1
|
Lang SE, Stevenson TK, Xu D, O'Connell R, Westfall MV. Functionally conservative substitutions at cardiac troponin I S43/45. Arch Biochem Biophys 2016; 601:42-7. [PMID: 26869200 PMCID: PMC4899172 DOI: 10.1016/j.abb.2016.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/13/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
A phospho-null Ala substitution at protein kinase C (PKC)-targeted cardiac troponin I (cTnI) S43/45 reduces myocyte and cardiac contractile function. The goal of the current study was to test whether cTnIS43/45N is an alternative, functionally conservative substitution in cardiac myocytes. Partial and more extensive endogenous cTnI replacement was similar at 2 and 4 days after gene transfer, respectively, for epitope-tagged cTnI and cTnIS43/45N. This replacement did not significantly change thin filament stoichiometry. In functional studies, there were no significant changes in the amplitude and/or rates of contractile shortening and re-lengthening after this partial (2 days) and extensive (4 days) replacement with cTnIS43/45N. The cTnIS43/45N substitution also was not associated with adaptive changes in the myocyte Ca(2+) transient or in phosphorylation of the protein kinase A and C-targeted cTnIS23/24 site. These results provide evidence that cTnIS43/45N is a functionally conservative substitution, and may be appropriate for use as a phospho-null in rodent models designed for studies on PKC modulation of cardiac performance.
Collapse
Affiliation(s)
- Sarah E Lang
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tamara K Stevenson
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dongyang Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryan O'Connell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Margaret V Westfall
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cardiac Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Sheng JJ, Jin JP. TNNI1, TNNI2 and TNNI3: Evolution, regulation, and protein structure-function relationships. Gene 2015; 576:385-94. [PMID: 26526134 DOI: 10.1016/j.gene.2015.10.052] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/21/2015] [Accepted: 10/20/2015] [Indexed: 12/11/2022]
Abstract
Troponin I (TnI) is the inhibitory subunit of the troponin complex in the sarcomeric thin filament of striated muscle and plays a central role in the calcium regulation of contraction and relaxation. Vertebrate TnI has evolved into three isoforms encoded by three homologous genes: TNNI1 for slow skeletal muscle TnI, TNNI2 for fast skeletal muscle TnI and TNNI3 for cardiac TnI, which are expressed under muscle type-specific and developmental regulations. To summarize the current knowledge on the TnI isoform genes and products, this review focuses on the evolution, gene regulation, posttranslational modifications, and structure-function relationship of TnI isoform proteins. Their physiological and medical significances are also discussed.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Wijnker PJM, Sequeira V, Witjas-Paalberends ER, Foster DB, dos Remedios CG, Murphy AM, Stienen GJM, van der Velden J. Phosphorylation of protein kinase C sites Ser42/44 decreases Ca(2+)-sensitivity and blunts enhanced length-dependent activation in response to protein kinase A in human cardiomyocytes. Arch Biochem Biophys 2014; 554:11-21. [PMID: 24814372 PMCID: PMC4121669 DOI: 10.1016/j.abb.2014.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC)-mediated phosphorylation of troponin I (cTnI) at Ser42/44 is increased in heart failure. While studies in rodents demonstrated that PKC-mediated Ser42/44 phosphorylation decreases maximal force and ATPase activity, PKC incubation of human cardiomyocytes did not affect maximal force. We investigated whether Ser42/44 pseudo-phosphorylation affects force development and ATPase activity using troponin exchange in human myocardium. Additionally, we studied if pseudo-phosphorylated Ser42/44 modulates length-dependent activation of force, which is regulated by protein kinase A (PKA)-mediated cTnI-Ser23/24 phosphorylation. Isometric force was measured in membrane-permeabilized cardiomyocytes exchanged with human recombinant wild-type troponin or troponin mutated at Ser42/44 or Ser23/24 into aspartic acid (D) or alanine (A) to mimic phosphorylation and dephosphorylation, respectively. In troponin-exchanged donor cardiomyocytes experiments were repeated after PKA incubation. ATPase activity was measured in troponin-exchanged cardiac muscle strips. Compared to wild-type, 42D/44D decreased Ca(2+)-sensitivity without affecting maximal force in failing and donor cardiomyocytes. In donor myocardium, 42D/44D did not affect maximal ATPase activity or tension cost. Interestingly, 42D/44D blunted the length-dependent increase in Ca(2+)-sensitivity induced upon PKA-mediated phosphorylation. Since the drop in Ca(2+)-sensitivity at physiological Ca(2+)-concentrations is relatively large phosphorylation of Ser42/44 may result in a decrease of force and associated ATP utilization in the human heart.
Collapse
Affiliation(s)
- Paul J M Wijnker
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Experimental Pharmacology and Toxicology, Cardiovascular Research Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Vasco Sequeira
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - E Rosalie Witjas-Paalberends
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands.
| | - D Brian Foster
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | | - Anne M Murphy
- Department of Pediatrics/Division of Cardiology, Johns Hopkins University School of Medicine, Ross Bldg 1144/720 Rutland Avenue, Baltimore, MD 21205, USA.
| | - Ger J M Stienen
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands.
| | - Jolanda van der Velden
- Laboratory for Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands; ICIN-Netherlands Heart Institute, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Sheng JJ, Jin JP. Gene regulation, alternative splicing, and posttranslational modification of troponin subunits in cardiac development and adaptation: a focused review. Front Physiol 2014; 5:165. [PMID: 24817852 PMCID: PMC4012202 DOI: 10.3389/fphys.2014.00165] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/10/2014] [Indexed: 12/19/2022] Open
Abstract
Troponin plays a central role in regulating the contraction and relaxation of vertebrate striated muscles. This review focuses on the isoform gene regulation, alternative RNA splicing, and posttranslational modifications of troponin subunits in cardiac development and adaptation. Transcriptional and posttranscriptional regulations such as phosphorylation and proteolysis modifications, and structure-function relationships of troponin subunit proteins are summarized. The physiological and pathophysiological significances are discussed for impacts on cardiac muscle contractility, heart function, and adaptations in health and diseases.
Collapse
Affiliation(s)
- Juan-Juan Sheng
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| | - Jian-Ping Jin
- Department of Physiology, Wayne State University School of Medicine Detroit, MI, USA
| |
Collapse
|
5
|
The art of the deal in myofilament modulation of function. J Mol Cell Cardiol 2014; 72:238-40. [PMID: 24732213 DOI: 10.1016/j.yjmcc.2014.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 10/25/2022]
|
6
|
Katrukha IA. Human cardiac troponin complex. Structure and functions. BIOCHEMISTRY (MOSCOW) 2014; 78:1447-65. [DOI: 10.1134/s0006297913130063] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Manning JR, Perkins SO, Sinclair EA, Gao X, Zhang Y, Newman G, Pyle WG, Schultz JEJ. Low molecular weight fibroblast growth factor-2 signals via protein kinase C and myofibrillar proteins to protect against postischemic cardiac dysfunction. Am J Physiol Heart Circ Physiol 2013; 304:H1382-96. [PMID: 23479264 DOI: 10.1152/ajpheart.00613.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Among its many biological roles, fibroblast growth factor-2 (FGF2) acutely protects the heart from dysfunction associated with ischemia/reperfusion (I/R) injury. Our laboratory has demonstrated that this is due to the activity of the low molecular weight (LMW) isoform of FGF2 and that FGF2-mediated cardioprotection relies on the activity of protein kinase C (PKC); however, which PKC isoforms are responsible for LMW FGF2-mediated cardioprotection, and their downstream targets, remain to be elucidated. To identify the PKC pathway(s) that contributes to postischemic cardiac recovery by LMW FGF2, mouse hearts expressing only LMW FGF2 (HMWKO) were bred to mouse hearts not expressing PKCα (PKCαKO) or subjected to a selective PKCε inhibitor (εV(1-2)) before and during I/R. Hearts only expressing LMW FGF2 showed significantly improved postischemic recovery of cardiac function following I/R (P < 0.05), which was significantly abrogated in the absence of PKCα (P < 0.05) or presence of PKCε inhibition (P < 0.05). Hearts only expressing LMW FGF2 demonstrated differences in actomyosin ATPase activity as well as increases in the phosphorylation of troponin I and T during I/R compared with wild-type hearts; several of these effects were dependent on PKCα activity. This evidence indicates that both PKCα and PKCε play a role in LMW FGF2-mediated protection from cardiac dysfunction and that PKCα signaling to the contractile apparatus is a key step in the mechanism of LMW FGF2-mediated protection against myocardial dysfunction.
