1
|
Gonzalez ML, Sriram CS, Gonzalez MD. Irregular ventricular tachycardia originating from the moderator band. J Electrocardiol 2023; 78:25-28. [PMID: 36736059 DOI: 10.1016/j.jelectrocard.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
Ventricular tachycardias (VT) may initially show beat to beat oscillations but rapidly stabilize into a regular tachycardia with a stable cycle length. A persistently irregular ventricular tachycardia is a rare phenomenon. We report a rare case of an "irregular" ventricular tachycardia with so pronounced oscillations in cycle length that it was initially misdiagnosed as atrial fibrillation with aberrant conduction. This ventricular tachycardia was incessant and resulted in a tachycardia induced cardiomyopathy refractory to several antiarrhythmic drugs. Mapping of the right ventricle demonstrated that the tachycardia had a focal origin in the moderator band close to its insertion into the anterior papillary muscle. Radiofrequency ablation eliminated the tachycardia with eventual normalization of left ventricular function. The moderator band and anterior papillary muscle of the right ventricle are known to be the source of short-coupled ventricular premature beats and regular ventricular tachycardias. However, an "irregular" ventricular tachycardia has not been previously reported to arise from these structures.
Collapse
Affiliation(s)
| | - Chenni S Sriram
- Division of Pediatric Cardiology/Electrophysiology, Children's Hospital of Michigan, Detroit, MI, USA
| | - Mario D Gonzalez
- Division of Electrophysiology, Heart and Vascular Institute, Penn State Health Milton S. Hershey Medical Center, Penn State University School of Medicine, Hershey, PA, USA.
| |
Collapse
|
2
|
Geng Z, Jin L, Huang Y, Wu X. Rate dependence of early afterdepolarizations in the His-Purkinje system: A simulation study. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 217:106665. [PMID: 35172249 DOI: 10.1016/j.cmpb.2022.106665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/04/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND AND OBJECTIVE Early afterdepolarizations (EADs) are associated with a variety of arrhythmias and have the property of rate dependence. EADs can occur in Purkinje cells while the effect of rate dependence of EADs in the His-Purkinje system has not been fully investigated. In order to reveal the rate dependence of EADs in the His-Purkinje system and its effect on ventricular electrical activities, the simulation research was carried out in this manuscript. METHODS This manuscript first studied the relationship between the occurrence of EADs and stimulation cycle length on the DiFranNoble cell model. Then, the relationship between the rate dependence of EADs and the conduction block of the His-Purkinje system at slow heart rates was studied on the rabbit whole ventricular model including the His-Purkinje system, and its mechanism was analyzed from multiple angles. RESULTS ① The rate dependence of EADs is related to the inconsistency of EADs occurrence in the His-Purkinje system. When the stimulation cycle length is long or short enough, EADs either occur or not occur stably in the His-Purkinje system, while in a certain stimulation cycle length window, the chaotic state of EADs will be observed. ② The key subcellular factors x-gate is an important mechanism involved to the rate dependence of EADs in the His-Purkinje system. ③ The discrete distribution of x-gate values and the "source-sink" mechanism lead to the inconsistency of EADs in the His-Purkinje system. The prolonged action potential duration caused by EADs can lead to conduction block at slow heart rates. CONCLUSION The rate dependence of EADs in Purkinje system can lead to disordered ventricular electrical activity.
Collapse
Affiliation(s)
- Zihui Geng
- Academy for Engineering and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Lian Jin
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yanqi Huang
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiaomei Wu
- Center for Biomedical Engineering, School of information Science and Technology, Fudan University, Shanghai Engineering Research Center of Assistive Devices, Yiwu Research Institute of Fudan University, 322000, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention (MICCAI) of Shanghai, 220 Handan Road, Shanghai, 200433, China.
| |
Collapse
|
3
|
Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Kuda Y, Tanida M. Multiple Dynamical Mechanisms of Phase-2 Early Afterdepolarizations in a Human Ventricular Myocyte Model: Involvement of Spontaneous SR Ca 2+ Release. Front Physiol 2020; 10:1545. [PMID: 31998140 PMCID: PMC6965073 DOI: 10.3389/fphys.2019.01545] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/05/2019] [Indexed: 12/19/2022] Open
Abstract
Early afterdepolarization (EAD) is known to cause lethal ventricular arrhythmias in long QT syndrome (LQTS). In this study, dynamical mechanisms of EAD formation in human ventricular myocytes (HVMs) were investigated using the mathematical model developed by ten Tusscher and Panfilov (Am J Physiol Heart Circ Physiol 291, 2006). We explored how the rapid (IKr) and slow (IKs) components of delayed-rectifier K+ channel currents, L-type Ca2+ channel current (ICa L), Na+/Ca2+ exchanger current (INCX), and intracellular Ca2+ handling via the sarcoplasmic reticulum (SR) contribute to initiation, termination and modulation of phase-2 EADs during pacing in relation to bifurcation phenomena in non-paced model cells. Parameter-dependent dynamical behaviors of the non-paced model cell were determined by calculating stabilities of equilibrium points (EPs) and limit cycles, and bifurcation points to construct bifurcation diagrams. Action potentials (APs) and EADs during pacing were reproduced by numerical simulations for constructing phase diagrams of the paced model cell dynamics. Results are summarized as follows: (1) A modified version of the ten Tusscher-Panfilov model with accelerated ICaL inactivation could reproduce bradycardia-related EADs in LQTS type 2 and β-adrenergic stimulation-induced EADs in LQTS type 1. (2) Two types of EADs with different initiation mechanisms, ICaL reactivation-dependent and spontaneous SR Ca2+ release-mediated EADs, were detected. (3) Termination of EADs (AP repolarization) during pacing depended on the slow activation of IKs. (4) Spontaneous SR Ca2+ releases occurred at higher Ca2+ uptake rates, attributable to the instability of steady-state intracellular Ca2+ concentrations. Dynamical mechanisms of EAD formation and termination in the paced model cell are closely related to stability changes (bifurcations) in dynamical behaviors of the non-paced model cell, but they are model-dependent. Nevertheless, the modified ten Tusscher-Panfilov model would be useful for systematically investigating possible dynamical mechanisms of EAD-related arrhythmias in LQTS.
Collapse
Affiliation(s)
- Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kunichika Tsumoto
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular and Internal Medicine, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medical Sciences, Tottori University, Yonago, Japan
| | - Yuhichi Kuda
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| | - Mamoru Tanida
- Department of Physiology II, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
4
|
Uchida S, Asai Y, Kariya Y, Tsumoto K, Hibino H, Honma M, Abe T, Nin F, Kurata Y, Furutani K, Suzuki H, Kitano H, Inoue R, Kurachi Y. Integrative and theoretical research on the architecture of a biological system and its disorder. J Physiol Sci 2019; 69:433-451. [PMID: 30868372 PMCID: PMC6456489 DOI: 10.1007/s12576-019-00667-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/08/2019] [Indexed: 11/28/2022]
Abstract
An organism stems from assemblies of a variety of cells and proteins. This complex system serves as a unit, and it exhibits highly sophisticated functions in response to exogenous stimuli that change over time. The complete sequencing of the entire human genome has allowed researchers to address the enigmas of life and disease at the gene- or molecular-based level. The consequence of such studies is the rapid accumulation of a multitude of data at multiple levels, ranging from molecules to the whole body, that has necessitated the development of entirely new concepts, tools, and methodologies to analyze and integrate these data. This necessity has given birth to systems biology, an advanced theoretical and practical research framework that has totally changed the directions of not only basic life science but also medicine. During the symposium of the 95th Annual Meeting of The Physiological Society of Japan 2018, five researchers reported on their respective studies on systems biology. The topics included reactions of drugs, ion-transport architecture in an epithelial system, multi-omics in renal disease, cardiac electrophysiological systems, and a software platform for computer simulation. In this review article these authors have summarized recent achievements in the field and discuss next-generation studies on health and disease.
Collapse
Affiliation(s)
- Shinichi Uchida
- Department of Nephrology, Graduate Schools of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo, Tokyo, 113-8519, Japan
| | - Yoshiyuki Asai
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Yoshiaki Kariya
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kunichika Tsumoto
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiroshi Hibino
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan.
- AMED-CREST, AMED, Niigata, Japan.
| | - Masashi Honma
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takeshi Abe
- Department of Systems Bioinformatics, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, 755-8505, Japan
| | - Fumiaki Nin
- Department of Molecular Physiology, Niigata University School of Medicine, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Niigata, 951-8510, Japan
- AMED-CREST, AMED, Niigata, Japan
| | - Yasutaka Kurata
- Department of Physiology II, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California Davis, Davis, 95616, USA
| | - Hiroshi Suzuki
- Department of Pharmacy, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hiroaki Kitano
- The Systems Biology Institute, Shinagawa-ku, Tokyo, 108-0071, Japan
| | - Ryuji Inoue
- Department of Physiology, Fukuoka University School of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka, 814-0180, Japan.
| | - Yoshihisa Kurachi
- Division of Molecular and Cellular Pharmacology, Department of Pharmacology, Osaka University, Suita, Japan.
