1
|
Smith LC, Abramova E, Vayas K, Rodriguez J, Gelfand-Titiyevksiy B, Roepke TA, Laskin JD, Gow AJ, Laskin DL. Transcriptional profiling of lung macrophages following ozone exposure in mice identifies signaling pathways regulating immunometabolic activation. Toxicol Sci 2024; 201:103-117. [PMID: 38897669 PMCID: PMC11347782 DOI: 10.1093/toxsci/kfae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Macrophages play a key role in ozone-induced lung injury by regulating both the initiation and resolution of inflammation. These distinct activities are mediated by pro-inflammatory and anti-inflammatory/proresolution macrophages which sequentially accumulate in injured tissues. Macrophage activation is dependent, in part, on intracellular metabolism. Herein, we used RNA-sequencing (seq) to identify signaling pathways regulating macrophage immunometabolic activity following exposure of mice to ozone (0.8 ppm, 3 h) or air control. Analysis of lung macrophages using an Agilent Seahorse showed that inhalation of ozone increased macrophage glycolytic activity and oxidative phosphorylation at 24 and 72 h post-exposure. An increase in the percentage of macrophages in S phase of the cell cycle was observed 24 h post ozone. RNA-seq revealed significant enrichment of pathways involved in innate immune signaling and cytokine production among differentially expressed genes at both 24 and 72 h after ozone, whereas pathways involved in cell cycle regulation were upregulated at 24 h and intracellular metabolism at 72 h. An interaction network analysis identified tumor suppressor 53 (TP53), E2F family of transcription factors (E2Fs), cyclin-dependent kinase inhibitor 1A (CDKN1a/p21), and cyclin D1 (CCND1) as upstream regulators of cell cycle pathways at 24 h and TP53, nuclear receptor subfamily 4 group a member 1 (NR4A1/Nur77), and estrogen receptor alpha (ESR1/ERα) as central upstream regulators of mitochondrial respiration pathways at 72 h. To assess whether ERα regulates metabolic activity, we used ERα-/- mice. In both air and ozone-exposed mice, loss of ERα resulted in increases in glycolytic capacity and glycolytic reserve in lung macrophages with no effect on mitochondrial oxidative phosphorylation. Taken together, these results highlight the complex interaction between cell cycle, intracellular metabolism, and macrophage activation which may be important in the initiation and resolution of inflammation following ozone exposure.
Collapse
Affiliation(s)
- Ley Cody Smith
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, CT 06269, United States
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Elena Abramova
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Kinal Vayas
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Jessica Rodriguez
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Benjamin Gelfand-Titiyevksiy
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ 08854, United States
| | - Andrew J Gow
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|
2
|
Köse SK, Karahilal B, Engin B, Aydoğdu G, Yağar S, Orhan K. Relationships between Interleukin 18 -607 C/A and -137 G/C, Osteopontin -9250 C/T Genetic Polymorphisms and Systemic Inflammatory Response Syndrome in Coronary Artery Bypass Graft Surgery. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:724. [PMID: 38792907 PMCID: PMC11123018 DOI: 10.3390/medicina60050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/19/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Background and Objectives: Systemic inflammatory response syndrome (SIRS) is one of the most significant complications after on-pump heart surgery procedures. High cytokine levels have been shown after open-heart surgeries and a genetic predisposition seems to be an important underlying modulatory characteristic for SIRS. To investigate the association between interleukin 18 -607 C/A, interleukin 18 -137 G/C and osteopontin 9250 C/T genetic polymorphisms and SIRS in on-pump CABG patients. Materials and Methods: Two hundred consecutive elective on-pump CABG patients were recruited prospectively to the study. Genomic DNA was extracted from whole blood and genotyping was determined by sequence specific PCR or PCR-RFLP methods for related polymorphisms. Results: SIRS incidence was 60.2%, 38.1%, 18.9% on postoperative day 1, 2 and 3, respectively, in the whole study population. The SIRS rate on the second postoperative day was 13% and 43.4%, respectively, in osteopontin 9250 C/T T allele non-carriers and carriers (p = 0.004). WBC (White Blood Cell) counts were higher on day 2 and 3 in osteopontin 9250 C/T T allele carriers compared to non-carriers (day 2; 12.7 ± 4 vs. 10.5 ± 2.4 (p = 0.015), day 3; 11.8 ± 4 vs. 9.1 ± 4.7 (p = 0.035)). The average ICU stay was 3.1 ± 7.4, 1.28 ± 0.97 for IL 18-137 G/C C allele carriers and non-carriers, respectively (p = 0.003), and in the IL 18-137 G/C C allele carriers, SIRS developed in 42.2% by the second postoperative day whereas the rate was 57.8% in non-carriers (p = 0.025). Conclusions: The current research revealed a possible link between osteopontin 9250 C/T and IL18-137 G/C genetic polymorphism and SIRS and morbidity in on-pump CABG patients.
Collapse
Affiliation(s)
- Serdal Kenan Köse
- Department of Biostatistics, Faculty of Medicine, Ankara University, 06620 Ankara, Turkey;
| | - Bensu Karahilal
- Department of Pharmaceutical Toxicology, Gazi University Faculty of Pharmacy, 06330 Ankara, Turkey; (B.K.); (B.E.)
| | - Başak Engin
- Department of Pharmaceutical Toxicology, Gazi University Faculty of Pharmacy, 06330 Ankara, Turkey; (B.K.); (B.E.)
| | - Gülçin Aydoğdu
- Department of Biostatistics, Faculty of Medicine, Hitit University, 19030 Çorum, Turkey;
| | - Seyhan Yağar
- Department of Anesthesiology, Ankara City Hospital, 06800 Ankara, Turkey
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, 06620 Ankara, Turkey;
- Department of Dental and Maxillofacial Radiodiagnostics, Medical University of Lublin, 20-059 Lublin, Poland
- Medical Design Application and Research Center (MEDITAM), Ankara University, 06620 Ankara, Turkey
| |
Collapse
|
3
|
Johnston RA, Pilkington AW, Atkins CL, Boots TE, Brown PL, Jackson WT, Spencer CY, Siddiqui SR, Haque IU. Inconsequential role for chemerin-like receptor 1 in the manifestation of ozone-induced lung pathophysiology in male mice. Physiol Rep 2024; 12:e16008. [PMID: 38631890 PMCID: PMC11023814 DOI: 10.14814/phy2.16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024] Open
Abstract
We executed this study to determine if chemerin-like receptor 1 (CMKLR1), a Gi/o protein-coupled receptor expressed by leukocytes and non-leukocytes, contributes to the development of phenotypic features of non-atopic asthma, including airway hyperresponsiveness (AHR) to acetyl-β-methylcholine chloride, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Accordingly, we quantified sequelae of non-atopic asthma in wild-type mice and mice incapable of expressing CMKLR1 (CMKLR1-deficient mice) following cessation of acute inhalation exposure to either filtered room air (air) or ozone (O3), a criteria pollutant and non-atopic asthma stimulus. Following exposure to air, lung elastic recoil and airway responsiveness were greater while the quantity of adiponectin, a multi-functional adipocytokine, in bronchoalveolar lavage (BAL) fluid was lower in CMKLR1-deficient as compared to wild-type mice. Regardless of genotype, exposure to O3 caused AHR, lung hyperpermeability, airway epithelial cell desquamation, and lung inflammation. Nevertheless, except for minimal genotype-related effects on lung hyperpermeability and BAL adiponectin, we observed no other genotype-related differences following O3 exposure. In summary, we demonstrate that CMKLR1 limits the severity of innate airway responsiveness and lung elastic recoil but has a nominal effect on lung pathophysiology induced by acute exposure to O3.
