1
|
Chen Y, Lin F, Zhang T, Xiao Z, Chen Y, Hua D, Wang Y, Wei J, Jin T, Lv X. Engineering Extracellular Vesicles Derived from 3D Cultivation of BMSCs Enriched with HGF Ameliorate Sepsis-Induced Lung Epithelial Barrier Damage. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2500637. [PMID: 40041965 PMCID: PMC12021063 DOI: 10.1002/advs.202500637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/06/2025] [Indexed: 04/26/2025]
Abstract
Sepsis is a critical condition with high mortality, often leading to acute lung injury (ALI) due to uncontrolled inflammatory responses and alveolar epithelial damage. Extracellular vesicles (EVs), particularly mesenchymal stem cell-derived EVs, have shown therapeutic potential in sepsis-related organ dysfunction by transferring RNAs and proteins. However, their clinical use is limited by low efficacy and yield. To address this, 3D-cultured MSCs (3D-MSCs) are generated using MicroTissues 3D Petri Dish. These 3D-MSCs demonstrate improved protection and proliferation of MLE-12 cells in vitro. Mechanistic studies are conducted to explore the enhanced protective effects of 3D-MSCs derived EVs (3D-EVs) in a septic-ALI model. Proteomic and molecular analyses of 3D-EVs revealed that they are enriched in hepatocyte growth factor (HGF). HGF helps maintain the barrier function of damaged alveolar epithelium through the PI3K-AKT signaling pathway. Overall, 3D-EVs effectively ameliorate sepsis-induced ALI and enhance prognosis by enriching and delivering HGF, suggesting that their application represents a promising treatment strategy for septic ALI.
Collapse
Affiliation(s)
- Yong Chen
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
- Department of AnesthesiologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhou325000China
| | - Feihong Lin
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Tong Zhang
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Zhuoran Xiao
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Yuanli Chen
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Dongsheng Hua
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Yu Wang
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Juan Wei
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Tian Jin
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| | - Xin Lv
- Department of AnesthesiologyShanghai Pulmonary HospitalSchool of MedicineTongji UniversityShanghai200433China
- Shanghai Institute of Acupuncture and AnesthesiaShanghai200433China
| |
Collapse
|
2
|
Su Y, Lucas R, Fulton DJ, Verin AD. Mechanisms of pulmonary endothelial barrier dysfunction in acute lung injury and acute respiratory distress syndrome. CHINESE MEDICAL JOURNAL PULMONARY AND CRITICAL CARE MEDICINE 2024; 2:80-87. [PMID: 39006829 PMCID: PMC11242916 DOI: 10.1016/j.pccm.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Indexed: 07/16/2024]
Abstract
Endothelial cells (ECs) form a semi-permeable barrier between the interior space of blood vessels and the underlying tissues. Pulmonary endothelial barrier integrity is maintained through coordinated cellular processes involving receptors, signaling molecules, junctional complexes, and protein-regulated cytoskeletal reorganization. In acute lung injury (ALI) or its more severe form acute respiratory distress syndrome (ARDS), the loss of endothelial barrier integrity secondary to endothelial dysfunction caused by severe pulmonary inflammation and/or infection leads to pulmonary edema and hypoxemia. Pro-inflammatory agonists such as histamine, thrombin, bradykinin, interleukin 1β, tumor necrosis factor α, vascular endothelial growth factor, angiopoietin-2, and platelet-activating factor, as well as bacterial toxins and reactive oxygen species, cause dynamic changes in cytoskeletal structure, adherens junction disorganization, and detachment of vascular endothelial cadherin (VE-cadherin) from the actin cytoskeleton, leading to an increase in endothelial permeability. Endothelial interactions with leukocytes, platelets, and coagulation enhance the inflammatory response. Moreover, inflammatory infiltration and the associated generation of pro-inflammatory cytokines during infection cause EC death, resulting in further compromise of the structural integrity of lung endothelial barrier. Despite the use of potent antibiotics and aggressive intensive care support, the mortality of ALI is still high, because the mechanisms of pulmonary EC barrier disruption are not fully understood. In this review, we summarized recent advances in the studies of endothelial cytoskeletal reorganization, inter-endothelial junctions, endothelial inflammation, EC death, and endothelial repair in ALI and ARDS, intending to shed some light on the potential diagnostic and therapeutic targets in the clinical management of the disease.
