1
|
Ren G, Chi X, Huang P, Zhang J, Ding Y, Guo L, Shang Q, Ma X. Risk assessment of the top 50 drugs associated with drug-induced orthostatic hypotension: a disproportionality analysis of the FAERS and JADER databases. Sci Rep 2025; 15:10359. [PMID: 40133436 PMCID: PMC11937366 DOI: 10.1038/s41598-025-95021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
To use the FDA Adverse Event Reporting System (FAERS) database to identify drugs associated with orthostatic hypotension. Adverse event reports of orthostatic hypotension from Q1 2004 to Q3 2024 were obtained from the FAERS and JADER databases. We employed algorithms such as the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multi-item gamma Poisson shrinker (MGPS) for signal detection. JADER database was used to validate the findings from FAERS analysis. We identified 15,737 adverse events associated with orthostatic hypotension, involving 15,480 patients for analysis. The patient demographic included 6,745 males (43.5%) and 7,248 females (46.8%), with the largest group comprising adults over 65 years (7,654 cases, 49.4%). The three drugs with the highest ROR risk signals were terazosin [ROR (95% CI): 153.96 (124.57-190.28)], rasagiline [ROR (95% CI): 37.46 (29.99-46.78)], and doxazosin [ROR (95% CI): 37.06 (31.32-43.86)]. Apomorphine, abalopatine and levodopa were associated with the shortest onset time of orthostatic hypotension. Most of the signal detection results from the FAERS database were verified in the JADER database. Drugs associated with orthostatic hypertension still focused on cardiovascular and nervous system drugs. This study employed the FAERS database to identify 33 drugs that may be potentially linked to orthostatic hypotension. Medical workers should remain vigilant regarding the risk of these drugs causing orthostatic hypotension.
Collapse
Affiliation(s)
- Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiansu Chi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinhui Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yanqiu Ding
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
2
|
van Campen C(LMC, Rowe PC, Visser FC. Two Different Hemodynamic Responses in ME/CFS Patients with Postural Orthostatic Tachycardia Syndrome During Head-Up Tilt Testing. J Clin Med 2024; 13:7726. [PMID: 39768649 PMCID: PMC11677391 DOI: 10.3390/jcm13247726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction: While the diagnosis of postural orthostatic tachycardia syndrome (POTS) is based on heart rate (HR) and blood pressure (BP) criteria, the pathophysiology of POTS is not fully understood as multiple pathophysiological mechanisms have been recognized. Also, cardiac function, being dependent on preload, afterload, contractility, and HR, has not been properly studied. Preload and contractility changes can be inferred from stroke volume index (SVI) changes during a tilt test. Afterload plays a minor role in POTS as a normal BP response is a prerequisite for POTS. Therefore, we analyzed the HR-SVI relation during a tilt test in myalgic encephalomyelitis (ME/CFS) patients with POTS and compared the data with ME/CFS patients with a normal HR-BP response and with that of healthy controls (HC). Material and Methods: In ME/CFS patients with either POTS (n = 233) or a normal HR-BP response (n = 507) and healthy controls (n = 48), we measured SVI (by suprasternal echo), HR, and BP during the tilt. Results: In all ME/CFS patients, the decrease in SVI was larger compared to HC. In patients with a normal HR-BP response and in POTS patients with a HR increase between 30-39 bpm, there was an inverse relationship between the HR increase and SVI decrease during the tilt, compatible with increased venous pooling. In POTS patients with a HR increase ≥40 bpm, this inverse relation was lost, and SVI changes were significantly less compared to POTS patients with a HR increase between 30-39 bpm, suggestive of a hyperadrenergic response. Conclusions: In ME/CFS patients with POTS, two different hemodynamic profiles can be observed: in patients with a limited HR increase, mainly increased venous pooling is observed, while in patients with a large (≥ 40 bpm) HR increase the data are suggestive of a hyperadrenergic response. These two different profiles may have different therapeutic implications.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of Pediatrics, John Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Frans C. Visser
- Stichting CardioZorg, Kraayvel 5, 1171 JE Badhoevedorp, The Netherlands;
| |
Collapse
|
3
|
Hirai T, Hamaoka T, Murai H, Sugimoto H, Mukai Y, Nomura A, Kusayama T, Ikeda T, Takashima S, Kato T, Sakata K, Usui S, Takata S, Takamura M. The relationship between muscle sympathetic nerve activity and serum fatty acid binding protein 4 at rest and during isometric handgrip exercise. Physiol Rep 2024; 12:e70122. [PMID: 39725654 DOI: 10.14814/phy2.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 12/28/2024] Open
Abstract
Fatty acid binding protein 4 (FABP4) is highly expressed in adipocytes. Lipolysis, caused by an elevated adrenergic input, has been suggested to contribute to elevated serum FABP4 levels in patients with cardiovascular diseases. However, the relationship between the serum FABP4 and efferent sympathetic nerve activity remains poorly understood. Twenty-one healthy subjects (average age, 29.1 years; 15 men) performed an isometric handgrip (HG) exercise at 30% of the maximal voluntary contraction until they were fatigued. The beat-by-beat heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) were recorded. Blood samples were collected at rest and at the time of peak fatigue. The MSNA, HR, and systolic BP were significantly increased by the HG exercise (all, p < 0.05). MSNA was obtained from 14 patients. The change in the FABP4 on HG exercise was significantly correlated with the change in MSNA (bursts/100 heartbeats) (R = 0.808, p < 0.001) but not with changes in other parameters, which might, in part, reflect an association of efferent sympathetic drive with FABP4. Meanwhile, resting FABP4 levels were not associated with any parameters including MSNA, in healthy individuals. Future studies on patients with elevated sympathetic activity are warranted to examine the relationship further.
Collapse
Affiliation(s)
- Tadayuki Hirai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takuto Hamaoka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Hisayoshi Murai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
- Kanazawa Municipal Hospital, Kanazawa, Japan
| | - Hiroyuki Sugimoto
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Yusuke Mukai
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Ayano Nomura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Tatsunori Ikeda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Shinichiro Takashima
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
4
|
D'Souza AW, Moore JP, Manabe K, Lawley JS, Washio T, Hissen SL, Sanchez B, Fu Q. The interactive effects of posture and biological sex on the control of muscle sympathetic nerve activity during rhythmic handgrip exercise. Am J Physiol Regul Integr Comp Physiol 2024; 327:R133-R144. [PMID: 38766771 DOI: 10.1152/ajpregu.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/28/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Body posture and biological sex exhibit independent effects on the sympathetic neural responses to dynamic exercise. However, the neural mechanisms (e.g., baroreflex) by which posture impacts sympathetic outflow during rhythmic muscular contractions, and whether biological sex affects posture-mediated changes in efferent sympathetic nerve traffic during exercise, remain unknown. Thus, we tested the hypotheses that increases in muscle sympathetic nerve activity (MSNA) would be greater during upright compared with supine rhythmic handgrip (RHG) exercise, and that females would demonstrate smaller increases in MSNA during upright RHG exercise than males. Twenty young (30 [6] yr; means [SD]) individuals (9 males, 11 females) underwent 6 min of supine and upright (head-up tilt 45°) RHG exercise at 40% maximal voluntary contraction with continuous measurements of MSNA (microneurography), blood pressure (photoplethysmography), and heart rate (electrocardiogram). In the pooled group, absolute MSNA burst frequency (P < 0.001), amplitude (P = 0.009), and total MSNA (P < 0.001) were higher during upright compared with supine RHG exercise. However, body posture did not impact the peak change in MSNA during RHG exercise (range: P = 0.063-0.495). Spontaneous sympathetic baroreflex gain decreased from rest to RHG exercise (P = 0.006) and was not impacted by posture (P = 0.347). During upright RHG exercise, males demonstrated larger increases in MSNA burst amplitude (P = 0.002) and total MSNA (P = 0.001) compared with females, which coincided with greater reductions in sympathetic baroreflex gain among males (P = 0.004). Collectively, these data indicate that acute attenuation of baroreflex-mediated sympathoinhibition permits increases in MSNA during RHG exercise and that males exhibit a greater reserve for efferent sympathetic neural recruitment during orthostasis than females.NEW & NOTEWORTHY The impact of posture and sex on cardiovascular control during rhythmic handgrip (RHG) exercise is unknown. We show that increases in muscle sympathetic nerve activity (MSNA) during RHG are partly mediated by a reduction in sympathetic baroreflex gain. In addition, males demonstrate larger increases in total MSNA during upright RHG than females. These data indicate that the baroreflex partly mediates increases in MSNA during RHG and that males have a greater sympathetic vasoconstrictor reserve than females.
Collapse
Affiliation(s)
- Andrew W D'Souza
- Divison of Pulmonary Medicine, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Jonathan P Moore
- Department of Sports and Exercise Sciences, Bangor University, Bangor, United Kingdom
| | - Kazumasa Manabe
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Justin S Lawley
- Division of Performance Physiology and Prevention, Department of Sport Science, Universität Innsbruck, Innsbruck, Austria
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Takuro Washio
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Sarah L Hissen
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Belinda Sanchez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, United States
- Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, Texas, United States
| |
Collapse
|
5
|
van Campen C(LM, Verheugt FW, Rowe PC, Visser FC. Orthostatic chronotropic incompetence in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). IBRO Neurosci Rep 2023; 15:1-10. [PMID: 37303862 PMCID: PMC10250802 DOI: 10.1016/j.ibneur.2023.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 06/13/2023] Open
Abstract
Background Orthostatic intolerance (OI) is a core diagnostic criterion in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The majority of ME/CFS patients have no evidence of hypotension or postural orthostatic tachycardia syndrome (POTS) during head-up tilt, but do show a significantly larger reduction in stroke volume index (SVI) when upright compared to controls. Theoretically a reduction in SVI should be accompanied by a compensatory increase in heart rate (HR). When there is an incomplete compensatory increase in HR, this is considered chronotropic incompetence. This study explored the relationship between HR and SVI to determine whether chronotropic incompetence was present during tilt testing in ME/CFS patients. Methods From a database of individuals who had undergone tilt testing with Doppler measurements for SVI both supine and end-tilt, we selected ME/CFS patients and healthy controls (HC) who had no evidence of POTS or hypotension during the test. To determine the relation between the HR increase and SVI decrease during the tilt test in patients, we calculated the 95% prediction intervals of this relation in HC. Chronotropic incompetence in patients was defined as a HR increase below the lower limit of the 95th % prediction interval of the HR increase in HC. Results We compared 362 ME/CFS patients with 52 HC. At end-tilt, tilt lasting for 15 (4) min, ME/CFS patients had a significantly lower SVI (22 (4) vs. 27 (4) ml/m2; p < 0.0001) and a higher HR (87 (11) vs. 78 (15) bpm; p < 0.0001) compared to HC. There was a similar relationship between HR and SVI between ME/CFS patients and HC in the supine position. During tilt ME/CFS patients had a lower HR for a given SVI; 37% had an inadequate HR increase. Chronotropic incompetence was more common in more severely affected ME/CFS patients. Conclusion These novel findings represent the first description of orthostatic chronotropic incompetence during tilt testing in ME/CFS patients.
Collapse
Affiliation(s)
| | | | - Peter C. Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frans C. Visser
- Stichting CardioZorg, Planetenweg 5, 2132 HN Hoofddorp, The Netherlands
| |
Collapse
|
6
|
van Campen C(LMC, Rowe PC, Visser FC. Comparison of a 20 degree and 70 degree tilt test in adolescent myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) patients. Front Pediatr 2023; 11:1169447. [PMID: 37252045 PMCID: PMC10213432 DOI: 10.3389/fped.2023.1169447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction During a standard 70-degree head-up tilt test, 90% of adults with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) develop an abnormal reduction in cerebral blood flow (CBF). A 70-degree test might not be tolerated by young ME/CFS patients because of the high incidence of syncopal spells. This study examined whether a test at 20 degrees would be sufficient to provoke important reductions in CBF in young ME/CFS patients. Methods We analyzed 83 studies of adolescent ME/CFS patients. We assessed CBF using extracranial Doppler measurements of the internal carotid and vertebral arteries supine and during the tilt. We studied 42 adolescents during a 20 degree and 41 during a 70 degree test. Results At 20 degrees, no patients developed postural orthostatic tachycardia (POTS), compared to 32% at 70 degrees (p = 0.0002). The CBF reduction during the 20 degree tilt of -27(6)% was slightly less than during the reduction during a 70 degree test [-31(7)%; p = 0.003]. Seventeen adolescents had CBF measurements at both 20 and 70 degrees. The CBF reduction in these patients with both a 20 and 70 degrees test was significantly larger at 70 degrees than at 20 degrees (p < 0.0001). Conclusions A 20 degree tilt in young ME/CFS patients resulted in a CBF reduction comparable to that in adult patients during a 70 degree test. The lower tilt angle provoked less POTS, emphasizing the importance of using the 70 degree angle for that diagnosis. Further study is needed to explore whether CBF measurements during tilt provide an improved standard for classifying orthostatic intolerance.
Collapse
Affiliation(s)
| | - Peter C. Rowe
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | |
Collapse
|
7
|
Hristovska AM, Andersen LB, Grentoft M, Mehlsen J, Gromov K, Kehlet H, Foss NB. Orthostatic intolerance after fast-track knee arthroplasty: Incidence and hemodynamic pathophysiology. Acta Anaesthesiol Scand 2022; 66:934-943. [PMID: 35680697 DOI: 10.1111/aas.14098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Early postoperative mobilization can be hindered by orthostatic intolerance (OI) due to failed orthostatic cardiovascular regulation. The underlying mechanisms are not fully understood and specific data after total knee arthroplasty (TKA) are lacking. Therefore, we evaluated the incidence of OI and the cardiovascular response to mobilization in fast-track TKA. METHODS This prospective observational cohort study included 45 patients scheduled for primary TKA in spinal anesthesia with a multimodal opioid-sparing analgesic regime. OI and the cardiovascular response to sitting and standing were evaluated with a standardized mobilization procedure preoperatively, and at 6h and 24h postoperatively. Hemodynamic variables were measured non-invasively (LiDCO™ Rapid). Perioperative bleeding, fluid balance, surgery duration, postoperative hemoglobin, opioid use and pain during mobilization were recorded. RESULTS Eighteen (44%) and 8 (22%) patients demonstrated OI at 6 and 24h after surgery respectively. Four (10%) and 2 (5%) patients experienced severe OI and terminated the mobilization procedure prematurely. Dizziness was the most common OI symptom during mobilization at 6h. OI was associated with decreased orthostatic responses in systolic, diastolic, mean arterial pressures and heart rate (all p<0.05), while severe OI patients demonstrated impaired diastolic, mean arterial pressures, heart rate and cardiac output responses (all p<0.05). No statistically significant differences in perioperative bleeding, fluid balance, surgery duration, postoperative hemoglobin, pain or opioid use were observed between orthostatic tolerant and intolerant patients. CONCLUSION Early postoperative OI is common following fast-track TKA. Pathophysiologic mechanisms include impaired orthostatic cardiovascular responses. The progression to severe OI symptoms appears to be primarily due to inadequate heart rate response.