Collapse
Affiliation(s)
- Janet R Manning
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Myofilament incorporation and contractile function after gene transfer of cardiac troponin I Ser43/45Ala. Arch Biochem Biophys 2013; 535:49-55. [PMID: 23318976 DOI: 10.1016/j.abb.2012.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 12/21/2012] [Accepted: 12/23/2012] [Indexed: 11/23/2022]
Abstract
Phosphorylation of cardiac troponin I serines 43/45 (cTnISer43/45) by protein kinase C (PKC) is associated with cardiac dysfunction and yet there is disagreement about the role this cluster plays in modulating contractile performance. The present study evaluates the impact of phospho-null Ala substitutions at Ser43/45 (cTnISer43/45Ala) on contractile performance in intact myocytes. Viral-based gene transfer of cardiac troponin I (cTnI) or cTnISer43/45Ala resulted in time-dependent increases in expression, with 70-80% of endogenous cTnI replaced within 4days. Western analysis of intact and permeabilized myocytes along with immunohistochemistry showed each exogenous cTnI was incorporated into the sarcomere of myocytes. In contractile function studies, there were no differences in shortening and re-lengthening for cTnI and cTnISer43/45Ala-expressing myocytes 2days after gene transfer. However, more extensive replacement with cTnISer43/45Ala after 4days diminished peak shortening amplitude and accelerated re-lengthening measured as the time to 50% re-lengthening (TTR50%). A decrease in myofilament Ca(2+) sensitivity of tension also was observed in permeabilized myocytes expressing cTnISer43/45Ala and is consistent with accelerated re-lengthening observed in intact myocytes under basal conditions. Phosphorylation of cTnI Ser23/24 and the Ca(2+) transient were not changed in these myocytes. These results demonstrate extensive sarcomere expression of cTnISer43/45Ala directly modulates myofilament function under basal conditions. In further work, the accelerated re-lengthening observed in control or cTnI-expressing myocytes treated with the PKC agonist, endothelin-1 (ET, 10nM) was slowed in myocytes expressing cTnISer43/45Ala. This outcome may indicate Ser43/45 is targeted for phosphorylation by ET-activated PKC and/or influences transduction of this agonist-activated response.
Collapse
|
9
|
Akki A, Gupta A, Weiss RG. Magnetic resonance imaging and spectroscopy of the murine cardiovascular system. Am J Physiol Heart Circ Physiol 2013; 304:H633-48. [PMID: 23292717 DOI: 10.1152/ajpheart.00771.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Magnetic resonance imaging (MRI) has emerged as a powerful and reliable tool to noninvasively study the cardiovascular system in clinical practice. Because transgenic mouse models have assumed a critical role in cardiovascular research, technological advances in MRI have been extended to mice over the last decade. These have provided critical insights into cardiac and vascular morphology, function, and physiology/pathophysiology in many murine models of heart disease. Furthermore, magnetic resonance spectroscopy (MRS) has allowed the nondestructive study of myocardial metabolism in both isolated hearts and in intact mice. This article reviews the current techniques and important pathophysiological insights from the application of MRI/MRS technology to murine models of cardiovascular disease.
Collapse
Affiliation(s)
- Ashwin Akki
- Division of Cardiology, Department of Medicine, and Division of Magnetic Resonance Research, Department of Radiology, The Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
10
|
Different roles for contracture and calpain in calcium paradox-induced heart injury. PLoS One 2012; 7:e52270. [PMID: 23284963 PMCID: PMC3527529 DOI: 10.1371/journal.pone.0052270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
The Ca(2+) paradox represents a good model to study Ca(2+) overload injury in ischemic heart diseases. We and others have demonstrated that contracture and calpain are involved in the Ca(2+) paradox-induced injury. This study aimed to elucidate their roles in this model. The Ca(2+) paradox was elicited by perfusing isolated rat hearts with Ca(2+)-free KH media for 3 min or 5 min followed by 30 min of Ca(2+) repletion. The LVDP was measured to reflect contractile function, and the LVEDP was measured to indicate contracture. TTC staining and the quantification of LDH release were used to define cell death. Calpain activity and troponin I release were measured after Ca(2+) repletion. Ca(2+) repletion of the once 3-min Ca(2+) depleted hearts resulted in almost no viable tissues and the disappearance of contractile function. Compared to the effects of the calpain inhibitor MDL28170, KB-R7943, an inhibitor of the Na(+)/Ca(2+) exchanger, reduced the LVEDP level to a greater extent, which was well correlated with improved contractile function recovery and tissue survival. The depletion of Ca(2+) for 5 min had the same effects on injury as the 3-min Ca(2+) depletion, except that the LVEDP in the 5-min Ca(2+) depletion group was lower than the level in the 3-min Ca(2+) depletion group. KB-R7943 failed to reduce the level of LVEDP, with no improvement in the LVDP recovery in the hearts subjected to the 5-min Ca(2+) depletion treatment; however, KB-R7943 preserved its protective effects in surviving tissue. Both KB-R7943 and MDL28170 attenuated the Ca(2+) repletion-induced increase in calpain activity in 3 min or 5 min Ca(2+) depleted hearts. However, only KB-R7943 reduced the release of troponin I from the Ca(2+) paradoxic heart. These results provide evidence suggesting that contracture is the main cause for contractile dysfunction, while activation of calpain mediates cell death in the Ca(2+) paradox.
Collapse
|
11
|
Jin W, Brown AT, Murphy AM. Cardiac myofilaments: from proteome to pathophysiology. Proteomics Clin Appl 2012; 2:800-10. [PMID: 21136880 DOI: 10.1002/prca.200780075] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review addresses the functional consequences of altered post-translational modifications of cardiac myofilament proteins in cardiac diseases such as heart failure and ischemia. The modifications of thick and thin filament proteins as well as titin are addressed. Understanding the functional consequences of altered protein modifications is an essential step in the development of targeted therapies for common cardiac diseases.