Collapse
Affiliation(s)
- Richard A. Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, School of MedicineWest Virginia UniversityMorgantownWest VirginiaUSA
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Department of Integrative Biology and PharmacologyMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Albert W. Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Constance L. Atkins
- Division of Pulmonary Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Theresa E. Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - Philip L. Brown
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and PreventionUnited States Department of Health and Human ServicesMorgantownWest VirginiaUSA
| | - William T. Jackson
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Chantal Y. Spencer
- Section of Pediatric Pulmonology, Department of PediatricsBaylor College of MedicineHoustonTexasUSA
| | - Saad R. Siddiqui
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ikram U. Haque
- Division of Critical Care Medicine, Department of PediatricsMcGovern Medical School at the University of Texas Health Science Center at HoustonHoustonTexasUSA
- Division of Critical Care, Department of PediatricsSidra MedicineDohaQatar
| |
Collapse
|
4
|
Johnston RA, Atkins CL, Siddiqui SR, Jackson WT, Mitchell NC, Spencer CY, Pilkington AW, Kashon ML, Haque IU. Interleukin-11 receptor subunit α-1 is required for maximal airway responsiveness to methacholine after acute exposure to ozone. Am J Physiol Regul Integr Comp Physiol 2022; 323:R921-R934. [PMID: 36283092 PMCID: PMC9722265 DOI: 10.1152/ajpregu.00213.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022]
Abstract
Interleukin (IL)-11, a multifunctional cytokine, contributes to numerous biological processes, including adipogenesis, hematopoiesis, and inflammation. Asthma, a respiratory disease, is notably characterized by reversible airway obstruction, persistent lung inflammation, and airway hyperresponsiveness (AHR). Nasal insufflation of IL-11 causes AHR in wild-type mice while lung inflammation induced by antigen sensitization and challenge, which mimics features of atopic asthma in humans, is attenuated in mice genetically deficient in IL-11 receptor subunit α-1 (IL-11Rα1-deficient mice), a transmembrane receptor that is required conjointly with glycoprotein 130 to transduce IL-11 signaling. Nevertheless, the contribution of IL-11Rα1 to characteristics of nonatopic asthma is unknown. Thus, based on the aforementioned observations, we hypothesized that genetic deficiency of IL-11Rα1 attenuates lung inflammation and increases airway responsiveness after acute inhalation exposure to ozone (O3), a criteria pollutant and nonatopic asthma stimulus. Accordingly, 4 and/or 24 h after cessation of exposure to filtered room air or O3, we assessed lung inflammation and airway responsiveness in wild-type and IL-11Rα1-deficient mice. With the exception of bronchoalveolar lavage macrophages and adiponectin, which were significantly increased and decreased, respectively, in O3-exposed IL-11Rα1-deficient as compared with O3-exposed wild-type mice, no other genotype-related differences in lung inflammation indices that we quantified were observed in O3-exposed mice. However, airway responsiveness to acetyl-β-methylcholine chloride (methacholine) was significantly diminished in IL-11Rα1-deficient as compared with wild-type mice after O3 exposure. In conclusion, these results demonstrate that IL-11Rα1 minimally contributes to lung inflammation but is required for maximal airway responsiveness to methacholine in a mouse model of nonatopic asthma.
Collapse
Affiliation(s)
- Richard A Johnston
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Albert W Pilkington
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Michael L Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
5
|
Wu W, Gao J, Chen D, Chen G, Feng Y, Chang C, Chen S, Yi L, Zhen G. Epithelial microRNA-30a-3p targets RUNX2/HMGB1 axis to suppress airway eosinophilic inflammation in asthma. Respir Res 2022; 23:17. [PMID: 35093061 PMCID: PMC8800331 DOI: 10.1186/s12931-022-01933-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Background Type 2-high asthma is a prominent endotype of asthma which is characterized by airway eosinophilic inflammation. Airway epithelial cells play a critical role in the pathogenesis of asthma. Our previous miRNA profiling data showed that miR-30a-3p was downregulated in bronchial epithelial cells from asthma patients. We hypothesize that epithelial miR-30a-3p plays a role in asthma airway inflammation. Methods We measured miR‐30a-3p expression in bronchial brushings of asthma patients (n = 51) and healthy controls (n = 16), and analyzed the correlations between miR‐30a-3p expression and airway eosinophilia. We examined whether Runt-related transcription factor 2 (RUNX2) was a target of miR‐30a-3p and whether RUNX2 bound to the promoter of high mobility group box 1 (HMGB1) by using luciferase reporter assay and chromatin immunoprecipitation (ChIP)-PCR. The role of miR‐30a-3p was also investigated in a murine model of allergic airway inflammation. Results We found that miR-30a-3p expression were significantly decreased in bronchial brushings of asthma patients compared to control subjects. Epithelial miR-30a-3p expression was negatively correlated with parameters reflecting airway eosinophilia including eosinophils in induced sputum and bronchial biopsies, and fraction of exhaled nitric oxide in asthma patients. We verified that RUNX2 is a target of miR-30a-3p. Furthermore, RUNX2 bound to the promoter of HMGB1 and upregulated HMGB1 expression. RUNX2 and HMGB1 expression was both enhanced in airway epithelium and was correlated with each other in asthma patients. Inhibition of miR-30a-3p enhanced RUNX2 and HMGB1 expression, and RUNX2 overexpression upregulated HMGB1 in BEAS-2B cells. Intriguingly, airway overexpression of mmu-miR-30a-3p suppressed Runx2 and Hmgb1 expression, and alleviated airway eosinophilia in a mouse model of allergic airway inflammation. Conclusions Epithelial miR-30a-3p could possibly target RUNX2/HMGB1 axis to suppress airway eosinophilia in asthma. Supplementary Information The online version contains supplementary material available at 10.1186/s12931-022-01933-x.
