1
|
Burgener EB, Cai PC, Kratochvil MJ, Rojas-Hernandez LS, Joo NS, Gupta A, Secor PR, Heilshorn SC, Spakowitz AJ, Wine JJ, Bollyky PL, Milla CE. The lysogenic filamentous Pseudomonas bacteriophage phage Pf slows mucociliary transport. PNAS NEXUS 2024; 3:pgae390. [PMID: 39301510 PMCID: PMC11412248 DOI: 10.1093/pnasnexus/pgae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024]
Abstract
Pseudomonas aeruginosa is a major pulmonary pathogen causing chronic pulmonary infections in people with cystic fibrosis (CF). The P. aeruginosa filamentous and lysogenic bacteriophage, Pf phage, is abundant in the airways of many people with CF and has been associated with poor outcomes in a cross-sectional cohort study. Previous studies have identified roles for Pf phage in biofilm formation, specifically forming higher-order birefringent, liquid crystals when in contact with other biopolymers in biofilms. Liquid crystalline biofilms are more adherent and viscous than those without liquid crystals. A key feature of biofilms is to enhance bacterial adherence and resist physical clearance. The effect of Pf phage on mucociliary transport is unknown. We found that primary CF and non-CF nasal epithelial cells cultured at air-liquid interface treated with Pf phage exhibit liquid crystalline structures in the overlying mucus. On these cell cultures, Pf phage entangles cilia but does not affect ciliary beat frequency. In both these in vitro cell cultures and in an ex vivo porcine trachea model, introduction of Pf phage decreases mucociliary transport velocity. Pf phage also blocks the rescue of mucociliary transport by CF transmembrane conductance regulator modulators in CF cultures. Thus, Pf phage may contribute to the pathogenesis of P. aeruginosa-associated CF lung disease via induction of liquid crystalline characteristics to airway secretions, leading to impaired mucociliary transport. Targeting Pf phage may be useful in treatment CF as well as other settings of chronic P. aeruginosa infections.
Collapse
Affiliation(s)
- Elizabeth B Burgener
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital of Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Michael J Kratochvil
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Laura S Rojas-Hernandez
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| | - Nam Soo Joo
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
- Cystic Fibrosis Research Laboratory, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA
| | - Aditi Gupta
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| | - Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Cystic Fibrosis Research Laboratory, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Department of Pediatrics, Center for Excellence in Pulmonary Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Okuda K, Shaffer KM, Ehre C. Mucins and CFTR: Their Close Relationship. Int J Mol Sci 2022; 23:10232. [PMID: 36142171 PMCID: PMC9499620 DOI: 10.3390/ijms231810232] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Mucociliary clearance is a critical defense mechanism for the lungs governed by regionally coordinated epithelial cellular activities, including mucin secretion, cilia beating, and transepithelial ion transport. Cystic fibrosis (CF), an autosomal genetic disorder caused by the dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) channel, is characterized by failed mucociliary clearance due to abnormal mucus biophysical properties. In recent years, with the development of highly effective modulator therapies, the quality of life of a significant number of people living with CF has greatly improved; however, further understanding the cellular biology relevant to CFTR and airway mucus biochemical interactions are necessary to develop novel therapies aimed at restoring CFTR gene expression in the lungs. In this article, we discuss recent advances of transcriptome analysis at single-cell levels that revealed a heretofore unanticipated close relationship between secretory MUC5AC and MUC5B mucins and CFTR in the lungs. In addition, we review recent findings on airway mucus biochemical and biophysical properties, focusing on how mucin secretion and CFTR-mediated ion transport are integrated to maintain airway mucus homeostasis in health and how CFTR dysfunction and restoration of function affect mucus properties.