Collapse
Affiliation(s)
- Wenhai Jin
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
12
|
Constantinides C, Angeli SI, Mean RJ. Murine cardiac catheterizations and hemodynamics: on the issue of parallel conductance. IEEE Trans Biomed Eng 2011; 58:3260-8. [PMID: 21900070 DOI: 10.1109/tbme.2011.2167147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Catheter-based measurements are extensively used nowadays in animal models to quantify global left ventricular (LV) cardiac function and hemodynamics. Conductance catheter measurements yield estimates of LV volumes. Such estimates, however, are confounded by the catheter's nonhomogeneous emission field and the contribution to the total conductance of surrounding tissue or blood conductance values (other than LV blood), a term often known as parallel conductance. In practice, in most studies, volume estimates are based on the assumptions that the catheter's electric field is homogeneous and that parallel conductance is constant, despite prior results showing that these assumptions are incorrect. This study challenges the assumption for spatial homogeneity of electric field excitation of miniature catheters and investigated the electric field distribution of miniature catheters in the murine heart, based on cardiac model-driven (geometric, lump component) simulations and noninvasive imaging, at both systolic and diastolic cardiac phases. Results confirm the nonuniform catheter emission field, confined spatially within the LV cavity and myocardium, falling to 10% of its peak value at the ring electrode surface, within 1.1-2.0 mm, given a relative tissue permittivity of 33,615. Additionally, <1% of power leaks were observed into surrounding cavities or organs at end-diastole. Temporally varying parallel conductance effects are also confirmed, becoming more prominent at end-systole.
Collapse
|
13
|
Kirk JA, MacGowan GA, Evans C, Smith SH, Warren CM, Mamidi R, Chandra M, Stewart AFR, Solaro RJ, Shroff SG. Left ventricular and myocardial function in mice expressing constitutively pseudophosphorylated cardiac troponin I. Circ Res 2009; 105:1232-9. [PMID: 19850940 DOI: 10.1161/circresaha.109.205427] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Protein kinase (PK)C-induced phosphorylation of cardiac troponin (cTn)I has been shown to regulate cardiac contraction. OBJECTIVE Characterize functional effects of increased PKC-induced cTnI phosphorylation and identify underlying mechanisms using a transgenic mouse model (cTnI(PKC-P)) expressing mutant cTnI (S43E, S45E, T144E). METHODS AND RESULTS Two-dimensional gel analysis showed 7.2+/-0.5% replacement of endogenous cTnI with the mutant form. Experiments included: mechanical measurements (perfused isolated hearts, isolated papillary muscles, and skinned fiber preparations), biochemical and molecular biological measurements, and a mathematical model-based analysis for integrative interpretation. Compared to wild-type mice, cTnI(PKC-P) mice exhibited negative inotropy in isolated hearts (14% decrease in peak developed pressure), papillary muscles (53% decrease in maximum developed force), and skinned fibers (14% decrease in maximally activated force, F(max)). Additionally, cTnI(PKC-P) mice exhibited slowed relaxation in both isolated hearts and intact papillary muscles. The cTnI(PKC-P) mice showed no differences in calcium sensitivity, cooperativity, steady-state force-MgATPase relationship, calcium transient (amplitude and relaxation), or baseline phosphorylation of other myofilamental proteins. The model-based analysis revealed that experimental observations in cTnI(PKC-P) mice could be reproduced by 2 simultaneous perturbations: a decrease in the rate of cross-bridge formation and an increase in calcium-independent persistence of the myofilament active state. CONCLUSIONS A modest increase in PKC-induced cTnI phosphorylation ( approximately 7%) can significantly alter cardiac muscle contraction: negative inotropy via decreased cross-bridge formation and negative lusitropy via persistence of myofilament active state. Based on our data and data from the literature we speculate that effects of PKC-mediated cTnI phosphorylation are site-specific (S43/S45 versus T144).
Collapse
Affiliation(s)
- Jonathan A Kirk
- Cardiovascular Systems Laboratory, Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Walker LA, Walker JS, Ambler SK, Buttrick PM. Stage-specific changes in myofilament protein phosphorylation following myocardial infarction in mice. J Mol Cell Cardiol 2009; 48:1180-6. [PMID: 19799909 DOI: 10.1016/j.yjmcc.2009.09.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 09/18/2009] [Indexed: 11/18/2022]
Abstract
The response of cardiac muscle to an insult such as myocardial infarction includes changes in the expression of numerous signaling proteins and modulation of gene expression, as well as post-translational modifications of existing proteins. Most studies to date have defined these in end-stage cardiac muscle thus obviating consideration of the temporal progression that causes the heart to transition from a compensated to a decompensated phenotype. To explore these transitions, we examined contractile protein biochemistry in a mouse MI model at two early time points: 2 days and 2 weeks post-infarct and at two later time points: 2 and 4 months post-infarct. Phosphorylation of myofilament proteins was analyzed using phosphospecific staining of polyacrylamide gels, and whenever possible, phosphospecific antibodies. Phosphorylation of myosin binding protein c, the myosin regulatory light chain and troponin I were all decreased relative to sham operated animals at both early time points. However, by 2 months, total phosphorylation of all the major myofilament proteins normalized and at both 2 and 4 months, there was a significant increase in troponin I phosphorylation. One-dimensional IEF of troponin I coupled with phospho-specific antibody analysis demonstrated a redistribution of phosphorylation sites with a significant initial decline at the putative PKA sites, Serine 22,23, and a subsequent increase at the putative PKC site, serine 43,45. These data suggest that temporal changes in myofilament protein phosphorylation contribute both to the initial compensatory hyperdynamic response to myocardial infarction and subsequently to the gradual progression to myocardial failure.
Collapse
Affiliation(s)
- Lori A Walker
- University of Colorado Health Sciences Center, Department of Medicine/Cardiology, Aurora, CO 80045, USA.
| | | | | | | |
Collapse
|
15
|
Engel PL, Hinken A, Solaro RJ. Differential effects of phosphorylation of regions of troponin I in modifying cooperative activation of cardiac thin filaments. J Mol Cell Cardiol 2009; 47:359-64. [PMID: 19426736 DOI: 10.1016/j.yjmcc.2009.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/24/2009] [Accepted: 04/28/2009] [Indexed: 12/20/2022]
Abstract
Ischemia and heart failure are associated with protein kinase C (PKC) dependent phosphorylation of cardiac troponin I (cTnI). We investigated the effect of phosphorylation of cTnI PKC sites S43, S45 and T144 under normal (pH 7.0) and acidic (pH 6.5) conditions on tension in skinned fiber bundles from a mouse heart. To mimic the PKC phosphorylation, we exchanged troponin (cTn) in these fiber bundles with cTn complex containing either cTnI-(S43E/S45E) or cTnI-(T144E). We determined how pseudo-phosphorylation and acidic pH affect activation of thin filaments by strongly bound crossbridges by use of n-ethyl maleimide (NEM-S1) to mimic rigor. We hypothesized that PKC phosphorylation of cTnI amplifies the effect of ischemic/hypoxic conditions to depress myofilament force and Ca(2+)-responsiveness by reducing the ability of rigor crossbridge to activate force. Pseudo-phosphorylation of cTnI at S43/S45 exacerbated the effect of acidic pH to induce a rightward shift in the Ca(2+)-tension relation. Under acidic conditions, fibers regulated by cTnI-(S43E/S45E) demonstrated a significant reduction in the ability of NEM-S1 to recruit cycling crossbridges, when compared to controls regulated by cTnI. Similar effects of pseudo-phosphorylation of cTnI-(T144) occurred, but to a lesser extent that those of pseudo-phosphorylation of S43/S45. We conclude that under acidic conditions PKC phosphorylation of cTnI residues at S43/S45 and at T144 is likely to have differential, but significant effects in depressing the ability of both Ca(2+) and rigor crossbridges to activate force generation. Although these effects of PKC dependent phosphorylation may be maladaptive in heart failure, they may also spare ATP consumption and be cardio-protective in ischemia.