Collapse
|
6
|
Tovar A, Smith GJ, Thomas JM, Crouse WL, Harkema JR, Kelada SNP. Transcriptional Profiling of the Murine Airway Response to Acute Ozone Exposure. Toxicol Sci 2020; 173:114-130. [PMID: 31626304 PMCID: PMC6944221 DOI: 10.1093/toxsci/kfz219] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Ambient ozone (O3) exposure has serious consequences on respiratory health, including airway inflammation and injury. Decades of research have yielded thorough descriptions of these outcomes; however, less is known about the molecular processes that drive them. The aim of this study was to further describe the cellular and molecular responses to O3 exposure in murine airways, with a particular focus on transcriptional responses in 2 critical pulmonary tissue compartments: conducting airways (CA) and airway macrophages (AM). After exposing adult, female C57BL/6J mice to filtered air, 1 or 2 ppm O3, we assessed hallmark responses including airway inflammation (cell counts and cytokine secretion) and injury (epithelial permeability), followed by gene expression profiling of CA and AM by RNA-seq. As expected, we observed concentration-dependent increases in airway inflammation and injury. Conducting airways and AM both exhibited changes in gene expression to both 1 and 2 ppm O3 that were largely compartment-specific. In CA, genes associated with epithelial barrier function, detoxification processes, and cellular proliferation were altered, while O3 affected genes involved in innate immune signaling, cytokine production, and extracellular matrix remodeling in AM. Further, CA and AM also exhibited notable differences in concentration-response expression patterns for large numbers of genes. Overall, our study has described transcriptional responses to acute O3 exposure, revealing both shared and unique gene expression patterns across multiple concentrations of O3 and in 2 important O3-responsive tissues. These profiles provide broad mechanistic insight into pulmonary O3 toxicity, and reveal a variety of targets for focused follow-up studies.
Collapse
Affiliation(s)
- Adelaide Tovar
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
| | - Gregory J Smith
- Department of Genetics
- Curriculum in Toxicology & Environmental Medicine
| | | | - Wesley L Crouse
- Department of Genetics
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jack R Harkema
- Department of Pathology & Diagnostic Investigation and Institute for Integrated Toxicology, Michigan State University, East Lansing, Michigan 48824
| | - Samir N P Kelada
- Department of Genetics
- Curriculum in Genetics & Molecular Biology
- Curriculum in Toxicology & Environmental Medicine
- Curriculum in Bioinformatics & Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
7
|
Osgood RS, Kasahara DI, Tashiro H, Cho Y, Shore SA. Androgens augment pulmonary responses to ozone in mice. Physiol Rep 2019; 7:e14214. [PMID: 31544355 PMCID: PMC6755142 DOI: 10.14814/phy2.14214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/28/2022] Open
Abstract
Ozone causes airway hyperresponsiveness, a defining feature of asthma, and is an asthma trigger. In mice, ozone-induced airway hyperresponsiveness is greater in males than in females, suggesting a role for sex hormones in the response to ozone. To examine the role of androgens in these sex differences, we castrated 4-week-old mice. Controls underwent sham surgery. At 8 weeks of age, mice were exposed to ozone (2ppm, 3 h) or room air. Twenty-four hours later, mice were anesthetized and measurements of airway responsiveness to inhaled aerosolized methacholine were made. Mice were then euthanized and bronchoalveolar lavage was performed. Castration attenuated ozone-induced airway hyperresponsiveness and reduced bronchoalveolar lavage cells. In intact males, flutamide, an androgen receptor inhibitor, had similar effects to castration. Bronchoalveolar lavage concentrations of several cytokines were reduced by either castration or flutamide treatment, but only IL-1α was reduced by both castration and flutamide. Furthermore, an anti-IL-1α antibody reduced bronchoalveolar lavage neutrophils in intact males, although it did not alter ozone-induced airway hyperresponsiveness. Our data indicate that androgens augment pulmonary responses to ozone and that IL-1α may contribute to the effects of androgens on ozone-induced cellular inflammation but not airway hyperresponsiveness.
Collapse
Affiliation(s)
- Ross S. Osgood
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - David I. Kasahara
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Hiroki Tashiro
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Youngji Cho
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| | - Stephanie A. Shore
- Department of Environmental HealthHarvard T.H. Chan School of Public HealthBostonMassachusetts
| |
Collapse
|
8
|
Toman H, Sahin H, Erbas M, Turkon H, Simsek T, Kiraz HA, Özkan MTA. Effects of Prophylactic Ozone Therapy on General Anesthesia and Surgical Stress Response: Neutrophil/Lymphocyte Ratio and Ischemia-Modified Albumin. Int Surg 2019; 104:467-473. [DOI: 10.9738/intsurg-d-16-00018.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
General anesthesia and surgical stress cause an acute endocrine, metabolic, and immunologic inflammatory response in organisms and an increase in neutrophil lymphocyte ratio (NLR) and ischemia-modified albumin (IMA) levels. Ozone, other than inhalation administration, reduces the release of antioxidants and some proinflammatory cytokines and has been shown to have an anti-inflammatory effect. Our aim is to research how the NLR and IMA response is affected in rabbits undergoing surgical intervention with general anesthesia given prophylactic with ozone therapy. We divided 12 New Zealand rabbits into 2 groups: group O was given 70 μg/mL 10 mL ozone by the rectal route in 6 sessions on alternate days, and group C was given air by the rectal route. The rabbits underwent surgical intervention under general anesthesia. Blood samples were taken at basal, preoperation, 30 minutes postanesthesia, and 24 hours postoperation and were examined for hemogram and IMA. At 24 hours postoperation, an increase in NLR was observed in both groups, more clearly in group C (P < 0.05). In both groups, comparisons within the groups showed a significant increase in NLR only at 24 hours postoperation compared to other times (P < 0.05).When IMA values were compared, differences between the groups were observed between preoperative values and those at the 30 minutes postanesthesia and 24 hours postoperation (P < 0.05). When general anesthesia and surgical stress response were evaluated using inflammatory parameters of both NLR and IMA, there was significantly less of an increase in levels in rabbits given ozone compared to the control group.