- Center for Advanced Medical Engineering and Informatics, Osaka University, Suita, Japan.
| |
Collapse
|
5
|
Hysteretic Dynamics of Multi-Stable Early Afterdepolarisations with Repolarisation Reserve Attenuation: A Potential Dynamical Mechanism for Cardiac Arrhythmias. Sci Rep 2017; 7:10771. [PMID: 28883639 PMCID: PMC5589958 DOI: 10.1038/s41598-017-11355-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/23/2017] [Indexed: 02/08/2023] Open
Abstract
Some cardiovascular and non-cardiovascular drugs frequently cause excessive prolongation of the cardiac action potential (AP) and lead to the development of early afterdepolarisations (EADs), which trigger lethal ventricular arrhythmias. Combining computer simulations in APs with numerical calculations based on dynamical system theory, we investigated stability changes of APs observed in a paced human ventricular myocyte model by decreasing and/or increasing the rapid (IKr) and slow (IKs) components of delayed rectifying K+ current. Upon reducing IKr, the APs without EADs (no-EAD response) showed gradual prolongation of AP duration (APD), and were annihilated without AP configuration changes due to the occurrence of saddle-node bifurcations. This annihilation caused a transition to an AP with EADs as a new stable steady state. Furthermore, reducing repolarisation currents (repolarisation reserve attenuation) evoked multi-stable states consisting of APs with different APDs, and caused multiple hysteretic dynamics. Depending on initial ion circumstances within ventricular myocytes, these multi-stable AP states might increase the local/global heterogeneity of AP repolarisations in the ventricle. Thus, the EAD-induced arrhythmias with repolarisation reserve attenuation might be attributed to the APD variability caused by multi-stability in cardiac AP dynamics.
Collapse
|
6
|
Prognostic Relevance of Nonsustained Ventricular Tachycardia in Patients with Pulmonary Hypertension. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1327265. [PMID: 28090536 PMCID: PMC5206408 DOI: 10.1155/2016/1327265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Background. Increased pulmonary vascular resistance in patients with pulmonary hypertension (PH) leads to an increased afterload of right heart and cardiac remodeling which could provide the substrate or trigger for arrhythmias. Supraventricular arrhythmias were associated with clinical deterioration but were not associated with sudden cardiac death (SCD). SCD has been reported to account for approximately 30% of deaths in patients with pulmonary arterial hypertension (PAH). Objective. The role of nonsustained ventricular tachycardia (nsVT) and its prognostic relevance in patients with PH remains unclear. This study evaluated the prognostic relevance of nsVT in patients with PAH and chronic thromboembolic pulmonary hypertension (CTEPH). Methods. Retrospectively, patients with PAH and CTEPH who underwent Holter ECG monitoring and available data of survival were investigated. Results. Seventy-eight (PAH: 55, CTEPH: 23) patients were evaluated. Holter ECG revealed nsVT in 12 patients. Twenty-one patients died during follow-up. In patients with nsVT, tricuspid annular plane systolic excursion was lower (p = 0.001), and systolic pulmonary arterial pressure was higher (p = 0.163). Mean survival of patients without/with nsVT was 155.2 ± 8.5/146.4 ± 21.4 months (p = 0.690). The association between arrhythmias and survival was not confounded by age (p = 0.681), gender (p = 0.752), 6-MW distance (p = 0.196), or arterial hypertension (p = 0.238). Conclusions. In patients with PH, nsVT occurs more often than previously reported, and patients with PH group 1 seem to be more at risk.
Collapse
|
7
|
Kurata Y, Tsumoto K, Hayashi K, Hisatome I, Tanida M, Kuda Y, Shibamoto T. Dynamical mechanisms of phase-2 early afterdepolarizations in human ventricular myocytes: insights from bifurcation analyses of two mathematical models. Am J Physiol Heart Circ Physiol 2016; 312:H106-H127. [PMID: 27836893 DOI: 10.1152/ajpheart.00115.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 01/16/2023]
Abstract
Early afterdepolarization (EAD) is known as a cause of ventricular arrhythmias in long QT syndromes. We theoretically investigated how the rapid (IKr) and slow (IKs) components of delayed-rectifier K+ channel currents, L-type Ca2+ channel current (ICaL), Na+/Ca2+ exchanger current (INCX), Na+-K+ pump current (INaK), intracellular Ca2+ (Cai) handling via sarcoplasmic reticulum (SR), and intracellular Na+ concentration (Nai) contribute to initiation, termination, and modulation of phase-2 EADs, using two human ventricular myocyte models. Bifurcation structures of dynamical behaviors in model cells were explored by calculating equilibrium points, limit cycles (LCs), and bifurcation points as functions of parameters. EADs were reproduced by numerical simulations. The results are summarized as follows: 1) decreasing IKs and/or IKr or increasing ICaL led to EAD generation, to which mid-myocardial cell models were especially susceptible; the parameter regions of EADs overlapped the regions of stable LCs. 2) Two types of EADs (termination mechanisms), IKs activation-dependent and ICaL inactivation-dependent EADs, were detected; IKs was not necessarily required for EAD formation. 3) Inhibiting INCX suppressed EADs via facilitating Ca2+-dependent ICaL inactivation. 4) Cai dynamics (SR Ca2+ handling) and Nai strongly affected bifurcations and EAD generation in model cells via modulating ICaL, INCX, and INaK Parameter regions of EADs, often overlapping those of stable LCs, shifted depending on Cai and Nai in stationary and dynamic states. 5) Bradycardia-related induction of EADs was mainly due to decreases in Nai at lower pacing rates. This study demonstrates that bifurcation analysis allows us to understand the dynamical mechanisms of EAD formation more profoundly. NEW & NOTEWORTHY We investigated mechanisms of phase-2 early afterdepolarization (EAD) by bifurcation analyses of human ventricular myocyte (HVM) models. EAD formation in paced HVMs basically depended on bifurcation phenomena in non-paced HVMs, but was strongly affected by intracellular ion concentrations in stationary and dynamic states. EAD generation did not necessarily require IKs.
Collapse
Affiliation(s)
- Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan;
| | - Kunichika Tsumoto
- Department of Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kenshi Hayashi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Kanazawa, Japan; and
| | - Ichiro Hisatome
- Department of Genetic Medicine and Regenerative Therapeutics, Tottori University Graduate School of Medical Science, Yonago, Japan
| | - Mamoru Tanida
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Yuhichi Kuda
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | | |
Collapse
|
8
|
Huang X, Kim TY, Koren G, Choi BR, Qu Z. Spontaneous initiation of premature ventricular complexes and arrhythmias in type 2 long QT syndrome. Am J Physiol Heart Circ Physiol 2016; 311:H1470-H1484. [PMID: 27765749 DOI: 10.1152/ajpheart.00500.2016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/03/2016] [Indexed: 02/07/2023]
Abstract
The occurrence of early afterdepolarizations (EADs) and increased dispersion of repolarization are two known factors for arrhythmogenesis in long QT syndrome. However, increased dispersion of repolarization tends to suppress EADs due to the source-sink effect, and thus how the two competing factors cause initiation of arrhythmias remains incompletely understood. Here we used optical mapping and computer simulation to investigate the mechanisms underlying spontaneous initiation of arrhythmias in type 2 long QT (LQT2) syndrome. In optical mapping experiments of transgenic LQT2 rabbit hearts under isoproterenol, premature ventricular complexes (PVCs) were observed to originate from the steep spatial repolarization gradient (RG) regions and propagated unidirectionally. The same PVC behaviors were demonstrated in computer simulations of tissue models of rabbits. Depending on the heterogeneities, these PVCs could lead to either repetitive focal excitations or reentry without requiring an additional vulnerable substrate. Systematic simulations showed that cellular phase 2 EADs were either suppressed or confined to the long action potential region due to the source-sink effect. Tissue-scale phase 3 EADs and PVCs occurred due to tissue-scale dynamical instabilities caused by RG and enhanced L-type calcium current (ICa,L), occurring under both large and small RG. Presence of cellular EADs was not required but potentiated PVCs when RG was small. We also investigated how other factors affect the dynamical instabilities causing PVCs. Our main conclusion is that tissue-scale dynamical instabilities caused by RG and enhanced ICa,L give rise to both the trigger and the vulnerable substrate simultaneously for spontaneous initiation of arrhythmias in LQT2 syndrome.