Collapse
Affiliation(s)
- Patti L Engel
- Department of Physiology and Biophysics M/C 901, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
16
|
Reichelt ME, Willems L, Hack BA, Peart JN, Headrick JP. Cardiac and coronary function in the Langendorff-perfused mouse heart model. Exp Physiol 2008; 94:54-70. [DOI: 10.1113/expphysiol.2008.043554] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
D'Souza KM, Petrashevskaya NN, Merrill WH, Akhter SA. Inhibition of protein kinase C alpha improves myocardial beta-adrenergic receptor signaling and ventricular function in a model of myocardial preservation. J Thorac Cardiovasc Surg 2008; 135:172-9, 179.e1. [PMID: 18179937 DOI: 10.1016/j.jtcvs.2007.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/23/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
Abstract
OBJECTIVE The specific effect of protein kinase C alpha, the primary ventricular calcium-dependent protein kinase C isoform, on myocardial protection is unclear. The objective of this study was to determine the role of protein kinase C alpha in myocardial protection and recovery of function after cardioplegic arrest, cold preservation, and normothermic reperfusion, as relevant to cardiac transplantation. METHODS We used an ex vivo murine model, and hearts were arrested with cold crystalloid cardioplegia or saline as a control and maintained at 4 degrees C for 4 hours. This was followed by normothermic reperfusion for 90 minutes. Transgenic hearts with cardiac-specific activation or inhibition of protein kinase C alpha were then studied to specifically examine the effects of protein kinase C alpha on myocardial preservation in this model. RESULTS Cardioplegic arrest with University of Wisconsin solution led to significantly improved postreperfusion hemodynamics and inhibition of myocardial protein kinase C alpha activity relative to that seen in saline-treated control hearts. Beta-adrenergic receptor signaling was also preserved with University of Wisconsin solution. Transgenic hearts with enhanced protein kinase C alpha activity had poor postreperfusion hemodynamics, impaired beta-adrenergic receptor signaling, and increased G protein-coupled receptor kinase 2 activity compared with those seen in nontransgenic control hearts. In contrast, transgenic hearts with inhibited protein kinase C alpha activity had even better myocardial protection relative to control hearts and preserved beta-adrenergic receptor signaling. CONCLUSIONS Current techniques of myocardial preservation are associated with inhibition of protein kinase C alpha activity and maintenance of intact beta-adrenergic receptor signaling. Activation of protein kinase C alpha leads to enhanced beta-adrenergic receptor desensitization and impaired signaling and ventricular function as a result of increased G protein-coupled receptor kinase 2 activity. This is a novel in vivo mechanism of G protein-coupled receptor kinase 2 activation. Strategies to specifically inhibit these kinases might improve long-term myocardial protection.
Collapse
Affiliation(s)
- Karen M D'Souza
- Department of Surgery, Section of Cardiothoracic Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
18
|
Murphy AM. Heart failure, myocardial stunning, and troponin: a key regulator of the cardiac myofilament. ACTA ACUST UNITED AC 2006; 12:32-8; quiz 39-40. [PMID: 16470090 DOI: 10.1111/j.1527-5299.2006.04320.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review discusses post-translational modifications of myofilament regulatory proteins, particularly troponin, associated with heart failure and myocardial stunning--two common disease processes. Altered phosphorylation, partial proteolysis and, possibly, oxidative damage to myofilament proteins may result in abnormalities in both systolic and diastolic function. At a molecular level, these changes may lead to abnormalities in crossbridge cycling and tension development and result in inefficiencies in utilization of energy. Understanding these alterations may lead to new targeted therapies.
Collapse
Affiliation(s)
- Anne M Murphy
- Cardiology Division, Department of Pediatrics, Johns Hopkins University School of Medicine, Ross Building 1144, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|
19
|
MacGowan GA. The myofilament force-calcium relationship as a target for positive inotropic therapy in congestive heart failure. Cardiovasc Drugs Ther 2006; 19:203-10. [PMID: 16142598 DOI: 10.1007/s10557-005-2465-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To-date positive inotropic therapy in the treatment of congestive heart failure has resulted in adverse effects on long term survival. These agents increase calcium cycling through beta-adrenergic stimulation or phosphodiesterase inhibition. An alternative method of producing positive inotropy is to increase the myofilament sensitivity to calcium. This can occur at several levels within the myofilament, and has potential benefits with respect to avoiding increased calcium cycling and producing a more favourable energy efficient positive inotropy. A potential adverse effect of increasing calcium sensitivity is slowed relaxation and diastolic dysfunction. We have learnt a considerable amount about the function of specific sites within the myofilament by the use of genetically engineered mouse models, which have shown diverse effects of various myofilament sites on global left ventricular function. Levosimendan is a novel inotropic agent that has several mechanisms of action including calcium sensitization, and is undergoing clinical trials at present. This review article will provide a comprehensive molecular, biophysical and physiological insight into the concepts underlying the myofilament force-calcium relationship and its potential as a target for positive inotropic therapy in heart failure.
Collapse
Affiliation(s)
- Guy A MacGowan
- Dept of Cardiology, Freeman Hospital and University of Newcastle upon Tyne, Newcastle upon Tyne NE7 7DN, United Kingdom.
| |
Collapse
|
20
|
Law WR, Ross JD, Jonjev ZS. Adenosine attenuates C-terminal but not N-terminal proteolysis of cTnI during cardioplegic arrest. J Surg Res 2005; 123:126-33. [PMID: 15652960 DOI: 10.1016/j.jss.2004.06.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 11/19/2022]
Abstract
BACKGROUND Specific site proteolysis and loss of troponin I (TnI) during myocardial ischemic events can contribute to myocardial dysfunction. Adenosine supplementation of cardioplegic solutions results in improved functional preservation of the heart. We investigated the effect of adenosine on N-terminal and C-terminal proteolysis of TnI in the heart. MATERIALS AND METHODS Hearts from male Sprague-Dawley rats were isolated and perfused at a constant pressure. Cardioplegic arrest (St. Thomas #2 +/- 100 microm adenosine) was induced and hearts frozen at various times during the arrest. Antibodies directed against specific regions of TnI were used to visualize TnI in whole heart homogentates, as well as from cellular fractions, using western blot analysis. RESULTS Cardioplegic arrest alone resulted in early N-terminal proteolysis of TnI, followed by later loss of sequences from the C-terminal end of the molecule. In addition, secondary protein bands that were immunoreactive to amino acid sequences centrally located on the TnI molecule were observed. There was also evidence of dissociation of TnI from the other myofibrillar proteins. The supplementation of cardioplegic solution with adenosine significantly attenuated the late C-terminal proteolytic degradation of TnI and its apparent dissociation from myofibrils proteins but had no effect on the early N-terminal proteolysis associated with cardioplegic arrest. CONCLUSIONS These data may provide an explanation for partial protection against postarrest myocardial dysfunction provided by adenosine.