Collapse
Affiliation(s)
| | - Hasan Sahin
- Department of Anesthesiology and Reanimation,
| | - Mesut Erbas
- Department of Anesthesiology and Reanimation,
| | | | | | | | | |
Collapse
|
9
|
Birukova A, Cyphert-Daly J, Cumming RI, Yu YR, Gowdy KM, Que LG, Tighe RM. Sex Modifies Acute Ozone-Mediated Airway Physiologic Responses. Toxicol Sci 2019; 169:499-510. [PMID: 30825310 PMCID: PMC6542336 DOI: 10.1093/toxsci/kfz056] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sex differences clearly exist in incidence, susceptibility, and severity of airway disease and in pulmonary responses to air pollutants such as ozone (O3). Prior rodent O3 exposure studies demonstrate sex-related differences in the expression of lung inflammatory mediators and signaling. However, whether or not sex modifies O3-induced airway physiologic responses remains less explored. To address this, we exposed 8- to 10-week-old male and female C57BL/6 mice to either 1 or 2 ppm O3 or filtered air (FA) for 3 h. At 12, 24, 48, and 72 h following exposure, we assessed airway hyperresponsiveness to methacholine (MCh), bronchoalveolar lavage fluid cellularity, cytokines and total protein/albumin, serum progesterone, and whole lung immune cells by flow cytometry. Male mice generated consistent airway hyperresponsiveness to MCh at all time points following exposure. Alternatively, females had less consistent airway physiologic responses to MCh, which were more variable between individual experiments and did not correlate with serum progesterone levels. Bronchoalveolar lavage fluid total cells peaked at 12 h and were persistently elevated through 72 h. At 48 h, bronchoalveolar lavage cells were greater in females versus males. Bronchoalveolar lavage fluid cytokines and total protein/albumin increased following O3 exposure without sex differences. Flow cytometry of whole lung tissue identified dynamic O3-induced immune cell changes also independent of sex. Our results indicate sex differences in acute O3-induced airway physiology responses and airspace influx without significant difference in other injury and inflammation measures. This study highlights the importance of considering sex as a biological variable in acute O3-induced airway physiology responses.
Collapse
Affiliation(s)
| | | | | | - Yen-Rei Yu
- Department of Medicine, Duke University, Durham, North Carolina 27710
| | - Kymberly M Gowdy
- Department of Pharmacology and Toxicology, East Carolina University, Greenville, North Carolina 27858
| | - Loretta G Que
- Department of Medicine, Duke University, Durham, North Carolina 27710
| | - Robert M Tighe
- Department of Medicine, Duke University, Durham, North Carolina 27710
| |
Collapse
|
10
|
Cho Y, Abu-Ali G, Tashiro H, Kasahara DI, Brown TA, Brand JD, Mathews JA, Huttenhower C, Shore SA. The Microbiome Regulates Pulmonary Responses to Ozone in Mice. Am J Respir Cell Mol Biol 2018; 59:346-354. [PMID: 29529379 PMCID: PMC6189641 DOI: 10.1165/rcmb.2017-0404oc] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 03/04/2018] [Indexed: 12/28/2022] Open
Abstract
Previous reports demonstrate that the microbiome impacts allergic airway responses, including airway hyperresponsiveness, a characteristic feature of asthma. Here we examined the role of the microbiome in pulmonary responses to a nonallergic asthma trigger, ozone. We depleted the microbiota of conventional mice with either a single antibiotic (ampicillin, metronidazole, neomycin, or vancomycin) or a cocktail of all four antibiotics given via the drinking water. Mice were then exposed to room air or ozone. In air-exposed mice, airway responsiveness did not differ between antibiotic- and control water-treated mice. Ozone caused airway hyperresponsiveness, the magnitude of which was decreased in antibiotic cocktail-treated mice versus water-treated mice. Except for neomycin, single antibiotics had effects similar to those observed with the cocktail. Compared with conventional mice, germ-free mice also had attenuated airway responsiveness after ozone. 16S ribosomal RNA gene sequencing of fecal DNA to characterize the gut microbiome indicated that bacterial genera that were decreased in mice with reduced ozone-induced airway hyperresponsiveness after antibiotic treatment were short-chain fatty acid producers. Serum analysis indicated reduced concentrations of the short-chain fatty acid propionate in cocktail-treated mice but not in neomycin-treated mice. Dietary enrichment with pectin, which increased serum short-chain fatty acids, also augmented ozone-induced airway hyperresponsiveness. Furthermore, propionate supplementation of the drinking water augmented ozone-induced airway hyperresponsiveness in conventional mice. Our data indicate that the microbiome contributes to ozone-induced airway hyperresponsiveness, likely via its ability to produce short-chain fatty acids.
Collapse
Affiliation(s)
| | - Galeb Abu-Ali
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | | | | | | | | | | - Curtis Huttenhower
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | | |
Collapse
|
11
|
Malik F, Cromar KR, Atkins CL, Price RE, Jackson WT, Siddiqui SR, Spencer CY, Mitchell NC, Haque IU, Johnston RA. Chemokine (C-C Motif) Receptor-Like 2 is not essential for lung injury, lung inflammation, or airway hyperresponsiveness induced by acute exposure to ozone. Physiol Rep 2018; 5:5/24/e13545. [PMID: 29242308 PMCID: PMC5742705 DOI: 10.14814/phy2.13545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 11/24/2022] Open
Abstract
Inhalation of ozone (O3), a gaseous air pollutant, causes lung injury, lung inflammation, and airway hyperresponsiveness. Macrophages, mast cells, and neutrophils contribute to one or more of these sequelae induced by O3. Furthermore, each of these aforementioned cells express chemokine (C‐C motif) receptor‐like 2 (Ccrl2), an atypical chemokine receptor that facilitates leukocyte chemotaxis. Given that Ccrl2 is expressed by cells essential to the development of O3‐induced lung pathology and that chemerin, a Ccrl2 ligand, is increased in bronchoalveolar lavage fluid (BALF) by O3, we hypothesized that Ccrl2 contributes to the development of lung injury, lung inflammation, and airway hyperresponsiveness induced by O3. To that end, we measured indices of lung injury (BALF protein, BALF epithelial cells, and bronchiolar epithelial injury), lung inflammation (BALF cytokines and BALF leukocytes), and airway responsiveness to acetyl‐β‐methylcholine chloride (respiratory system resistance) in wild‐type and mice genetically deficient in Ccrl2 (Ccrl2‐deficient mice) 4 and/or 24 hours following cessation of acute exposure to either filtered room air (air) or O3. In air‐exposed mice, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased BALF chemerin in mice of both genotypes, yet following O3 exposure, BALF chemerin was greater in Ccrl2‐deficient as compared to wild‐type mice. O3 increased indices of lung injury, lung inflammation, and airway responsiveness. Nevertheless, no indices were different between genotypes following O3 exposure. In conclusion, we demonstrate that Ccrl2 modulates chemerin levels in the epithelial lining fluid of the lungs but does not contribute to the development of O3‐induced lung pathology.