Collapse
Affiliation(s)
- Xiaodong Huang
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California.,Department of Physics, South China University of Technology, Guangzhou, China; and
| | - Tae Yun Kim
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Gideon Koren
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Bum-Rak Choi
- Division of Cardiology, Cardiovascular Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Zhilin Qu
- Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California; .,Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
9
|
Hou JW, Li W, Guo K, Chen XM, Chen YH, Li CY, Zhao BC, Zhao J, Wang H, Wang YP, Li YG. Antiarrhythmic effects and potential mechanism of WenXin KeLi in cardiac Purkinje cells. Heart Rhythm 2016; 13:973-82. [DOI: 10.1016/j.hrthm.2015.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Indexed: 10/22/2022]
|
10
|
Early afterdepolarizations promote transmural reentry in ischemic human ventricles with reduced repolarization reserve. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:236-48. [PMID: 26850675 PMCID: PMC4821233 DOI: 10.1016/j.pbiomolbio.2016.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 01/29/2016] [Indexed: 11/24/2022]
Abstract
AIMS Acute ischemia is a major cause of sudden arrhythmic death, further promoted by potassium current blockers. Macro-reentry around the ischemic region and early afterdepolarizations (EADs) caused by electrotonic current have been suggested as potential mechanisms in animal and isolated cell studies. However, ventricular and human-specific arrhythmia mechanisms and their modulation by repolarization reserve remain unclear. The goal of this paper is to unravel multiscale mechanisms underlying the modulation of arrhythmic risk by potassium current (IKr) block in human ventricles with acute regional ischemia. METHODS AND RESULTS A human ventricular biophysically-detailed model, with acute regional ischemia is constructed by integrating experimental knowledge on the electrophysiological ionic alterations caused by coronary occlusion. Arrhythmic risk is evaluated by determining the vulnerable window (VW) for reentry following ectopy at the ischemic border zone. Macro-reentry around the ischemic region is the main reentrant mechanism in the ischemic human ventricle with increased repolarization reserve due to the ATP-sensitive potassium current (IK(ATP)) activation. Prolongation of refractoriness by 4% caused by 30% IKr reduction counteracts the establishment of macro-reentry and reduces the VW for reentry (by 23.5%). However, a further decrease in repolarization reserve (50% IKr reduction) is less anti-arrhythmic despite further prolongation of refractoriness. This is due to the establishment of transmural reentry enabled by electrotonically-triggered EADs in the ischemic border zone. EADs are produced by L-type calcium current (ICaL) reactivation due to prolonged low amplitude electrotonic current injected during the repolarization phase. CONCLUSIONS Electrotonically-triggered EADs are identified as a potential mechanism facilitating intramural reentry in a regionally-ischemic human ventricles model with reduced repolarization reserve.
Collapse
|
11
|
Ravagli E, Bucchi A, Bartolucci C, Paina M, Baruscotti M, DiFrancesco D, Severi S. Cell-specific Dynamic Clamp analysis of the role of funny If current in cardiac pacemaking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 120:50-66. [PMID: 26718599 DOI: 10.1016/j.pbiomolbio.2015.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 12/16/2015] [Indexed: 01/01/2023]
Abstract
We used the Dynamic Clamp technique for i) comparative validation of conflicting computational models of the hyperpolarization-activated funny current, If, and ii) quantification of the role of If in mediating autonomic modulation of heart rate. Experimental protocols based on the injection of a real-time recalculated synthetic If current in sinoatrial rabbit cells were developed. Preliminary results of experiments mimicking the autonomic modulation of If demonstrated the need for a customization procedure to compensate for cellular heterogeneity. For this reason, we used a cell-specific approach, scaling the maximal conductance of the injected current based on the cell's spontaneous firing rate. The pacemaking rate, which was significantly reduced after application of Ivabradine, was restored by the injection of synthetic current based on the Severi-DiFrancesco formulation, while the injection of synthetic current based on the Maltsev-Lakatta formulation did not produce any significant variation. A positive virtual shift of the If activation curve, mimicking the Isoprenaline effects, led to a significant increase in pacemaking rate (+17.3 ± 6.7%, p < 0.01), although of lower magnitude than that induced by real Isoprenaline (+45.0 ± 26.1%). Similarly, a negative virtual shift of the activation curve significantly lowered the pacemaking rate (-11.8 ± 1.9%, p < 0.001), as did the application of real Acetylcholine (-20.5 ± 5.1%). The Dynamic Clamp approach, applied to the If study in cardiomyocytes for the first time and rate-adapted to manage intercellular variability, indicated that: i) the quantitative description of the If current in the Severi-DiFrancesco model accurately reproduces the effects of the real current on rabbit sinoatrial cell pacemaking rate and ii) a significant portion (50-60%) of the physiological autonomic rate modulation is due to the shift of the If activation curve.
Collapse
Affiliation(s)
- E Ravagli
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - A Bucchi
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - C Bartolucci
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy
| | - M Paina
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - M Baruscotti
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - D DiFrancesco
- The PaceLab, Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milano, Italy
| | - S Severi
- Computational Physiopathology Unit, Laboratory of Cellular and Molecular Engineering, D.E.I., University of Bologna, Via Venezia 52, 47521 Cesena, Italy.
| |
Collapse
|
12
|
Garg V, Taylor T, Warren M, Venable P, Sciuto K, Shibayama J, Zaitsev A. β-Adrenergic stimulation and rapid pacing mutually promote heterogeneous electrical failure and ventricular fibrillation in the globally ischemic heart. Am J Physiol Heart Circ Physiol 2015; 308:H1155-70. [PMID: 25713306 PMCID: PMC4551128 DOI: 10.1152/ajpheart.00768.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/16/2015] [Indexed: 01/09/2023]
Abstract
Global ischemia, catecholamine surge, and rapid heart rhythm (RHR) due to ventricular tachycardia or ventricular fibrillation (VF) are the three major factors of sudden cardiac arrest (SCA). Loss of excitability culminating in global electrical failure (asystole) is the major adverse outcome of SCA with increasing prevalence worldwide. The roles of catecholamines and RHR in the electrical failure during SCA remain unclear. We hypothesized that both β-adrenergic stimulation (βAS) and RHR accelerate electrical failure in the globally ischemic heart. We performed optical mapping of the action potential (OAP) in the right ventricular (RV) and left (LV) ventricular epicardium of isolated rabbit hearts subjected to 30-min global ischemia. Hearts were paced at a cycle length of either 300 or 200 ms, and either in the presence or in the absence of β-agonist isoproterenol (30 nM). 2,3-Butanedione monoxime (20 mM) was used to reduce motion artifact. We found that RHR and βAS synergistically accelerated the decline of the OAP upstroke velocity and the progressive expansion of inexcitable regions. Under all conditions, inexcitability developed faster in the LV than in the RV. At the same time, both RHR and βAS shortened the time to VF (TVF) during ischemia. Moreover, the time at which 10% of the mapped LV area became inexcitable strongly correlated with TVF (R(2) = 0 .72, P < 0.0001). We conclude that both βAS and RHR are major factors of electrical depression and failure in the globally ischemic heart and may contribute to adverse outcomes of SCA such as asystole and recurrent/persistent VF.
Collapse
Affiliation(s)
- Vivek Garg
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah
| | - Tyson Taylor
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah; and
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah; and
| | - Paul Venable
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah; and
| | - Katie Sciuto
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah; and
| | - Junko Shibayama
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Alexey Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah; Department of Bioengineering, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
13
|
Del Rio CL, Clymer BD, Billman GE. Myocardial electrotonic response to submaximal exercise in dogs with healed myocardial infarctions: evidence for β-adrenoceptor mediated enhanced coupling during exercise testing. Front Physiol 2015; 6:25. [PMID: 25698976 PMCID: PMC4318283 DOI: 10.3389/fphys.2015.00025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/15/2015] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Autonomic neural activation during cardiac stress testing is an established risk-stratification tool in post-myocardial infarction (MI) patients. However, autonomic activation can also modulate myocardial electrotonic coupling, a known factor to contribute to the genesis of arrhythmias. The present study tested the hypothesis that exercise-induced autonomic neural activation modulates electrotonic coupling (as measured by myocardial electrical impedance, MEI) in post-MI animals shown to be susceptible or resistant to ventricular fibrillation (VF). METHODS Dogs (n = 25) with healed MI instrumented for MEI measurements were trained to run on a treadmill and classified based on their susceptibility to VF (12 susceptible, 9 resistant). MEI and ECGs were recorded during 6-stage exercise tests (18 min/test; peak: 6.4 km/h @ 16%) performed under control conditions, and following complete β-adrenoceptor (β-AR) blockade (propranolol); MEI was also measured at rest during escalating β-AR stimulation (isoproterenol) or overdrive-pacing. RESULTS Exercise progressively increased heart rate (HR) and reduced heart rate variability (HRV). In parallel, MEI decreased gradually (enhanced electrotonic coupling) with exercise; at peak exercise, MEI was reduced by 5.3 ± 0.4% (or -23 ± 1.8Ω, P < 0.001). Notably, exercise-mediated electrotonic changes were linearly predicted by the degree of autonomic activation, as indicated by changes in either HR or in HRV (P < 0.001). Indeed, β-AR blockade attenuated the MEI response to exercise while direct β-AR stimulation (at rest) triggered MEI decreases comparable to those observed during exercise; ventricular pacing had no significant effects on MEI. Finally, animals prone to VF had a significantly larger MEI response to exercise. CONCLUSIONS These data suggest that β-AR activation during exercise can acutely enhance electrotonic coupling in the myocardium, particularly in dogs susceptible to ischemia-induced VF.