Collapse
Affiliation(s)
- Ana-Marija Hristovska
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Louise B Andersen
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Mette Grentoft
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Jesper Mehlsen
- Department of Surgical Pathophysiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Kirill Gromov
- Department of Orthopedic Surgery, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| | - Henrik Kehlet
- Department of Surgical Pathophysiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Nicolai B Foss
- Department of Anesthesiology and Intensive Care, Copenhagen University Hospital - Hvidovre, Copenhagen, Denmark
| |
Collapse
|
8
|
Ho TKK, Kim M, Jeon Y, Kim BC, Kim JG, Lee KH, Song JI, Gwak J. Deep Learning-Based Multilevel Classification of Alzheimer’s Disease Using Non-invasive Functional Near-Infrared Spectroscopy. Front Aging Neurosci 2022; 14:810125. [PMID: 35557842 PMCID: PMC9087351 DOI: 10.3389/fnagi.2022.810125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/01/2022] [Indexed: 12/28/2022] Open
Abstract
The timely diagnosis of Alzheimer’s disease (AD) and its prodromal stages is critically important for the patients, who manifest different neurodegenerative severity and progression risks, to take intervention and early symptomatic treatments before the brain damage is shaped. As one of the promising techniques, functional near-infrared spectroscopy (fNIRS) has been widely employed to support early-stage AD diagnosis. This study aims to validate the capability of fNIRS coupled with Deep Learning (DL) models for AD multi-class classification. First, a comprehensive experimental design, including the resting, cognitive, memory, and verbal tasks was conducted. Second, to precisely evaluate the AD progression, we thoroughly examined the change of hemodynamic responses measured in the prefrontal cortex among four subject groups and among genders. Then, we adopted a set of DL architectures on an extremely imbalanced fNIRS dataset. The results indicated that the statistical difference between subject groups did exist during memory and verbal tasks. This presented the correlation of the level of hemoglobin activation and the degree of AD severity. There was also a gender effect on the hemoglobin changes due to the functional stimulation in our study. Moreover, we demonstrated the potential of distinguished DL models, which boosted the multi-class classification performance. The highest accuracy was achieved by Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM) using the original dataset of three hemoglobin types (0.909 ± 0.012 on average). Compared to conventional machine learning algorithms, DL models produced a better classification performance. These findings demonstrated the capability of DL frameworks on the imbalanced class distribution analysis and validated the great potential of fNIRS-based approaches to be further contributed to the development of AD diagnosis systems.
Collapse
Affiliation(s)
- Thi Kieu Khanh Ho
- Department of Software, Korea National University of Transportation, Chungju, South Korea
| | - Minhee Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Younghun Jeon
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Byeong C. Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, South Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Kun Ho Lee
- Gwangju Alzheimer’s Disease and Related Dementias Cohort Research Center, Chosun University, Gwangju, South Korea
- Department of Biomedical Science, Chosun University, Gwangju, South Korea
- Korea Brain Research Institute, Daegu, South Korea
| | - Jong-In Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, South Korea
| | - Jeonghwan Gwak
- Department of Software, Korea National University of Transportation, Chungju, South Korea
- Department of Biomedical Engineering, Korea National University of Transportation, Chungju, South Korea
- Department of AI Robotics Engineering, Korea National University of Transportation, Chungju, South Korea
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, South Korea
- *Correspondence: Jeonghwan Gwak, ;
| |
Collapse
|
9
|
Choudhary MK, Penninkangas RM, Eräranta A, Niemelä O, Mangani C, Maleta K, Ashorn P, Ashorn U, Pörsti I. Posture-Related Differences in Cardiovascular Function Between Young Men and Women: Study of Noninvasive Hemodynamics in Rural Malawi. J Am Heart Assoc 2022; 11:e022979. [PMID: 35195013 PMCID: PMC9075090 DOI: 10.1161/jaha.121.022979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Cardiovascular risk is higher in men than in women, but little information exists about sex‐related differences in cardiovascular function from low‐income countries. We compared hemodynamics between sexes in rural Malawi in a cohort followed up since their birth. Methods and Results Supine, seated, and standing hemodynamics were recorded from 251 women and 168 men (mean age, 21 years; body mass index, 21 kg/m2) using oscillometric brachial waveform analyses (Mobil‐O‐Graph). The results were adjusted for estimated glomerular filtration rate, and plasma potassium, lipids, and glucose. Men had higher brachial and aortic systolic blood pressure and stroke index regardless of posture (P<0.001), and higher upright but similar supine diastolic blood pressure than women. Regardless of posture, heart rate was lower in men (P<0.001), whereas cardiac index did not differ between sexes. Women presented with lower supine and standing systemic vascular resistance index (P<0.001), whereas supine‐to‐standing increase in vascular resistance (P=0.012) and decrease in cardiac index (P=0.010) were higher in women. Supine left cardiac work index was similar in both sexes, whereas standing and seated left cardiac work index was higher in men than in women (P<0.001). Conclusions In young Malawian adults, men had higher systolic blood pressure, systemic vascular resistance, and upright cardiac workload, whereas women presented with higher posture‐related changes in systemic vascular resistance and cardiac output. These findings show systematic sex‐related differences in cardiovascular function in a cohort from a low‐income country with high exposure to prenatal and postnatal malnutrition and infectious diseases.
Collapse
Affiliation(s)
| | | | - Arttu Eräranta
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Onni Niemelä
- Faculty of Medicine and Health Technology Tampere University Tampere Finland.,Department of Laboratory Medicine and Medical Research Unit Seinäjoki Central Hospital Seinäjoki Finland
| | - Charles Mangani
- School of Public Health and Family Medicine College of Medicine University of Malawi Blantyre Malawi
| | - Kenneth Maleta
- School of Public Health and Family Medicine College of Medicine University of Malawi Blantyre Malawi
| | - Per Ashorn
- Faculty of Medicine and Health Technology Tampere University Tampere Finland.,Department of Pediatrics Tampere University Hospital Tampere Finland
| | - Ulla Ashorn
- Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Ilkka Pörsti
- Faculty of Medicine and Health Technology Tampere University Tampere Finland.,Department of Internal Medicine Tampere University Hospital Tampere Finland
| |
Collapse
|
10
|
van der Ster BJP, Kim YS, Westerhof BE, van Lieshout JJ. Central Hypovolemia Detection During Environmental Stress-A Role for Artificial Intelligence? Front Physiol 2021; 12:784413. [PMID: 34975538 PMCID: PMC8715014 DOI: 10.3389/fphys.2021.784413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/18/2021] [Indexed: 11/19/2022] Open
Abstract
The first step to exercise is preceded by the required assumption of the upright body position, which itself involves physical activity. The gravitational displacement of blood from the chest to the lower parts of the body elicits a fall in central blood volume (CBV), which corresponds to the fraction of thoracic blood volume directly available to the left ventricle. The reduction in CBV and stroke volume (SV) in response to postural stress, post-exercise, or to blood loss results in reduced left ventricular filling, which may manifest as orthostatic intolerance. When termination of exercise removes the leg muscle pump function, CBV is no longer maintained. The resulting imbalance between a reduced cardiac output (CO) and a still enhanced peripheral vascular conductance may provoke post-exercise hypotension (PEH). Instruments that quantify CBV are not readily available and to express which magnitude of the CBV in a healthy subject should remains difficult. In the physiological laboratory, the CBV can be modified by making use of postural stressors, such as lower body "negative" or sub-atmospheric pressure (LBNP) or passive head-up tilt (HUT), while quantifying relevant biomedical parameters of blood flow and oxygenation. Several approaches, such as wearable sensors and advanced machine-learning techniques, have been followed in an attempt to improve methodologies for better prediction of outcomes and to guide treatment in civil patients and on the battlefield. In the recent decade, efforts have been made to develop algorithms and apply artificial intelligence (AI) in the field of hemodynamic monitoring. Advances in quantifying and monitoring CBV during environmental stress from exercise to hemorrhage and understanding the analogy between postural stress and central hypovolemia during anesthesia offer great relevance for healthy subjects and clinical populations.
Collapse
Affiliation(s)
- Björn J. P. van der Ster
- Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Anesthesiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Yu-Sok Kim
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, Netherlands
| | - Berend E. Westerhof
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Department of Pulmonary Medicine, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Johannes J. van Lieshout
- Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Clinical Cardiovascular Physiology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, The Medical School, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
11
|
Hwang CL, Okazaki K, Shibata S, Liu YL, Fu Q. Menstrual cycle effects on sympathetic neural burst amplitude distribution during orthostasis in young women. Clin Auton Res 2021; 31:767-773. [PMID: 34669075 PMCID: PMC11382632 DOI: 10.1007/s10286-021-00832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Fluctuations in ovarian hormones during the menstrual cycle impact muscle sympathetic nerve activity burst frequency and burst incidence at rest. The purpose of this study was to investigate menstrual cycle effects on sympathetic neural burst amplitude distribution during an orthostatic challenge in young women. METHODS This study included 11 healthy women (33 ± 10 years [mean ± standard deviation]). Muscle sympathetic nerve activity was measured in the supine position as baseline measurement and during 5 min of 60° upright tilting, during the early follicular phase (low estrogen and progesterone) and mid-luteal phase (high estrogen and progesterone) of the menstrual cycle. Relative burst amplitude distribution of muscle sympathetic nerve activity was characterized by the mean, median, skewness, and kurtosis. RESULTS From the supine to upright position, mean and median values of relative burst amplitude increased (both P < 0.05), regardless of phases of the menstrual cycle (P = 0.5 and P = 0.7, respectively). In comparison, during the early follicular phase, skewness and kurtosis remained unchanged (P = 0.6 and P = 0.3, respectively) and kurtosis decreased (1.25 ± 1.11 supine vs. - 0.03 ± 0.73 upright; P = 0.02); there was no change in skewness during the mid-luteal phase (P = 0.4). CONCLUSIONS In response to orthostasis, while the symmetry and tailedness/peakness of burst amplitude distribution do not change during the early follicular phase, the distribution during the mid-luteal phase becomes flatter with a lower but broader peak. The latter result suggests that the firing probability of large axon action potentials in response to orthostatic challenge is higher when estrogen and progesterone levels are elevated. The role of changes in sympathetic neural burst amplitude distribution in orthostatic tolerance remains to be determined.
Collapse
Affiliation(s)
- Chueh-Lung Hwang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- Department of Physical Therapy, College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kazunobu Okazaki
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shigeki Shibata
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu-Lun Liu
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, 7232 Greenville Avenue, Dallas, TX, 75231, USA.
- The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
12
|
The Effects of Biological Sex on Sepsis Treatments in Animal Models: A Systematic Review and a Narrative Elaboration on Sex- and Gender-Dependent Differences in Sepsis. Crit Care Explor 2021; 3:e0433. [PMID: 34151276 PMCID: PMC8205191 DOI: 10.1097/cce.0000000000000433] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Preclinical studies provide an opportunity to evaluate the relationship between sex and sepsis, and investigate underlying mechanisms in a controlled experimental environment. The objective of our systematic review was to assess the impact of biological sex on treatment response to fluid and antibiotic therapy in animal models of sepsis. Furthermore, we provide a narrative elaboration of sex-dependent differences in preclinical models of sepsis. DATA SOURCES MEDLINE and Embase were searched from inception to March 16, 2020. STUDY SELECTION All studies reporting sex-stratified data comparing antibiotics and/or fluid resuscitation with a placebo or no treatment arm in an in vivo model of sepsis were included. DATA EXTRACTION Outcomes of interest were mortality (primary) and organ dysfunction (secondary). Risk of bias was assessed. Study selection and data extraction were conducted independently and in duplicate. DATA SYNTHESIS The systematic search returned 2,649 unique studies, and two met inclusion criteria. Both studies used cecal ligation and puncture models with imipenem/cilastatin antibiotics. No eligible studies investigated fluids. In one study, antibiotic therapy significantly reduced mortality in male, but not female, animals. The other study reported no sex differences in organ dysfunction. Both studies were deemed to be at a high overall risk of bias. CONCLUSIONS There is a remarkable and concerning paucity of data investigating sex-dependent differences in fluid and antibiotic therapy for the treatment of sepsis in animal models. This may reflect poor awareness of the importance of investigating sex-dependent differences. Our discussion therefore expands on general concepts of sex and gender in biomedical research and sex-dependent differences in key areas of sepsis research such as the cardiovascular system, immunometabolism, the microbiome, and epigenetics. Finally, we discuss current clinical knowledge, the potential for reverse translation, and directions for future studies. REGISTRATION PROSPERO CRD42020192738.
Collapse
|
13
|
Kourtidou-Papadeli C, Frantzidis CA, Gilou S, Plomariti CE, Nday CM, Karnaras D, Bakas L, Bamidis PD, Vernikos J. Gravity Threshold and Dose Response Relationships: Health Benefits Using a Short Arm Human Centrifuge. Front Physiol 2021; 12:644661. [PMID: 34045973 PMCID: PMC8144521 DOI: 10.3389/fphys.2021.644661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/12/2021] [Indexed: 01/09/2023] Open
Abstract
Purpose Increasing the level of gravity passively on a centrifuge, should be equal to or even more beneficial not only to astronauts living in a microgravity environment but also to patients confined to bed. Gravity therapy (GT) may have beneficial effects on numerous conditions, such as immobility due to neuromuscular disorders, balance disorders, stroke, sports injuries. However, the appropriate configuration for administering the Gz load remains to be determined. Methods To address these issues, we studied graded G-loads from 0.5 to 2.0g in 24 young healthy, male and female participants, trained on a short arm human centrifuge (SAHC) combined with mild activity exercise within 40–59% MHR, provided by an onboard bicycle ergometer. Hemodynamic parameters, as cardiac output (CO), stroke volume (SV), mean arterial pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP), and heart rate (HR) were analyzed, as well as blood gas analysis. A one-way repeated measures ANOVA and pairwise comparisons were conducted with a level of significance p < 0.05. Results Significant changes in heart rate variability (HRV) and its spectral components (Class, Fmax, and VHF) were found in all g loads when compared to standing (p < 0.001), except in 1.7 and 2.0g. There were significant changes in CO, cardiac index (CI), and cardiac power (CP) (p < 0.001), and in MAP (p = 0.003) at different artificial gravity (AG) levels. Dose-response curves were determined based on statistically significant changes in cardiovascular parameters, as well as in identifying the optimal G level for training, as well as the optimal G level for training. There were statistically significant gender differences in Cardiac Output/CO (p = 0.002) and Cardiac Power/CP (p = 0.016) during the AG training as compared to standing. More specifically, these cardiovascular parameters were significantly higher for male than female participants. Also, there was a statistically significant (p = 0.022) gender by experimental condition interaction, since the high-frequency parameter of the heart rate variability was attenuated during AG training as compared to standing but only for the female participants (p = 0.004). Conclusion The comprehensive cardiovascular evaluation of the response to a range of graded AG loads, as compared to standing, in male and female subjects provides the dose-response framework that enables us to explore and validate the usefulness of the centrifuge as a medical device. It further allows its use in precisely selecting personalized gravity therapy (GT) as needed for treatment or rehabilitation of individuals confined to bed.