Collapse
Affiliation(s)
- Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Kevin R Cromar
- Marron Institute of Urban Management New York University, New York, New York
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - William T Jackson
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Saad R Siddiqui
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Nicholas C Mitchell
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas .,Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
12
|
Zhao G, Hu M, Li C, Lee J, Yuan K, Zhu G, Che C. Osteopontin contributes to effective neutrophil recruitment, IL-1β production and apoptosis in Aspergillus fumigatus keratitis. Immunol Cell Biol 2018; 96:401-412. [PMID: 29359350 DOI: 10.1111/imcb.12010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/14/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
Fungal keratitis is a major cause of corneal ulcers, resulting in significant visual impairment and blindness. A phosphorylated glycoprotein secreted by immunocompetent cells, osteopontin (OPN) mediates cluster formation of the host fungal receptors and enhances the phagocytosis and clearance of pathogenic fungi. However, whether OPN production and function occurs in fungal keratitis is unknown. OPN expression in Aspergillus fumigatus keratitis patient corneas was assessed by quantitative polymerase chain reaction (qRT-PCR) and immunofluorescence. Human neutrophils, THP-1 macrophages and corneal epithelial cells (HCECs) stimulated with A. fumigatus were utilized for in vitro experiments. Mouse models of A. fumigatus keratitis were developed by intrastromal injection for in vivo experiments. Using siRNAs, neutralizing antibodies, recombinant proteins and inhibitors, the production and role of OPN in A. fumigatus infection was assessed by clinical evaluation, qRT-PCR, immunofluorescence, western blotting and bioluminescence image acquisition. We observed increased corneal OPN expression in A. fumigatus keratitis patients and mouse models compared to controls. OPN production in response to A. fumigatus infection was dependent on LOX-1 and Erk1/2. Compared to controls, OPN knockdown impaired proinflammatory cytokine IL-1β production, which was dependent on 4E-BP1. OPN knockdown decreased myeloperoxidase levels, and resulted in decreased neutrophil recruitment, higher fungal load and increased apoptosis in mouse A. fumigatus keratitis. Our results indicate that OPN is a critical component of the antifungal immune response and is essential for effective neutrophil recruitment, inflammatory cytokine production and apoptosis in A. fumigatus keratitis.
Collapse
Affiliation(s)
- Guiqiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ming Hu
- Department of Basic Medical Sciences, Qingdao University, Qingdao, China
| | - Cui Li
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jieun Lee
- Department of Ophthalmology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Kelan Yuan
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Guoqiang Zhu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Chengye Che
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
McCant D, Lange S, Haney J, Honeycutt M. The perpetuation of the misconception that rats receive a 3-5 times lower lung tissue dose than humans at the same ozone concentration. Inhal Toxicol 2017; 29:187-196. [PMID: 28697635 DOI: 10.1080/08958378.2017.1323982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper highlights the pervasive misconception concerning 1994 findings from Hatch et al. about ozone (O3) tissue dose in humans versus rats. That study exposed humans to 0.4 ppm and rats to 2 ppm 18O-labeled O3 and found comparable incorporation of 18O into bronchoalveolar lavage constituents. However, during O3 exposure humans were exercising, which increased their ventilation rate five-fold, while rats were at rest. This resulted in similar O3 tissue doses between the two species, and predominantly explained the comparable 18O incorporation at five-fold different concentrations. The five-times higher exercising human inhalation rate offset the five-times lower concentration, producing the same human dose expected at rest at 2 ppm (i.e. 0.4 ppm × 4686 L/2 hour ≈ 2 ppm × 998 L/2 hour). In 2013, Hatch et al. showed that resting humans and resting rats experienced fairly comparable 18O incorporation at the same O3 exposure concentration and activity state into BALF cells. Despite these findings, we show here that in the peer-reviewed literature a substantial proportion of researchers continue to perpetuate the misunderstanding that human lung tissue doses of O3 are simply 3-5 times greater than rat doses at the same O3 concentration, due to interspecies differences, and not considering activity state. It is important to correct this misconception to ensure an appropriate understanding of the implications of O3 studies by the scientific community and policy experts making regulatory decisions (e.g. the US Environmental Protection Agency's National Ambient Air Quality Standards for O3).
Collapse
Affiliation(s)
- Darrell McCant
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Sabine Lange
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Joseph Haney
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Michael Honeycutt
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| |
Collapse
|
14
|
Singh R, Hui T, Matsui A, Allahem Z, Johnston CD, Ruiz-Torruella M, Rittling SR. Modulation of infection-mediated migration of neutrophils and CXCR2 trafficking by osteopontin. Immunology 2016; 150:74-86. [PMID: 27599164 DOI: 10.1111/imm.12668] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 08/23/2016] [Accepted: 08/31/2016] [Indexed: 12/16/2022] Open
Abstract
Osteopontin (OPN) is a pro-inflammatory protein that paradoxically protects against inflammation and bone destruction in a mouse model of endodontic infection. Here we have tested the hypothesis that this effect of OPN is mediated by effects on migration of innate immune cells to the site of infection. Using the air pouch as a model of endodontic infection in mice, we showed that neutrophil accumulation at the site of infection with a mixture of endodontic pathogens is significantly reduced in OPN-deficient mice. Reduced neutrophil accumulation in the absence of OPN was accompanied by an increase in bacterial load. OPN-deficiency did not affect neutrophil survival, CXCR2 ligand expression, or the production of inflammatory cytokines in the air pouch. In vitro, OPN enhanced neutrophil migration to CXCL1, whereas in vivo, inhibition of CXCR2 suppressed cellular infiltration in air pouches of infected wild-type mice by > 50%, but had no effect in OPN-deficient mice. OPN increased cell surface expression of CXCR2 on bone marrow neutrophils in an integrin-αv -dependent manner, and suppressed the internalization of CXCR2 in the absence of ligand. Together, these results support a model where the protective effect of OPN results from enhanced initial neutrophil accumulation at sites of infection resulting in optimal bacterial killing. We describe a novel mechanism for this effect of OPN: integrin-αv -dependent suppression of CXCR2 internalization in neutrophils, which increases the ability of these cells to migrate to sites of infection in response to CXCR2 ligands.