Collapse
Affiliation(s)
- Kenichi Okuda
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kendall M. Shaffer
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Camille Ehre
- Marsico Lung Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
Models using native tracheobronchial mucus in the context of pulmonary drug delivery research: Composition, structure and barrier properties. Adv Drug Deliv Rev 2022; 183:114141. [PMID: 35149123 DOI: 10.1016/j.addr.2022.114141] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 01/15/2023]
Abstract
Mucus covers all wet epithelia and acts as a protective barrier. In the airways of the lungs, the viscoelastic mucus meshwork entraps and clears inhaled materials and efficiently removes them by mucociliary escalation. In addition to physical and chemical interaction mechanisms, the role of macromolecular glycoproteins (mucins) and antimicrobial constituents in innate immune defense are receiving increasing attention. Collectively, mucus displays a major barrier for inhaled aerosols, also including therapeutics. This review discusses the origin and composition of tracheobronchial mucus in relation to its (barrier) function, as well as some pathophysiological changes in the context of pulmonary diseases. Mucus models that contemplate key features such as elastic-dominant rheology, composition, filtering mechanisms and microbial interactions are critically reviewed in the context of health and disease considering different collection methods of native human pulmonary mucus. Finally, the prerequisites towards a standardization of mucus models in a regulatory context and their role in drug delivery research are addressed.
Collapse
|
4
|
Combined agonists act synergistically to increase mucociliary clearance in a cystic fibrosis airway model. Sci Rep 2021; 11:18828. [PMID: 34552115 PMCID: PMC8458446 DOI: 10.1038/s41598-021-98122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022] Open
Abstract
Mucus clearance, a primary innate defense mechanism of airways, is defective in patients with cystic fibrosis (CF) and CF animals. In previous work, the combination of a low dose of the cholinergic agonist, carbachol with forskolin or a β adrenergic agonist, isoproterenol synergistically increased mucociliary clearance velocity (MCCV) in ferret tracheas. Importantly, the present study shows that synergistic MCCV can also be produced in CF ferrets, with increases ~ 55% of WT. Synergistic MCCV was also produced in pigs. The combined agonists increased MCCV by increasing surface fluid via multiple mechanisms: increased fluid secretion from submucosal glands, increased anion secretion across surface epithelia and decreased Na+ absorption. To avoid bronchoconstriction, the cAMP agonist was applied 30 min before carbachol. This approach to increasing mucus clearance warrants testing for safety and efficacy in humans as a potential therapeutic for muco-obstructive diseases.
Collapse
|
5
|
Spindler LM, Feuerhake A, Ladel S, Günday C, Flamm J, Günday-Türeli N, Türeli E, Tovar GEM, Schindowski K, Gruber-Traub C. Nano-in-Micro-Particles Consisting of PLGA Nanoparticles Embedded in Chitosan Microparticles via Spray-Drying Enhances Their Uptake in the Olfactory Mucosa. Front Pharmacol 2021; 12:732954. [PMID: 34539414 PMCID: PMC8440808 DOI: 10.3389/fphar.2021.732954] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intranasal delivery has gained prominence since 1990, when the olfactory mucosa was recognized as the window to the brain and the central nervous system (CNS); this has enabled the direct site specific targeting of neurological diseases for the first time. Intranasal delivery is a promising route because general limitations, such as the blood-brain barrier (BBB) are circumvented. In the treatment of multiple sclerosis (MS) or Alzheimer’s disease, for example, future treatment prospects include specialized particles as delivery vehicles. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are well known as promising delivery systems, especially in the area of nose-to-brain (N2B) delivery. Chitosan is also broadly known as a functional additive due to its ability to open tight junctions. In this study, we produced PLGA nanoparticles of different sizes and revealed for the first time their size-time-dependent uptake mechanism into the lamina propria of porcine olfactory mucosa. The intracellular uptake was observed for 80 and 175 nm within only 5 min after application to the epithelium. After 15 min, even 520 nm particles were detected, associated with nuclei. Especially the presence of only 520 nm particles in neuronal fibers is remarkable, implying transcellular and intracellular transport via the olfactory or the trigeminal nerve to the brain and the CNS. Additionally, we developed successfully specialized Nano-in-Micro particles (NiMPs) for the first time via spray drying, consisting of PLGA nanoparticles embedded into chitosan microparticles, characterized by high encapsulation efficiencies up to 51%, reproducible and uniform size distribution, as well as smooth surface. Application of NiMPs accelerated the uptake compared to purely applied PLGA nanoparticles. NiMPs were spread over the whole transverse section of the olfactory mucosa within 15 min. Faster uptake is attributed to additional paracellular transport, which was examined via tight-junction-opening. Furthermore, a separate chitosan penetration gradient of ∼150 µm caused by dissociation from PLGA nanoparticles was observed within 15 min in the lamina propria, which was demonstrated to be proportional to an immunoreactivity gradient of CD14. Due to the beneficial properties of the utilized chitosan-derivative, regarding molecular weight (150–300 kDa), degree of deacetylation (80%), and particle size (0.1–10 µm) we concluded that M2-macrophages herein initiated an anti-inflammatory reaction, which seems to already take place within 15 min following chitosan particle application. In conclusion, we demonstrated the possibility for PLGA nanoparticles, as well as for chitosan NiMPs, to take all three prominent intranasal delivery pathways to the brain and the CNS; namely transcellular, intracellular via neuronal cells, and paracellular transport.