Collapse
Affiliation(s)
- Chrysoula Kourtidou-Papadeli
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Aeromedical Center of Thessaloniki, Thessaloniki, Greece
| | - Christos A Frantzidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Sotiria Gilou
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christina E Plomariti
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christiane M Nday
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Lefteris Bakas
- Laboratory of Aerospace and Rehabilitation Applications "Joan Vernikos" Arogi Rehabilitation Center, Thessaloniki, Greece
| | - Panagiotis D Bamidis
- Biomedical Engineering & Aerospace Neuroscience, Laboratory of Medical Physics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.,Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece
| | - Joan Vernikos
- Greek Aerospace Medical Association and Space Research, Thessaloniki, Greece.,Thirdage llc, Culpeper, VA, United States
| |
Collapse
|
14
|
Klassen SA, Shoemaker JK. Action potential subpopulations within human muscle sympathetic nerve activity: Discharge properties and governing mechanisms. Auton Neurosci 2020; 230:102743. [PMID: 33202287 DOI: 10.1016/j.autneu.2020.102743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
Sympathetic emissions directed towards the skeletal muscle circulation - muscle sympathetic nerve activity (MSNA) - represent a key mechanism for maintaining homeostasis and supporting human survival during physiological stress. Pulse-rhythmic bursts formed by the synchronous discharge of differently-sized sympathetic action potentials (APs) represent the primary characteristic of MSNA. Of the APs firing under baseline conditions (reflecting low-threshold c-fibre activity), a range of subpopulations exists, of which three general categories can be discussed based on their peak-to-peak amplitude in the filtered raw neurogram - small, medium, and large. These subpopulations express nonuniform discharge, recruitment, and synchronization patterns. The subpopulation of medium APs fires synchronously in most bursts, while the subpopulations of small and large APs fire less often. However, 30% of total AP discharge occurs asynchronously between sympathetic bursts, a pattern expressed most often by small APs. In response to physiological stress (e.g., baroreflex unloading), the subpopulation of medium APs exhibits the largest increase in firing probability and a subpopulation of previously-silent larger and faster-conducting APs (reflecting high-threshold c-fibre activity) becomes recruited. Heterogeneous discharge, synchronization, and recruitment thresholds among AP subpopulations stem from differential regulation within the sympathetic organization including the arterial baroreflex and paravertebral ganglia. Indeed, the arterial baroreflex strongly regulates medium APs at baseline and enhances its control over this subpopulation during periods of baroreflex unloading. Conversely, small and large APs express weak baroreflex control. Trimethaphan infusion has revealed that ganglionic processes including nicotinic and non-nicotinic mechanisms may contribute to heterogenous firing behaviours among low-threshold AP subpopulations. This review highlights recent work revealing new insight to the discharge properties expressed by, and mechanisms governing, AP subpopulations within human MSNA.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada; Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, USA
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario, London, Ontario, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
15
|
Tabuchi A, Craig JC, Hirai DM, Colburn TD, Kano Y, Poole DC, Musch TI. Systemic NOS inhibition reduces contracting muscle oxygenation more in intact female than male rats. Nitric Oxide 2020; 100-101:38-44. [PMID: 32371102 DOI: 10.1016/j.niox.2020.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/14/2020] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
Females respond to baroreceptor stimulation with enhanced modulation of heart rate (HR) to regulate blood pressure and also express greater reliance on nitric oxide (NO) for vascular control compared to males. Sex differences in muscle oxygenation consequent to central hemodynamic challenge induced by systemic NO synthase (NOS) inhibition are unknown. We tested the hypotheses that systemic NOS inhibition would induce lower contracting skeletal muscle oxygenation in females compared to males. The spinotrapezius of Sprague-Dawley rats (females (♀) = 9, males (♂) = 9) was surgically exposed and contracted by electrical stimulation (180s, 1 Hz, ~6 V) under pentobarbital sodium anesthesia. Oxyphor G4 was injected into the muscle and phosphorescence quenching was used to measure the interstitial PO2 (PO2is, determined by O2 delivery-to-utilization matching) under control (Krebs-Henseleit solution) and after intra-arterial infusion of nitro-l-arginine methyl ester (l-NAME; NOS blockade; 10 mg kg-1). At rest, females showed a greater PO2is increase (ΔPO2is/ΔMAP) and HR (ΔHR/ΔMAP) reduction than males in response to the elevated MAP induced by systemic NOS inhibition (both p < 0.05). Following l-NAME, during the contracting steady-state, females exhibited lower PO2is than males (♂: 17.1 ± 1.4 vs ♀: 10.8 ± 1.4 mmHg, p < 0.05). The rate pressure product was lower in females than males (♂: 482 ± 14 vs ♀: 392 ± 29, p < 0.05) and correlated with the steady-state PO2is (r = 0.66, p < 0.05). These results support that females express greater reductions in HR than males in response to l-NAME-induced elevation of MAP via the baroreceptor reflex and provide new insights on how central hemodynamics affect skeletal muscle oxygenation in a sex-specific manner.
Collapse
Affiliation(s)
- Ayaka Tabuchi
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA; Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - Jesse C Craig
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Daniel M Hirai
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Trenton D Colburn
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Yutaka Kano
- Department of Engineering Science, Bioscience and Technology Program, University of Electro-Communications, Tokyo, Japan
| | - David C Poole
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA
| | - Timothy I Musch
- Departments of Kinesiology and Anatomy & Physiology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
16
|
Keller-Ross ML, Cunningham HA, Carter JR. Impact of age and sex on neural cardiovascular responsiveness to cold pressor test in humans. Am J Physiol Regul Integr Comp Physiol 2020; 319:R288-R295. [PMID: 32697654 DOI: 10.1152/ajpregu.00045.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Prior longitudinal work suggests that blood pressure (BP) reactivity to the cold pressor test (CPT) helps predict hypertension; yet the impact of age and sex on hemodynamic and neural responsiveness to CPT remains equivocal. Forty-three young (21 ± 1yr, means ± SE) men (YM, n = 20) and women (YW, n = 23) and 16 older (60 ± 1yr) men (OM, n = 9) and women (OW, n = 7) participated in an experimental visit where continuous BP (finger plethysmography) and muscle sympathetic nerve activity (MSNA; microneurography) were recorded during a 3- to 5-min baseline and 2-min CPT. Baseline mean arterial pressure (MAP) was greater in OM than in YM (92 ± 4 vs. 77 ± 1 mmHg, P < 0.01), but similar in women (P = 0.12). Baseline MSNA incidence was greater in OM [69 ± 6 bursts/100 heartbeats (hb)] than in OW (44 ± 7 bursts/100 hb, P = 0.02) and lower in young adults (YM: 17 ± 3 vs. YW: 16 ± 2 bursts/100 hb, P < 0.01), but similar across the sexes (P = 0.83). However, when exposed to the CPT, MSNA increased more rapidly in OW (Δ43 ± 6 bursts/100 hb; group × time, P = 0.01) compared with OM (Δ15 ± 3 bursts/100 hb) but was not different between YW (Δ30 ± 3 bursts/100 hb) and YM (Δ33 ± 4 bursts/100 hb, P = 1.0). There were no differences in MAP with CPT between groups (group × time, P = 0.33). These findings suggest that OW demonstrate a more rapid initial rise in MSNA responsiveness to a CPT compared with OM. This greater sympathetic reactivity in OW may be a contributing mechanism to the increased hypertension risk in postmenopausal women.
Collapse
Affiliation(s)
- M L Keller-Ross
- Department of Rehabilitation Medicine, Divisions of Physical Therapy and Rehabilitation Science, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - H A Cunningham
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - J R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan.,Department of Health and Human Development, Montana State University - Bozeman, Bozeman, Montana
| |
Collapse
|
17
|
Cardio-postural interactions and muscle-pump baroreflex are severely impacted by 60-day bedrest immobilization. Sci Rep 2020; 10:12042. [PMID: 32694819 PMCID: PMC7374578 DOI: 10.1038/s41598-020-68962-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
To understand fundamental mechanisms associated with post-flight orthostatic intolerance we investigated the interaction between the cardiovascular and postural functions before and after 60 days of head down bedrest (HDBR). Twenty healthy young males (35.0 ± 1.7 years) were subjected to 60-day HDBR at 6˚ to simulate spaceflight-induced fluid shifts. A supine-to-stand (STS) test was conducted to evaluate cardio-postural control before and after (R) HDBR while an assessment of cardiovascular function was performed during HDBR. Beat-to-beat heart period, systolic blood pressure, and electromyography impulses were derived for wavelet transform coherence and causality analyses of the cardio-postural control and used to assess changes in the muscle-pump baroreflex. During quiet stand of the STS test, compared to baseline, heart rate was 50% higher on the day of exit from bedrest (R0) and 20% higher eight days later (R8). There was a 50% increase in deoxygenated hemoglobin on R0 and R8. Leg muscle activity reduced, and postural sway increased after HDBR. Causality of the muscle-pump baroreflex was reduced on R0 (0.73 ± 0.2) compared to baseline (0.87 ± 0.2) with complete recovery by R8. The muscle-pump baroreflex also had decreased gain and fraction time active following HDBR. Overall, our data show a significantly impaired muscle-pump baroreflex following bedrest.
Collapse
|
18
|
Okada Y, Galbreath MM, Jarvis SS, Shibata S, Vongpatanasin W, Levine BD, Fu Q. Broader adaptive range of sympathetic burst size in response to blood pressure change in older women with greater arterial stiffness. J Physiol 2020; 598:3331-3341. [PMID: 32449522 DOI: 10.1113/jp279877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023] Open
Abstract
KEY POINTS In this study, we focused on muscle sympathetic nerve activity (MSNA) burst size and occurrence separately as subcomponents of the sympathetic baroreflex in older adults, and we found that the distribution (variation) of burst size against burst occurrence was greater in women than men. Older women had greater carotid artery stiffness compared with older men, while blood pressure (BP) distribution (variation) was comparable between sexes. Sympathetic baroreflex sensitivity assessed with burst incidence was less sensitive as the carotid artery became stiffer in older men and women, while that assessed with burst area was more sensitive as the carotid artery became stiffer in older women but not in older men. These results help us understand the mechanisms underlying the compensation for the impaired response of MSNA burst occurrence in older women with greater carotid artery stiffness to regulate BP similar to that in older men. ABSTRACT There are sex differences in arterial stiffness and neural control of blood pressure (BP) among older adults. We examined whether the sympathetic response to BP is greater in older women than men in burst size but not burst occurrence. Burst occurrence and size were assessed with burst interval and area of muscle sympathetic nerve activity, respectively, and the distributions of these indices were evaluated by range during supine rest in 61 healthy older subjects (30 men (69 ± 6 years) and 31 women (68 ± 6 years); means ± SD). Also, we analysed sympathetic baroreflex sensitivity (BRS) with burst occurrence and area simultaneously. Carotid β-stiffness was measured with B-mode ultrasonic image and carotid BP. The range of burst interval was smaller in older women than men (P = 0.002), while there was no difference in the range of burst area. Carotid β-stiffness was greater in older women than men (6.7 ± 2.7 vs. 5.1 ± 2.7, P = 0.027). Sympathetic BRS assessed with burst incidence was lower in older women than men (-2.3 ± 1.4 vs. -3.3 ± 1.4 bursts·100 beats-1 mmHg-1 , P = 0.007), while this sex difference was observed when assessed with burst area after adjusting for carotid β-stiffness (-116.1 ± 135.0 vs. -185.9 ± 148.2 a.u. burst-1 mmHg-1 , P = 0.040), but not before. Sympathetic BRS assessed with burst area was negatively (more sensitive) correlated with carotid β-stiffness in older women (r = -0.53, P = 0.002) but not men. These data suggest that the response of burst size within each burst is augmented for the baroreflex BP control despite the impaired response of burst occurrence in older women with greater carotid stiffness.
Collapse
Affiliation(s)
- Yoshiyuki Okada
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Special Care Dentistry, Hiroshima University, Hiroshima, Japan
| | - M Melyn Galbreath
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sara S Jarvis
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Shigeki Shibata
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Qi Fu
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Texas, USA.,The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
19
|
Miller AJ, Cui J, Luck JC, Sinoway LI, Muller MD. Age and sex differences in sympathetic and hemodynamic responses to hypoxia and cold pressor test. Physiol Rep 2020; 7:e13988. [PMID: 30659773 PMCID: PMC6339536 DOI: 10.14814/phy2.13988] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 11/24/2022] Open
Abstract
Emerging evidence suggests that sympathetic vasoconstriction is lower in young women. We hypothesized that increases in muscle sympathetic nerve activity (MSNA) during acute physiological stressors induce less vasoconstriction in young women compared to young men. Healthy young men (n = 10, 27 ± 1 years), young women (n = 12, 25 ± 1 years), and older women (n = 10, 63 ± 6 years) performed the cold pressor test (hand in ice for 2 min) and continuous hypoxia (10% O2 , 90% N2 ) for 5 min. MSNA, femoral blood flow velocity, heart rate, and blood pressure were acquired continuously. Femoral artery diameter was obtained every minute and used to calculate femoral blood flow, and femoral vascular resistance and conductance. MSNA responses to cold pressor test (P = 0.345) and hypoxia (P = 0.969) were not different between groups. Young women had greater femoral blood flow (P = 0.002) and vascular conductance (P = 0.041) responses to cold pressor test compared with young men. The femoral blood flow response to hypoxia was not different between the two sexes but the increase in femoral flow was attenuated in older women compared with younger women (P = 0.036). These data show that young women had paradoxical vasodilation to cold pressor test. The mechanisms responsible for the attenuated sympathetic vasoconstriction or for enhanced vasodilation in young women during the CPT require further investigation.