Collapse
Affiliation(s)
- William R Law
- West Side Veterans Administration Medical Center, Research Service, Chicago, Illinois, USA.
| | | | | |
Collapse
|
21
|
MacGowan GA, Rager J, Shroff SG, Mathier MA. In vivo alpha-adrenergic responses and troponin I phosphorylation: anesthesia interactions. J Appl Physiol (1985) 2004; 98:1163-70. [PMID: 15579573 DOI: 10.1152/japplphysiol.00959.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which alpha-adrenergic stimulation of the heart in vivo can cause contractile dysfunction are not well understood. We hypothesized that alpha-adrenergic-mediated contractile dysfunction is mediated through protein kinase C phosphorylation of troponin I, which in in vitro experiments has been shown to reduce actomyosin Mg-ATPase activity. We studied pressure-volume loops in transgenic mice expressing mutant troponin I lacking protein kinase C phosphorylation sites and hypothesized altered responses to phenylephrine. As anesthesia agents can produce markedly different effects on contractility, we studied two agents: avertin and alpha-chloralose-urethane. With alpha-chloralose-urethane, at baseline, there were no contractile abnormalities in the troponin I mutants. Phenylephrine produced a 50% reduction in end-systolic elastance in wild-type controls, although a 9% increase in troponin I mutants (P <0.05). Avertin was associated with reduced contractility compared with alpha-chloralose-urethane. Avertin anesthesia, at baseline, produced a reduction in end-systolic elastance by 31% in the troponin I mutants compared with wild-type (P <0.05), and this resulted in further marked systolic and diastolic dysfunction with phenylephrine in the troponin I mutants. Dobutamine produced no significant difference in the contractile phenotype of the transgenic mice with either anesthetic regimen. In conclusion, these data (alpha-chloralose-urethane) demonstrate that alpha-adrenergic-mediated force reduction is mediated through troponin I protein kinase C phosphorylation. beta-Adrenergic responses are not mediated through this pathway. Altering the myofilament force-calcium relationship may result in in vivo increased sensitivity to negative inotropy. Thus choice of a negative inotropic anesthetic agent (avertin) with phenylephrine can lead to profound contractile dysfunction.
Collapse
Affiliation(s)
- Guy A MacGowan
- Freeman Hospital, Dept of Cardiology, Newcastle upon Tyne NE7 7DN, UK.
| | | | | | | |
Collapse
|
22
|
Metzger JM, Westfall MV. Covalent and noncovalent modification of thin filament action: the essential role of troponin in cardiac muscle regulation. Circ Res 2004; 94:146-58. [PMID: 14764650 DOI: 10.1161/01.res.0000110083.17024.60] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Troponin is essential for the regulation of cardiac contraction. Troponin is a sarcomeric molecular switch, directly regulating the contractile event in concert with intracellular calcium signals. Troponin isoform switching, missense mutations, proteolytic cleavage, and posttranslational modifications are known to directly affect sarcomeric regulation. This review focuses on physiologically relevant covalent and noncovalent modifications in troponin as part of a thematic series on cardiac thin filament function in health and disease.
Collapse
Affiliation(s)
- Joseph M Metzger
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Mich 48109, USA.
| | | |
Collapse
|
23
|
Roman BB, Goldspink PH, Spaite E, Urboniene D, McKinney R, Geenen DL, Solaro RJ, Buttrick PM. Inhibition of PKC phosphorylation of cTnI improves cardiac performance in vivo. Am J Physiol Heart Circ Physiol 2004; 286:H2089-95. [PMID: 14726296 DOI: 10.1152/ajpheart.00582.2003] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC) modulates cardiomyocyte function by phosphorylation of intracellular targets including myofilament proteins. Data generated from studies on in vitro heart preparations indicate that PKC phosphorylation of troponin I (TnI), primarily via PKC-epsilon, may slow the rates of cardiac contraction and relaxation (+dP/dt and -dP/dt). To explore this issue in vivo, we employed transgenic mice [mutant TnI (mTnI) mice] in which the major PKC phosphorylation sites on cardiac TnI were mutated by alanine substitutions for Ser(43) and Ser(45) and studied in situ hemodynamics at baseline and increased inotropy. Hearts from mTnI mice exhibited increased contractility, as shown by a 30% greater +dP/dt and 18% greater -dP/dt than FVB hearts, and had a negligible response to isoproterenol compared with FVB mice, in which +dP/dt increased by 33% and -dP/dt increased by 26%. Treatment with phenylephrine and propranolol gave a similar result; FVB mouse hearts demonstrated a 20% increase in developed pressure, whereas mTnI mice showed no response. Back phosphorylation of TnI from mTnI hearts demonstrated that the mutation of the PKC sites was associated with an enhanced PKA-dependent phosphorylation independent of a change in basal cAMP levels. Our results demonstrate the important role that PKC-dependent phosphorylation of TnI has on the modulation of cardiac function under basal as well as augmented states and indicate interdependence of the phosphorylation sites of TnI in hearts beating in situ.
Collapse
Affiliation(s)
- Brian B Roman
- Section of Cardiology, University of Illinois, 840 S. Wood Street (M/C 715), Chicago, IL 60612, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Said M, Vittone L, Mundina-Weilenmann C, Ferrero P, Kranias EG, Mattiazzi A. Role of dual-site phospholamban phosphorylation in the stunned heart: insights from phospholamban site-specific mutants. Am J Physiol Heart Circ Physiol 2003; 285:H1198-205. [PMID: 12763747 DOI: 10.1152/ajpheart.00209.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phosphorylation of phospholamban (PLB) at Ser16 (protein kinase A site) and at Thr17 [Ca2+/calmodulin kinase II (CaMKII) site] increases sarcoplasmic reticulum Ca2+ uptake and myocardial contractility and relaxation. In perfused rat hearts submitted to ischemia-reperfusion, we previously showed an ischemia-induced Ser16 phosphorylation that was dependent on beta-adrenergic stimulation and an ischemia and reperfusion-induced Thr17 phosphorylation that was dependent on Ca2+ influx. To elucidate the relationship between these two PLB phosphorylation sites and postischemic mechanical recovery, rat hearts were submitted to ischemia-reperfusion in the absence and presence of the CaMKII inhibitor KN-93 (1 microM) or the beta-adrenergic blocker dl-propranolol (1 microM). KN-93 diminished the reperfusion-induced Thr17 phosphorylation and depressed the recovery of contraction and relaxation after ischemia. dl-Propranolol decreased the ischemia-induced Ser16 phosphorylation but failed to modify the contractile recovery. To obtain further insights into the functional role of the two PLB phosphorylation sites in postischemic mechanical recovery, transgenic mice expressing wild-type PLB (PLB-WT) or PLB mutants in which either Thr17 or Ser16 were replaced by Ala (PLB-T17A and PLB-S16A, respectively) into the PLB-null background were used. Both PLB mutants showed a lower contractile recovery than PLB-WT. However, this recovery was significantly impaired all along reperfusion in PLB-T17A, whereas it was depressed only at the beginning of reperfusion in PLB-S16A. Moreover, the recovery of relaxation was delayed in PLB-T17A, whereas it did not change in PLB-S16A, compared with PLB-WT. These findings indicate that, although both PLB phosphorylation sites are involved in the mechanical recovery after ischemia, Thr17 appears to play a major role.