Collapse
Affiliation(s)
- Rani Singh
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Tommy Hui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Aritsune Matsui
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Ziyad Allahem
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Christopher D Johnston
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | | | - Susan R Rittling
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
15
|
Elkhidir HS, Richards JB, Cromar KR, Bell CS, Price RE, Atkins CL, Spencer CY, Malik F, Alexander AL, Cockerill KJ, Haque IU, Johnston RA. Plasminogen activator inhibitor-1 does not contribute to the pulmonary pathology induced by acute exposure to ozone. Physiol Rep 2016; 4:4/18/e12983. [PMID: 27670409 PMCID: PMC5037925 DOI: 10.14814/phy2.12983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 11/24/2022] Open
Abstract
Expression of plasminogen activator inhibitor (PAI)-1, the major physiological inhibitor of fibrinolysis, is increased in the lung following inhalation of ozone (O3), a gaseous air pollutant. PAI-1 regulates expression of interleukin (IL)-6, keratinocyte chemoattractant (KC), and macrophage inflammatory protein (MIP)-2, which are cytokines that promote lung injury, pulmonary inflammation, and/or airway hyperresponsiveness following acute exposure to O3 Given these observations, we hypothesized that PAI-1 contributes to the severity of the aforementioned sequelae by regulating expression of IL-6, KC, and MIP-2 following acute exposure to O3 To test our hypothesis, wild-type mice and mice genetically deficient in PAI-1 (PAI-1-deficient mice) were acutely exposed to either filtered room air or O3 (2 ppm) for 3 h. Four and/or twenty-four hours following cessation of exposure, indices of lung injury [bronchoalveolar lavage fluid (BALF) protein and epithelial cells], pulmonary inflammation (BALF IL-6, KC, MIP-2, macrophages, and neutrophils), and airway responsiveness to aerosolized acetyl-β-methylcholine chloride (respiratory system resistance) were measured in wild-type and PAI-1-deficient mice. O3 significantly increased indices of lung injury, pulmonary inflammation, and airway responsiveness in wild-type and PAI-1-deficient mice. With the exception of MIP-2, which was significantly lower in PAI-1-deficient as compared to wild-type mice 24 h following cessation of exposure to O3, no other genotype-related differences occurred subsequent to O3 exposure. Thus, following acute exposure to O3, PAI-1 neither regulates pulmonary expression of IL-6 and KC nor functionally contributes to any of the pulmonary pathological sequelae that arise from the noxious effects of inhaled O3.
Collapse
Affiliation(s)
- Hamza S Elkhidir
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, College of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Chantal Y Spencer
- Section of Pediatric Pulmonology, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Pediatric Research Center, Department of Pediatrics, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas Department of Integrative Biology and Pharmacology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
16
|
Brand JD, Mathews JA, Kasahara DI, Wurmbrand AP, Shore SA. Regulation of IL-17A expression in mice following subacute ozone exposure. J Immunotoxicol 2016; 13:428-38. [PMID: 27043160 DOI: 10.3109/1547691x.2015.1120829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Exposure to subacute ozone (O3) causes pulmonary neutrophil recruitment. In mice, this recruitment requires IL-17A. Ozone also causes expression of IL-23 and IL-1, which can induce IL-17A. The purpose of this study was to examine the hypothesis that IL-23 and IL-1 contribute to IL-17A expression and subsequent neutrophil recruitment after subacute O3 exposure. Wild-type, IL-23(-/-), and Flt3l(-/-) mice were exposed to air or 0.3 ppm O3 for 72 h. Flt3l(-/-) mice lack conventional dendritic cells (cDC) that can express IL-23 and IL-1. Other wild-type mice were pre-treated with saline or the IL-1R1 antagonist anakinra prior to O3 exposure. After exposure, bronchoalveolar lavage (BAL) was performed and lung tissue harvested. The results indicated that pulmonary Il17a mRNA abundance and IL-17A(+) F4/80(+) cells were significantly reduced in O3-exposed IL-23(-/-) vs in wild-type mice. In contrast, anakinra had no effect on Il23a or Il17a pulmonary mRNA abundance or on BAL concentrations of the neutrophil survival factor G-CSF, but anakinra did reduce BAL neutrophil numbers, likely because anakinra also reduced BAL IL-6. Compared to air, O3 caused a significant increase in DC numbers in wild-type, but not in Flt3(-/-) mice. However, there was no significant difference in Il23a or Il17a mRNA abundance or in BAL neutrophil count in O3-exposed Flt3(-/-) vs in wild-type mice. From these results, it was concluded that IL-23 but not IL-1 contributes to the IL-17A expression induced by subacute O3 exposure. Induction of IL-23 by O3 does not appear to require cDC.
Collapse
Affiliation(s)
- Jeffrey D Brand
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Joel A Mathews
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - David I Kasahara
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Alison P Wurmbrand
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Stephanie A Shore
- a Molecular and Integrative Physiological Sciences Program, Department of Environmental Health , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
17
|
Gela A, Kasetty G, Mörgelin M, Bergqvist A, Erjefält JS, Pease JE, Egesten A. Osteopontin binds and modulates functions of eosinophil-recruiting chemokines. Allergy 2016; 71:58-67. [PMID: 26411293 DOI: 10.1111/all.12771] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND Allergic asthma is characterized by eosinophilic inflammation and airway obstruction. There is also an increased risk of pulmonary infection caused by Streptococcus pneumoniae, in particular during severe asthma where high levels of the glycoprotein, osteopontin (OPN), are present in the airways. Eosinophils can be recruited by chemokines activating the receptor CCR3 including eotaxin-1/CCL11, eotaxin-2/CCL24, eotaxin-3/CCL26, RANTES/CCL5, and MEC/CCL28. In addition to inducing chemotaxis, several of these molecules have defensin-like antibacterial properties. This study set out to elucidate the functional consequences of OPN binding to eosinophil-recruiting chemokines. METHODS Antibacterial activities of the chemokines were investigated using viable count assays and electron microscopy. Binding studies were performed by means of surface plasmon resonance. The potential interference of OPN with antibacterial, receptor-activating, and lipopolysaccharide-neutralizing abilities of these chemokines was investigated. RESULTS We found that OPN bound all eosinophil-recruiting chemokines with high affinity except for CCL5. The eosinophil-recruiting chemokines all displayed bactericidal activity against S. pneumoniae, but only CCL26 and CCL28 retained high antibacterial activity in the presence of sodium chloride at physiologic concentrations. Preincubation of the chemokines with OPN strongly inhibited their antibacterial activity against S. pneumoniae but did not affect their ability to activate CCR3. All chemokines investigated showed LPS-neutralizing activity that was impaired by OPN only in the case of CCL24. CONCLUSIONS The data suggest that OPN may impair host defense activities of the chemokines without affecting their eosinophil-recruiting properties. This could be one mechanism explaining the increased vulnerability to acquire pneumococcal infection in parallel with sustained allergic inflammation in asthma.