Collapse
Affiliation(s)
- Amanda J Miller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Jian Cui
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - J Carter Luck
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Lawrence I Sinoway
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Matthew D Muller
- Penn State Heart and Vascular Institute, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
20
|
Daugherty SL, Carter JR, Bourjeily G. Cardiovascular Disease in Women Across the Lifespan: The Importance of Sleep. J Womens Health (Larchmt) 2020; 29:452-460. [PMID: 32096682 PMCID: PMC7097694 DOI: 10.1089/jwh.2020.8331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) and sleep disturbances are both common and associated with significant morbidity and mortality. Compared with men, women are more likely to report insufficient sleep. During the 2018 Research Conference on Sleep and the Health of Women sponsored by the National Heart, Lung, and Blood Institute, researchers in cardiology, integrative physiology and sleep medicine reviewed the current understanding of how sleep and sleep disturbances influence CVD in women across the lifespan. Women may be particularly vulnerable to the negative effects of sleep disturbances at important stages of their life, including during pregnancy and after menopause. The proposed pathways linking sleep disturbances and adverse cardiovascular outcomes in women are numerous and the complex interaction between them is not well understood. Future research focused on understanding the scope of sleep disorders in women, defining the underlying mechanisms, and testing interventions to improve sleep are critical for improving the cardiovascular health of all women.
Collapse
Affiliation(s)
- Stacie L. Daugherty
- Division of Cardiology, University of Colorado School of Medicine, Aurora, Colorado
- Adult and Children Center for Outcomes Research and Delivery Sciences (ACCORDS), University of Colorado School of Medicine, Aurora, Colorado
- Colorado Cardiovascular Outcomes Research Group, Denver, Colorado
| | - Jason R. Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan
| | - Ghada Bourjeily
- Divisions of Pulmonary, Critical Care and Sleep Medicine, and Obstetric Medicine, Department of Medicine, The Miriam Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
21
|
Badrov MB, Okada Y, Yoo JK, Vongpatanasin W, Shoemaker JK, Levine BD, Fu Q. Sex Differences in the Sympathetic Neural Recruitment and Hemodynamic Response to Head-Up Tilt in Older Hypertensives. Hypertension 2019; 75:458-467. [PMID: 31813347 DOI: 10.1161/hypertensionaha.119.14009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study tested the hypothesis that older hypertensive women display augmented pressor responses and aberrant sympathetic neural discharge patterning in response to orthostatic stress versus older hypertensive men. We evaluated, in older hypertensive and normotensive men and women (n=12 each group), blood pressure, heart rate, cardiac index (acetylene rebreathing), total peripheral resistance, and muscle sympathetic nerve activity (microneurography) at baseline (supine; 3 minutes) and during graded head-up tilt (30° for 5 minutes and 60° for 20 minutes). Sympathetic action potential discharge patterns were studied using wavelet-based methodology. In the upright posture, systolic and diastolic blood pressure responses were greater in hypertensive women versus hypertensive men and normotensive women (P<0.05). No differences existed in the heart rate, stroke index, or cardiac index response between groups; however, the total peripheral resistance response throughout graded head-up tilt was markedly greater in hypertensive women (P<0.01). Yet, the increase in integrated muscle sympathetic nerve activity burst frequency and burst incidence were similar between hypertensive women and men in the supine and upright postures. However, the increase in the mean action potential content per integrated burst and recruitment of previously dormant, larger-sized action potentials during 60° head-up tilt was greater in hypertensive women versus hypertensive men and normotensive women (P<0.001). Therefore, total sympathetic action potential firing frequency was markedly greater in hypertensive women throughout 60° head-up tilt (P<0.001). In conclusion, older hypertensive women displayed exaggerated pressor and peripheral vasoconstrictor responses to orthostasis versus hypertensive men, under conditions of augmented and aberrant sympathetic neural recruitment, rather than increased burst frequency, in the upright posture.
Collapse
Affiliation(s)
- Mark B Badrov
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (M.B.B., Y.O., J.-K.Y., B.D.L., Q.F.).,University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.)
| | - Yoshiyuki Okada
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (M.B.B., Y.O., J.-K.Y., B.D.L., Q.F.).,University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.).,Hiroshima University, Japan (Y.O.)
| | - Jeung-Ki Yoo
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (M.B.B., Y.O., J.-K.Y., B.D.L., Q.F.).,University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.)
| | - Wanpen Vongpatanasin
- University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.)
| | - J Kevin Shoemaker
- School of Kinesiology (J.K.S.), Western University, London, Ontario, Canada.,Department of Physiology and Pharmacology (J.K.S.), Western University, London, Ontario, Canada
| | - Benjamin D Levine
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (M.B.B., Y.O., J.-K.Y., B.D.L., Q.F.).,University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.)
| | - Qi Fu
- From the Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas (M.B.B., Y.O., J.-K.Y., B.D.L., Q.F.).,University of Texas Southwestern Medical Center, Dallas (M.B.B., Y.O., J.-K.Y., W.V., B.D.L., Q.F.)
| |
Collapse
|
22
|
Adler TE, Coovadia Y, Cirone D, Khemakhem ML, Usselman CW. Device-guided slow breathing reduces blood pressure and sympathetic activity in young normotensive individuals of both sexes. J Appl Physiol (1985) 2019; 127:1042-1049. [DOI: 10.1152/japplphysiol.00442.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Slow breathing (SLOWB) is recommended for use as an adjuvant treatment for hypertension. However, the extent to which blood pressure (BP) responses to SLOWB differ between men and women are not well-established. Therefore, we tested the hypothesis that an acute bout of SLOWB would induce larger decreases in BP in males than in females, given that males typically have higher resting BP. We also examined autonomic contributors to reduced BP during SLOWB; that is, muscle sympathetic nerve activity and spontaneous cardiovagal (sequence method) and vascular sympathetic baroreflex sensitivity. We tested normotensive females ( n = 10, age: 22 ± 2 y, body mass index: 22 ± 2 kg/m2) and males ( n = 12, age: 23 ± 3 y, body mass index: 26 ± 4 kg/m2). Subjects were tested at baseline and during the last 5 min of a 15-min RESPeRATE-guided SLOWB session. Overall, SLOWB reduced systolic BP by 3.2 ± 0.8 mmHg (main effect, P < 0.01). Females had lower systolic BP (main effect, P = 0.02); we observed no interaction between sex and SLOWB. SLOWB also reduced muscle sympathetic nerve activity burst incidence by −5.0 ± 1.4 bursts/100 heartbeats (main effect, P < 0.01). Although females tended to have lower burst incidence (main effect, P = 0.1), there was no interaction between sex and SLOWB. Cardiovagal baroreflex sensitivity improved during SLOWB (21.0 vs. 36.0 ms/mmHg, P = 0.03) with no effect of sex. Despite lower overall BP in females, our data support a lack of basement effect on SLOWB-induced reductions in BP, as SLOWB was equally effective in reducing BP in males and females. Our findings support the efficacy of the RESPeRATE device for reducing BP in both sexes, even in young, normotensive individuals. NEW & NOTEWORTHY We provide support for the effectiveness of device-guided slow breathing for blood pressure reduction in young normotensive women and men. Despite having lower baseline blood pressure and sympathetic nerve activity, women experienced equivalent reductions in both measures in response to RESPeRATE-guided slow breathing as men. Thus, slow breathing appears to be effective in young healthy normotensive individuals of both sexes and may be an ideal preventative therapy against future hypertension.
Collapse
Affiliation(s)
- Tessa E. Adler
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
| | - Yasmine Coovadia
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
| | - Domenica Cirone
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
| | - Maha L. Khemakhem
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
| | - Charlotte W. Usselman
- Cardiovascular Health and Autonomic Regulation Laboratory, Department of Kinesiology and Physical Education, McGill University, Quebec, Canada
- McGill Research Centre for Physical Activity and Health, McGill University, Quebec, Canada
| |
Collapse
|
23
|
The blood pressure variability and baroreflex sensitivity in healthy participants are not determined by sex or cardiorespiratory fitness. Blood Press Monit 2019; 23:260-270. [PMID: 29994926 DOI: 10.1097/mbp.0000000000000338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Heart rate (HR) and blood pressure (BP) autonomic modulation and baroreflex sensitivity (BRS) are important indexes of cardiovascular homeostasis. However, methodological errors are often observed, such as joint analysis of men and women. Another important aspect is that we still do not know whether cardiorespiratory fitness influences these autonomic parameters in healthy individuals. OBJECTIVES This study aimed to investigate whether sex can affect BRS, autonomic modulation of HR and BP variabilities (HRV and BPV, respectively), as well as the influence of cardiorespiratory fitness on these autonomic parameters. METHODS Healthy men and women (N=120) were assigned to groups according to the peak oxygen consumption (VO2 peak) obtained in the cardiorespiratory test: low cardiorespiratory fitness (VO2 peak: 22-38 ml/kg/min), moderate cardiorespiratory fitness (VO2 peak: 38-48 ml/kg/min), and high cardiorespiratory fitness (VO2 peak>48 ml/kg/min). HRV and BPV evaluations were performed for all groups in the frequency domain by spectral analysis. Spontaneous BRS was assessed using the sequence method. RESULTS Women presented lower BP values compared with men. HR did not differ between sexes, but showed an inverse relationship with cardiorespiratory performance. The HRV analysis showed greater sympathetic modulation for men and greater vagal modulation for women. Men and women presented similar results for systolic BPV and BRS, and cardiorespiratory performance did not influence any of the autonomic parameters evaluated. CONCLUSION Cardiorespiratory fitness does not interfere with HRV and BPV autonomic modulation or BRS. However, the cardiac modulatory balance differs between sexes, with a greater influence of the autonomic vagal component in women and the sympathetic component in men.
Collapse
|
24
|
Samora M, Incognito AV, Vianna LC. Sex differences in blood pressure regulation during ischemic isometric exercise: the role of the β-adrenergic receptors. J Appl Physiol (1985) 2019; 127:408-414. [PMID: 31219771 DOI: 10.1152/japplphysiol.00270.2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We sought to investigate whether the β-adrenergic receptors play a pivotal role in sex-related differences in arterial blood pressure (BP) regulation during isometric exercise. Sixteen volunteers (8 women) performed 2 min of ischemic isometric handgrip exercise (IHE) and 2 min of postexercise circulatory occlusion (PECO). Heart rate (HR) and beat-to-beat arterial BP were continuously measured. Beat-to-beat estimates of stroke volume (ModelFlow) were obtained and matched with HR to calculate cardiac output (Q̇) and total peripheral resistance (TPR). Two trials were randomly conducted between placebo and nonselective β-adrenergic blockade (40 mg propranolol). Under the placebo condition, the magnitude of the BP response in IHE was lower in women compared with men. During PECO, the BP remained elevated and the sex differences persisted. The β-blockade attenuated the BP response during IHE in men (∆57 ± 4 vs. ∆45 ± 7 mmHg, P = 0.025) due to a reduction in Q̇ (∆3.7 ± 0.5 vs. ∆1.8 ± 0.2 L/min, P = 0.012) while TPR was not affected. In women, however, the BP response during IHE was unchanged (∆27 ± 3 vs. ∆28 ± 3 mmHg, P = 0.889), despite attenuated Q̇ (∆2.7 ± 0.4 vs. ∆1.3 ± 0.2 L/min, P = 0.012). These responses were mediated by a robust increase in TPR under β-blockade (∆-0.2 ± 0.4 vs. ∆2.2 ± 0.7 mmHg·L-1·min, P = 0.012). These findings demonstrate that the sex differences in arterial BP regulation during ischemic IHE are mediated by β-adrenergic receptors.NEW & NOTEWORTHY We found that the blood pressure response during isometric exercise in women is mediated by increases in cardiac output, whereas in men it is mediated by increases in both cardiac output and total peripheral resistance. In addition, women showed a robust increase in total peripheral resistance under β-blockade during isometric exercise and muscle metaboreflex activation. These findings demonstrate that sex differences in blood pressure regulation during isometric exercise are mediated by β-adrenergic receptors.
Collapse
Affiliation(s)
- Milena Samora
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil
| | - Anthony V Incognito
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil.,Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasilia, Distrito Federal, Brazil
| |
Collapse
|
25
|
Robinson AT, Babcock MC, Watso JC, Brian MS, Migdal KU, Wenner MM, Farquhar WB. Relation between resting sympathetic outflow and vasoconstrictor responses to sympathetic nerve bursts: sex differences in healthy young adults. Am J Physiol Regul Integr Comp Physiol 2019; 316:R463-R471. [PMID: 30794437 DOI: 10.1152/ajpregu.00305.2018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have demonstrated an inverse relation between resting muscle sympathetic nerve activity (MSNA) and vasoconstrictor responsiveness (i.e., sympathetic transduction), such that those with high resting MSNA have low vascular responsiveness, and vice versa. The purpose of this investigation was to determine whether biological sex influences the balance between resting MSNA and beat-to-beat sympathetic transduction. We measured blood pressure (BP) and MSNA during supine rest in 54 healthy young adults (27 females: 23 ± 4 yr, 107 ± 8/63 ± 8 mmHg; 27 males: 25 ± 3 yr, 115 ± 11/64 ± 7 mmHg; means ± SD). We quantified beat-to-beat fluctuations in mean arterial pressure (MAP, mmHg) and limb vascular conductance (LVC, %) for 10 cardiac cycles after each MSNA burst using signal averaging, an index of sympathetic vascular transduction. In females, there was no correlation between resting MSNA (burst incidence; burst/100 heartbeats) and peak ΔMAP (r = -0.10, P = 0.62) or peak ΔLVC (r = -0.12, P = 0.63). In males, MSNA was related to peak ΔMAP (r = -0.50, P = 0.01) and peak ΔLVC (r = 0.49, P = 0.03); those with higher resting MSNA had blunted increases in MAP and reductions in LVC in response to a burst of MSNA. In a sub-analysis, we performed a median split between high- versus low-MSNA status on ΔMAP and ΔLVC within each sex and found that only males demonstrated a significant difference in ΔMAP and ΔLVC between high- versus low-MSNA groups. These findings support an inverse relation between resting MSNA and sympathetic vascular transduction in males only and advance our understanding on the influence of biological sex on sympathetic nervous system-mediated alterations in beat-to-beat BP regulation.