Collapse
Affiliation(s)
- Yunchao Su
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Research Service, Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30912, USA
| | - Rudolf Lucas
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - David J.R. Fulton
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Alexander D. Verin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
3
|
Wang L, Feng M, Zhao Y, Chen B, Zhao Y, Dai J. Biomimetic scaffold-based stem cell transplantation promotes lung regeneration. Bioeng Transl Med 2023; 8:e10535. [PMID: 37476061 PMCID: PMC10354774 DOI: 10.1002/btm2.10535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 04/04/2023] [Accepted: 04/16/2023] [Indexed: 07/22/2023] Open
Abstract
Therapeutic options are limited for severe lung injury and disease as the spontaneous regeneration of functional alveolar is terminated owing to the weakness of the inherent stem cells and the dyscrasia of the niche. Umbilical cord mesenchymal-derived stem cells (UC-MSCs) have been applied to clinical trials to promote lung repair through stem cell niche restruction. However, the application of UC-MSCs is hampered by the effectiveness of cell transplantation with few cells homing to the injury sites and poor retention, survival, and proliferation in vivo. In this study, we constructed an artificial three-dimensional (3D) biomimetic scaffold-based MSCs implant to establish a beneficial regeneration niche for endogenous stem cells in situ lung regeneration. The therapeutic potential of 3D biomimetic scaffold-based MSCs implants was evaluated by 3D culture in vitro. And RNA sequencing (RNA-Seq) was mapped to explore the gene expression involved in the niche improvement. Next, a model of partial lung resection was established in rats, and the implants were implanted into the operative region. Effects of the implants on rat resected lung injury repair were detected. The results revealed that UC-MSCs loaded on biomimetic scaffolds exerted strong paracrine effects and some UC-MSCs migrated to the lung from scaffolds and had long-term retention to suppress inflammation and fibrosis in residual lungs and promoted vascular endothelial cells and alveolar type II epithelial cells to enter the scaffolds. Then, under the guidance of the ECM-mimicking structures of scaffolds and the stimulation of the remaining UC-MSCs, vascular and alveolar-like structures were formed in the scaffold region. Moreover, the general morphology of the operative lung was also restored. Taken together, the artificial 3D biomimetic scaffold-based MSCs implants induce in situ lung regeneration and recovery after lung destruction, providing a promising direction for tissue engineering and stem cell strategies in lung regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Center for Disease Control and Prevention of People's Liberation ArmyBeijingChina
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative MedicineArmy Medical University, Third Military Medical UniversityChongqingChina
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative MedicineArmy Medical University, Third Military Medical UniversityChongqingChina
| | - Bing Chen
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Godbole NM, Chowdhury AA, Chataut N, Awasthi S. Tight Junctions, the Epithelial Barrier, and Toll-like Receptor-4 During Lung Injury. Inflammation 2022; 45:2142-2162. [PMID: 35779195 PMCID: PMC9649847 DOI: 10.1007/s10753-022-01708-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Lung epithelium is constantly exposed to the environment and is critically important for the orchestration of initial responses to infectious organisms, toxins, and allergic stimuli, and maintenance of normal gaseous exchange and pulmonary function. The integrity of lung epithelium, fluid balance, and transport of molecules is dictated by the tight junctions (TJs). The TJs are formed between adjacent cells. We have focused on the topic of the TJ structure and function in lung epithelial cells. This review includes a summary of the last twenty years of literature reports published on the disrupted TJs and epithelial barrier in various lung conditions and expression and regulation of specific TJ proteins against pathogenic stimuli. We discuss the molecular signaling and crosstalk among signaling pathways that control the TJ structure and function. The Toll-like receptor-4 (TLR4) recognizes the pathogen- and damage-associated molecular patterns released during lung injury and inflammation and coordinates cellular responses. The molecular aspects of TLR4 signaling in the context of TJs or the epithelial barrier are not fully known. We describe the current knowledge and possible networking of the TLR4-signaling with cellular and molecular mechanisms of TJs, lung epithelial barrier function, and resistance to treatment strategies.
Collapse
Affiliation(s)
- Nachiket M Godbole
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Asif Alam Chowdhury
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Neha Chataut
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA
| | - Shanjana Awasthi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health Sciences Center, 1110 N. Stonewall Avenue, Oklahoma City, OK, 73117, USA.
| |
Collapse
|
5
|
Li J, Peng Q, Yang R, Li K, Zhu P, Zhu Y, Zhou P, Szabó G, Zheng S. Application of Mesenchymal Stem Cells During Machine Perfusion: An Emerging Novel Strategy for Organ Preservation. Front Immunol 2022; 12:713920. [PMID: 35024039 PMCID: PMC8744145 DOI: 10.3389/fimmu.2021.713920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 12/03/2021] [Indexed: 12/24/2022] Open
Abstract
Although solid organ transplantation remains the definitive management for patients with end-stage organ failure, this ultimate treatment has been limited by the number of acceptable donor organs. Therefore, efforts have been made to expand the donor pool by utilizing marginal organs from donation after circulatory death or extended criteria donors. However, marginal organs are susceptible to ischemia-reperfusion injury (IRI) and entail higher requirements for organ preservation. Recently, machine perfusion has emerged as a novel preservation strategy for marginal grafts. This technique continually perfuses the organs to mimic the physiologic condition, allows the evaluation of pretransplant graft function, and more excitingly facilitates organ reconditioning during perfusion with pharmacological, gene, and stem cell therapy. As mesenchymal stem cells (MSCs) have anti-oxidative, immunomodulatory, and regenerative properties, mounting studies have demonstrated the therapeutic effects of MSCs on organ IRI and solid organ transplantation. Therefore, MSCs are promising candidates for organ reconditioning during machine perfusion. This review provides an overview of the application of MSCs combined with machine perfusion for lung, kidney, liver, and heart preservation and reconditioning. Promising preclinical results highlight the potential clinical translation of this innovative strategy to improve the quality of marginal grafts.