Collapse
Affiliation(s)
- Carlos L Del Rio
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA ; Department of Electrical and Computer Engineering, The Ohio State University Columbus, OH, USA ; Safety Pharmacology, QTest Labs Columbus, OH, USA
| | - Bradley D Clymer
- Department of Electrical and Computer Engineering, The Ohio State University Columbus, OH, USA ; Biomedical Engineering, The Ohio State University Columbus, OH, USA
| | - George E Billman
- Department of Physiology and Cell Biology, The Ohio State University Columbus, OH, USA ; Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
| |
Collapse
|
14
|
Ionic mechanisms of arrhythmogenesis. Trends Cardiovasc Med 2015; 25:487-96. [PMID: 25701094 DOI: 10.1016/j.tcm.2015.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/12/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023]
Abstract
The understanding of ionic mechanisms underlying cardiac rhythm disturbances (arrhythmias) is an issue of significance in the medical science community. Several advances in molecular, cellular, and optical techniques in the past few decades have substantially increased our knowledge of ionic mechanisms that are thought to underlie arrhythmias. The application of these techniques in the study of ion channel biophysics and regulatory properties has provided a wealth of information, with some important therapeutic implications for dealing with the disease. In this review, we briefly consider the cellular and tissue manifestations of a number of cardiac rhythm disturbances, while focusing on our current understanding of the ionic current mechanisms that have been implicated in such rhythm disturbances.
Collapse
|
15
|
Morita N, Mandel WJ, Kobayashi Y, Karagueuzian HS. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 2014; 30:389-394. [PMID: 25642299 DOI: 10.1016/j.joa.2013.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Animal and emerging clinical studies have demonstrated that increased ventricular fibrosis in a setting of reduced repolarization reserve promotes early afterdepolarizations (EADs) and triggered activity that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF). Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative and metabolic stress-induced EADs to manifest as triggered activity causing VT/VF. The lack of such an arrhythmogenic effect by the same stressors in normal non-fibrotic hearts highlights the importance of fibrosis in the initiation of VT/VF. These findings suggest that antifibrotic therapy combined with therapy designed to increase ventricular repolarization reserve may act synergistically to reduce the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - William J Mandel
- Translational Arrhythmia Research Section, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
16
|
Effects of Nardostachys chinensis on Spontaneous Ventricular Arrhythmias in Rats With Acute Myocardial Infarction. J Cardiovasc Pharmacol 2014; 64:127-33. [DOI: 10.1097/fjc.0000000000000096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Trenor B, Cardona K, Saiz J, Rajamani S, Belardinelli L, Giles WR. Carbon monoxide effects on human ventricle action potential assessed by mathematical simulations. Front Physiol 2013; 4:282. [PMID: 24146650 PMCID: PMC3797961 DOI: 10.3389/fphys.2013.00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/18/2013] [Indexed: 12/15/2022] Open
Abstract
Carbon monoxide (CO) that is produced in a number of different mammalian tissues is now known to have significant effects on the cardiovascular system. These include: (i) vasodilation, (ii) changes in heart rate and strength of contractions, and (iii) modulation of autonomic nervous system input to both the primary pacemaker and the working myocardium. Excessive CO in the environment is toxic and can initiate or mediate life threatening cardiac rhythm disturbances. Recent reports link these ventricular arrhythmias to an increase in the slowly inactivating, or “late” component of the Na+ current in the mammalian heart. The main goal of this paper is to explore the basis of this pro-arrhythmic capability of CO by incorporating changes in CO-induced ion channel activity with intracellular signaling pathways in the mammalian heart. To do this, a quite well-documented mathematical model of the action potential and intracellular calcium transient in the human ventricular myocyte has been employed. In silico iterations based on this model provide a useful first step in illustrating the cellular electrophysiological consequences of CO that have been reported from mammalian heart experiments. Specifically, when the Grandi et al. model of the human ventricular action potential is utilized, and after the Na+ and Ca2+ currents in a single myocyte are modified based on the experimental literature, early after-depolarization (EAD) rhythm disturbances appear, and important elements of the underlying causes of these EADs are revealed/illustrated. Our modified mathematical model of the human ventricular action potential also provides a convenient digital platform for designing future experimental work and relating these changes in cellular cardiac electrophysiology to emerging clinical and epidemiological data on CO toxicity.
Collapse
Affiliation(s)
- Beatriz Trenor
- Instituto Interuniversitario de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano, Universitat Politècnica de València Valencia, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Karagueuzian HS, Nguyen TP, Qu Z, Weiss JN. Oxidative stress, fibrosis, and early afterdepolarization-mediated cardiac arrhythmias. Front Physiol 2013; 4:19. [PMID: 23423152 PMCID: PMC3573324 DOI: 10.3389/fphys.2013.00019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/25/2013] [Indexed: 01/06/2023] Open
Abstract
Animal and clinical studies have demonstrated that oxidative stress, a common pathophysiological factor in cardiac disease, reduces repolarization reserve by enhancing the L-type calcium current, the late Na, and the Na-Ca exchanger, promoting early afterdepolarizations (EADs) that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF) in structurally remodeled hearts. Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative-stress induced EADs to manifest as triggered activity and VT/VF, since normal non-fibrotic hearts are resistant to arrhythmias when challenged with similar or higher levels of oxidative stress. The findings imply that antifibrotic therapy, in addition to therapies designed to suppress EAD formation at the cellular level, may be synergistic in reducing the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Hrayr S Karagueuzian
- Cardiovascular Research Laboratory, Translational Arrhythmia Research Section, David Geffen School of Medicine at UCLA Los Angeles, CA, USA
| | | | | | | |
Collapse
|
19
|
de Lange E, Xie Y, Qu Z. Synchronization of early afterdepolarizations and arrhythmogenesis in heterogeneous cardiac tissue models. Biophys J 2012; 103:365-73. [PMID: 22853915 DOI: 10.1016/j.bpj.2012.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 06/05/2012] [Accepted: 06/07/2012] [Indexed: 02/05/2023] Open
Abstract
Early afterdepolarizations (EADs) are linked to both triggered arrhythmias and reentrant arrhythmias by causing premature ventricular complexes (PVCs), focal excitations, or heterogeneous tissue substrates for reentry formation. However, a critical number of cells that synchronously exhibit EADs are needed to result in arrhythmia triggers and substrates in tissue. In this study, we use mathematical modeling and computer simulations to investigate EAD synchronization and arrhythmia induction in tissue models with random cell-to-cell variations. Our major observations are as follows. Random cell-to-cell variations in action potential duration without EAD presence do not cause large dispersion of refractoriness in well-coupled tissue. In the presence of phase-2 EADs, the cells may synchronously exhibit the same number of EADs or no EADs with a very small dispersion of refractoriness, or synchronize regionally to result in large dispersion of refractoriness. In the presence of phase-3 EADs, regional synchronization leads to propagating EADs, forming PVCs in tissue. Interestingly, even though the uncoupled cells exhibit either no EAD or only a single EAD, when these cells are coupled to form a tissue, more than one PVC can occur. When the PVCs occur at different locations and time, multifocal arrhythmias are triggered, with the foci shifting in space and time in an irregular manner. The focal arrhythmias either spontaneously terminate or degenerate into reentrant arrhythmias due to heterogeneities and spatiotemporal chaotic dynamics of the foci.