Collapse
Affiliation(s)
- Austin T Robinson
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Matthew C Babcock
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Joseph C Watso
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Michael S Brian
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware.,Department of Health and Human Performance, Plymouth State University , Plymouth, New Hampshire
| | - Kamila U Migdal
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - Megan M Wenner
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware , Newark, Delaware
| |
Collapse
|
26
|
Kessler EL, Rivaud MR, Vos MA, van Veen TAB. Sex-specific influence on cardiac structural remodeling and therapy in cardiovascular disease. Biol Sex Differ 2019; 10:7. [PMID: 30717770 PMCID: PMC6360698 DOI: 10.1186/s13293-019-0223-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/24/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Cardiovascular diseases (CVDs) culminating into heart failure (HF) are major causes of death in men and women. Prevalence and manifestation, however, differ between sexes, since men mainly present with coronary artery disease (CAD) and myocardial infarction (MI), and post-menopausal women predominantly present with hypertension. These discrepancies are probably influenced by underlying genetic and molecular differences in structural remodeling pathways involved in hypertrophy, inflammation, fibrosis, and apoptosis. In general, men mainly develop eccentric forms, while women develop concentric forms of hypertrophy. Besides that, women show less inflammation, fibrosis, and apoptosis upon HF. This seems to emerge, at least partially, from the fact that the underlying pathways might be modulated by estrogen, which changes after menopause due to declining of the estrogen levels. CONCLUSION In this review, sex-dependent alterations in adverse cardiac remodeling are discussed for various CVDs. Moreover, potential therapeutic options, like estrogen treatment, are reviewed.
Collapse
Affiliation(s)
- Elise L. Kessler
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Yalelaan 50, 3584CM Utrecht, The Netherlands
- Department of Experimental Cardiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, P.O.Box 85500, Heidelberglaan 100, Utrecht, 3584CT The Netherlands
| | - Mathilde R. Rivaud
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Yalelaan 50, 3584CM Utrecht, The Netherlands
- Department of Clinical and Experimental Cardiology, Heart Center, Academic Medical Center, Amsterdam, The Netherlands
| | - Marc A. Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Yalelaan 50, 3584CM Utrecht, The Netherlands
| | - Toon A. B. van Veen
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center, Utrecht, Utrecht University, Yalelaan 50, 3584CM Utrecht, The Netherlands
| |
Collapse
|
27
|
|
28
|
Carter JR. Microneurography and sympathetic nerve activity: a decade-by-decade journey across 50 years. J Neurophysiol 2019; 121:1183-1194. [PMID: 30673363 DOI: 10.1152/jn.00570.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The technique of microneurography has advanced the field of neuroscience for the past 50 years. While there have been a number of reviews on microneurography, this paper takes an objective approach to exploring the impact of microneurography studies. Briefly, Web of Science (Thomson Reuters) was used to identify the highest citation articles over the past 50 years, and key findings are presented in a decade-by-decade highlight. This includes the establishment of microneurography in the 1960s, the acceleration of the technique by Gunnar Wallin in the 1970s, the international collaborations of the 1980s and 1990s, and finally the highest impact studies from 2000 to present. This journey through 50 years of microneurographic research related to peripheral sympathetic nerve activity includes a historical context for several of the laboratory interventions commonly used today (e.g., cold pressor test, mental stress, lower body negative pressure, isometric handgrip, etc.) and how these interventions and experimental approaches have advanced our knowledge of cardiovascular, cardiometabolic, and other human diseases and conditions.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University , Houghton, Michigan
| |
Collapse
|
29
|
Verma AK, Xu D, Garg A, Blaber AP, Tavakolian K. Effect of Aging on Muscle-Pump Baroreflex of Individual Leg Muscles During Standing. Front Physiol 2019; 10:845. [PMID: 31379591 PMCID: PMC6646886 DOI: 10.3389/fphys.2019.00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/19/2019] [Indexed: 12/13/2022] Open
Abstract
Activation of leg muscles is an important component in the regulation of blood pressure during standing, failure of which could result in syncope and falls. Our previous work demonstrated baroreflex mediated activation of leg muscles (muscle-pump baroreflex) as an important factor in the regulation of blood pressure during standing; however, the effect of aging on the muscle-pump baroreflex of individual leg muscles during standing remains to be understood. Here, the interaction between systolic blood pressure (SBP) and the activation of lateral gastrocnemius (LG), medial gastrocnemius (MG), tibialis anterior (TA), and soleus (SOL) muscles during standing was quantified. Beat-to-beat heart period (RR interval), SBP, electromyography impulse (EMGimp) were derived from continuously acquired electrocardiography, finger blood pressure, and calf-electromyography, respectively. The cardiac baroreflex (SBP→RR) causality (0.88 ± 0.08 vs. 0.94 ± 0.03, p = 0.01), percent time with significant coherence (%SC: 50.95 ± 23.31 vs. 76.75 ± 16.91, p = 0.001), and gain (4.39 ± 4.38 vs. 13.05 ± 8.11, p < 0.001) was lower in older (69 ± 4 years) compared to young (26 ± 2 years) persons. Muscle-pump baroreflex (SBP→EMGimp) causality of LG (0.81 ± 0.08 vs. 0.88 ± 0.05, p = 0.01) and SOL (0.79 ± 0.11 vs. 0.88 ± 0.04, p = 0.01) muscles was lower in older compared to young persons. %SC was lower for all muscles in the older group (LG, p < 0.001; MG, p = 0.01; TA, p = 0.01; and SOL, p < 0.001) compared to young. The study outcomes highlighted impairment in muscle-pump baroreflex with age in addition to cardiac baroreflex. The findings of the study can assist in the development of an effective system for monitoring orthostatic tolerance via cardiac and muscle-pump baroreflexes to mitigate syncope and falls.
Collapse
Affiliation(s)
- Ajay K. Verma
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, United States
| | - Da Xu
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Amanmeet Garg
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Andrew P. Blaber
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Kouhyar Tavakolian
- School of Electrical Engineering and Computer Science, University of North Dakota, Grand Forks, ND, United States
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- *Correspondence: Kouhyar Tavakolian,
| |
Collapse
|
30
|
Mansur DE, Campos MO, Mattos JD, Paiva ACS, Rocha MP, Videira RLR, Macefield VG, Nóbrega ACL, Fernandes IA. Muscle sympathetic nerve activity and hemodynamic responses to venous distension: does sex play a role? Am J Physiol Heart Circ Physiol 2018; 316:H734-H742. [PMID: 30592900 DOI: 10.1152/ajpheart.00702.2018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral venous distension mechanically stimulates type III/IV sensory fibers in veins and evokes pressor and sympathoexcitatory reflex responses in humans. As young women have reduced venous compliance and impaired sympathetic transduction, we tested the hypothesis that pressor and sympathoexcitatory responses to venous distension may be attenuated in women compared with men. Mean arterial pressure (photoplethysmography), heart rate (HR), stroke volume (SV; Modelflow), cardiac output (CO = HR × SV), muscle sympathetic nerve activity (MSNA), femoral artery blood flow, and femoral artery conductance (Doppler ultrasound) were quantified in eight men (27 ± 4 yr) and nine women (28 ± 4 yr) before [control (CON)], during (INF), and immediately after (post-INF) a local infusion of saline [5% of the total forearm volume (30 ml/min); the infusion time was 2 ± 1 and 1 ± 1 min ( P = 0.0001) for men and women, respectively] through a retrograde catheter inserted into an antecubital vein, to which venous drainage and arterial supply had been occluded. Mean arterial pressure increased during and after infusion in both groups (vs. the CON group, P < 0.05), but women showed a smaller pressor response in the post-INF period (Δ+7.2 ± 2.0 vs. Δ+18.3 ± 3.9 mmHg in men, P = 0.019). MSNA increased and femoral artery conductance decreased similarly in both groups (vs. the CON group, P < 0.05) at post-INF. Although HR changes were similar, increases in SV (Δ+20.4 ± 8.6 vs. Δ+2.6 ± 2.7 ml, P = 0.05) and CO (Δ+0.84 ± 0.17 vs. Δ+0.34 ± 0.10 l/min, P = 0.024) were greater in men compared with women. Therefore, venous distension evokes a smaller pressor response in young women due to attenuated cardiac adjustments rather than reduced venous compliance or sympathetic transduction. NEW & NOTEWORTHY We found that the pressor response to venous distension was attenuated in young women compared with age-matched men. This was due to attenuated cardiac adjustments rather than reduced venous compliance, sympathetic activation, or impaired transduction and vascular control. Collectively, these findings suggest that an attenuated venous distension reflex could be involved in orthostatic intolerance in young women.
Collapse
Affiliation(s)
- Daniel E Mansur
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | - Monique O Campos
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | - João D Mattos
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | - Adrielle C S Paiva
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | - Marcos P Rocha
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | | | - Vaughan G Macefield
- College of Medicine, Mohammed Bin Rashid University of Health and Medicine , Dubai , United Arab Emirates.,Baker Heart and Diabetes Institute , Melbourne, Victoria , Australia
| | - Antonio C L Nóbrega
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil
| | - Igor A Fernandes
- Laboratory of Exercise Sciences, Fluminense Federal University , Niterói , Brazil.,NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília , Brasília , Brazil
| |
Collapse
|
31
|
Stone RM, Ainslie PN, Kerstens TP, Wildfong KW, Tymko MM. Sex differences in the circulatory responses to an isocapnic cold pressor test. Exp Physiol 2018; 104:295-305. [PMID: 30578582 DOI: 10.1113/ep087232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
NEW FINDINGS What is the central question of this study? Do sex differences exist in the cardiorespiratory responses to an isocapnic cold pressor test (CPT)? What is the main finding and its importance? During the CPT, there were no sex differences in the respiratory response; however, females demonstrated a reduced mean arterial pressure and reduced dilatation of the common carotid artery. Given that the CPT is predictive of future cardiovascular events, these data have clinical implications for improving the utility of the CPT to determine cardiovascular health risk. Sex differences should be taken into consideration when conducting and interpreting a CPT. ABSTRACT The cold pressor test (CPT) elicits a transient increase in sympathetic nervous activity, minute ventilation ( <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> ), mean arterial pressure (MAP) and common carotid artery (CCA) diameter in healthy individuals. Although the extent of dilatation of the CCA in response to the CPT has been used as a clinical indicator of cardiovascular health status, the potential sex differences have yet to be explored. In response to a CPT, we hypothesized that elevations in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> and MAP and dilatation of the CCA would be attenuated in females compared with males. In 20 young, healthy participants (10 females), we measured the respiratory, cardiovascular and CCA responses during a CPT, which consisted of a 3 min immersion of the right foot into 0-1 ice water. Blood pressure (via finger photoplethysmography), heart rate (via electrocardiogram) and CCA diameter and velocity (via Duplex ultrasound) were simultaneously recorded immediately before and during the CPT. During the CPT, while controlling end-tidal gases to baseline values, the main findings were as follows: (i) no sex differences were present in absolute or relative changes in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mover><mml:mi>V</mml:mi> <mml:mo>̇</mml:mo></mml:mover> <mml:mi>E</mml:mi></mml:msub> </mml:math> (P = 0.801 and P = 0.179, respectively); (ii) the relative MAP and CCA diameter response were reduced in females by 51 and 55%, respectively (P = 0.008 and P = 0.029 versus males, respectively); and (iii) the relative MAP responses was positively correlated with the dilatation of the CCA in males (r = 0.42, P = 0.019), in females (r = 0.43, P = 0.019) and in males and females combined (r = 0.55, P < 0.001). Given that the CPT is used as a clinical tool to assess cardiovascular health status, sex differences should be considered in future studies.
Collapse
Affiliation(s)
- Rachel M Stone
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Thijs P Kerstens
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Kevin W Wildfong
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| | - Michael M Tymko
- Centre for Heart, Lung and Vascular Health, School of Health and Exercise Science, University of British Columbia, Kelowna, BC, Canada
| |
Collapse
|
32
|
El Sayed K, Macefield VG, Hissen SL, Joyner MJ, Taylor CE. Blood pressure reactivity at onset of mental stress determines sympathetic vascular response in young adults. Physiol Rep 2018; 6:e13944. [PMID: 30552755 PMCID: PMC6294720 DOI: 10.14814/phy2.13944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022] Open
Abstract
We have previously shown in young males that the rate of rise in blood pressure (BP) at the onset of mental stress determines whether or not muscle sympathetic nerve activity (MSNA) has a role in driving the pressor response. The aim of this study was to investigate these interactions in young females. BP and MSNA were recorded continuously in 19 females and 21 males during 2-min mental stressors (mental arithmetic and Stroop test). Physical stressor tasks (cold pressor, handgrip exercise, postexercise ischemia) were also performed. During the first minute of mental arithmetic, the rate of rise in mean arterial pressure (MAP) was significantly greater in negative responders (mean decrease in MSNA) compared with positive responders (mean increase in MSNA) in both males (1.9 ± 0.7 vs. 0.7 ± 0.3 mmHg/sec) and females (1.0 ± 0.3 vs. 0.5 ± 0.2 mmHg/sec). For the Stroop test, there was no significant difference in the rate of the rise in BP between positive and negative responders (P > 0.05). However, peak changes in MAP were significantly greater in negative responders compared with positive responders in both males (22 ± 6 vs. 13 ± 3 mmHg) and females (12 ± 2 vs. 6 ± 1 mmHg). Sympathetic baroreflex sensitivity was greater in negative responders and may contribute to the fall in MSNA experienced by these individuals during mental stress. During physical stressors there were consistent increases in BP and MSNA in males and females. The findings suggest that, in both males and females, BP reactivity at the onset of mental stress dictates whether or not there is an increase or decrease in MSNA.
