. To identify the active component, the crude venom was fractionated and purified by serial chromatography using Sephadex G-100, CM-cellulose C-52, diethylaminoethyl-Toyopearl 650M, and Butyl-Toyopearl, and the active fractions were evaluated by the C3a-releasing and soluble membrane attack complex-forming activities. Two peak fractions with the highest activities were detected after gel filtration and ion exchange chromatography, and the first fraction was purified to homogeneity. The homogeneous protein was examined for its N-terminal amino acid sequence by Edman degradation. The determined sequence of 25 amino acids completely coincided with that of a previously reported serine protease with coagulant activity, flavoxobin, purified from the same snake venom. To elucidate the molecular mechanism of the complement activation, the reactive products of the mixture of the purified human C3 and flavoxobin were examined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The digesting pattern revealed that flavoxobin cleaves the alpha chain of the C3 molecule into two fragments. The N-terminal amino acid sequences for the remnant fragments of C3 disclosed that flavoxobin severs the human C3 at the Arg726-Ser727 site to form C3b and C3a the way C3bBb, the human alternative C3 convertase, does. In conclusion, flavoxobin acts as a novel, heterologous C3 convertase that independently cleaves human C3 and kick-starts the complement cascade.
Collapse
|
9
|
Abstract
The role of nitric oxide (NO) in microvascular permeability remains unclear because both increases and decreases in permeability by NO synthase (NOS) inhibitors have been reported. We sought to determine whether blood-borne constituents modify venular permeability responses to the NOS inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME). We assessed hydraulic conductivity (L(p)) of pipette-perfused rat mesenteric venules before and after exposure to 10(-4) M L-NAME. In the absence of blood-borne constituents, L-NAME reduced L(p) by nearly 50% (from a median of 2.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 17, P < 0.001). The reduction in L(p) by L-NAME was inhibited by a 10-fold molar excess of L-arginine but not D-arginine (n = 6). In a separate group of venules, blood flow was allowed to resume during exposure to L-NAME. In vessels perfused by blood during L-NAME exposure, L(p) increased by 78% (from 1.4 x 10(-7) cm x s(-1) x cmH(2)O(-1), n = 10, P < 0.01). N(G)-nitro-D-arginine methyl ester did not affect L(p) in either of the two groups. These data imply that NO has direct vascular effects on permeability that are opposed by secondary changes in permeability mediated by blood-borne constituents.
Collapse
Affiliation(s)
- R E Rumbaut
- Pulmonary and Critical Care Division, Department of Internal Medicine, University of Missouri-Columbia, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|