Collapse
Affiliation(s)
- Enno de Lange
- Cardiovascular Research Laboratory, Department of Medicine (Cardiology), David Geffen School of Medicine, University of California, Los Angeles, California, USA.
| | | | | |
Collapse
|
20
|
Umar S, Lee JH, de Lange E, Iorga A, Partow-Navid R, Bapat A, van der Laarse A, Saggar R, Saggar R, Ypey DL, Karagueuzian HS, Eghbali M. Spontaneous ventricular fibrillation in right ventricular failure secondary to chronic pulmonary hypertension. Circ Arrhythm Electrophysiol 2011; 5:181-90. [PMID: 22199010 DOI: 10.1161/circep.111.967265] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Right ventricular failure (RVF) in pulmonary hypertension (PH) is associated with increased incidence of sudden death by a poorly explored mechanism. We test the hypothesis that PH promotes spontaneous ventricular fibrillation (VF) during a critical post-PH onset period characterized by a sudden increase in mortality. METHODS AND RESULTS Rats received either a single subcutaneous dose of monocrotaline (MCT, 60 mg/kg) to induce PH-associated RVF (PH, n=24) or saline (control, n=17). Activation pattern of the RV-epicardial surface was mapped using voltage-sensitive dye in isolated Langendorff-perfused hearts along with single glass-microelectrode and ECG-recordings. MCT-injected rats developed severe PH by day 21 and progressed to RVF by approximately day 30. Rats manifested increased mortality, and ≈30% rats died suddenly and precipitously during 23-32 days after MCT. This fatal period was associated with the initiation of spontaneous VF by a focal mechanism in the RV, which was subsequently maintained by both focal and incomplete reentrant wave fronts. Microelectrode recordings from the RV-epicardium at the onset of focal activity showed early afterdepolarization-mediated triggered activity that led to VF. The onset of the RV cellular triggered beats preceded left ventricular depolarizations by 23±8 ms. The RV but not the left ventricular cardiomyocytes isolated during this fatal period manifested significant action potential duration prolongation, dispersion, and an increased susceptibility to depolarization-induced repetitive activity. No spontaneous VF was observed in any of the control hearts. RVF was associated with significantly reduced RV ejection fraction (P<0.001), RV hypertrophy (P<0.001), and RV fibrosis (P<0.01). The hemodynamic function of the LV and its structure were preserved. CONCLUSIONS PH-induced RVF is associated with a distinct phase of increased mortality characterized by spontaneous VF arising from the RV by an early afterdepolarization-mediated triggered activity.
Collapse
Affiliation(s)
- Soban Umar
- Department of Anesthesiology, UCLA School of Medicine, BH-160CHS, 650 Charles Young Dr, Los Angeles, CA 90095-7115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Corrias A, Giles W, Rodriguez B. Ionic mechanisms of electrophysiological properties and repolarization abnormalities in rabbit Purkinje fibers. Am J Physiol Heart Circ Physiol 2011; 300:H1806-13. [PMID: 21335469 DOI: 10.1152/ajpheart.01170.2010] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Purkinje cells play an important role in drug-induced arrhythmogenesis and are widely used in preclinical drug safety assessments. Repolarization abnormalities such as action potential (AP) prolongation and early afterdeploarizations (EAD) are often observed in vitro upon pharmacological interventions. However, because drugs do not act on only one defined target, it is often difficult to fully explain the mechanisms of action and their potential arrhythmogenicity. Computational models, when appropriately detailed and validated, can be used to gain mechanistic insights into the mechanisms of action of certain drugs. Nevertheless, no model of Purkinje electrophysiology that is able to reproduce characteristic Purkinje responses to drug-induced changes in ionic current conductances such as AP prolongation and EAD generation currently exists. In this study, a novel biophysically detailed model of rabbit Purkinje electrophysiology was developed by integration of data from voltage-clamp and AP experimental recordings. Upon validation, we demonstrate that the model reproduces many key electrophysiological properties of rabbit Purkinje cells. These include: AP morphology and duration, both input resistance and rate dependence properties as well as response to hyperkalemia. Pharmacological interventions such as inward rectifier K(+) current and rapid delayed rectifier K(+) current block as well as late Na(+) current increase result in significant AP changes. However, enhanced L-type Ca(2+) current (i(CaL)) dominates in EAD genesis in Purkinje fibers. In addition, i(CaL) inactivation dynamics and intercellular coupling in tissue strongly modulate EAD formation. We conclude that EAD generation in Purkinje cells is mediated by an increase in i(CaL) and modulated by its inactivation kinetics.
Collapse
|
22
|
Morita N, Lee JH, Bapat A, Fishbein MC, Mandel WJ, Chen PS, Weiss JN, Karagueuzian HS. Glycolytic inhibition causes spontaneous ventricular fibrillation in aged hearts. Am J Physiol Heart Circ Physiol 2011; 301:H180-91. [PMID: 21478408 DOI: 10.1152/ajpheart.00128.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Selective glycolytic inhibition (GI) promotes electromechanical alternans and triggered beats in isolated cardiac myocytes. We sought to determine whether GI promotes triggered activity by early afterdepolarization (EAD) or delayed afterdepolarizations in intact hearts isolated from adult and aged rats. Dual voltage and intracellular calcium ion (Ca(i)(2+)) fluorescent optical maps and single cell glass microelectrode recordings were made from the left ventricular (LV) epicardium of isolated Langendorff-perfused adult (∼4 mo) and aged (∼24 mo) rat hearts. GI was induced by replacing glucose with 10 mM pyruvate in oxygenated Tyrode's. Within 20 min, GI slowed Ca(i)(2+) transient decline rate and shortened action potential duration in both groups. These changes were associated with ventricular fibrillation (VF) in the aged hearts (64 out of 66) but not in adult hearts (0 out of 18; P < 0.001). VF was preceded by a transient period of focal ventricular tachycardia caused by EAD-mediated triggered activity leading to VF within seconds. The VF was suppressed by the ATP-sensitive K (K(ATP)) channel blocker glibenclamide (1 μM) but not (0 out of 7) by mitochondrial K(ATP) block. The Ca-calmodulin-dependent protein kinase II (CaMKII) blocker KN-93 (1 μM) prevented GI-mediated VF (P < 0.05). Block of Na-Ca exchanger (NCX) by SEA0400 (2 μM) prevented GI-mediated VF (3 out of 6), provided significant bradycardia did not occur. Aged hearts had significantly greater LV fibrosis and reduced connexin 43 than adult hearts (P < 0.05). We conclude that in aged fibrotic unlike in adult rat hearts, GI promotes EADs, triggered activity, and VF by activation of K(ATP) channels CaMKII and NCX.
Collapse
Affiliation(s)
- Norishige Morita
- Translational Arrhythmia Research Section, Cardiovascular Research Laboratory, David Geffen School of Medicine at UCLA, 675 Charles E. Young Dr. South, MRL 3645 Mail Code: 176022, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sato D, Xie LH, Nguyen TP, Weiss JN, Qu Z. Irregularly appearing early afterdepolarizations in cardiac myocytes: random fluctuations or dynamical chaos? Biophys J 2010; 99:765-73. [PMID: 20682253 DOI: 10.1016/j.bpj.2010.05.019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 04/30/2010] [Accepted: 05/07/2010] [Indexed: 01/08/2023] Open
Abstract
Irregularly occurring early afterdepolarizations (EADs) in cardiac myocytes are traditionally hypothesized to be caused by random ion channel fluctuations. In this study, we combined 1), patch-clamp experiments in which action potentials were recorded at different pacing cycle lengths from isolated rabbit ventricular myocytes under several experimental conditions inducing EADs, including oxidative stress with hydrogen peroxide, calcium overload with BayK8644, and ionic stress with hypokalemia; 2), computer simulations using a physiologically detailed rabbit ventricular action potential model, in which repolarization reserve was reduced to generate EADs and random ion channel or path cycle length fluctuations were implemented; and 3), iterated maps with or without noise. By comparing experimental, modeling, and bifurcation analyses, we present evidence that noise-induced transitions between bistable states (i.e., between an action potential with and without an EAD) is not sufficient to account for the large variation in action potential duration fluctuations observed in experimental studies. We conclude that the irregular dynamics of EADs is intrinsically chaotic, with random fluctuations playing a nonessential, auxiliary role potentiating the complex dynamics.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Medicine (Cardiology), David Geffen School of Medicine at University of California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
24
|
Pat B, Killingsworth C, Chen Y, Gladden JD, Walcott G, Powell PC, Denney T, Gupta H, Desai R, Tillson M, Dillon AR, Dell'italia LJ. Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation. J Card Fail 2010; 16:769-76. [PMID: 20797601 PMCID: PMC3865763 DOI: 10.1016/j.cardfail.2010.05.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 05/04/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022]
Abstract
BACKGROUND Mast cells are increased in isolated mitral regurgitation (MR) in the dog and may mediate extracellular matrix loss and left ventricular (LV) dilatation. We tested the hypothesis that mast cell stabilization would attenuate LV remodeling and improve function in the MR dog. METHODS AND RESULTS MR was induced in adult dogs randomized to no treatment (MR, n = 5) or to the mast cell stabilizer, ketotifen (MR + MCS, n = 4) for 4 months. LV hemodynamics were obtained at baseline and after 4 months of MR and magnetic resonance imaging (MRI) was performed at sacrifice. MRI-derived, serial, short-axis LV end-diastolic (ED) and end-systolic (ES) volumes, LVED volume/mass ratio, and LV 3-dimensional radius/wall thickness were increased in MR and MR + MCS dogs compared with normal dogs (n = 6) (P < .05). Interstitial collagen was decreased by 30% in both MR and MR + MCS versus normal dogs (P < .05). LV contractility by LV maximum time-varying elastance was significantly depressed in MR and MR + MCS dogs. Furthermore, cardiomyocyte fractional shortening was decreased in MR versus normal dogs and further depressed in MR + MCS dogs (P < .05). In vitro administration of ketotifen to normal cardiomyocytes also significantly decreased fractional shortening and calcium transients. CONCLUSIONS Chronic mast cell stabilization did not attenuate eccentric LV remodeling or collagen loss in MR. However, MCS therapy had a detrimental effect on LV function because of a direct negative inotropic effect on cardiomyocyte function.