Collapse
Affiliation(s)
- Khadigeh El Sayed
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Vaughan G. Macefield
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- Baker Heart and Diabetes InstituteMelbourneVictoriaAustralia
| | - Sarah L Hissen
- School of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| | | | - Chloe E. Taylor
- School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
- School of Science and HealthWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
33
|
Hortelano M, Reilly RB, Castells F, Cervigón R. Refined Multiscale Fuzzy Entropy to Analyse Post-Exercise Cardiovascular Response in Older Adults With Orthostatic Intolerance. ENTROPY 2018; 20:e20110860. [PMID: 33266584 PMCID: PMC7512426 DOI: 10.3390/e20110860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/20/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
Orthostatic intolerance syndrome occurs when the autonomic nervous system is incapacitated and fails to respond to the demands associated with the upright position. Assessing this syndrome among the elderly population is important in order to prevent falls. However, this problem is still challenging. The goal of this work was to determine the relationship between orthostatic intolerance (OI) and the cardiovascular response to exercise from the analysis of heart rate and blood pressure. More specifically, the behavior of these cardiovascular variables was evaluated in terms of refined composite multiscale fuzzy entropy (RCMFE), measured at different scales. The dataset was composed by 65 older subjects, 44.6% (n = 29) were OI symptomatic and 55.4% (n = 36) were not. Insignificant differences were found in age and gender between symptomatic and asymptomatic OI participants. When heart rate was evaluated, higher differences between groups were observed during the recovery period immediately after exercise. With respect to the blood pressure and other hemodynamic parameters, most significant results were obtained in the post-exercise stage. In any case, the symptomatic OI group exhibited higher irregularity in the measured parameters, as higher RCMFE levels in all time scales were obtained. This information could be very helpful for a better understanding of cardiovascular instability, as well as to recognize risk factors for falls and impairment of functional status.
Collapse
Affiliation(s)
- Marcos Hortelano
- Escuela Politécnica, UCLM Camino del Pozuelo sn, 16071 Cuenca, Spain
| | - Richard B. Reilly
- School of Engineering, Trinity College, The University of Dublin, Dublin 2 D02 PN40, Ireland
- School of Medicine, Trinity College, The University of Dublin, Dublin 2 D02 PN40, Ireland
- Trinity Centre for Bioengineering, Trinity College, The University of Dublin, Dublin 2 D02 PN40, Ireland
| | - Francisco Castells
- Instituto ITACA, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Raquel Cervigón
- Escuela Politécnica, UCLM Camino del Pozuelo sn, 16071 Cuenca, Spain
- Correspondence: ; Tel.: +34-969-179100
| |
Collapse
|
34
|
Klassen SA, Limberg JK, Baker SE, Nicholson WT, Curry TB, Joyner MJ, Shoemaker JK. The role of the paravertebral ganglia in human sympathetic neural discharge patterns. J Physiol 2018; 596:4497-4510. [PMID: 30054928 PMCID: PMC6138281 DOI: 10.1113/jp276440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
KEY POINTS The mechanisms affecting recruitment patterns of postganglionic sympathetic nerves remain unclear. The divergent and convergent preganglionic innervation patterns of postganglionic neurons and the presence of differently sized postganglionic nerves suggest that the ganglia may participate in modifying the discharge patterns of single sympathetic postganglionic neurons innervating the skeletal muscle circulation. Whether the ganglia affect the ordered behaviour of varying sized postganglionic sympathetic neurons in humans has not been studied. Trimethaphan infusion produced an ordered pattern of action potential (AP) de-recruitment whereby the firing of larger, low probability APs present at baseline was abolished first, followed by progressive decreased probability of smaller APs. Although integrated sympathetic bursts were no longer detected after several minutes of trimethaphan, firing of the smallest APs was detected. These data suggest the ganglia affect the distribution of firing probabilities exhibited by differently sized sympathetic neurons. The ganglia may contribute to sympathetic neural emission patterns involved in homeostatic regulation. ABSTRACT Do the ganglia contribute to the ordered behaviour of postganglionic neuronal discharge within the sympathetic nervous system? To further understand the functional organization of the sympathetic nervous system we employed the microneurographic approach to record muscle sympathetic nerve activity (MSNA) and a continuous wavelet transform to study postganglionic action potential (AP) behaviour during nicotinic blockade at the ganglia (trimethaphan camsylate, 1-7 mg min-1 ) in seven females (37 ± 5 years). Trimethaphan elicited a progressive reduction in sympathetic outflow characterized by fewer integrated bursts with decaying amplitude. Underlying trimethaphan-mediated attenuations in integrated MSNA were reductions in AP incidence (186 ± 101 to 29 ± 31 AP (100 beats)-1 ) and AP content per integrated burst (7 ± 2 to 3 ± 1 APs burst-1 ) (both P < 0.01) in the final minute of detectable bursting activity in the trimethaphan condition, compared to baseline. We observed an ordered de-recruitment of larger to smaller AP clusters active at baseline (14 ± 3 to 8 ± 2 active AP clusters, P < 0.01). Following cessation of integrated bursts in the trimethaphan condition, the smallest 6 ± 2 sympathetic AP clusters persisted to fire in an asynchronous pattern (49 ± 41 AP (100 beats)-1 ) in all participants. Valsalva's manoeuvre did not increase the incidence of these persistent APs (60 ± 42 AP (100 beats)-1 , P = 0.52), or recruit any larger APs in six of seven participants (6 ± 1 total AP clusters, P = 0.30). These data suggest that the ganglia participate in the ordered recruitment of differently sized postganglionic sympathetic nerves.
Collapse
Affiliation(s)
- Stephen A. Klassen
- Neurovascular Research LaboratoryUniversity of Western OntarioLondonOntarioCanada
- School of KinesiologyUniversity of Western OntarioLondonOntarioCanada
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
| | - Wayne T. Nicholson
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
| | - Timothy B. Curry
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative MedicineMayo ClinicRochesterMNUSA
| | - J. Kevin Shoemaker
- Neurovascular Research LaboratoryUniversity of Western OntarioLondonOntarioCanada
- School of KinesiologyUniversity of Western OntarioLondonOntarioCanada
- Department of Physiology and PharmacologyUniversity of Western OntarioLondonOntarioCanada
| |
Collapse
|
35
|
Masatli Z, Nordine M, Maggioni MA, Mendt S, Hilmer B, Brauns K, Werner A, Schwarz A, Habazettl H, Gunga HC, Opatz OS. Gender-Specific Cardiovascular Reactions to +Gz Interval Training on a Short Arm Human Centrifuge. Front Physiol 2018; 9:1028. [PMID: 30108517 PMCID: PMC6079353 DOI: 10.3389/fphys.2018.01028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular deconditioning occurs in astronauts during microgravity exposure, and may lead to post-flight orthostatic intolerance, which is more prevalent in women than men. Intermittent artificial gravity is a potential countermeasure, which can effectively train the cardiovascular mechanisms responsible for maintaining orthostatic integrity. Since cardiovascular responses may differ between women and men during gravitational challenges, information regarding gender specific responses during intermittent artificial gravity exposure plays a crucial role in countermeasure strategies. This study implemented a +Gz interval training protocol using a ground based short arm human centrifuge, in order to assess its effectiveness in stimulating the components of orthostatic integrity, such as diastolic blood pressure, heart rate and vascular resistance amongst both genders. Twenty-eight participants (12 men/16 women) underwent a two-round graded +1/2/1 Gz profile, with each +Gz phase lasting 4 min. Cardiovascular parameters from each phase (averaged last 60 sec) were analyzed for significant changes with respect to baseline values. Twelve men and eleven women completed the session without interruption, while five women experienced an orthostatic event. These women had a significantly greater height and baseline mean arterial pressure than their counterparts. Throughout the +Gz interval session, women who completed the session exhibited significant increases in heart rate and systemic vascular resistance index throughout all +Gz phases, while exhibiting increases in diastolic blood pressure during several +Gz phases. Men expressed significant increases from baseline in diastolic blood pressure throughout the session with heart rate increases during the +2Gz phases, while no significant changes in vascular resistance were recorded. Furthermore, women exhibited non-significantly higher heart rates over men during all phases of +Gz. Based on these findings, this protocol proved to consistently stimulate the cardiovascular systems involved in orthostatic integrity to a larger extent amongst women than men. Thus the +Gz gradients used for this interval protocol may be beneficial for women as a countermeasure against microgravity induced cardiovascular deconditioning, whereas men may require higher +Gz gradients. Lastly, this study indicates that gender specific cardiovascular reactions are apparent during graded +Gz exposure while no significant differences regarding cardiovascular responses were found between women and men during intermittent artificial gravity training.
Collapse
Affiliation(s)
- Zeynep Masatli
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Nordine
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martina A Maggioni
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefan Mendt
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ben Hilmer
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katharina Brauns
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anika Werner
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anton Schwarz
- Central Medical School, Monash University, Melbourne, VIC, Australia
| | - Helmut Habazettl
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hanns-Christian Gunga
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Oliver S Opatz
- Center for Space Medicine and Extreme Environments Berlin, Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
36
|
Williams AM, Shave RE, Coulson JM, White H, Rosser-Stanford B, Eves ND. Influence of vagal control on sex-related differences in left ventricular mechanics and hemodynamics. Am J Physiol Heart Circ Physiol 2018; 315:H687-H698. [PMID: 29856652 DOI: 10.1152/ajpheart.00733.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Left ventricular (LV) twist mechanics differ between men and women during acute physiological stress, which may be partly mediated by sex differences in autonomic control. While men appear to have greater adrenergic control of LV twist, the potential contribution of vagal modulation to sex differences in LV twist remains unknown. Therefore, the present study examined the role of vagal control on sex differences in LV twist during graded lower body negative pressure (LBNP) and supine cycling. On two separate visits, LV mechanics were assessed using two-dimensional speckle-tracking echocardiography in 18 men (22 ± 2 yr) and 17 women (21 ± 4 yr) during -40- and -60-mmHg LBNP and 25% and 50% of peak supine cycling workload with and without glycopyrrolate (vagal blockade). LV twist was not different at baseline but was greater in women during -60 mmHg in both control (women: 16.0 ± 3.4° and men: 12.9 ± 2.3°, P = 0.004) and glycopyrrolate trials (women: 17.7 ± 5.9° and men: 13.9 ± 3.3°, P < 0.001) due to greater apical rotation during control (women: 11.9 ± 3.6° and men: 7.8 ± 1.5°, P < 0.001) and glycopyrrolate (women: 11.6 ± 4.9° and men: 7.1 ± 3.6°, P = 0.009). These sex differences in LV twist consistently coincided with a greater LV sphericity index (i.e., ellipsoid geometry) in women compared with men. In contrast, LV twist did not differ between the sexes during exercise with or without glycopyrrolate. In conclusion, women have augmented LV twist compared with men during large reductions to preload, even during vagal blockade. As such, differences in vagal control do not appear to contribute to sex differences in the LV twist responses to physiological stress, but they may be related to differences in ventricular geometry. NEW & NOTEWORTHY This is the first study to specifically examine the role of vagal autonomic control on sex-related differences in left ventricular (LV) mechanics. Contrary to our hypothesis, vagal control does not appear to primarily determine sex differences in LV mechanical or hemodynamic responses to acute physiological stress. Instead, differences in LV geometry may be a more important contributor to sex differences in LV mechanics.
Collapse
Affiliation(s)
- Alexandra M Williams
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| | - Rob E Shave
- Cardiff School of Sport, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - James M Coulson
- School of Medicine, Cardiff University , Cardiff , United Kingdom
| | - Harriet White
- School of Medicine, Cardiff University , Cardiff , United Kingdom
| | - Bryn Rosser-Stanford
- Cardiff School of Sport, Cardiff Metropolitan University , Cardiff , United Kingdom
| | - Neil D Eves
- Centre for Heart, Lung, and Vascular Health, University of British Columbia , Kelowna, British Columbia , Canada
| |
Collapse
|
37
|
Klassen SA, De Abreu S, Greaves DK, Kimmerly DS, Arbeille P, Denise P, Hughson RL, Normand H, Shoemaker JK. Long-duration bed rest modifies sympathetic neural recruitment strategies in male and female participants. J Appl Physiol (1985) 2018; 124:769-779. [PMID: 29212669 PMCID: PMC5899270 DOI: 10.1152/japplphysiol.00640.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/09/2017] [Accepted: 12/04/2017] [Indexed: 01/07/2023] Open
Abstract
To understand the impact of physical deconditioning with head-down tilt bed rest (HDBR) on the malleability of sympathetic discharge patterns, we studied 1) baseline integrated muscle sympathetic nerve activity (MSNA; microneurography) from 13 female participants in the WISE-2005 60-day HDBR study (retrospective analysis), 2) integrated MSNA and multiunit action potential (AP) analysis in 13 male participants performed on data collected at baseline and during physiological stress imposed by end-inspiratory apnea in a new 60-day HDBR study, and 3) a repeatability study (control; n = 6, retrospective analysis, 4 wk between tests). Neither baseline integrated burst frequency nor incidence were altered with HDBR (both P > 0.35). However, baseline integrated burst latency increased in both HDBR studies (male: 1.35 ± 0.02 to 1.39 ± 0.02 s, P < 0.01; female: 1.23 ± 0.02 to 1.29 ± 0.02 s, P < 0.01), whereas controls exhibited no change across two visits (1.25 ± 0.02 to 1.25 ± 0.02 s, group-by-time interaction, P = 0.02). With the exception of increased AP latency ( P = 0.03), male baseline AP data did not change with HDBR (all P > 0.19). The change in AP frequency on going from baseline to apnea (∆94 ± 25 to ∆317 ± 55 AP/min, P < 0.01) and the number of active sympathetic clusters per burst (∆0 ± 0.2 to ∆1 ± 0.2 clusters/burst, P = 0.02) were greater post- compared with pre-HDBR. The change in total clusters with apnea was ∆0 ± 0.5 clusters pre- and ∆2 ± 0.7 clusters post-HDBR ( P = 0.07). These data indicate that 60-day HDBR modified discharge characteristics in baseline burst latency and sympathetic neural recruitment during apneic stress. NEW & NOTEWORTHY Long-duration bed rest did not modify baseline sympathetic burst frequency in male and female participants, but examination of additional features of the multiunit signal provided novel evidence to suggest augmented synaptic delays or processing times at baseline for all sympathetic action potentials. Furthermore, long-duration bed rest increased reflex-sympathetic arousal to apneic stress in male participants primarily by mechanisms involving an augmented firing rate of action potential clusters active at baseline.