Collapse
Affiliation(s)
- Jiale Li
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qinbao Peng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ronghua Yang
- Department of Burn Surgery and Skin Regeneration, The First People's Hospital of Foshan, Foshan, China
| | - Kunsheng Li
- Department of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | - Peng Zhu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yufeng Zhu
- Laboratory Animal Research Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Pengyu Zhou
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Gábor Szabó
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Department of Cardiac Surgery, University Hospital Halle (Saale), Halle, Germany
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
6
|
Karki P, Birukova AA. Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Front Physiol 2021; 12:758313. [PMID: 34777018 PMCID: PMC8582326 DOI: 10.3389/fphys.2021.758313] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/06/2021] [Indexed: 01/04/2023] Open
Abstract
Endothelial dysfunction has been attributed as one of the major complications in COVID-19 patients, a global pandemic that has already caused over 4 million deaths worldwide. The dysfunction of endothelial barrier is characterized by an increase in endothelial permeability and inflammatory responses, and has even broader implications in the pathogenesis of acute respiratory syndromes such as ARDS, sepsis and chronic illnesses represented by pulmonary arterial hypertension and interstitial lung disease. The structural integrity of endothelial barrier is maintained by cytoskeleton elements, cell-substrate focal adhesion and adhesive cell junctions. Agonist-mediated changes in endothelial permeability are directly associated with reorganization of actomyosin cytoskeleton leading to cell contraction and opening of intercellular gaps or enhancement of cortical actin cytoskeleton associated with strengthening of endothelial barrier. The role of actin cytoskeleton remodeling in endothelial barrier regulation has taken the central stage, but the impact of microtubules in this process remains less explored and under-appreciated. This review will summarize the current knowledge on the crosstalk between microtubules dynamics and actin cytoskeleton remodeling, describe the signaling mechanisms mediating this crosstalk, discuss epigenetic regulation of microtubules stability and its nexus with endothelial barrier maintenance, and overview a role of microtubules in targeted delivery of signaling molecules regulating endothelial permeability and inflammation.
Collapse
Affiliation(s)
- Pratap Karki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Anna A Birukova
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Critical Role of Mortalin/GRP75 in Endothelial Cell Dysfunction Associated with Acute Lung Injury. Shock 2021; 54:245-255. [PMID: 31490354 DOI: 10.1097/shk.0000000000001445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mortalin/GRP75 (glucose regulated protein 75), a member of heat shock protein 70 family of chaperones, is involved in several cellular processes including proliferation and signaling, and plays a pivotal role in cancer and neurodegenerative disorders. In this study, we sought to determine the role of mortalin/GRP75 in mediating vascular inflammation and permeability linked to the pathogenesis of acute lung injury (ALI). In an aerosolized bacterial lipopolysaccharide inhalation mouse model of ALI, we found that administration of mortalin/GRP75 inhibitor mean kinetic temperature-077, both prophylactically and therapeutically, protected against polymorphonuclear leukocytes influx into alveolar airspaces, microvascular leakage, and expression of pro-inflammatory mediators such as interleukin-1β, E-selectin, and tumor necrosis factor TNFα. Consistent with this, thrombin-induced inflammation in cultured human endothelial cells (EC) was also protected upon before and after treatment with mean kinetic temperature-077. Similar to pharmacological inhibition of mortalin/GRP75, siRNA-mediated depletion of mortalin/GRP75 also blocked thrombin-induced expression of proinflammatory mediators such as intercellular adhesion molecule-1 and vascular adhesion molecule-1. Mechanistic analysis in EC revealed that inactivation of mortalin/GRP75 interfered with the binding of the liberated NF-κB to the DNA, thereby leading to inhibition of downstream expression of adhesion molecules, cytokines, and chemokines. Importantly, thrombin-induced Ca signaling and EC permeability were also prevented upon mortalin/GRP75 inactivation/depletion. Thus, this study provides evidence for a novel role of mortalin/GRP75 in mediating EC inflammation and permeability associated with ALI.