Collapse
Affiliation(s)
- A. Gela
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - G. Kasetty
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - M. Mörgelin
- Division of Infection Medicine; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - A. Bergqvist
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. S. Erjefält
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| | - J. E. Pease
- Leukocyte Biology Section; NHLI; Faculty of Medicine; Imperial College of Science, Technology and Medicine; London UK
| | - A. Egesten
- Division of Respiratory Medicine & Allergology; Department of Clinical Sciences; Skåne University Hospital; Lund University; Lund Sweden
| |
Collapse
|
18
|
Lambert JA, Song W. Ozone-induced airway hyperresponsiveness: roles of ROCK isoforms. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1394-7. [PMID: 26519207 DOI: 10.1152/ajplung.00353.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 10/30/2015] [Indexed: 12/16/2022] Open
Abstract
Acute ozone (O3) inhalation has been shown to cause airway and pulmonary epithelial injury with accompanying inflammation responses. Robust evidence exists that O3 induces airway hyperresponsiveness (AHR) in humans and in animal models. Several pathways exist that culminate in airway smooth muscle contraction, but the mechanism(s) by which O3 elicits AHR are unclear. Here, we review the recent report by Kasahara et al. (Kasahara DI, Mathews JA, Park CY, Cho Y, Hunt G, Wurmbrand AP, Liao JK, Shore SA. Am J Physiol Lung Cell Mol Physiol 309: L736-L746, 2015.) describing the role of two Rho kinase (ROCK) isoforms in O3-induced AHR utilizing a murine haploinsufficiency model. Compared with wild-type (WT) mice, the authors report that ROCK1(+/-) and ROCK2(+/-) mice exhibited significantly reduced AHR following acute exposure to O3. Additionally, WT mice treated with fasudil, an FDA-approved ROCK1/2 inhibitor, recapitulated reduction in AHR as seen in ROCK haplotypes. It was suggested that, although the two ROCK isoforms are both induced by Rho, they have different mechanisms by which they mediate O3-induced AHR: ROCK1 via hyaluronan signaling vs. ROCK2 acting downstream of inflammation at the level of airway smooth muscle contraction. These observations provide an important framework to develop novel ROCK-targeting therapies for acute O3-induced AHR.
Collapse
Affiliation(s)
- James A Lambert
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Weifeng Song
- Department of Anesthesiology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; and Pulmonary Injury and Repair Center, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
19
|
Razvi SS, Richards JB, Malik F, Cromar KR, Price RE, Bell CS, Weng T, Atkins CL, Spencer CY, Cockerill KJ, Alexander AL, Blackburn MR, Alcorn JL, Haque IU, Johnston RA. Resistin deficiency in mice has no effect on pulmonary responses induced by acute ozone exposure. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1174-85. [PMID: 26386120 DOI: 10.1152/ajplung.00270.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/14/2015] [Indexed: 01/10/2023] Open
Abstract
Acute exposure to ozone (O3), an air pollutant, causes pulmonary inflammation, airway epithelial desquamation, and airway hyperresponsiveness (AHR). Pro-inflammatory cytokines-including IL-6 and ligands of chemokine (C-X-C motif) receptor 2 [keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-2], TNF receptor 1 and 2 (TNF), and type I IL-1 receptor (IL-1α and IL-1β)-promote these sequelae. Human resistin, a pleiotropic hormone and cytokine, induces expression of IL-1α, IL-1β, IL-6, IL-8 (the human ortholog of murine KC and MIP-2), and TNF. Functional differences exist between human and murine resistin; yet given the aforementioned observations, we hypothesized that murine resistin promotes O3-induced lung pathology by inducing expression of the same inflammatory cytokines as human resistin. Consequently, we examined indexes of O3-induced lung pathology in wild-type and resistin-deficient mice following acute exposure to either filtered room air or O3. In wild-type mice, O3 increased bronchoalveolar lavage fluid (BALF) resistin. Furthermore, O3 increased lung tissue or BALF IL-1α, IL-6, KC, TNF, macrophages, neutrophils, and epithelial cells in wild-type and resistin-deficient mice. With the exception of KC, which was significantly greater in resistin-deficient compared with wild-type mice, no genotype-related differences in the other indexes existed following O3 exposure. O3 caused AHR to acetyl-β-methylcholine chloride (methacholine) in wild-type and resistin-deficient mice. However, genotype-related differences in airway responsiveness to methacholine were nonexistent subsequent to O3 exposure. Taken together, these data demonstrate that murine resistin is increased in the lungs of wild-type mice following acute O3 exposure but does not promote O3-induced lung pathology.
Collapse
Affiliation(s)
- Shehla S Razvi
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Cynthia S Bell
- Division of Nephrology, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Tingting Weng
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Constance L Atkins
- Division of Pulmonary Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Katherine J Cockerill
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Amy L Alexander
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Joseph L Alcorn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; and
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Department of Integrative Biology and Pharmacology, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
20
|
Kasahara DI, Mathews JA, Park CY, Cho Y, Hunt G, Wurmbrand AP, Liao JK, Shore SA. ROCK insufficiency attenuates ozone-induced airway hyperresponsiveness in mice. Am J Physiol Lung Cell Mol Physiol 2015; 309:L736-46. [PMID: 26276827 DOI: 10.1152/ajplung.00372.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 08/09/2015] [Indexed: 11/22/2022] Open
Abstract
Ozone causes airway hyperresponsiveness (AHR) and pulmonary inflammation. Rho kinase (ROCK) is a key regulator of smooth muscle cell contraction and inflammatory cell migration. To determine the contribution of the two ROCK isoforms ROCK1 and ROCK2 to ozone-induced AHR, we exposed wild-type, ROCK1(+/-), and ROCK2(+/-) mice to air or ozone (2 ppm for 3 h) and evaluated mice 24 h later. ROCK1 or ROCK2 haploinsufficiency did not affect airway responsiveness in air-exposed mice but significantly reduced ozone-induced AHR, with a greater reduction in ROCK2(+/-) mice despite increased bronchoalveolar lavage (BAL) inflammatory cells in ROCK2(+/-) mice. Compared with wild-type mice, ozone-induced increases in BAL hyaluronan, a matrix protein implicated in ozone-induced AHR, were lower in ROCK1(+/-) but not ROCK2(+/-) mice. Ozone-induced increases in other inflammatory moieties reported to contribute to ozone-induced AHR (IL-17A, osteopontin, TNFα) were not different in wild-type vs. ROCK1(+/-) or ROCK2(+/-) mice. We also observed a dose-dependent reduction in ozone-induced AHR after treatment with the ROCK1/ROCK2 inhibitor fasudil, even though fasudil was administered after induction of inflammation. Ozone increased pulmonary expression of ROCK2 but not ROCK1 or RhoA. A ROCK2 inhibitor, SR3677, reduced contractile forces in primary human airway smooth muscle cells, confirming a role for ROCK2 in airway smooth muscle contraction. Our results demonstrate that ozone-induced AHR requires ROCK. Whereas ROCK1-dependent changes in hyaluronan may contribute to ROCK1's role in O3-induced AHR, the role of ROCK2 is downstream of inflammation, likely at the level of airway smooth muscle contraction.