Collapse
Affiliation(s)
- Stephen A Klassen
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario , London, Ontario , Canada
| | | | - Danielle K Greaves
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Derek S Kimmerly
- Division of Kinesiology, School of Health and Human Performance, Dalhousie University , Halifax, Nova Scotia , Canada
| | - Philippe Arbeille
- UMPS-CERCOM, School of Medicine, University of Tours , Tours , France
| | - Pierre Denise
- Normandie Université, Unicaen, INSERM, Caen , France
| | - Richard L Hughson
- Schlegel-University of Waterloo Research Institute for Aging , Waterloo, Ontario , Canada
| | - Hervé Normand
- Normandie Université, Unicaen, INSERM, Caen , France
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, University of Western Ontario , London, Ontario , Canada
- Department of Physiology and Pharmacology, University of Western Ontario , London, Ontario , Canada
| |
Collapse
|
38
|
Javorka M, El-Hamad F, Czippelova B, Turianikova Z, Krohova J, Lazarova Z, Baumert M. Role of respiration in the cardiovascular response to orthostatic and mental stress. Am J Physiol Regul Integr Comp Physiol 2018; 314:R761-R769. [PMID: 29443551 DOI: 10.1152/ajpregu.00430.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to determine the response of heart rate and blood pressure variability (respiratory sinus arrhythmia, baroreflex sensitivity) to orthostatic and mental stress, focusing on causality and the mediating effect of respiration. Seventy-seven healthy young volunteers (46 women, 31 men) aged 18.4 ± 2.7 yr underwent an experimental protocol comprising supine rest, 45° head-up tilt, recovery, and a mental arithmetic task. Heart rate variability and blood pressure variability were analyzed in the time and frequency domain and modeled as a multivariate autoregressive process where the respiratory volume signal acted as an external driver. During head-up tilt, tidal volume increased while respiratory rate decreased. During mental stress, breathing rate increased and tidal volume was elevated slightly. Respiratory sinus arrhythmia decreased during both interventions. Baroreflex function was preserved during orthostasis but was decreased during mental stress. While sex differences were not observed during baseline conditions, cardiovascular response to orthostatic stress and respiratory response to mental stress was more prominent in men compared with women. The respiratory response to the mental arithmetic tasks was more prominent in men despite a significantly higher subjectively perceived stress level in women. In conclusion, respiration shows a distinct response to orthostatic versus mental stress, mediating cardiovascular variability; it needs to be considered for correct interpretation of heart rate and blood pressure phenomena.
Collapse
Affiliation(s)
- Michal Javorka
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.,Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Fatima El-Hamad
- School of Electrical and Electronic Engineering, The University of Adelaide, South Australia, Australia
| | - Barbora Czippelova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.,Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Zuzana Turianikova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.,Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Jana Krohova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.,Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Zuzana Lazarova
- Biomedical Center Martin, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia.,Department of Physiology, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovakia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Craig JC, Colburn TD, Hirai DM, Schettler MJ, Musch TI, Poole DC. Sex and nitric oxide bioavailability interact to modulate interstitial Po 2 in healthy rat skeletal muscle. J Appl Physiol (1985) 2018; 124:1558-1566. [PMID: 29369738 DOI: 10.1152/japplphysiol.01022.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premenopausal women express reduced blood pressure and risk of cardiovascular disease relative to age-matched men. This purportedly relates to elevated estrogen levels increasing nitric oxide synthase (NOS) activity and NO-mediated vasorelaxation. We tested the hypotheses that female rat skeletal muscle would: 1) evince a higher O2 delivery-to-utilization ratio (Q̇o2/V̇o2) during contractions; and 2) express greater modulation of Q̇o2/V̇o2 with changes to NO bioavailability compared with male rats. The spinotrapezius muscle of Sprague-Dawley rats (females = 8, males = 8) was surgically exposed and electrically-stimulated (180 s, 1 Hz, 6 V). OxyphorG4 was injected into the muscle and phosphorescence quenching employed to determine the temporal profile of interstitial Po2 (Po2is, determined by Q̇o2/V̇o2). This was performed under three conditions: control (CON), 300 µM sodium nitroprusside (SNP; NO donor), and 1.5 mM Nω-nitro-l-arginine methyl ester (l-NAME; NOS blockade) superfusion. No sex differences were found for the Po2is kinetics parameters in CON or l-NAME ( P > 0.05), but females elicited a lower baseline following SNP (males 42 ± 3 vs. females 36 ± 2 mmHg, P < 0.05). Females had a lower ΔPo2is during contractions following SNP (males 22 ± 3 vs. females 17 ± 2 mmHg, P < 0.05), but there were no sex differences for the temporal response to contractions ( P > 0.05). The total NO effect (SNP minus l-NAME) on Po2is was not different between sexes. However, the spread across both conditions was shifted to a lower absolute range for females (reduced SNP baseline and greater reduction following l-NAME). These data support that females have a greater reliance on basal NO bioavailability and males have a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO. NEW & NOTEWORTHY Interstitial Po2 (Po2is; determined by O2 delivery-to-utilization matching) plays an important role for O2 flux into skeletal muscle. We show that both sexes regulate Po2is at similar levels at rest and during skeletal muscle contractions. However, modulating NO bioavailability exposes sex differences in this regulation with females potentially having a greater reliance on basal NO bioavailability and males having a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Michael J Schettler
- Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
40
|
Shoemaker JK. Recruitment strategies in efferent sympathetic nerve activity. Clin Auton Res 2017; 27:369-378. [DOI: 10.1007/s10286-017-0459-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022]
|
41
|
Evans JM, Wang S, Greb C, Kostas V, Knapp CF, Zhang Q, Roemmele ES, Stenger MB, Randall DC. Body Size Predicts Cardiac and Vascular Resistance Effects on Men's and Women's Blood Pressure. Front Physiol 2017; 8:561. [PMID: 28848448 PMCID: PMC5552717 DOI: 10.3389/fphys.2017.00561] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Key Points Summary We report how blood pressure, cardiac output and vascular resistance are related to height, weight, body surface area (BSA), and body mass index (BMI) in healthy young adults at supine rest and standing.Much inter-subject variability in young adult's blood pressure, currently attributed to health status, may actually result from inter-individual body size differences.Each cardiovascular variable is linearly related to height, weight and/or BSA (more than to BMI).When supine, cardiac output is positively related, while vascular resistance is negatively related, to body size. Upon standing, the change in vascular resistance is positively related to size.The height/weight relationships of cardiac output and vascular resistance to body size are responsible for blood pressure relationships to body size.These basic components of blood pressure could help distinguish normal from abnormal blood pressures in young adults by providing a more effective scaling mechanism. Introduction: Effects of body size on inter-subject blood pressure (BP) variability are not well established in adults. We hypothesized that relationships linking stroke volume (SV), cardiac output (CO), and total peripheral resistance (TPR) with body size would account for a significant fraction of inter-subject BP variability. Methods: Thirty-four young, healthy adults (19 men, 15 women) participated in 38 stand tests during which brachial artery BP, heart rate, SV, CO, TPR, and indexes of body size were measured/calculated. Results: Steady state diastolic arterial BP was not significantly correlated with any index of body size when subjects were supine. However, upon standing, the more the subject weighed, or the taller s/he was, the greater the increase in diastolic pressure. Systolic pressure strongly correlated with body weight and height both supine and standing. Diastolic and systolic BP were more strongly related to height, weight and body surface area than to body mass index. When supine: lack of correlation between diastolic pressure and body size, resulted from the combination of positive SV correlation and negative TPR correlation with body size. The positive systolic pressure vs. body size relationship resulted from a positive SV vs. height relationship. In response to standing: the positive diastolic blood pressure vs. body size relationship resulted from the standing-induced, positive increase in TPR vs. body size relationship. The relationships between body weight or height with SV and TPR contribute new insight into mechanisms of BP regulation that may aid in the prediction of health in young adults by providing a more effective way to scale BP with body size.
Collapse
Affiliation(s)
- Joyce M Evans
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Siqi Wang
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Christopher Greb
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Vladimir Kostas
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Charles F Knapp
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Qingguang Zhang
- Department of Biomedical Engineering, University of KentuckyLexington, KY, United States
| | - Eric S Roemmele
- Department of Statistics, University of KentuckyLexington, KY, United States
| | - Michael B Stenger
- Wyle Science, Technology and Engineering GroupHouston, TX, United States
| | - David C Randall
- Department of Physiology, University of KentuckyLexington, KY, United States
| |
Collapse
|
42
|
Williams AM, Shave RE, Cheyne WS, Eves ND. The influence of adrenergic stimulation on sex differences in left ventricular twist mechanics. J Physiol 2017; 595:3973-3985. [PMID: 28188951 DOI: 10.1113/jp273368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 02/05/2017] [Indexed: 12/20/2022] Open
Abstract
KEY POINTS Sex differences in left ventricular (LV) mechanics occur during acute physiological challenges; however, it is unknown whether sex differences in LV mechanics are fundamentally regulated by differences in adrenergic control. Using two-dimensional echocardiography and speckle tracking analysis, this study compared LV mechanics in males and females matched for LV length during post-exercise ischaemia (PEI) and β1 -adrenergic receptor blockade. Our data demonstrate that while basal rotation was increased in males, LV twist was not significantly different between the sexes during PEI. In contrast, during β1 -adrenergic receptor blockade, LV apical rotation, twist and untwisting velocity were reduced in males compared to females. Significant relationships were observed between LV twist and LV internal diameter and sphericity index in females, but not males. These findings suggest that LV twist mechanics may be more sensitive to alterations in adrenergic stimulation in males, but more highly influenced by ventricular structure and geometry in females. ABSTRACT Sex differences in left ventricular (LV) mechanics exist at rest and during acute physiological stress. Differences in cardiac autonomic and adrenergic control may contribute to sex differences in LV mechanics and LV haemodynamics. Accordingly, this study aimed to investigate sex differences in LV mechanics with altered adrenergic stimulation achieved through post-handgrip-exercise ischaemia (PEI) and β1 -adrenergic receptor (AR) blockade. Twenty males (23 ± 5 years) and 20 females (22 ± 3 years) were specifically matched for LV length (males: 8.5 ± 0.5 cm, females: 8.2 ± 0.6 cm, P = 0.163), and two-dimensional speckle-tracking echocardiography was used to assess LV structure and function at baseline, during PEI and following administration of 5 mg bisoprolol (β1 -AR antagonist). During PEI, LV end-diastolic volume and stroke volume were increased in both groups (P < 0.001), as was end-systolic wall stress (P < 0.001). LV twist and apical rotation were not altered from baseline or different between the sexes; however, basal rotation increased in males (P = 0.035). During β1 -AR blockade, LV volumes were unchanged but blood pressure and heart rate were reduced in both groups (P < 0.001). LV apical rotation (P = 0.036) and twist (P = 0.029) were reduced in males with β1 -AR blockade but not females, resulting in lower apical rotation (males: 6.8 ± 2.1 deg, females: 8.8 ± 2.3 deg, P = 0.007) and twist (males: 8.6 ± 1.9 deg, females: 10.7 ± 2.8 deg, P = 0.008), and slower untwisting velocity (males: 68.2 ± 22.1 deg s-1 , females: 82.0 ± 18.7 deg s-1 , P = 0.046) compared to females. LV twist mechanics are reduced in males compared to females during reductions to adrenergic stimulation, providing preliminary evidence that LV twist mechanics may be more sensitive to adrenergic control in males than in females.
Collapse
Affiliation(s)
- Alexandra M Williams
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Kelowna, Canada
| | - Rob E Shave
- Cardiff School of Sport, Cardiff Metropolitan University, Cardiff, UK
| | - William S Cheyne
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Kelowna, Canada
| | - Neil D Eves
- Centre for Heart, Lung and Vascular Health, Faculty of Health and Social Development, University of British Columbia, Kelowna, Canada
| |
Collapse
|
43
|
Peinado AB, Harvey RE, Hart EC, Charkoudian N, Curry TB, Nicholson WT, Wallin BG, Joyner MJ, Barnes JN. Neural control of blood pressure in women: differences according to age. Clin Auton Res 2017; 27:157-165. [PMID: 28205011 DOI: 10.1007/s10286-017-0403-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/01/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE The blood pressure "error signal" represents the difference between an individual's mean diastolic blood pressure and the diastolic blood pressure at which 50% of cardiac cycles are associated with a muscle sympathetic nerve activity burst (the "T50"). In this study we evaluated whether T50 and the error signal related to the extent of change in blood pressure during autonomic blockade in young and older women, to study potential differences in sympathetic neural mechanisms regulating blood pressure before and after menopause. METHODS We measured muscle sympathetic nerve activity and blood pressure in 12 premenopausal (25 ± 1 years) and 12 postmenopausal women (61 ± 2 years) before and during complete autonomic blockade with trimethaphan camsylate. RESULTS At baseline, young women had a negative error signal (-8 ± 1 versus 2 ± 1 mmHg, p < 0.001; respectively) and lower muscle sympathetic nerve activity (15 ± 1 versus 33 ± 3 bursts/min, p < 0.001; respectively) than older women. The change in diastolic blood pressure after autonomic blockade was associated with baseline T50 in older women (r = -0.725, p = 0.008) but not in young women (r = -0.337, p = 0.29). Women with the most negative error signal had the lowest muscle sympathetic nerve activity in both groups (young: r = 0.886, p < 0.001; older: r = 0.870, p < 0.001). CONCLUSIONS Our results suggest that there are differences in baroreflex control of muscle sympathetic nerve activity between young and older women, using the T50 and error signal analysis. This approach provides further information on autonomic control of blood pressure in women.
Collapse
Affiliation(s)
- Ana B Peinado
- LFE Research Group, Department of Health and Human Performance, Technical University of Madrid, Martín Fierro, 7, 28040, Madrid, Spain.
| | - Ronee E Harvey
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Emma C Hart
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | - Nisha Charkoudian
- Thermal and Mountain Medicine Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | | | - B Gunnar Wallin
- Institute of Neuroscience and Physiology, The Sahlgren Academy at Gothenburg University, Gotheborg, Sweden
| | | | - Jill N Barnes
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
- Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
44
|
Reulecke S, Charleston-Villalobos S, Voss A, González-Camarena R, González-Hermosillo J, Gaitán-González M, Hernández-Pacheco G, Schroeder R, Aljama-Corrales T. Dynamics of the cardiovascular autonomic regulation during orthostatic challenge is more relaxed in women. ACTA ACUST UNITED AC 2017; 63:139-150. [DOI: 10.1515/bmt-2016-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/28/2016] [Indexed: 11/15/2022]
Abstract
Abstract
Linear dynamic analysis of cardiovascular and respiratory time series was performed in healthy subjects with respect to gender by shifted short-term segments throughout a head-up tilt (HUT) test. Beat-to-beat intervals (BBI), systolic (SYS) and diastolic (DIA) blood pressure and respiratory interval (RESP) time series were acquired in 14 men and 15 women. In time domain (TD), the descending slope of the auto-correlation function (ACF) (BBI_a31cor) was more pronounced in women than in men (p<0.05) during the HUT test and considerably steeper (p<0.01) at the end of orthostatic phase (OP). The index SYS_meanNN was slightly but significantly lower (p<0.05) in women during the complete test, while higher respiratory frequency and variability (RESP_sdNN) were found in women (p<0.05), during 10–20 min after tilt-up. In frequency domain (FD), during baseline (BL), BBI-normalized low frequency (BBI_LFN) and BBI_LF/HF were slightly but significantly lower (p<0.05), while normalized high frequency (BBI_HFN) was significantly higher in women. These differences were highly significant from the first 5 min after tilt-up (p<0.01) and highly significant (p<0.001) during 10–14 min of OP. Findings revealed that men showed instantaneously a pronounced and sustained increase in sympathetic activity to compensate orthostatism. In women, sympathetic activity was just increased slightly with delayed onset without considerably affecting sympatho-vagal balance.