Collapse
|
8
|
HGF-Modified Dental Pulp Stem Cells Mitigate the Inflammatory and Fibrotic Responses in Paraquat-Induced Acute Respiratory Distress Syndrome. Stem Cells Int 2021; 2021:6662831. [PMID: 33747095 PMCID: PMC7943272 DOI: 10.1155/2021/6662831] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 12/15/2022] Open
Abstract
Paraquat (PQ) poisoning can cause acute lung injury and progress to pulmonary fibrosis and eventually death without effective therapy. Mesenchymal stem cells (MSCs) and hepatocyte growth factor (HGF) have been shown to partially reverse this damage. MSCs can be derived from bone marrow (BM-MSCs), adipose tissue (AD-MSCs), umbilical cord (UC-MSCs), dental pulp (DPSCs), and other sources. The biological characteristics of MSCs are specific to the tissue source. To develop an effective treatment for PQ poisoning, we compared the anti-inflammatory and antifibrotic effects of UC-MSCs and DPSCs and chose and modified a suitable source with HGF to investigate their therapeutic effects in vitro and in vivo. In this study, MSCs' supernatant was beneficial to the viability and proliferation of human lung epithelial cell BEAS-2B. Inflammatory and fibrosis-related cytokines were analyzed by real-time PCR. The results showed that MSCs' supernatant could suppress the expression of proinflammatory and profibrotic cytokines and increase the expression of anti-inflammatory and antifibrotic cytokines in BEAS-2B cells and human pulmonary fibroblast MRC-5. Extracellular vesicles (EVs) derived from MSCs performed more effectively than MSCs' supernatant. The effect of DPSCs was stronger than that of UC-MSCs and was further strengthened by HGF modification. PQ-poisoned mice were established, and UC-MSCs, DPSCs, and DPSCs-HGF were administered. Histopathological assessments revealed that DPSCs-HGF mitigated lung inflammation and collagen accumulation more effectively than the other treatments. DPSCs-HGF reduced lung permeability and increased the survival rate of PQ mice from 20% to 50%. Taken together, these results indicated that DPSCs can suppress inflammation and fibrosis in human lung cells better than UC-MSCs. The anti-inflammatory and antifibrotic effects were significantly enhanced by HGF modification. DPSCs-HGF ameliorated pulmonitis and pulmonary fibrosis in PQ mice, effectively improving the survival rate, which might be mediated by paracrine mechanisms. The results suggested that DPSCs-HGF transplantation was a potential therapeutic approach for PQ poisoning.
Collapse
|
9
|
Guo J, Xia H, Wang S, Yu L, Zhang H, Chen J, Shi D, Chen Y, Zhang Y, Xu K, Xu X, Sheng J, Qiu Y, Li L. The Artificial-Liver Blood-Purification System Can Effectively Improve Hypercytokinemia for COVID-19. Front Immunol 2020; 11:586073. [PMID: 33424838 PMCID: PMC7786016 DOI: 10.3389/fimmu.2020.586073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023] Open
Abstract
Since the December 2019 outbreak of coronavirus disease 2019 (COVID-19) in Wuhan, the infection has spread locally and globally resulting in a pandemic. As the numbers of confirmed diagnoses and deaths continue to rise, COVID-19 has become the focus of international public health. COVID-19 is highly contagious, and there is no effective treatment yet. New treatment strategies are urgently needed to improve the treatment success rate of severe and critically ill patients. Increasing evidence has shown that a cytokine storm plays an important role in the progression of COVID-19. The artificial-liver blood-purification system (ALS) is expected to improve the outcome of the cytokine storm. In the present study, the levels of cytokines were detected in 12 COVID-19 patients pre- and post-ALS with promising results. The present study shows promising evidence that ALS can block the cytokine storm, rapidly remove the inflammatory mediators, and hopefully, suppress the progression of the disease, thereby providing a new strategy for the clinical treatment of COVID-19.
Collapse
Affiliation(s)
- Jing Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - He Xia
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shuting Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Liang Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Huafen Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yanfei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jifang Sheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Ryu JS, Jeong EJ, Kim JY, Park SJ, Ju WS, Kim CH, Kim JS, Choo YK. Application of Mesenchymal Stem Cells in Inflammatory and Fibrotic Diseases. Int J Mol Sci 2020; 21:ijms21218366. [PMID: 33171878 PMCID: PMC7664655 DOI: 10.3390/ijms21218366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from various tissues in the adult body. MSCs should be characterized by three criteria for regenerative medicine. MSCs must (1) adhere to plastic surfaces, (2) express specific surface antigens, and (3) differentiate into mesodermal lineages, including chondrocytes, osteoblasts, and adipocytes, in vitro. Interestingly, MSCs have immunomodulatory features and secrete trophic factors and immune receptors that regulate the microenvironment in host tissue. These specific and unique therapeutic properties make MSCs ideal as therapeutic agents in vivo. Specifically, pre-clinical and clinical investigators generated inflammatory and fibrotic diseases models, and then transplantation of MSCs into diseases models for therapeutic effects investigation. In this review, we characterize MSCs from various tissues and describe their applications for treating various inflammation and fibrotic diseases.