Collapse
Affiliation(s)
- David I Kasahara
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Joel A Mathews
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Chan Y Park
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Youngji Cho
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Gabrielle Hunt
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - Allison P Wurmbrand
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| | - James K Liao
- Department of Medicine, University of Chicago, Chicago, Illinois
| | - Stephanie A Shore
- Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts; and
| |
Collapse
|
21
|
Niikura Y, Ishii T, Hosoki K, Nagase T, Yamashita N. Ovary-dependent emphysema augmentation and osteopontin induction in adult female mice. Biochem Biophys Res Commun 2015; 461:642-7. [PMID: 25912141 DOI: 10.1016/j.bbrc.2015.04.081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/24/2022]
Abstract
Biological differences between the sexes greatly impact the development and severity of pulmonary disorders such as emphysema. Recent studies have demonstrated crucial roles for osteopontin (OPN, also known as SPP1) in lung inflammation and alveolar destruction in human and experimental emphysema, but the impact of gender on OPN action remains unknown. Here, we report ovary-dependent induction of Opn mRNA with augmentation of experimental emphysema in adult female mice. Both male and female mice developed emphysematous lungs following intra-tracheal administration of porcine pancreatic elastase; however, compared with male mice, female mice developed more severe injury-related inflammation and pathologic alterations of the lungs. Notably, we observed female-specific induction of the Opn gene upon lung injury. Ovariectomy blocked this induction, with attenuation of lung inflammation and alveolar destruction, demonstrating the essential role of ovaries in injury-related Opn induction and augmentation of emphysema in adult female mice. Lastly, pre-treatment of adult female mice with pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid, which blocks ATP-mediated wound response, suppressed Opn mRNA induction upon lung injury, resulting in attenuation of enhanced lung inflammation. Together, our findings define a novel, ovary-dependent mechanism underlying gender-specific augmentation of emphysema through transcriptional control of the Opn gene.
Collapse
Affiliation(s)
- Yuichi Niikura
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan
| | - Takashi Ishii
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Hosoki
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan; Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Takahide Nagase
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Naomi Yamashita
- Department of Pharmacotherapy, Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
22
|
Williams AS, Mathews JA, Kasahara DI, Wurmbrand AP, Chen L, Shore SA. Innate and ozone-induced airway hyperresponsiveness in obese mice: role of TNF-α. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1168-77. [PMID: 25840999 DOI: 10.1152/ajplung.00393.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/01/2015] [Indexed: 01/06/2023] Open
Abstract
Innate airway hyperresponsiveness (AHR) and augmented responses to ozone, an asthma trigger, are characteristics of obese mice. Systemic inflammation, a condition of increased circulating concentrations of inflammatory moieties, occurs in obesity. We hypothesized that TNF-α, via its effects as a master effector of this systemic inflammation, regulates innate AHR and augmented responses to ozone in obese mice. Therefore, we examined pulmonary inflammation and airway responsiveness in unexposed or ozone-exposed (2 ppm for 3 h) lean wild-type and obese Cpe(fat) mice that were TNF-α sufficient or deficient. Cpe(fat) mice lack carboxypeptidase E, which regulates satiety. Compared with wild type, Cpe(fat) mice had elevated serum IL-17A, G-CSF, KC, MCP-1, IL-9, MIG, and leptin, indicating systemic inflammation. Despite reductions in most of these moieties in TNF-α-deficient vs. -sufficient Cpe(fat) mice, we observed no substantial difference in airway responsiveness in these two groups of mice. Ozone-induced increases in bronchoalveolar lavage (BAL) neutrophils and macrophages were lower, but ozone-induced AHR and increases in BAL hyaluronan, osteopontin, IL-13, and protein carbonyls, a marker of oxidative stress, were augmented in TNF-α-deficient vs. -sufficient Cpe(fat) mice. Our data indicate that TNF-α has an important role in promoting the systemic inflammation but not the innate AHR of obesity, suggesting that the systemic inflammation of obesity is not the major driver of this AHR. TNF-α is required for the augmented effects of acute ozone exposure on pulmonary inflammatory cell recruitment in obese mice, whereas TNF-α protects against ozone-induced AHR in obese mice, possibly by suppressing ozone-induced oxidative stress.
Collapse
Affiliation(s)
| | - Joel Andrew Mathews
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - David Itiro Kasahara
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | | | - Lucas Chen
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| | - Stephanie Ann Shore
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts
| |
Collapse
|
23
|
Dahm PH, Richards JB, Karmouty-Quintana H, Cromar KR, Sur S, Price RE, Malik F, Spencer CY, Barreno RX, Hashmi SS, Blackburn MR, Haque IU, Johnston RA. Effect of antigen sensitization and challenge on oscillatory mechanics of the lung and pulmonary inflammation in obese carboxypeptidase E-deficient mice. Am J Physiol Regul Integr Comp Physiol 2014; 307:R621-33. [PMID: 25009214 DOI: 10.1152/ajpregu.00205.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Atopic, obese asthmatics exhibit airway obstruction with variable degrees of eosinophilic airway inflammation. We previously reported that mice obese as a result of a genetic deficiency in either leptin (ob/ob mice) or the long isoform of the leptin receptor (db/db mice) exhibit enhanced airway obstruction in the presence of decreased numbers of bronchoalveolar lavage fluid (BALF) eosinophils compared with lean, wild-type mice following antigen (ovalbumin; OVA) sensitization and challenge. To determine whether the genetic modality of obesity induction influences the development of OVA-induced airway obstruction and OVA-induced pulmonary inflammation, we examined indices of these sequelae in mice obese as a result of a genetic deficiency in carboxypeptidase E, an enzyme that processes prohormones and proneuropeptides involved in satiety and energy expenditure (Cpe(fat) mice). Accordingly, Cpe(fat) and lean, wild-type (C57BL/6) mice were sensitized to OVA and then challenged with either aerosolized PBS or OVA. Compared with genotype-matched, OVA-sensitized and PBS-challenged mice, OVA sensitization and challenge elicited airway obstruction and increased BALF eosinophils, macrophages, neutrophils, IL-4, IL-13, IL-18, and chemerin. However, OVA challenge enhanced airway obstruction and pulmonary inflammation in Cpe(fat) compared with wild-type mice. These results demonstrate that OVA sensitization and challenge enhance airway obstruction in obese mice regardless of the genetic basis of obesity, whereas the degree of OVA-induced pulmonary inflammation is dependent on the genetic modality of obesity induction. These results have important implications for animal models of asthma, as modeling the pulmonary phenotypes for subpopulations of atopic, obese asthmatics critically depends on selecting the appropriate mouse model.
Collapse
Affiliation(s)
- Paul H Dahm
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Jeremy B Richards
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Kevin R Cromar
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York
| | - Sanjiv Sur
- Division of Allergy and Immunology, Department of Internal Medicine, The University of Texas Medical Branch at Galveston School of Medicine, Galveston, Texas
| | - Roger E Price
- Comparative Pathology Laboratory, Center for Comparative Medicine, Baylor College of Medicine, Houston, Texas
| | - Farhan Malik
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Chantal Y Spencer
- Pediatric Pulmonary Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas; and
| | - Ramon X Barreno
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Syed S Hashmi
- Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Michael R Blackburn
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas
| | - Ikram U Haque
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Richard A Johnston
- Division of Critical Care Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas; Pediatric Research Center, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|