Collapse
Affiliation(s)
- Betty Pat
- Department of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kang G, Giovannone SF, Liu N, Liu FY, Zhang J, Priori SG, Fishman GI. Purkinje cells from RyR2 mutant mice are highly arrhythmogenic but responsive to targeted therapy. Circ Res 2010; 107:512-9. [PMID: 20595652 PMCID: PMC2930621 DOI: 10.1161/circresaha.110.221481] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Accepted: 06/17/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE The Purkinje fiber network has been proposed as the source of arrhythmogenic Ca(2+) release events in catecholaminergic polymorphic ventricular tachycardia (CPVT), yet evidence supporting this mechanism at the cellular level is lacking. OBJECTIVE We sought to determine the frequency and severity of spontaneous Ca(2+) release events and the response to the antiarrhythmic agent flecainide in Purkinje cells and ventricular myocytes from RyR2(R4496C/+) CPVT mutant mice and littermate controls. METHODS AND RESULTS We crossed RyR2(R4496C/+) knock-in mice with the newly described Cntn2-EGFP BAC transgenic mice, which express a fluorescent reporter gene in cells of the cardiac conduction system, including the distal Purkinje fiber network. Isolated ventricular myocytes (EGFP(-)) and Purkinje cells (EGFP(+)) from wild-type hearts and mutant hearts were distinguished by epifluorescence and intracellular Ca(2+) dynamics recorded by microfluorimetry. Both wild-type and RyR2(R4496C/+) mutant Purkinje cells displayed significantly slower kinetics of activation and relaxation compared to ventricular myocytes of the same genotype, and tau(decay) in the mutant Purkinje cells was significantly slower than that observed in wild-type Purkinje cells. Of the 4 groups studied, RyR2(R4496C/+) mutant Purkinje cells were also most likely to develop spontaneous Ca(2+) release events, and the number of events per cell was also significantly greater. Furthermore, with isoproterenol treatment, although all 4 groups showed increases in the frequency of arrhythmogenic Ca(2+(i)) events, the RyR2(R4496C/+) Purkinje cells responded with the most profound abnormalities in intracellular Ca(2+) handling, including a significant increase in the frequency of unstimulated Ca(2+(i)) events and the development of alternans, as well as isolated and sustained runs of triggered beats. Both Purkinje cells and ventricular myocytes from wild-type mice showed suppression of spontaneous Ca(2+) release events with flecainide, whereas in RyR2(R4496C/+) mice, the Purkinje cells were preferentially responsive to drug. In contrast, the RyR2 blocker tetracaine was equally efficacious in mutant Purkinje cells and ventricular myocytes. CONCLUSIONS Purkinje cells display a greater propensity to develop abnormalities in intracellular Ca(2+) handling than ventricular myocytes. This proarrhythmic behavior is enhanced by disease-causing mutations in the RyR2 Ca(2+) release channel and greatly exacerbated by catecholaminergic stimulation, with the development of arrhythmogenic triggered beats. These data support the concept that Purkinje cells are critical contributors to arrhythmic triggers in animal models and humans with CPVT and suggest a broader role for the Purkinje fiber network in the genesis of ventricular arrhythmias.
Collapse
Affiliation(s)
- Guoxin Kang
- The Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
The dynamic clamp is a widely used method for integrating mathematical models with electrophysiological experiments. This method involves measuring the membrane voltage of a cell, using it to solve computational models of ion channel dynamics in real-time, and injecting the calculated current(s) back into the cell. Limitations of this technique include those associated with single electrode current clamping and the sampling effects caused by the dynamic clamp. In this study, we show that the combination of these limitations causes transient instabilities under certain conditions. Through physical experiments and simulations, we show that dynamic clamp instability is directly related to the sampling delay and the maximum simulated conductance being injected. It is exaggerated by insufficient electrode series resistance and capacitance compensation. Increasing the sampling rate of the dynamic clamp system increases dynamic clamp stability; however, this improvement, is constrained by how well the electrode series resistance and capacitance are compensated. At present, dynamic clamp sampling rates are justified solely on the temporal dynamics of the models being simulated; here we show that faster rates increase the stable range of operation for the dynamic clamp system. In addition, we show that commonly accepted levels of resistance compensation nevertheless significantly compromise the stability of a dynamic clamp system.
Collapse
Affiliation(s)
- Amanda J. Preyer
- Georgia Institute of Technology, Atlanta, GA 30332 USA. She is now with Axion Biosystems, Atlanta, GA 30332 USA
| | - Robert J. Butera
- Laboratory for Neuroengineering and the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
27
|
Killeen MJ. Drug-induced arrhythmias and sudden cardiac death: implications for the pharmaceutical industry. Drug Discov Today 2009; 14:589-97. [PMID: 19508921 DOI: 10.1016/j.drudis.2009.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 03/01/2009] [Accepted: 03/02/2009] [Indexed: 01/23/2023]
Abstract
Following a series of high profile withdrawals from the market, the ability of medications to induce potentially fatal arrhythmias is a significant problem facing the pharmaceutical industry. Current preclinical cardiac safety assays are based on the assumption that blockade of a single repolarizing K(+) channel alone precipitates drug-induced arrhythmias, however, current findings point to a range of more complex arrhythmogenic mechanisms. This review begins by exploring clinical findings and potential mechanisms underlying drug-induced sudden cardiac death and then goes on to assess current and explore future strategies to detect cardiotoxicity at the preclinical stage.
Collapse
|
28
|
Pat B, Killingsworth C, Denney T, Zheng J, Powell P, Tillson M, Dillon AR, Dell'Italia LJ. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation. Am J Physiol Heart Circ Physiol 2008; 295:H2321-7. [PMID: 18849331 PMCID: PMC2614546 DOI: 10.1152/ajpheart.00746.2008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Accepted: 10/06/2008] [Indexed: 11/22/2022]
Abstract
The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.
Collapse
Affiliation(s)
- Betty Pat
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, 434 BMR2, 901 19th St. S, Birmingham, AL 35294-2180, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Early afterdepolarisations and ventricular arrhythmias in cardiac tissue: a computational study. Med Biol Eng Comput 2008; 47:291-300. [PMID: 18850126 DOI: 10.1007/s11517-008-0405-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 09/03/2008] [Indexed: 10/21/2022]
Abstract
Afterdepolarisations are associated with arrhythmias in the heart, but are difficult to study experimentally. In this study we used a simplified computational model of 1D and 2D cardiac ventricular tissue, where we could control the size of the region generating afterdepolarisations, as well as the properties of the afterdepolarisation waveform. Provided the size of the afterdepolarisation region was greater than around 1 mm, propagating extrasystoles were produced in both 1D and 2D. The number of extrasystoles produced depended on the amplitude, period, and duration of the oscillatory EAD waveform. In 2D, re-entry was also initiated for specific combinations of EAD amplitude, period, and duration, with the afterdepolarisation region acting as a common pathway. The main finding from this modelling study is therefore that afterdepolarisations can act as potent sources of propagating extrasystoles, as well as a source of re-entrant activation.