Collapse
Affiliation(s)
- Jae-Sung Ryu
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Eun-Jeong Jeong
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Jong-Yeup Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Konyang University, Daejeon 35365, Korea; (J.-S.R.); (J.-Y.K.)
- Department of Biomedical Informatics, College of Medicine, Konyang University, Daejeon 35365, Korea
| | - Soon Ju Park
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Won Seok Ju
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk University, Goyang 10326, Korea;
| | - Jang-Seong Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea
| | - Young-Kug Choo
- Department of Biological Science, College of Natural Sciences, Wonkwang University, Iksan 54538, Korea; (E.-J.J.); (S.J.P.); (W.S.J.)
- Institute for Glycoscience, Wonkwang University, Iksan 54538, Korea
- Correspondence:
| |
Collapse
|
11
|
Mechanically Stretched Mesenchymal Stem Cells Can Reduce the Effects of LPS-Induced Injury on the Pulmonary Microvascular Endothelium Barrier. Stem Cells Int 2020; 2020:8861407. [PMID: 33178288 PMCID: PMC7647750 DOI: 10.1155/2020/8861407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/10/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) may improve the treatment of acute respiratory distress syndrome (ARDS). However, few studies have investigated the effects of mechanically stretched -MSCs (MS-MSCs) in in vitro models of ARDS. The aim of this study was to evaluate the potential therapeutic effects of MS-MSCs on pulmonary microvascular endothelium barrier injuries induced by LPS. We introduced a cocultured model of pulmonary microvascular endothelial cell (EC) and MSC medium obtained from MSCs with or without mechanical stretch. We found that Wright-Giemsa staining revealed that MSC morphology changed significantly and cell plasma shrank separately after mechanical stretch. Cell proliferation of the MS-MSC groups was much lower than the untreated MSC group; expression of cell surface markers did not change significantly. Compared to the medium from untreated MSCs, inflammatory factors elevated statistically in the medium from MS-MSCs. Moreover, the paracellular permeability of endothelial cells treated with LPS was restored with a medium from MS-MSCs, while LPS-induced EC apoptosis decreased. In addition, protective effects on the remodeling of intercellular junctions were observed when compared to LPS-treated endothelial cells. These data demonstrated that the MS-MSC groups had potential therapeutic effects on the LPS-treated ECs; these results might be useful in the treatment of ARDS.
Collapse
|
12
|
Peng F, Chang W, Sun Q, Xu X, Xie J, Qiu H, Yang Y. HGF alleviates septic endothelial injury by inhibiting pyroptosis via the mTOR signalling pathway. Respir Res 2020; 21:215. [PMID: 32795289 PMCID: PMC7427898 DOI: 10.1186/s12931-020-01480-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Background Endothelial injury is one of the predominant pathophysiological characteristics of sepsis and is the major cause of sepsis-induced multiple organ failure. Endothelial pyroptosis is a fatal mechanism of endothelial injury in sepsis, and specific, effective therapies are lacking. Although hepatocyte growth factor (HGF) has been shown to have anti-apoptotic and anti-necrotic effects, whether it prevents pyroptosis to improve endothelial injury in sepsis remains unclear. Methods Recombinant HGF was intravenously injected into mice with sepsis caused by caecal ligation puncture (CLP). Histopathological examination and transmission electron microscopy (TEM) were used to measure lung vascular endothelial injury. Lipopolysaccharide (LPS) was transfected into EA.hy926 cells to induce endothelial pyroptosis, and the cells were treated with HGF in the presence of inhibitors of c-Met and mTOR, namely, PHA-665752 and rapamycin, respectively. The mTOR signalling pathway and mitochondrial physiology were assessed using Western blot and flow cytometry. Results Intravenous HGF effectively alleviated pulmonary vascular endothelial injury and acute lung injury in the septic mice. The TEM results of lung tissue revealed that HGF attenuated pulmonary vascular endothelial pyroptosis, which was confirmed in vitro. Transfected LPS induced the pyroptosis of EA.hy926 cells and damaged their paracellular permeability, and these effects were ameliorated by treating the cells with recombinant HGF. The protective effect of HGF against pyroptosis was dependent on c-Met/mTOR signalling. mTOR activation effectively protected mitochondrial physiology and decreased reactive oxygen species (ROS) production in EA.hy926 cells in vitro. Conclusions These results demonstrated that HGF protected mitochondrial physiology by activating mTOR signalling to partially ameliorate endothelial pyroptosis and attenuate vascular endothelial injury and acute lung injury in sepsis animal model.