Collapse
Affiliation(s)
- M Said
- Centro de Investigaciones Cardiovasculares, Facultad de Ciencias Médicas 60 y 120, 1900 La Plata, Argentina.
| | | | | | | | | | | |
Collapse
|
25
|
Burkart EM, Sumandea MP, Kobayashi T, Nili M, Martin AF, Homsher E, Solaro RJ. Phosphorylation or glutamic acid substitution at protein kinase C sites on cardiac troponin I differentially depress myofilament tension and shortening velocity. J Biol Chem 2003; 278:11265-72. [PMID: 12551921 DOI: 10.1074/jbc.m210712200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
There is evidence that multi-site phosphorylation of cardiac troponin I (cTnI) by protein kinase C is important in both long- and short-term regulation of cardiac function. To determine the specific functional effects of these phosphorylation sites (Ser-43, Ser-45, and Thr-144), we measured tension and sliding speed of thin filaments in reconstituted preparations in which endogenous cTnI was replaced with cTnI phosphorylated by protein kinase C-epsilon or mutated to cTnI-S43E/S45E/T144E, cTnI-S43E/S45E, or cTnI-T144E. We used detergent-skinned mouse cardiac fiber bundles to measure changes in Ca(2+)-dependence of force. Compared with controls, fibers reconstituted with phosphorylated cTnI, cTnI-S43E/S45E/T144E, or cTnI-S43E/S45E were desensitized to Ca(2+), and maximum tension was as much as 27% lower, whereas fibers reconstituted with cTnI-T144E showed no change. In the in vitro motility assay actin filaments regulated by troponin complexes containing phosphorylated cTnI or cTnI-S43E/S45E/T144E showed both a decrease in Ca(2+) sensitivity and maximum sliding speed compared with controls, whereas filaments regulated by cTnI-S43E/S45E showed only decreased maximum sliding speed and filaments regulated by cTnI-T144E demonstrated only desensitization to Ca(2+). Our results demonstrate novel site specificity of effects of PKC phosphorylation on cTnI function and emphasize the complexity of modulation of the actin-myosin interaction by specific changes in the thin filament.
Collapse
Affiliation(s)
- Eileen M Burkart
- University of Illinois at Chicago, Department of Physiology and Biophysics, Program in Cardiovascular Sciences, College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ Res 2003; 92:428-36. [PMID: 12600890 DOI: 10.1161/01.res.0000059562.91384.1a] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and high incidence of sudden death, despite causing little or no cardiac hypertrophy in patients. Transgenic mice expressing mutant human TnT (I79N-Tg) have increased cardiac contractility, but no ventricular hypertrophy or fibrosis. Enhanced cardiac function has been associated with myofilament Ca2+ sensitization, suggesting altered cellular Ca2+ handling. In the present study, we compare cellular Ca2+ transients and electrophysiological parameters of 64 I79N-Tg and 106 control mice in isolated myocytes, isolated perfused hearts, and whole animals. Ventricular action potentials (APs) measured in isolated I79N-Tg hearts and myocytes were significantly shortened only at 70% repolarization. No significant differences were found either in L-type Ca2+ or transient outward K+ currents, but inward rectifier K+ current (IK1) was significantly decreased. More critically, Ca2+ transients of field-stimulated ventricular I79N-Tg myocytes were reduced and had slow decay kinetics, consistent with increased Ca2+ sensitivity of I79N mutant fibers. AP differences were abolished when myocytes were dialyzed with Ca2+ buffers or after the Na+-Ca2+ exchanger was blocked by Li+. At higher pacing rates or in presence of isoproterenol, diastolic Ca2+ became significantly elevated in I79N-Tg compared with control myocytes. Ventricular ectopy could be induced by isoproterenol-challenge in isolated I79N-Tg hearts and anesthetized I79N-Tg mice. Freely moving I79N-Tg mice had a higher incidence of nonsustained ventricular tachycardia (VT) during mental stress (warm air jets). We conclude that the TnT-I79N mutation causes stress-induced VT even in absence of hypertrophy and/or fibrosis, arising possibly from the combination of AP remodeling related to altered Ca2+ transients and suppression of IK1.
Collapse
Affiliation(s)
- Björn C Knollmann
- Department of Pharmacology, Georgetown University Medical Center, 3900 Reservoir Rd, N.W., Washington, DC 20007, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Solaro RJ. The Special Structure and Function of Troponin I in Regulation of Cardiac Contraction and Relaxation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 538:389-401; discussion 401-2. [PMID: 15098685 DOI: 10.1007/978-1-4419-9029-7_36] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In this chapter I review evidence for a pivotal role of the sarcomeric thin filament protein, troponin I, in cardiac muscle activation and its modulation by covalent modifications, sarcomere length, and intracellular pH. This evidence demonstrates that the cardiac variant of troponin I (cTnI), which is the only isoform expressed in the adult myocardium, has unique structure and function that are specialized for extrinsic and intrinsic control of cardiac contraction and relaxation.
Collapse
Affiliation(s)
- R John Solaro
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, College of Medicine, Chicago, IL 60612, USA
| |
Collapse
|
28
|
Pyle WG, Sumandea MP, Solaro RJ, De Tombe PP. Troponin I serines 43/45 and regulation of cardiac myofilament function. Am J Physiol Heart Circ Physiol 2002; 283:H1215-24. [PMID: 12181153 DOI: 10.1152/ajpheart.00128.2002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We studied Ca(2+) dependence of tension and actomyosin ATPase rate in detergent extracted fiber bundles isolated from transgenic mice (TG), in which cardiac troponin I (cTnI) serines 43 and 45 were mutated to alanines (cTnI S43A/S45A). Basal phosphorylation levels of cTnI were lower in TG than in wild-type (WT) mice, but phosphorylation of cardiac troponin T was increased. Compared with WT, TG fiber bundles showed a 13% decrease in maximum tension and a 20% increase in maximum MgATPase activity, yielding an increase in tension cost. Protein kinase C (PKC) activation with endothelin (ET) or phenylephrine plus propranolol (PP) before detergent extraction induced a decrease in maximum tension and MgATPase activity in WT fibers, whereas ET or PP increased maximum tension and stiffness in TG fibers. TG MgATPase activity was unchanged by ET but increased by PP. Measurement of protein phosphorylation revealed differential effects of agonists between WT and TG myofilaments and within the TG myofilaments. Our results demonstrate the importance of PKC-mediated phosphorylation of cTnI S43/S45 in the control of myofilament activation and cross-bridge cycling rate.
Collapse
Affiliation(s)
- W Glen Pyle
- Department of Physiology and Biophysics, Program in Cardiovascular Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
29
|
Montgomery DE, Wolska BM, Pyle WG, Roman BB, Dowell JC, Buttrick PM, Koretsky AP, Del Nido P, Solaro RJ. alpha-Adrenergic response and myofilament activity in mouse hearts lacking PKC phosphorylation sites on cardiac TnI. Am J Physiol Heart Circ Physiol 2002; 282:H2397-405. [PMID: 12003851 DOI: 10.1152/ajpheart.00714.2001] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein kinase C (PKC)-mediated phosphorylation of cardiac myofilament (MF) proteins has been shown to depress the actomyosin interaction and may be important during heart failure. Biochemical studies indicate that phosphorylation of Ser(43) and Ser(45) of cardiac troponin I (cTnI) plays a substantial role in the PKC-mediated depression. We studied intact and detergent-extracted papillary muscles from nontransgenic (NTG) and transgenic (TG) mouse hearts that express a mutant cTnI (Ser43Ala, Ser45Ala) that lacks specific PKC-dependent phosphorylation sites. Treatment of NTG papillary muscles with phenylephrine (PE) resulted in a transient increase and a subsequent 62% reduction in peak twitch force. TG muscles showed no transient increase and only a 45% reduction in force. There was a similar difference in maximum tension between NTG and TG fiber bundles that had been treated with a phorbol ester and had received subsequent detergent extraction. Although levels of cTnI phosphorylation correlated with these differences, the TG fibers also demonstrated a decrease in phosphorylation of cardiac troponin T. The PKC-specific inhibitor chelerythrine inhibited these responses. Our data provide evidence that specific PKC-mediated phosphorylation of Ser(43) and Ser(45) of cTnI plays an important role in regulating force development in the intact myocardium.