Collapse
Affiliation(s)
- Lena Marie Spindler
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Andreas Feuerhake
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany
| | - Simone Ladel
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | | | - Johannes Flamm
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany.,Faculty of Natural Science, University of Ulm, Ulm, Germany
| | | | | | - Günter E M Tovar
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany.,Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Schindowski
- Institute for Applied Biotechnology, Biberach University of Applied Science, Biberach, Germany
| | - Carmen Gruber-Traub
- Fraunhofer Institute for Interfacial Engineering and Biotechnology, Innovation Field Functional Surfaces and Materials, Fraunhofer-Gesellschaft, Stuttgart, Germany
| |
Collapse
|
6
|
Pai AC, Parekh KR, Engelhardt JF, Lynch TJ. Ferret respiratory disease models for the study of lung stem cells. LUNG STEM CELLS IN DEVELOPMENT, HEALTH AND DISEASE 2021. [DOI: 10.1183/2312508x.10010320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
|
7
|
Kelly SJ, Brodecky V, Skuza EM, Berger PJ, Tatkov S. Variability in tracheal mucociliary transport is not controlled by beating cilia in lambs in vivo during ventilation with humidified and nonhumidified air. Am J Physiol Lung Cell Mol Physiol 2021; 320:L473-L485. [PMID: 33438520 DOI: 10.1152/ajplung.00485.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mucociliary transport in the respiratory epithelium depends on beating of cilia to move a mucus layer containing trapped inhaled particles toward the mouth. Little is known about the relationship between cilia beat frequency (CBF) and mucus transport velocity (MTV) in vivo under normal physiological conditions and when inspired air is dry or not fully humidified. This study was designed to use video-microscopy to simultaneously measure CBF and MTV in the tracheal epithelium through an implanted optical window in mechanically ventilated lambs. The inspired air in 6 animals was heated to body temperature and fully saturated with water for 4 hours as a baseline. In another series of experiments, 5 lambs were ventilated with air at different temperatures and humidities and the mucosal surface temperature was monitored with infrared macro-imaging. In the baseline experiments, during ventilation with fully humidified air at body temperature, CBF remained constant, mean 13.9 ± 1.6 Hz but MTV varied considerably between 0.1 and 26.1 mm/min with mean 11.0 ± 3.9 mm/min, resulting in a maximum mucus displacement of 34.2 µm/cilia beat. Fully humidified air at body temperature prevented fluctuations in the surface temperature during breathing indicating a thermodynamic balance in the airways. When lambs were ventilated with dryer air, the mucosal surface temperature and MTV dropped without a significant change in CBF. When inspired air was dry, mainly latent heat (92%) was transferred to air in the trachea, reducing the surface temperature by 5 °C. Reduced humidity of the inspired air lowered the surface temperature and reduced MTV in the epithelium during ventilation.