Collapse
Affiliation(s)
- Fei Peng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Wei Chang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Qin Sun
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Xinyi Xu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Jianfeng Xie
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Haibo Qiu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China
| | - Yi Yang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjiaqiao Rd, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
13
|
Davino-Chiovatto JE, Oliveira-Junior MC, MacKenzie B, Santos-Dias A, Almeida-Oliveira AR, Aquino-Junior JCJ, Brito AA, Rigonato-Oliveira NC, Damaceno-Rodrigues NR, Oliveira APL, Silva AP, Consolim-Colombo FM, Aimbire F, Castro-Faria-Neto HC, Vieira RP. Montelukast, Leukotriene Inhibitor, Reduces LPS-Induced Acute Lung Inflammation and Human Neutrophil Activation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.arbr.2019.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
14
|
Nakajima D, Watanabe Y, Ohsumi A, Pipkin M, Chen M, Mordant P, Kanou T, Saito T, Lam R, Coutinho R, Caldarone L, Juvet S, Martinu T, Iyer RK, Davies JE, Hwang DM, Waddell TK, Cypel M, Liu M, Keshavjee S. Mesenchymal stromal cell therapy during ex vivo lung perfusion ameliorates ischemia-reperfusion injury in lung transplantation. J Heart Lung Transplant 2019; 38:1214-1223. [DOI: 10.1016/j.healun.2019.07.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/15/2019] [Accepted: 07/20/2019] [Indexed: 12/21/2022] Open
|
15
|
Davino-Chiovatto JE, Oliveira-Junior MC, MacKenzie B, Santos-Dias A, Almeida-Oliveira AR, Aquino-Junior JCJ, Brito AA, Rigonato-Oliveira NC, Damaceno-Rodrigues NR, Oliveira APL, Silva AP, Consolim-Colombo FM, Aimbire F, Castro-Faria-Neto HC, Vieira RP. Montelukast, Leukotriene Inhibitor, Reduces LPS-Induced Acute Lung Inflammation and Human Neutrophil Activation. Arch Bronconeumol 2019; 55:573-580. [PMID: 31257011 DOI: 10.1016/j.arbres.2019.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/05/2019] [Accepted: 05/01/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Some pro-inflammatory lipids derived from 1 lipooxygenase enzyme are potent neutrophil chemoattractant, a cell centrally involved in acute respiratory distress syndrome (ARDS); a syndrome lacking effective treatment. Considering the beneficial effects of the leukotriene receptor inhibitor, montelukast, on other lung diseases, whether montelukast attenuates inflammation in a mouse model of ARDS, and whether it reduces LPS stimulated activation of human neutrophils was investigated. METHODS Thirty-five C57Bl/6 mice were distributed into control (PBS)+24h, LPS+24h (10μg/mouse), control+48h, LPS+48h, and LPS 48h+Montelukast (10mg/kg). In addition, human neutrophils were incubated with LPS (1μg/mL) and treated with montelukast (10μM). RESULTS Oral-tracheal administration of montelukast significantly attenuated total cells (P<.05), macrophages (P<.05), neutrophils (P<.01), lymphocytes (P<.001) and total protein levels in BAL (P<.05), as well as IL-6 (P<.05), CXCL1/KC (P<.05), IL-17 (P<.05) and TNF-α (P<.05). Furthermore, montelukast reduced neutrophils (P<.001), lymphocytes (P<.01) and macrophages (P<.01) in the lung parenchyma. In addition, montelukast restored BAL VEGF levels (P<.05). LTB4 receptor expression (P<.001) as well as NF-κB (P<.001), a downstream target of LPS, were also reduced in lung parenchymal leukocytes. Furthermore, montelukast reduced IL-8 (P<.001) production by LPS-treated human neutrophils. CONCLUSION In conclusion, montelukast efficiently attenuated both LPS-induced lung inflammation in a mouse model of ARDS and in LPS challenged human neutrophils.
Collapse
Affiliation(s)
| | - Manoel Carneiro Oliveira-Junior
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - BreAnne MacKenzie
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - Alana Santos-Dias
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | - Ana Roberta Almeida-Oliveira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil
| | | | | | | | | | | | - Alessandro Pereira Silva
- Post-graduation Program in Biomedical Engineering, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil
| | | | - Flavio Aimbire
- Federal University of Sao Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Hugo Caire Castro-Faria-Neto
- Laboratory of Immunopharmacology, Osvaldo Cruz Institute (IOC), Osvaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Rodolfo Paula Vieira
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), São José dos Campos, SP, Brazil; Universidade Brasil, Post-graduation Program in Bioengineering and in Biomedical Engineering, São Paulo, SP, Brazil; Federal University of Sao Paulo (UNIFESP), Post-graduation Program in Sciences of Human Movement and Rehabilitation, Santos, SP, Brazil; Anhembi Morumbi University, School of Medicine, Avenida Deputado Benedito Matarazzo 4050, São José dos Campos, SP, Brazil.