Collapse
Affiliation(s)
- David E Montgomery
- Program in Cardiovascular Sciences, Department of Physiology and Biophysics, Section of Cardiology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pi Y, Kemnitz KR, Zhang D, Kranias EG, Walker JW. Phosphorylation of troponin I controls cardiac twitch dynamics: evidence from phosphorylation site mutants expressed on a troponin I-null background in mice. Circ Res 2002; 90:649-56. [PMID: 11934831 DOI: 10.1161/01.res.0000014080.82861.5f] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The cardiac myofilament protein troponin I (cTnI) is phosphorylated by protein kinase C (PKC), a family of serine/threonine kinases activated within heart muscle by a variety of agonists. cTnI is also a substrate for cAMP-dependent protein kinase (PKA) activated during beta-adrenergic signaling. To investigate the role of cTnI phosphorylation in contractile regulation by these pathways, we generated transgenic mice harboring a mutated cTnI protein lacking phosphorylation sites for PKC (serine(43/45) and threonine(144) mutated to alanine) and for PKA (serine(23/24) mutated to alanine). Transgenic mice were interbred with cTnI-knockout mice to ensure the absence of endogenous phosphorylatable cTnI. Here, we report that regulation of myocyte twitch kinetics by beta-stimulation and by endothelin-1 was altered in myocytes containing mutant cTnI. In wild-type myocytes, the beta-agonist isoproterenol decreased twitch duration and relaxation time constant (tau) by 37% to 44%. These lusitropic effects of isoproterenol were reduced by about half in nonphosphorylatable cTnI mutant myocytes and were absent in cTnI mutants also lacking phospholamban (generated by crossing cTnI mutants with phospholamban-knockout mice). These observations are consistent with important roles for both cTnI and phospholamban phosphorylation in accelerating relaxation after beta-adrenergic stimulation. In contrast, endothelin-1 increased twitch duration by 32% and increased tau by 58%. These endothelin-1 effects were substantially blunted in nonphosphorylatable cTnI myocytes, indicating that PKC phosphorylation of cTnI slows cardiac relaxation and increases twitch duration. We propose that beta-agonists and endothelin-1 regulate cardiac twitch dynamics in opposite directions in part through phosphorylation of the myofilament protein cTnI on distinct sites.
Collapse
Affiliation(s)
- YeQing Pi
- Department of Physiology, University of Wisconsin, Madison, Wisconsin, USA
| | | | | | | | | |
Collapse
|
31
|
Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc Natl Acad Sci U S A 2002; 99:4373-8. [PMID: 11917136 PMCID: PMC123655 DOI: 10.1073/pnas.072624299] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Keratin polypeptides 8 and 18 (K8/18) are the major intermediate filament proteins of simple-type epithelia. K18 Ser-33 phosphorylation regulates its binding to 14-3-3 proteins during mitosis. We studied the significance of keratin binding to 14-3-3 in transgenic mice that overexpress wild-type or Ser-33-->Ala (S33A) K18. In S33A but not wild-type K18-overexpressing mice, pancreatic acinar cell keratin filaments retracted from the basal nuclear region and became apically concentrated. In contrast, K18 S33A had a minimal effect on hepatocyte keratin filament organization. Partial hepatectomy of K18-S33A-overexpressing mice did not affect liver regeneration but caused limited mitotic arrest, accumulation of abnormal mitotic figures, dramatic fragmentation of hepatocyte keratin filaments, with retention of a speckled 14-3-3zeta mitotic cell nuclear-staining pattern that usually becomes diffuse during mitosis. Hence, K18 Ser-33 phosphorylation regulates keratin filament organization in simple-type epithelia in vivo. Keratin binding to 14-3-3 may partially modulate hepatocyte mitotic progression, in association with nuclear redistribution of 14-3-3 proteins during mitosis.
Collapse
Affiliation(s)
- Nam-On Ku
- Department of Medicine, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, 154J, Palo Alto, CA 94304, USA
| | | | | | | | | |
Collapse
|
32
|
MacGowan GA, McNamara DM. New molecular insights into heart failure and cardiomyopathy: potential strategies and therapies. Ir J Med Sci 2002; 171:99-104. [PMID: 12173899 DOI: 10.1007/bf03168962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND In the most severely affected patients the mortality for congestive heart failure exceeds that of many cancers. While therapies are largely aimed at attenuating neurohumoral responses recent molecular insights reveal other potential targets for therapy. AIMS To summarise some of the recent developments in the management of heart failure and provide the clinician who treats heart failure with new insights into emerging approaches. METHODS A literature review was conducted of the recent literature together with personal research data. RESULTS Large randomised trials will provide a more comprehensive understanding of the interaction of beta-blockers and other heart failure therapies with gene polymorphisms. Cytokines are important in the progression of heart failure, yet therapy aimed at blocking cytokine effects has not been successful. More selective use of anti-cytokine therapy may have beneficial effects. Gene therapy to improve heart failure has not yet reached clinical trials. The molecular genetics of hypertrophic and dilated cardiomyopathy is rapidly improving our understanding so that genetic diagnostics and counselling may soon be performed for patients and families. CONCLUSIONS The emergence of a molecular based understanding of heart failure will hopefully improve therapy of this common condition.
Collapse
Affiliation(s)
- G A MacGowan
- Cardiovascular Institute, University of Pittsburgh School of Medicine, PA 15213, USA.
| | | |
Collapse
|
33
|
Knott A, Purcell I, Marston S. In vitro motility analysis of thin filaments from failing and non-failing human heart: troponin from failing human hearts induces slower filament sliding and higher Ca(2+) sensitivity. J Mol Cell Cardiol 2002; 34:469-82. [PMID: 11991735 DOI: 10.1006/jmcc.2002.1528] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Contractility of the myocardium is altered in end-stage heart failure. We investigated whether this was related to functional changes in troponin. We isolated troponin from 1 g samples of end-stage failing, non-failing and foetal human heart and studied its regulation of actin-tropomyosin movement over immobilised HMM by in vitro motility assay. At pCa5.4 the sliding velocity of thin filaments reconstituted with non-failing heart troponin was 52+/-4% more than actin-tropomyosin, with failing heart troponin velocity increased by 35+/-2% and with foetal heart troponin velocity increased by 11+/-4%. Thin filaments containing troponin from failing hearts were more Ca(2+)-sensitive than non-failing heart troponin. EC(50) for the fraction of filaments motile and filament velocity decreased 1.76+/-0.20 and 1.89+/-0.62-fold respectively relative to non-failing heart troponin. With foetal heart troponin the EC(50) decreased 2.16+/-0.23 and 3.50+/-1.73-fold for fraction and velocity respectively. Western blots revealed no difference in troponin T or troponin I isoform expression in troponin from failing and non-failing adult hearts but foetal isoforms of troponin I and T were observed in troponin from foetal heart. The level of PKA phosphorylation of troponin from failing and non-failing heart was not significantly different, however, complete non-specific dephosphorylation of troponin abolished most of the difference between failing and non-failing heart troponin. These findings show functional alterations in troponin in failing hearts which could account for the reduced contractile function but there is no change in troponin isoform expression or PKA phosphorylation. Differential phosphorylation by other kinases may account for altered troponin function.