Collapse
|
30
|
Thomas G, Killeen MJ, Grace AA, Huang CLH. Pharmacological separation of early afterdepolarizations from arrhythmogenic substrate in DeltaKPQ Scn5a murine hearts modelling human long QT 3 syndrome. Acta Physiol (Oxf) 2008; 192:505-17. [PMID: 17973950 PMCID: PMC2268972 DOI: 10.1111/j.1748-1716.2007.01770.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Aim To perform an empirical, pharmacological, separation of early afterdepolarizations (EADs) and transmural gradients of repolarization in arrhythmogenesis in a genetically modified mouse heart modelling human long QT syndrome (LQT) 3. Methods Left ventricular endocardial and epicardial monophasic action potentials and arrhythmogenic tendency were compared in isolated wild type (WT) and Scn5a+/Δ hearts perfused with 0.1 and 1 μm propranolol and paced from the right ventricular epicardium. Results All spontaneously beating bradycardic Scn5a+/Δ hearts displayed EADs, triggered beats and ventricular tachycardia (VT; n = 7), events never seen in WT hearts (n = 5). Perfusion with 0.1 and 1 μm propranolol suppressed all EADs, triggered beats and episodes of VT. In contrast, triggering of VT persisted following programmed electrical stimulation in 6 of 12 (50%), one of eight (12.5%), but six of eight (75%) Scn5a+/Δ hearts perfused with 0, 0.1 and 1 μm propranolol respectively in parallel with corresponding alterations in repolarization gradients, reflected in action potential duration (ΔAPD90) values. Thus 0.1 μm propranolol reduced epicardial but not endocardial APD90 from 54.7 ± 1.6 to 44.0 ± 2.0 ms, restoring ΔAPD90 from −3.8 ± 1.6 to 3.5 ± 2.5 ms (all n = 5), close to WT values. However, 1 μm propranolol increased epicardial APD90 to 72.5 ± 1.2 ms and decreased endocardial APD90 from 50.9 ± 1.0 to 24.5 ± 0.3 ms, increasing ΔAPD90 to −48.0 ± 1.2 ms. Conclusion These findings empirically implicate EADs in potentially initiating spontaneous arrhythmogenic phenomena and transmural repolarization gradients in the re-entrant substrate that would sustain such activity when provoked by extrasystolic activity in murine hearts modelling human LQT3 syndrome.
Collapse
Affiliation(s)
- G Thomas
- Section of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | | |
Collapse
|
31
|
Maharaj T, Blake R, Trayanova N, Gavaghan D, Rodriguez B. The role of transmural ventricular heterogeneities in cardiac vulnerability to electric shocks. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2008; 96:321-38. [PMID: 17915299 PMCID: PMC2821334 DOI: 10.1016/j.pbiomolbio.2007.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transmural electrophysiological heterogeneities have been shown to contribute to arrhythmia induction in the heart; however, their role in defibrillation failure has never been examined. The goal of this study is to investigate how transmural heterogeneities in ionic currents and gap-junctional coupling contribute to arrhythmia generation following defibrillation strength shocks. This study used a 3D anatomically realistic bidomain model of the rabbit ventricles. Transmural heterogeneity in ionic currents and reduced sub-epicardial intercellular coupling were incorporated based on experimental data. The ventricles were paced apically, and truncated-exponential monophasic shocks of varying strength and timing were applied via large external electrodes. Simulations demonstrate that inclusion of transmural heterogeneity in ionic currents results in an increase in vulnerability to shocks, reflected in the increased upper limit of vulnerability, ULV, and the enlarged vulnerable window, VW. These changes in vulnerability stem from increased post-shock dispersion in repolarisation as it increases the likelihood of establishment of re-entrant circuits. In contrast, reduced sub-epicardial coupling results in decrease in both ULV and VW. This decrease is caused by altered virtual electrode polarisation around the region of sub-epicardal uncoupling, and specifically, by the increase in (1) the amount of positively polarised myocardium at shock-end and (2) the spatial extent of post-shock wavefronts.
Collapse
Affiliation(s)
- Thushka Maharaj
- Computing Laboratory, University of Oxford, Oxford, OX1 3PG, UK.
| | | | | | | | | |
Collapse
|
32
|
Killeen MJ, Gurung IS, Thomas G, Stokoe KS, Grace AA, Huang CLH. Separation of early afterdepolarizations from arrhythmogenic substrate in the isolated perfused hypokalaemic murine heart through modifiers of calcium homeostasis. Acta Physiol (Oxf) 2007; 191:43-58. [PMID: 17524066 PMCID: PMC2040229 DOI: 10.1111/j.1748-1716.2007.01715.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2007] [Revised: 03/02/2007] [Accepted: 03/23/2007] [Indexed: 11/26/2022]
Abstract
AIMS We resolved roles for early afterdepolarizations (EADs) and transmural gradients of repolarization in arrhythmogenesis in Langendorff-perfused hypokalaemic murine hearts paced from the right ventricular epicardium. METHODS Left ventricular epicardial and endocardial monophasic action potentials (MAPs) and arrhythmogenic tendency were compared in the presence and absence of the L-type Ca(2+) channel blocker nifedipine (10 nm-1 microm) and the calmodulin kinase type II inhibitor KN-93 (2 microm). RESULTS All the hypokalaemic hearts studied showed prolonged epicardial and endocardial MAPs, decreased epicardial-endocardial APD(90) difference, EADs, triggered beats and ventricular tachycardia (VT) (n = 6). In all spontaneously beating hearts, 100 (but not 10) nm nifedipine reduced both the incidence of EADs and triggered beats from 66.9 +/- 15.7% to 28.3 +/- 8.7% and episodes of VT from 10.8 +/- 6.3% to 1.2 +/- 0.7% of MAPs (n = 6 hearts, P < 0.05); 1 microm nifedipine abolished all these phenomena (n = 6). In contrast programmed electrical stimulation (PES) still triggered VT in six of six hearts with 0, 10 and 100 nm but not 1 microm nifedipine. 1 microm nifedipine selectively reduced epicardial (from 66.1 +/- 3.4 to 46.2 +/- 2.5 ms) but not endocardial APD(90), thereby restoring DeltaAPD(90) from -5.9 +/- 2.5 to 15.5 +/- 3.2 ms, close to normokalaemic values. KN-93 similarly reduced EADs, triggered beats and VT in spontaneously beating hearts to 29.6 +/- 8.9% and 1.7 +/- 1.1% respectively (n = 6) yet permitted PES-induced VT (n = 6), in the presence of a persistently negative DeltaAPD(90). CONCLUSIONS These findings empirically implicate both EADs and triggered beats alongside arrhythmogenic substrate of DeltaAPD(90) in VT pathogenesis at the whole heart level.
Collapse
Affiliation(s)
- M J Killeen
- Physiological Laboratory, University of Cambridge, Cambridge, UK.
| | | | | | | | | | | |
Collapse
|
33
|
Bondarenko VE, Rasmusson RL. Simulations of propagated mouse ventricular action potentials: effects of molecular heterogeneity. Am J Physiol Heart Circ Physiol 2007; 293:H1816-32. [PMID: 17586617 DOI: 10.1152/ajpheart.00471.2007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular heterogeneity of repolarizing currents produces significant spatial heterogeneity and/or dispersion of repolarization in many mammalian cardiac tissues. Transgenic mice are prominent experimental models for the study of the molecular basis of repolarization and arrhythmias. However, it is debated whether the small mouse heart can sustain physiologically relevant heterogeneity of repolarization. We used a comprehensive model of the mouse action potential (AP) to predict how small a region of the cardiac tissue can maintain spatial gradients of repolarization due to differential expression of channels. Our simulations of a one-dimensional multicellular ring or cable predict that substantial gradients in repolarization and intracellular Ca(2+) concentration transients can be maintained through heterogeneity of expression of K(+) channels in distances of approximately 10 cells that are sufficient to block propagation. The abruptness of expression gradients and the site of stimulation can cause Ca(2+) transient oscillations and affect the stability of Ca(2+) dynamics and AP propagation. Two different mechanisms of instability of AP propagation in one-dimensional cable occur at fast pacing rates. Transitions from periodic activity to alternans or to irregular behavior were observed. Abrupt gradients of channel expression can cause alternans at slower pacing rates than gradual changes. Our simulations demonstrate the importance of incorporating realistic Ca(2+) dynamics and current densities into models of propagated AP. They also emphasize that microscopic aspects of tissue organization are important for predicting large-scale propagation phenomena. Finally, our results predict that the mouse heart should be able to sustain substantial molecularly based heterogeneity of repolarization.
Collapse
Affiliation(s)
- Vladimir E Bondarenko
- Center for Cellular and Systems Electrophysiology, Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, New York 14214-3078, USA
| | | |
Collapse
|
34
|
Abstract
Dynamic clamp is a collection of closely related techniques that have been employed in cardiac electrophysiology to provide direct answers to numerous research questions regarding basic cellular mechanisms of action potential formation, action potential transfer and action potential synchronization in health and disease. Building on traditional current clamp, dynamic clamp was initially used to create virtual gap junctions between isolated myocytes. More recent applications include the embedding of a real pacemaking myocyte in a simulated network of atrial or ventricular cells and the insertion of virtual ion channels, either simulated in real time or simultaneously recorded from an expression system, into the membrane of an isolated myocyte. These applications have proven that dynamic clamp, which is characterized by the real-time evaluation and injection of simulated membrane current, is a powerful tool in cardiac electrophysiology. Here, each of the three different experimental configurations used in cardiac electrophysiology is reviewed. Also, directions are given for the implementation of dynamic clamp in the cardiac electrophysiology laboratory. With the growing interest in the application of dynamic clamp in cardiac electrophysiology, it is anticipated that dynamic clamp will also prove to be a powerful tool in basic research on biological pacemakers and in identification of specific ion channels as targets for drug development.