Collapse
Affiliation(s)
- S J Kelly
- Fisher & Paykel Healthcare, Auckland, New Zealand
| | - V Brodecky
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - E M Skuza
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - P J Berger
- Institute of Medical Research, Monash University, Melbourne, Victoria, Australia
| | - S Tatkov
- Fisher & Paykel Healthcare, Auckland, New Zealand
| |
Collapse
|
8
|
Ostedgaard LS, Price MP, Whitworth KM, Abou Alaiwa MH, Fischer AJ, Warrier A, Samuel M, Spate LD, Allen PD, Hilkin BM, Romano Ibarra GS, Ortiz Bezara ME, Goodell BJ, Mather SE, Powers LS, Stroik MR, Gansemer ND, Hippee CE, Zarei K, Goeken JA, Businga TR, Hoffman EA, Meyerholz DK, Prather RS, Stoltz DA, Welsh MJ. Lack of airway submucosal glands impairs respiratory host defenses. eLife 2020; 9:59653. [PMID: 33026343 PMCID: PMC7541087 DOI: 10.7554/elife.59653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Submucosal glands (SMGs) are a prominent structure that lines human cartilaginous airways. Although it has been assumed that SMGs contribute to respiratory defense, that hypothesis has gone without a direct test. Therefore, we studied pigs, which have lungs like humans, and disrupted the gene for ectodysplasin (EDA-KO), which initiates SMG development. EDA-KO pigs lacked SMGs throughout the airways. Their airway surface liquid had a reduced ability to kill bacteria, consistent with SMG production of antimicrobials. In wild-type pigs, SMGs secrete mucus that emerges onto the airway surface as strands. Lack of SMGs and mucus strands disrupted mucociliary transport in EDA-KO pigs. Consequently, EDA-KO pigs failed to eradicate a bacterial challenge in lung regions normally populated by SMGs. These in vivo and ex vivo results indicate that SMGs are required for normal antimicrobial activity and mucociliary transport, two key host defenses that protect the lung.
Collapse
Affiliation(s)
- Lynda S Ostedgaard
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Margaret P Price
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | | | - Mahmoud H Abou Alaiwa
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Anthony J Fischer
- Department of Pediatrics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Akshaya Warrier
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Melissa Samuel
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Lee D Spate
- Division of Animal Science, University of Missouri, Columbia, United States
| | - Patrick D Allen
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brieanna M Hilkin
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Guillermo S Romano Ibarra
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Miguel E Ortiz Bezara
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Brian J Goodell
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Steven E Mather
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Linda S Powers
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Mallory R Stroik
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Nicholas D Gansemer
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Camilla E Hippee
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Keyan Zarei
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States
| | - J Adam Goeken
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Thomas R Businga
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Eric A Hoffman
- Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Radiology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - David K Meyerholz
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Randall S Prather
- Division of Animal Science, University of Missouri, Columbia, United States
| | - David A Stoltz
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Biomedical Engineering, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States
| | - Michael J Welsh
- Department of Internal Medicine and Pappajohn Biomedical Institute Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, United States.,Howard Hughes Medical Institute, University of Iowa, Iowa City, United States
| |
Collapse
|
9
|
Lin VY, Kaza N, Birket SE, Kim H, Edwards LJ, LaFontaine J, Liu L, Mazur M, Byzek SA, Hanes J, Tearney GJ, Raju SV, Rowe SM. Excess mucus viscosity and airway dehydration impact COPD airway clearance. Eur Respir J 2020; 55:1900419. [PMID: 31672759 PMCID: PMC7336367 DOI: 10.1183/13993003.00419-2019] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022]