Collapse
Affiliation(s)
- Adam Knott
- Imperial College of Science, Technology and Medicine, National Heart and Lung Institute, Department of Cardiac Medicine, Dovehouse Street, London, SW3 6LY, UK.
| | | | | |
Collapse
|
34
|
Modulation of Thin Filament Activity in Long and Short Term Regulation of Cardiac Function. MOLECULAR CONTROL MECHANISMS IN STRIATED MUSCLE CONTRACTION 2002. [DOI: 10.1007/978-94-015-9926-9_9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
MacGowan GA, Du C, Wieczorek DF, Koretsky AP. Compensatory changes in Ca(2+) and myocardial O(2) consumption in beta-tropomyosin transgenic hearts. Am J Physiol Heart Circ Physiol 2001; 281:H2539-48. [PMID: 11709421 DOI: 10.1152/ajpheart.2001.281.6.h2539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transgenic mice overexpressing beta-tropomyosin have increased myofilament Ca(2+) sensitivity that we hypothesized would result in altered relationships among pressure and heart rates, intracellular Ca(2+), and myocardial O(2) consumption. In perfused hearts from transgenic mice there was a marked negative force-frequency response between 6 and 10 Hz with a 30 +/- 3% reduction in peak-positive first derivative of pressure development over time (dP/dt) compared with 14 +/- 2% in wild-type mice (P < 0.001). At 8 Hz systolic pressures were normal, though peak systolic intracellular Ca(2+) was significantly reduced in transgenic mice versus wild type (726 +/- 61 vs. 936 +/- 67 nM, P < 0.05) indicating an alteration in the pressure-Ca(2+) relationship. Over a wide range of positive and negative inotropic interventions there were normal developed pressures, though marked elevations in myocardial O(2) consumption (15-54%). Because pressures are normal and intracellular Ca(2+) decreased and myocardial O(2) consumption increased, this suggests that these abnormalities are at least in part compensatory mechanisms to the altered myofilament function.
Collapse
Affiliation(s)
- G A MacGowan
- Cardiovascular Institute of the University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | |
Collapse
|
36
|
Headrick JP, Peart J, Hack B, Flood A, Matherne GP. Functional properties and responses to ischaemia-reperfusion in Langendorff perfused mouse heart. Exp Physiol 2001; 86:703-16. [PMID: 11698964 DOI: 10.1111/j.1469-445x.2001.tb00035.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite minimal model characterisation Langendorff perfused murine hearts are increasingly employed in cardiovascular research, and particularly in studies of myocardial ischaemia and reperfusion. Reported contractility remains poor and ischaemic recoveries variable. We characterised function in C57/BL6 mouse hearts using a ventricular balloon or apicobasal displacement and assessed responses to 10-30 min global ischaemia. We examined the functional effects of pacing, ventricular balloon design, perfusate filtration, [Ca(2+)] and temperature. Contractility was high in isovolumically functioning mouse hearts (measured as the change in pressure with time (+dP/dt), 6000-7000 mmHg s(-1)) and was optimal at a heart rate of approximately 420 beats min(-1), with the vasculature sub-maximally dilated, and the cellular energy state high. Post-ischaemic recovery (after 40 min reperfusion) was related to the ischaemic duration: developed pressure recovered by 82 +/- 5 %, 73 +/- 4 %, 68 +/- 3 %, 57 +/- 2 % and 41 +/- 5 % after 10, 15, 20, 25 and 30 min ischaemia, respectively. Ventricular compliance and elastance were both reduced post-ischaemia. Post-ischaemic recoveries were lower in the apicobasal model (80 +/- 4 %, 58 +/- 7 %, 40 +/- 3 %, 32 +/- 7 % and 25 +/- 5 %) despite greater reflow and lower metabolic rate (pre-ischaemic myocardial O(2) consumption (V(O2,myo)) 127 +/- 15 vs. 198 +/- 17 microl O(2) min(-1) g(-1)), contracture, enzyme and purine efflux. Electrical pacing slowed recovery in both models, small ventricular balloons (unpressurised volumes < 50-60 microl) artificially depressed ventricular function and recovery from ischaemia, and failure to filter the perfusion fluid to < 0.45 microm depressed pre- and post-ischaemic function. With attention to these various experimental factors, the buffer perfused isovolumically contracting mouse heart is shown to be stable and highly energized, and to possess a high level of contractility. The isovolumic model is more reliable in assessing ischaemic responses than the commonly employed apicobasal model.
Collapse
Affiliation(s)
- J P Headrick
- Heart Foundation Research Centre, Griffith University Gold Coast Campus, Southport, Queensland, Australia.
| | | | | | | | | |
Collapse
|
37
|
MacGowan GA, Du C, Koretsky AP. High calcium and dobutamine positive inotropy in the perfused mouse heart: myofilament calcium responsiveness, energetic economy, and effects of protein kinase C inhibition. BMC PHYSIOLOGY 2001; 1:12. [PMID: 11553322 PMCID: PMC55339 DOI: 10.1186/1472-6793-1-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2001] [Accepted: 08/24/2001] [Indexed: 12/05/2022]
Abstract
BACKGROUND In perfused hearts, high calcium-induced inotropy results in less developed pressure relative to myocardial oxygen consumption compared to the beta-adrenergic agonist dobutamine. Calcium handling is an important determinant of myocardial oxygen consumption. Therefore, we hypothesized that this phenomenon was due to reduced myofilament responsiveness to calcium, related to protein kinase C activation. RESULTS Developed pressure was significantly higher with dobutamine compared to high perfusate calcium of 3.5 mM (73 +/- 10 vs 63 +/- 10 mmHg, p < 0.05), though peak systolic intracellular calcium was not significantly different, suggesting reduced myofilament responsiveness to intracellular calcium with high perfusate calcium. The ratio of developed pressure to myocardial oxygen consumption, an index of economy of contraction, was significantly increased with dobutamine compared to high perfusate calcium (1.35 +/- 0.15 vs 1.15 +/- 0.15 mmHg/micromoles/min/g dry wt, p < 0.05), suggesting energetic inefficiency with high perfusate calcium. The specific protein kinase C inhibitor, chelerythrine, significantly attenuated the expected increase in developed pressure when increasing perfusate calcium from 2.5 to 3.5 mM (3.5 mM: 64 +/- 8 vs 3.5 mM + chelerythrine: 55 +/- 5 mmHg, p < 0.05), though had no effects on dobutamine, or lower levels of perfusate calcium (1.5 to 2.5 mM). CONCLUSIONS By measuring intracellular calcium, developed pressures and myocardial oxygen consumption in perfused mouse hearts, these results demonstrate that high perfusate calcium positive inotropy compared to dobutamine results in reduced myofilament responsiveness to intracellular calcium, which is associated with energetic inefficiency and evidence of protein kinase C activation.
Collapse
Affiliation(s)
- Guy A MacGowan
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh PA 15213, USA
| | - Congwu Du
- Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
| | - Alan P Koretsky
- Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh PA 15213, USA
- Laboratory of Functional and Molecular Imaging. The National Institutes of Neurological Disease and Stroke, Bethesda MD 20892, USA
| |
Collapse
|