Collapse
Affiliation(s)
- Sina Reulecke
- Universidad Autónoma Metropolitana , Electrical Engineering Department , 09340 Mexico City , Mexico
| | | | - Andreas Voss
- Institute of Innovative Health Technologies, Ernst-Abbe-Hochschule Jena , 07745 Jena , Germany
| | | | | | | | | | - Rico Schroeder
- Ernst-Abbe-Hochschule Jena , Department of Medical Engineering and Biotechnology , 07745 Jena , Germany
| | - Tomás Aljama-Corrales
- Universidad Autónoma Metropolitana , Electrical Engineering Department , 09340 Mexico City , Mexico
| |
Collapse
|
45
|
Sarafian D, Miles-Chan JL. The Influence of Gender and Anthropometry on Haemodynamic Status at Rest and in Response to Graded Incremental Head-Up Tilt in Young, Healthy Adults. Front Physiol 2017; 7:656. [PMID: 28101061 PMCID: PMC5209346 DOI: 10.3389/fphys.2016.00656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/14/2016] [Indexed: 01/02/2023] Open
Abstract
The body's ability to rapidly and appropriately regulate blood pressure in response to changing physiological demand is a key feature of a healthy cardiovascular system. Passively tilting the body, thereby changing central blood volume, is a well-recognized and controlled method of evaluating this ability. However, such studies usually involve single tilt angles, or intermittent tilting separated by supine, resting periods; valuable information concerning the adaptive capacity of the regulatory systems involved is therefore currently lacking. Furthermore, despite increasing recognition that men and women differ in the magnitude of their haemodynamic response to such stimuli, little is known about the degree to which gender differences in body composition and anthropometry influence these regulatory pathways, or indeed if these differences are apparent in response to graded, incremental tilting. In the present study we measured, in 23 young, healthy adults (13 men, 10 women), the continuous beat-to-beat haemodynamic response to graded, incremental tilting (0°, 20°, 40°, 60°, and back to 40°) with each tilt angle lasting 16 min. On average, we observed increases in heart rate (+41%), blood pressure (+10%), and total peripheral resistance (+16%) in response to tilting. However, whilst men showed an immediate decrease in cardiac output upon tilting (−8.9%) cardiac output in women did not change significantly from supine values. Interestingly, the decrease in stroke volume observed in women was significantly less than that observed in men (−22 vs. −36%, p < 0.05); although the present study could not determine if this difference was due to gender per se or due to differences in body size (in particular height) between the two gender groups. Such disparities in the magnitude of autonomic response may indicate (in the case of our gradual incremental tilt procedure) a better buffering capacity to progressive changes in central blood volume in women; which warrants further investigation, particularly in light of the well-recognized differences in cardiovascular disease risk between men and women.
Collapse
Affiliation(s)
- Delphine Sarafian
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Jennifer L Miles-Chan
- Laboratory of Integrative Cardiovascular and Metabolic Physiology, Division of Physiology, Department of Medicine, University of Fribourg Fribourg, Switzerland
| |
Collapse
|
46
|
Usselman CW, Nielson CA, Luchyshyn TA, Gimon TI, Coverdale NS, Van Uum SHM, Shoemaker JK. Hormone phase influences sympathetic responses to high levels of lower body negative pressure in young healthy women. Am J Physiol Regul Integr Comp Physiol 2016; 311:R957-R963. [PMID: 27733385 DOI: 10.1152/ajpregu.00190.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/28/2016] [Accepted: 10/11/2016] [Indexed: 01/03/2023]
Abstract
We tested the hypothesis that sympathetic responses to baroreceptor unloading may be affected by circulating sex hormones. During lower body negative pressure at -30, -60, and -80 mmHg, muscle sympathetic nerve activity (MSNA), heart rate, and blood pressure were recorded in women who were taking (n = 8) or not taking (n = 9) hormonal contraceptives. All women were tested twice, once during the low-hormone phase (i.e., the early follicular phase of the menstrual cycle and the placebo phase of hormonal contraceptive use), and again during the high-hormone phase (i.e., the midluteal phase of the menstrual cycle and active phase of contraceptive use). During baroreceptor unloading, the reductions in stroke volume and resultant increases in MSNA and total peripheral resistance were greater in high-hormone than low-hormone phases in both groups. When normalized to the fall in stroke volume, increases in MSNA were no longer different between hormone phases. While stroke volume and sympathetic responses were similar between women taking and not taking hormonal contraceptives, mean arterial pressure was maintained during baroreceptor unloading in women not taking hormonal contraceptives but not in women using hormonal contraceptives. These data suggest that differences in sympathetic activation between hormone phases, as elicited by lower body negative pressure, are the result of hormonally mediated changes in the hemodynamic consequences of negative pressure, rather than centrally driven alterations to sympathetic regulation.
Collapse
Affiliation(s)
- Charlotte W Usselman
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Chantelle A Nielson
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Torri A Luchyshyn
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Tamara I Gimon
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Nicole S Coverdale
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada
| | - Stan H M Van Uum
- Department of Medicine, Western University, London, Ontario, Canada.,Lawson Health Research Institute, Western University, London, Ontario, Canada; and
| | - J Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Western University, London, Ontario, Canada; .,Department of Physiology and Pharmacology, Western University, London, Ontario, Canada
| |
Collapse
|
47
|
Bronzwaer ASGT, Verbree J, Stok WJ, van Buchem MA, Daemen MJAP, van Osch MJP, van Lieshout JJ. Cardiovascular Response Patterns to Sympathetic Stimulation by Central Hypovolemia. Front Physiol 2016; 7:235. [PMID: 27378944 PMCID: PMC4913112 DOI: 10.3389/fphys.2016.00235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 11/30/2022] Open
Abstract
In healthy subjects, variation in cardiovascular responses to sympathetic stimulation evoked by submaximal lower body negative pressure (LBNP) is considerable. This study addressed the question whether inter-subject variation in cardiovascular responses coincides with consistent and reproducible responses in an individual subject. In 10 healthy subjects (5 female, median age 22 years), continuous hemodynamic parameters (finger plethysmography; Nexfin, Edwards Lifesciences), and time-domain baroreflex sensitivity (BRS) were quantified during three consecutive 5-min runs of LBNP at −50 mmHg. The protocol was repeated after 1 week to establish intra-subject reproducibility. In response to LBNP, 5 subjects (3 females) showed a prominent increase in heart rate (HR; 54 ± 14%, p = 0.001) with no change in total peripheral resistance (TPR; p = 0.25) whereas the other 5 subjects (2 females) demonstrated a significant rise in TPR (7 ± 3%, p = 0.017) with a moderate increase in HR (21 ± 9%, p = 0.004). These different reflex responses coincided with differences in resting BRS (22 ± 8 vs. 11 ± 3 ms/mmHg, p = 0.049) and resting HR (57 ± 8 vs. 71 ± 12 bpm, p = 0.047) and were highly reproducible over time. In conclusion, we found distinct cardiovascular response patterns to sympathetic stimulation by LBNP in young healthy individuals. These patterns of preferential autonomic blood pressure control appeared related to resting cardiac BRS and HR and were consistent over time.
Collapse
Affiliation(s)
- Anne-Sophie G T Bronzwaer
- Department of Internal Medicine, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands
| | - Jasper Verbree
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Wim J Stok
- Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands; Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands
| | - Mark A van Buchem
- Department of Radiology, Leiden University Medical Center Leiden, Netherlands
| | - Mat J A P Daemen
- Department of Pathology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | | - Johannes J van Lieshout
- Department of Internal Medicine, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Laboratory for Clinical Cardiovascular Physiology, Center for Heart Failure Research, Academic Medical CenterAmsterdam, Netherlands; MRC/Arthritis Research UK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Queen's Medical CentreNottingham, UK
| |
Collapse
|
48
|
Patel K, Rössler A, Lackner HK, Trozic I, Laing C, Lorr D, Green DA, Hinghofer-Szalkay H, Goswami N. Effect of postural changes on cardiovascular parameters across gender. Medicine (Baltimore) 2016; 95:e4149. [PMID: 27428203 PMCID: PMC4956797 DOI: 10.1097/md.0000000000004149] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION We investigated the effect of postural changes on various cardiovascular parameters across gender. Twenty-eight healthy subjects (16 male, 12 female) were observed at rest (supine) and subjected to 3 interventions; head-down tilt (HDT), HDT with lower body negative pressure (HDT+ LBNP at -30 mm Hg), and head-up tilt (HUT), each for 10 minutes separated by a 10 minutes recovery period. METHODS Measurements were recorded for heart rate (HR), standard deviation of the normal-to-normal intervals, root mean square of successive differences between the normal-to-normal intervals, heart rate variability-low frequency (LFRRI), heart rate variability-high frequency (HFRRI), low frequency/high frequency ratio (LFRRI/HFRRI), systolic blood pressure (SBP), mean arterial pressure (MAP), diastolic blood pressure (DBP), total peripheral resistance index (TPRI), stroke index (SI), cardiac index (CI), index of contractility (IC), left ventricular work index, and left ventricular ejection time. RESULTS Across all cardiovascular parameters, there was a significant main effect of the intervention applied but there was no significant main effect of gender across all parameters. CONCLUSIONS The results suggest that there are no specific gender differences in regards to the measured variables under the conditions of this study. Furthermore, these results suggest that in healthy subjects, there appears to be evidence that LBNP partially elicits similar cardiovascular responses to HUT, which supports the use of LBNP as an intervention to counteract the effects of central hypovolemia.
Collapse
Affiliation(s)
- Kieran Patel
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
- Kings College, London, UK
| | - Andreas Rössler
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Helmut Karl Lackner
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Irhad Trozic
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Charles Laing
- Kings College, London, UK
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - David Lorr
- Department of Neurophsiology, University of Linkoping, Sweden
| | - David A Green
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Helmut Hinghofer-Szalkay
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
| | - Nandu Goswami
- Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Graz, Austria
- Correspondence: Nandu Goswami Gravitational Physiology and Medicine Research Unit, Institute of Physiology, Medical University of Graz, Harrachgasse 21/ V, 8010 Graz, Austria (e-mail: )
| |
Collapse
|
49
|
Klassen SA, Chirico D, Dempster KS, Shoemaker JK, O'Leary DD. Role of aortic arch vascular mechanics in cardiovagal baroreflex sensitivity. Am J Physiol Regul Integr Comp Physiol 2016; 311:R24-32. [PMID: 27122371 DOI: 10.1152/ajpregu.00491.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 04/26/2016] [Indexed: 01/06/2023]
Abstract
Cardiovagal baroreflex sensitivity (cvBRS) measures the efficiency of the cardiovagal baroreflex to modulate heart rate in response to increases or decreases in systolic blood pressure (SBP). Given that baroreceptors are located in the walls of the carotid sinuses (CS) and aortic arch (AA), the arterial mechanics of these sites are important contributors to cvBRS. However, the relative contribution of CS and AA mechanics to cvBRS remains unclear. This study employed sex differences as a model to test the hypothesis that differences in cvBRS between groups would be explained by the vascular mechanics of the AA but not the CS. Thirty-six young, healthy, normotensive individuals (18 females; 24 ± 2 yr) were recruited. cvBRS was measured using transfer function analysis of the low-frequency region (0.04-0.15 Hz). Ultrasonography was performed at the CS and AA to obtain arterial diameters for the measurement of distensibility. Local pulse pressure (PP) was taken at the CS using a hand-held tonometer, whereas AA PP was estimated using a transfer function of brachial PP. Both cvBRS (25 ± 11 vs. 19 ± 7 ms/mmHg, P = 0.04) and AA distensibility (16.5 ± 6.0 vs. 10.5 ± 3.8 mmHg(-1) × 10(-3), P = 0.02) were greater in females than males. Sex differences in cvBRS were eliminated after controlling for AA distensibility (P = 0.19). There were no sex differences in CS distensibility (5.32 ± 2.3 vs. 4.63 ± 1.3 mmHg(-1) × 10(-3), P = 0.32). The present data demonstrate that AA mechanics are an important contributor to differences in cvBRS.
Collapse
Affiliation(s)
- Stephen A Klassen
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - Daniele Chirico
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - Kylie S Dempster
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| | - J Kevin Shoemaker
- Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Deborah D O'Leary
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Ontario, Canada; Brock-Niagara Centre for Health and Well-Being, Brock University, St. Catharines, Ontario, Canada; and
| |
Collapse
|
50
|
Burton AR, Fazalbhoy A, Macefield VG. Sympathetic Responses to Noxious Stimulation of Muscle and Skin. Front Neurol 2016; 7:109. [PMID: 27445972 PMCID: PMC4927631 DOI: 10.3389/fneur.2016.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022] Open
Abstract
Acute pain triggers adaptive physiological responses that serve as protective mechanisms that prevent continuing damage to tissues and cause the individual to react to remove or escape the painful stimulus. However, an extension of the pain response beyond signaling tissue damage and healing, such as in chronic pain states, serves no particular biological function; it is maladaptive. The increasing number of chronic pain sufferers is concerning, and the associated disease burden is putting healthcare systems around the world under significant pressure. The incapacitating effects of long-lasting pain are not just psychological – reflexes driven by nociceptors during the establishment of chronic pain may cause serious physiological consequences on regulation of other body systems. The sympathetic nervous system is inherently involved in a host of physiological responses evoked by noxious stimulation. Experimental animal and human models demonstrate a diverse array of heterogeneous reactions to nociception. The purpose of this review is to understand how pain affects the sympathetic nervous system by investigating the reflex cardiovascular and neural responses to acute pain and the long-lasting physiological responses to prolonged (tonic) pain. By observing the sympathetic responses to long-lasting pain, we can begin to understand the physiological consequences of long-term pain on cardiovascular regulation.
Collapse
Affiliation(s)
| | - Azharuddin Fazalbhoy
- School of Health and Biomedical Sciences, RMIT University , Bundoora, VIC , Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| |
Collapse
|