| |
Collapse
|
16
|
Ma X, Zhang Y, Jiang D, Yang Y, Wu G, Wu Z. Protective Effects of Functional Amino Acids on Apoptosis, Inflammatory Response, and Pulmonary Fibrosis in Lipopolysaccharide-Challenged Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4915-4922. [PMID: 31001980 DOI: 10.1021/acs.jafc.9b00942] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lung injury is a complicated and lethal condition characterized by alveolar barrier disruption, pulmonary edema, enhanced inflammation, and apoptosis in alveoli. However, therapeutic strategies to ameliorate lung injury without exerting side effects are not available. Functional amino acids have been shown to have anti-inflammatory and anti-apoptotic effects under various conditions. The objective of this study was to test the hypothesis that arginine, glutamine, or glycine supplementation ameliorated lipopolysaccharide (LPS)-induced lung injury in mice. Mice pretreated with aerosolized arginine, glutamine, or glycine were exposed to aerosolized LPS to induce lung injury. Results showed that arginine or glycine pretreatment beneficially reduced LPS-induced collagen deposition, apoptosis of alveolar cells, expression of inflammatory cytokines and chemokines, and accumulation of neutrophils and macrophages in lung tissues of mice, thus contributing to improved alveolar integrity and function. Glutamine administration reduced LPS-induced collagen deposition and inflammatory cytokines without affecting any other parameters examined in the study. Our findings indicated that arginine or glycine pretreatment effectively alleviated LPS-induced lung injury by inhibiting the accumulation of lymphocytes, the release of inflammatory cytokines and chemokines, and the apoptosis of alveolar cells. Supplementation of arginine or glycine may be a novel nutritional strategy to reduce deleterious effects of bacterial infection on alveolar function.
Collapse
Affiliation(s)
- Xiaoshi Ma
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Yunchang Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Da Jiang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
- Department of Animal Science , Texas A&M University , College Station , Texas 77843 , United States
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science , China Agricultural University , Beijing 100193 , China
| |
Collapse
|
17
|
Klusmeier N, Schnittler HJ, Seebach J. A Novel Microscopic Assay Reveals Heterogeneous Regulation of Local Endothelial Barrier Function. Biophys J 2019; 116:1547-1559. [PMID: 30878197 PMCID: PMC6486479 DOI: 10.1016/j.bpj.2019.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 12/27/2022] Open
Abstract
Blood vessels are covered with endothelial cells on their inner surfaces, forming a selective and semipermeable barrier between the blood and the underlying tissue. Many pathological processes, such as inflammation or cancer metastasis, are accompanied by an increased vascular permeability. Progress in live cell imaging techniques has recently revealed that the structure of endothelial cell contacts is constantly reorganized and that endothelial junctions display high heterogeneities at a subcellular level even within one cell. Although it is assumed that this dynamic remodeling is associated with a local change in endothelial barrier function, a direct proof is missing mainly because of a lack of appropriate experimental techniques. Here, we describe a new assay to dynamically measure local endothelial barrier function with a lateral resolution of ∼15 μm and a temporal resolution of 1 min. In this setup, fluorescence-labeled molecules are added to the apical compartment of an endothelial monolayer, and the penetration of molecules from the apical to the basal compartment is recorded by total internal reflection fluorescence microscopy utilizing the generated evanescent field. With this technique, we found a remarkable heterogeneity in the local permeability for albumin within confluent endothelial cell layers. In regions with low permeability, stimulation with the proinflammatory agent histamine results in a transient increase in paracellular permeability. The effect showed a high variability along the contact of one individual cell, indicating a local regulation of endothelial barrier function. In regions with high basal permeability, histamine had no obvious effect. In contrast, the barrier-enhancing drug forskolin reduces the permeability for albumin and dextran uniformly along the cell junctions. Because this new approach can be readily combined with other live cell imaging techniques, it will contribute to a better understanding of the mechanisms underlying subcellular junctional reorganization during wound healing, inflammation, and angiogenesis.
Collapse
Affiliation(s)
- Nadine Klusmeier
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Hans-Joachim Schnittler
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, Westfälische Wilhelms-Universität Münster, Münster, Germany.