Collapse
Affiliation(s)
- Ronald Wilders
- Department of Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Jie X, Rodriguez B, Trayanova N. Role of cellular uncoupling in arrhythmogenesis in ischemia phase 1B. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2006; 2006:2272-2275. [PMID: 17945702 DOI: 10.1109/iembs.2006.259470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Delayed ventricular arrhythmias during acute myocardial ischemia phase 1B are related to a rise in tissue impedance and are most likely sustained in a thin layer of subepicardium. It has been hypothesized that coupling of depressed midmyocardial tissue to the surviving subepicardial layer sets the conditions for reentrant arrhythmias. This hypothesis was verified by means of bidomain simulations on a 3D slab consisting of a normal subepicardial layer coupled to a depressed depolarized midmyocardial layer. The heterogeneity in the coupling was defined by varying the transmural conductivities between the two layers in a circular centrally-located region. The resulting dispersion of effective refractory period in the subepicardium allows for reentry to occur. As uncoupling increases within the circular island, the vulnerability to reentry increases. A higher degree of depolarization in the midmyocardium inhibits the induction of reentry.
Collapse
Affiliation(s)
- Xiao Jie
- Biomedical Engineering Department, Tulane University, New Orleans, LA 70118, USA.
| | | | | |
Collapse
|
36
|
Xing D, Kjølbye AL, Petersen JS, Martins JB. Pharmacological stimulation of cardiac gap junction coupling does not affect ischemia-induced focal ventricular tachycardia or triggered activity in dogs. Am J Physiol Heart Circ Physiol 2005; 288:H511-6. [PMID: 15650154 DOI: 10.1152/ajpheart.00720.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of gap junction intercellular communication (GJIC) in ischemia-induced focal ventricular tachycardia (VT) is unknown. We have developed a new, stable antiarrhythmic peptide analog named ZP123 that selectively increases GJIC and prevents reentrant VT. Our aim in this study was to use ZP123 as a tool to assess the role of GJIC on occurrence of ischemia-induced focal VT and triggered activity (TA) due to delayed afterdepolarizations (DADs). Focal VT was induced by programmed stimulation in alpha-chloralose-anesthetized, open-chest dogs 1-4 h after coronary artery occlusion. Three-dimensional activation mapping was done using 6 bipolar electrograms on each of 23 multipolar needles in the risk zone. Dogs were randomly assigned to receive either saline or ZP123 cumulatively at three dose levels (an intravenous bolus followed by a 30-min infusion per dose). Attempts to induce VT were repeated in each dose. Mass spectrometry was used to measure plasma ZP123 concentrations. Standard microelectrode techniques were used for in vitro study of DADs and TA. Twenty-six dogs with focal VT were included. ZP123 did not affect the inducibility of focal VT at any plasma concentrations vs. saline (0.8 +/- 0.1 nM, 77 vs. 75%; 7.8 +/- 0.4 nM, 86 vs. 77%; and 78.8 +/- 5.0 nM, 77 vs. 91%). In vitro, ZP123 did not affect the induction of DADs (12/12) and TAs (10/10) in ischemic tissues or tissue removed from the origin of focal VT (DADs, 8/8; TAs, 4/4). Therefore, although indirect, the data with the doses and concentrations used suggest that GJIC may not play a major role in the genesis of focal activity in the ischemic models studied.
Collapse
Affiliation(s)
- Dezhi Xing
- Department of Internal Medicine, Carver College of Medicine, University of Iowa and Veterans Affairs Medical Center, Iowa City, USA
| | | | | | | |
Collapse
|
37
|
Kirchhof P, Loh P, Ribbing M, Wasmer K. Incessant supraventricular tachycardia with constant 1:2 atrioventricular ratio: a longitudinally dissociated atrioventricular node? J Cardiovasc Electrophysiol 2003; 14:316-9. [PMID: 12716118 DOI: 10.1046/j.1540-8167.2003.02378.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report a patient with incessant, exercise-limiting supraventricular tachycardia on the ventricular level and a constant 1:2 atrioventricular relation. Careful mapping of the AV nodal region revealed His alternans in the inferior AV nodal area and nonalternating His morphologies in the superior His region. Radiofrequency catheter ablation in the inferior AV node cured the patient (11-month follow-up). Constant dual ventricular activation, His alternans, distinct His morphologies in the superior and inferior His, and long-term suppression of the tachycardia by ablation in the so-called slow pathway region of the AV node are suggestive of permanent dual anterograde AV nodal conduction in this patient.
Collapse
Affiliation(s)
- Paulus Kirchhof
- Department of Cardiology and Angiology, University Hospital Münster, Münster, Germany.
| | | | | | | |
Collapse
|
38
|
Choi BR, Burton F, Salama G. Cytosolic Ca2+ triggers early afterdepolarizations and Torsade de Pointes in rabbit hearts with type 2 long QT syndrome. J Physiol 2002; 543:615-31. [PMID: 12205194 PMCID: PMC2290501 DOI: 10.1113/jphysiol.2002.024570] [Citation(s) in RCA: 198] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The role of intracellular Ca2+ (Ca2+i) in triggering early afterdepolarizations (EADs), the origins of EADs and the mechanisms underlying Torsade de Pointes (TdP) were investigated in a model of long QT syndrome (Type 2). Perfused rabbit hearts were stained with RH327 and Rhod-2/AM to simultaneously map membrane potential (V(m)) and Ca2+i with two photodiode arrays. The I(Kr) blocker E4031 (0.5 microM) together with 50 % reduction of [K+]o and [Mg2+]o elicited long action potentials (APs), V(m) oscillations on AP plateaux (EADs) then ventricular tachycardia (VT). Cryoablation of both ventricular chambers eliminated Purkinje fibres as sources of EADs. E4031 prolonged APs (0.28 to 2.3 s), reversed repolarization sequences (baseapex) and enhanced repolarization gradients (30 to 230 ms, n = 12) indicating a heterogeneous distribution of I(Kr). At low [K+]o and [Mg2+]o, E4031 elicited spontaneous Ca2+iand V(m) spikes or EADs (3.5 +/- 1.9 Hz) during the AP plateau (n = 6). EADs fired 'out-of-phase' from several sites, propagated, collided then evolved to TdP. Phase maps (Ca2+ivs. V(m)) had counterclockwise trajectories shaped like a 'boomerang' during an AP and like ellipses during EADs, with V(m) preceding Ca2+iby 9.2 +/- 1.4 (n = 6) and 7.2 +/- 0.6 ms (n = 5/6), respectively. After cryoablation, EADs from surviving epicardium (~1 mm) fired at the same frequency (3.4 +/- 0.35 Hz, n = 6) as controls. At the origins of EADs, Ca2+ipreceded V(m) and phase maps traced clockwise ellipses. Away from EAD origins, V(m) coincided with or preceded Ca2+i. In conclusion, overload elicits EADs originating from either ventricular or Purkinje fibres and 'out-of-phase' EAD activity from multiple sites generates TdP, evident in pseudo-ECGs.
Collapse
Affiliation(s)
- Bum-Rak Choi
- University of Pittsburgh, School of Medicine, Department of Cell Biology and Physiology, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
39
|
Brown RC, Davis TP. Calcium modulation of adherens and tight junction function: a potential mechanism for blood-brain barrier disruption after stroke. Stroke 2002; 33:1706-11. [PMID: 12053015 DOI: 10.1161/01.str.0000016405.06729.83] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND This review deals with the role of calcium in endothelial cell junctions of the blood-brain barrier (BBB). Calcium is critical for adherens junction function, but it appears that calcium is also important in regulating tight junction function necessary for the barrier characteristics of cerebral microvessels. SUMMARY OF REVIEW The BBB is critical for brain homeostasis and is located at the cerebral microvessel endothelial cells. These endothelial cells maintain their barrier characteristics via cell-cell contacts made up of adherens and tight junctions. Adherens junctions are calcium dependent; recent evidence suggests that calcium also affects tight junctions. After stroke, there is a disruption of the BBB. Interfering with calcium flux under hypoxic conditions can prevent BBB breakdown. Calcium may alter BBB junction integrity by a number of different signal transduction cascades, as well as via direct interaction of calcium ions with junction proteins. It remains to be determined whether clinical use of calcium channel antagonists is a viable means to reduce BBB disruption after stroke. CONCLUSIONS With the widespread use of calcium channel blockers as clinical treatments for hypertension, which is a risk factor for stroke, the exact role of calcium in modulating BBB integrity needs to be elucidated.
Collapse
Affiliation(s)
- Rachel C Brown
- Department of Pharmacology, University of Arizona College of Medicine, Tucson 85724-5050, USA
| | | |
Collapse
|