Abstract
The mechanisms by which cigarette smoking impairs airway mucus clearance are not well understood. We recently established a ferret model of cigarette smoke-induced chronic obstructive pulmonary disease (COPD) exhibiting chronic bronchitis. We investigated the effects of cigarette smoke on mucociliary transport (MCT).Adult ferrets were exposed to cigarette smoke for 6 months, with in vivo mucociliary clearance measured by technetium-labelled DTPA retention. Excised tracheae were imaged with micro-optical coherence tomography. Mucus changes in primary human airway epithelial cells and ex vivo ferret airways were assessed by histology and particle tracking microrheology. Linear mixed models for repeated measures identified key determinants of MCT.Compared to air controls, cigarette smoke-exposed ferrets exhibited mucus hypersecretion, delayed mucociliary clearance (-89.0%, p<0.01) and impaired tracheal MCT (-29.4%, p<0.05). Cholinergic stimulus augmented airway surface liquid (ASL) depth (5.8±0.3 to 7.3±0.6 µm, p<0.0001) and restored MCT (6.8±0.8 to 12.9±1.2 mm·min-1, p<0.0001). Mixed model analysis controlling for covariates indicated smoking exposure, mucus hydration (ASL) and ciliary beat frequency were important predictors of MCT. Ferret mucus was hyperviscous following smoke exposure in vivo or in vitro, and contributed to diminished MCT. Primary cells from smokers with and without COPD recapitulated these findings, which persisted despite the absence of continued smoke exposure.Cigarette smoke impairs MCT by inducing airway dehydration and increased mucus viscosity, and can be partially abrogated by cholinergic secretion of fluid secretion. These data elucidate the detrimental effects of cigarette smoke exposure on mucus clearance and suggest additional avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Vivian Y. Lin
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Niroop Kaza
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Susan E. Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Harrison Kim
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Lloyd J. Edwards
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Jennifer LaFontaine
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Linbo Liu
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Marina Mazur
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Stephen A. Byzek
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Justin Hanes
- The Center for Nanomedicine at Wilmer Eye Institute, Johns Hopkins University, MD/USA
| | - Guillermo J. Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA/USA
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| | - Steven M. Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL/USA
- Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL/USA
| |
Collapse
|
10
|
Carpenter J, Lynch SE, Cribb JA, Kylstra S, Hill DB, Superfine R. Buffer drains and mucus is transported upward in a tilted mucus clearance assay. Am J Physiol Lung Cell Mol Physiol 2018; 315:L910-L918. [PMID: 30211652 DOI: 10.1152/ajplung.00274.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mucociliary clearance (MCC) plays an essential role in maintaining airway sterility and health. Conversely, mucociliary dysfunction is implicated across many airway obstructive diseases. Understanding the necessary requirements for successful MCC is imperative to establish the pathology of disease, as well as to develop therapeutic strategies. Although postural, that is, gravitational, drainage is used clinically to aid mucus clearance, it is ignored in both animal and cell culture models of MCC. In this study, we develop a novel mucus clearance assay that enables the first particle image velocimetry of human bronchial epithelial cell cultures tilted relative to the gravitational field. This tilting system makes it possible to observe drainage of the airway surface liquid and, thus, reveals the effect gravity has on mucociliary clearance. First, we use this assay to demonstrate that beating cilia alone cannot transport buffer upward against gravity. Next, we show the same cilia successfully transporting mucus upward. These results indicate that the biophysical and biochemical properties of mucus enable vertical clearance and that current assay systems are not equipped to determine which properties are required for physiologically relevant vertical mucociliary clearance.
Collapse
Affiliation(s)
- Jerome Carpenter
- Department of Pathology and Laboratory Medicine, The University of North Carolina , Chapel Hill, North Carolina.,Marsico Lung Institute, The University of North Carolina , Chapel Hill, North Carolina
| | - Suzanne E Lynch
- Department of Biochemistry and Biophysics, The University of North Carolina , Chapel Hill, North Carolina
| | - Jeremy A Cribb
- Department of Physics and Astronomy, The University of North Carolina , Chapel Hill, North Carolina
| | - Schuyler Kylstra
- Department of Physics and Astronomy, The University of North Carolina , Chapel Hill, North Carolina
| | - David B Hill
- Marsico Lung Institute, The University of North Carolina , Chapel Hill, North Carolina.,Department of Physics and Astronomy, The University of North Carolina , Chapel Hill, North Carolina
| | - Richard Superfine
- Department of Applied Physical Sciences, The University of North Carolina , Chapel Hill, North Carolina
| |
Collapse
|
11
|
Figueira MF, Castiglione RC, de Lemos Barbosa CM, Ornellas FM, da Silva Feltran G, Morales MM, da Fonseca RN, de Souza-Menezes J. Diabetic rats present higher urinary loss of proteins and lower renal expression of megalin, cubilin, ClC-5, and CFTR. Physiol Rep 2018; 5:5/13/e13335. [PMID: 28676554 PMCID: PMC5506523 DOI: 10.14814/phy2.13335] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 01/27/2023] Open
Abstract
Diabetic nephropathy (DN) occurs in around 40% of those with diabetes. Proteinuria is the main characteristic of DN and develops as a result of increased permeability of the glomerulus capillary wall and/or decreased proximal tubule endocytosis. The goal of this work was to evaluate renal function and the expression of megalin, cubilin, CFTR (cystic fibrosis transmembrane conductance regulator), and ClC-5 in the proximal tubule and renal cortex of rats with type 1 diabetes. Male Wistar rats were randomly assigned to control (CTRL) and diabetic (DM) groups for 4 weeks. Renal function was assessed in 24-h urine sample by calculating clearance and fractional excretion of solutes. The RNA and protein contents of ClC-5, CFTR, megalin, and cubilin were determined in the renal proximal tubule and cortex using real-time polymerase chain reaction and western blotting techniques, respectively. The results showed higher creatinine clearance and higher urinary excretion of proteins, albumin, and transferrin in the DM group than in the CTRL group. Furthermore, the renal cortex and proximal tubule of diabetic animals showed downregulation of megalin, cubilin, ClC-5, and CFTR, critical components of the endocytic apparatus. These data suggest dysfunction in proximal tubule low-molecular-weight endocytosis and protein glomerulus filtration in the kidney of diabetic rats.
Collapse
Affiliation(s)
- Miriam F Figueira
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil.,Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel C Castiglione
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina M de Lemos Barbosa
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe M Ornellas
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia da Silva Feltran
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Marcelo M Morales
- Laboratório de Fisiologia Celular e Molecular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo N da Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Jackson de Souza-Menezes
- Laboratório Integrado de Ciências Morfofuncionais, Núcleo em Ecologia e Desenvolvimento Socioambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
The EGFR-ADAM17 Axis in Chronic Obstructive Pulmonary Disease and Cystic Fibrosis Lung Pathology. Mediators Inflamm 2018. [PMID: 29540993 PMCID: PMC5818912 DOI: 10.1155/2018/1067134] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF) share molecular mechanisms that cause the pathological symptoms they have in common. Here, we review evidence suggesting that hyperactivity of the EGFR/ADAM17 axis plays a role in the development of chronic lung disease in both CF and COPD. The ubiquitous transmembrane protease A disintegrin and metalloprotease 17 (ADAM17) forms a functional unit with the EGF receptor (EGFR), in a feedback loop interaction labeled the ADAM17/EGFR axis. In airway epithelial cells, ADAM17 sheds multiple soluble signaling proteins by proteolysis, including EGFR ligands such as amphiregulin (AREG), and proinflammatory mediators such as the interleukin 6 coreceptor (IL-6R). This activity can be enhanced by injury, toxins, and receptor-mediated external triggers. In addition to intracellular kinases, the extracellular glutathione-dependent redox potential controls ADAM17 shedding. Thus, the epithelial ADAM17/EGFR axis serves as a receptor of incoming luminal stress signals, relaying these to neighboring and underlying cells, which plays an important role in the resolution of lung injury and inflammation. We review evidence that congenital CFTR deficiency in CF and reduced CFTR activity in chronic COPD may cause enhanced ADAM17/EGFR signaling through a defect in glutathione secretion. In future studies, these complex interactions and the options for pharmaceutical interventions will be further investigated.
Collapse
|
13
|
Sellers ZM, Illek B, Figueira MF, Hari G, Joo NS, Sibley E, Souza-Menezes J, Morales MM, Fischer H, Wine JJ. Impaired PGE2-stimulated Cl- and HCO3- secretion contributes to cystic fibrosis airway disease. PLoS One 2017; 12:e0189894. [PMID: 29281691 PMCID: PMC5744969 DOI: 10.1371/journal.pone.0189894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Background Airway mucociliary clearance (MCC) is an important defense mechanism against pulmonary infections and is compromised in cystic fibrosis (CF). Cl- and HCO3- epithelial transport are integral to MCC. During pulmonary infections prostaglandin E2 (PGE2) production is abundant. Aim To determine the effect of PGE2 on airway Cl- and HCO3- secretion and MCC in normal and CF airways. Methods We examined PGE2 stimulated MCC, Cl- and HCO3- secretion using ferret trachea, human bronchial epithelial cell cultures (CFBE41o- with wildtype CFTR (CFBE41 WT) or homozygous F508del CFTR (CFBE41 CF) and human normal bronchial submucosal gland cell line (Calu-3) in Ussing chambers with or without pH-stat. Results PGE2 stimulated MCC in a dose-dependent manner and was partially impaired by CFTRinh-172. PGE2-stimulated Cl- current in ferret trachea was partially inhibited by CFTRinh-172, with niflumic acid eliminating the residual current. CFBE41 WT cell monolayers produced a robust Cl- and HCO3- secretory response to PGE2, both of which were completely inhibited by CFTRinh-172. CFBE41 CF cells exhibited no response to PGE2. In Calu-3 cells, PGE2 stimulated Cl- and HCO3- secretion. Cl- secretion was partially inhibited by CFTRinh-172, with additional inhibition by niflumic acid. HCO3- secretion was completely inhibited by CFTRinh-172. Conclusions PGE2 stimulates bronchotracheal MCC and this response is decreased in CF. In CF airway, PGE2-stimulated Cl- and HCO3- conductance is impaired and may contribute to decreased MCC. There remains a CFTR-independent Cl- current in submucosal glands, which if exploited, could represent a means of improving airway Cl- secretion and MCC in CF.
Collapse
Affiliation(s)
- Zachary M. Sellers
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
- * E-mail:
| | - Beate Illek
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Miriam Frankenthal Figueira
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Gopika Hari
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Nam Soo Joo
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| | - Eric Sibley
- Division of Pediatric Gastroenterology, Hepatolfifogy, and Nutrition, Stanford University, Palo Alto, CA, United States of America
| | - Jackson Souza-Menezes
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Core for Ecology and Socio Environmental Development, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Marcelo M. Morales
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Horst Fischer
- Children’s Hospital Oakland Research Institute, Oakland, CA, United States of America
| | - Jeffrey J. Wine
- Cystic Fibrosis Research Laboratory, Stanford University, Palo Alto, CA, United States of America
| |
Collapse
|
14
|
Progress in understanding mucus abnormalities in cystic fibrosis airways. J Cyst Fibros 2017; 17:S35-S39. [PMID: 28951068 DOI: 10.1016/j.jcf.2017.09.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
Normal airways below the carina maintain an essentially sterile environment via a multi-pronged innate defence system that includes mucus clearance via mucociliary clearance and cough, multiple antimicrobials and cellular components including macrophages and neutrophils. In cystic fibrosis (CF), loss of CFTR function compromises these defences, and with present standard of care virtually all people with CF eventually develop mucus accumulation, plugging and chronic infections. This review focuses on how mucus is affected by CFTR loss.
Collapse
|
15
|
Marked increases in mucociliary clearance produced by synergistic secretory agonists or inhibition of the epithelial sodium channel. Sci Rep 2016; 6:36806. [PMID: 27830759 PMCID: PMC5103292 DOI: 10.1038/srep36806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 10/21/2016] [Indexed: 12/11/2022] Open
Abstract
Mucociliary clearance (MCC) is a critical host innate defense mechanism in airways, and it is impaired in cystic fibrosis (CF) and other obstructive lung diseases. Epithelial fluid secretion and absorption modify MCC velocity (MCCV). We tested the hypotheses that inhibiting fluid absorption accelerates MCCV, whereas inhibiting fluid secretion decelerates it. In airways, ENaC is mainly responsible for fluid absorption, while anion channels, including CFTR and Ca2+-activated chloride channels mediate anion/fluid secretion. MCCV was increased by the cAMP-elevating agonists, forskolin or isoproterenol (10 μM) and by the Ca2+-elevating agonist, carbachol (0.3 μM). The CFTR-selective inhibitor, CFTRinh-172, modestly reduced MCCV-increases induced by forskolin or isoproterenol but not increases induced by carbachol. The ENaC inhibitor benzamil increased basal MCCV as well as MCCV increases produced by forskolin or carbachol. MCC velocity was most dramatically accelerated by the synergistic combination of forskolin and carbachol, which produced near-maximal clearance rates regardless of prior treatment with CFTR or ENaC inhibitors. In CF airways, where CFTR-mediated secretion (and possibly synergistic MCC) is lost, ENaC inhibition via exogenous agents may provide therapeutic benefit, as has long been proposed.
Collapse
|
16
|
Joo NS, Krouse ME, Choi JY, Cho HJ, Wine JJ. Inhibition of airway surface fluid absorption by cholinergic stimulation. Sci Rep 2016; 6:20735. [PMID: 26846701 PMCID: PMC4742893 DOI: 10.1038/srep20735] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 01/07/2016] [Indexed: 12/28/2022] Open
Abstract
In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways.
Collapse
Affiliation(s)
- Nam Soo Joo
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305-2130, USA
| | - Mauri E Krouse
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305-2130, USA
| | - Jae Young Choi
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305-2130, USA.,Department of Otorhinolaryngology, Yonsei University, Seoul, Korea
| | - Hyung-Ju Cho
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305-2130, USA.,Department of Otorhinolaryngology, Yonsei University, Seoul, Korea
| | - Jeffrey J Wine
- The Cystic Fibrosis Research Laboratory, Stanford University, Stanford, CA 94305-2130, USA
| |
Collapse
|
17
|
Abstract
Submucosal glands contribute to airway surface liquid (ASL), a film that protects all airway surfaces. Glandular mucus comprises electrolytes, water, the gel-forming mucin MUC5B, and hundreds of different proteins with diverse protective functions. Gland volume per unit area of mucosal surface correlates positively with impaction rate of inhaled particles. In human main bronchi, the volume of the glands is ∼ 50 times that of surface goblet cells, but the glands diminish in size and frequency distally. ASL and its trapped particles are removed from the airways by mucociliary transport. Airway glands have a tubuloacinar structure, with a single terminal duct, a nonciliated collecting duct, then branching secretory tubules lined with mucous cells and ending in serous acini. They allow for a massive increase in numbers of mucus-producing cells without replacing surface ciliated cells. Active secretion of Cl(-) and HCO3 (-) by serous cells produces most of the fluid of gland secretions. Glands are densely innervated by tonically active, mutually excitatory airway intrinsic neurons. Most gland mucus is secreted constitutively in vivo, with large, transient increases produced by emergency reflex drive from the vagus. Elevations of [cAMP]i and [Ca(2+)]i coordinate electrolyte and macromolecular secretion and probably occur together for baseline activity in vivo, with cholinergic elevation of [Ca(2+)]i being mainly responsive for transient increases in secretion. Altered submucosal gland function contributes to the pathology of all obstructive diseases, but is an early stage of pathogenesis only in cystic fibrosis.
Collapse
Affiliation(s)
- Jonathan H Widdicombe
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| | - Jeffrey J Wine
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California; and Department of Psychology and Cystic Fibrosis Research Laboratory, Stanford University, Stanford, California
| |
Collapse
|
18
|
Wine JJ. Measuring Mucociliary Transport and Mucus Properties in Multiple Regions of Airway Epithelial Surfaces Helps Clarify Cystic Fibrosis Defects. Am J Respir Crit Care Med 2014; 190:364-5. [DOI: 10.1164/rccm.201407-1247ed] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|