| |
Collapse
|
18
|
Pereira MLM, Marinho CRF, Epiphanio S. Could Heme Oxygenase-1 Be a New Target for Therapeutic Intervention in Malaria-Associated Acute Lung Injury/Acute Respiratory Distress Syndrome? Front Cell Infect Microbiol 2018; 8:161. [PMID: 29868517 PMCID: PMC5964746 DOI: 10.3389/fcimb.2018.00161] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 04/26/2018] [Indexed: 01/17/2023] Open
Abstract
Malaria is a serious disease and was responsible for 429,000 deaths in 2015. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is one of the main clinical complications of severe malaria; it is characterized by a high mortality rate and can even occur after antimalarial treatment when parasitemia is not detected. Rodent models of ALI/ARDS show similar clinical signs as in humans when the rodents are infected with murine Plasmodium. In these models, it was shown that the induction of the enzyme heme oxygenase 1 (HO-1) is protective against severe malaria complications, including cerebral malaria and ALI/ARDS. Increased lung endothelial permeability and upregulation of VEGF and other pro-inflammatory cytokines were found to be associated with malaria-associated ALI/ARDS (MA-ALI/ARDS), and both were reduced after HO-1 induction. Additionally, mice were protected against MA-ALI/ARDS after treatment with carbon monoxide- releasing molecules or with carbon monoxide, which is also released by the HO-1 activity. However, high HO-1 levels in inflammatory cells were associated with the respiratory burst of neutrophils and with an intensification of inflammation during episodes of severe malaria in humans. Here, we review the main aspects of HO-1 in malaria and ALI/ARDS, presenting the dual role of HO-1 and possibilities for therapeutic intervention by modulating this important enzyme.
Collapse
Affiliation(s)
- Marcelo L M Pereira
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio R F Marinho
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Sabrina Epiphanio
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Birukov KG, Karki P. Injured lung endothelium: mechanisms of self-repair and agonist-assisted recovery (2017 Grover Conference Series). Pulm Circ 2017; 8:2045893217752660. [PMID: 29261029 PMCID: PMC6022073 DOI: 10.1177/2045893217752660] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The lung endothelium is vulnerable to both exogenous and endogenous insults, so a properly coordinated efficient repair system is essential for the timely recovery of the lung after injury. The agents that cause endothelial injury and dysfunction fall into a broad range from mechanical forces such as pathological cyclic stretch and shear stress to bacterial pathogens and their virulent components, vasoactive agonists including thrombin and histamine, metabolic causes including high glucose and oxidized low-density lipoprotein (OxLDL), circulating microparticles, and inflammatory cytokines. The repair mechanisms employed by endothelial cells (EC) can be broadly categorized into three groups: (1) intrinsic mechanism of recovery regulated by the cross-talk between small GTPases as exemplified by Rap1-mediated EC barrier recovery from Rho-mediated thrombin-induced EC hyperpermeability; (2) agonist-assisted recovery facilitated by the activation of Rac and Rap1 with subsequent inhibition of Rho signaling as observed with many barrier protective agonists including oxidized phospholipids, sphingosine 1-phosphate, prostacyclins, and hepatocyte growth factor; and (3) self-recovery of EC by the secretion of growth factors and other pro-survival bioactive compounds including anti-inflammatory molecules such as lipoxins during the resolution of inflammation. In this review, we will discuss the molecular and cellular mechanisms of pulmonary endothelium repair that is critical for the recovery from various forms of lung injuries.
Collapse
Affiliation(s)
- Konstantin G. Birukov
- Department of Anesthesiology, University of
Maryland Baltimore, School of Medicine, Baltimore, MD, USA,Konstantin G. Birukov, Department of Anesthesiology,
University of Maryland, School of Medicine, 20 Penn Street, HSF-2, Room 145 Baltimore, MD
21201, USA.
| | - Pratap Karki
- Division of Pulmonary and Critical Care
Medicine, Department of Medicine, University of Maryland Baltimore, School of Medicine,
Baltimore, MD, USA
| |
Collapse
|
20
|
Hu H, Shi D, Hu C, Yuan X, Zhang J, Sun H. Dexmedetomidine mitigates CLP-stimulated acute lung injury via restraining the RAGE pathway. Am J Transl Res 2017; 9:5245-5258. [PMID: 29312480 PMCID: PMC5752878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/17/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE RAGE pathway plays crucial effects in causing acute lung injury (ALI). Dexmedetomidine (DEX) is showed to mitigate sepsis-stimulated ALI. However, its mechanisms have not been verified. The study was to evaluate whether the RAGE pathway participated in the actions of DEX on sepsis-stimulated ALI in rats. METHODS Male rats were administrated with intravenously DEX 30 min after sepsis. At 24 h of sepsis, lung myeloperoxidase (MPO) and macrophages in the bronchoalveolarlavage fluid (BALF) were observed. The actions of DEX on pro-inflammatory molecules and related mechanisms were determined by immunological methods. RESULTS It was indicated that DEX markedly attenuated CLP-stimulated augment of lung inflammatory cells infiltration, along with significantly mitigated MPO activity. Besides, DEX obviously reduced lung wet/dry weight ratio and the levels of HMGB1 and RAGE in BALF and lung tissue. Moreover, DEX post-treatment apparently attenuated the histopathological lung injury compared with CLP model group. Furthermore, western blot analysis revealed that DEX efficiently restrained the activation of IκB-α, NF-κB p65, and MAPK. CONCLUSION Our studies demonstrated that DEX attenuates the aggravation of sepsis-stimulated ALI via down regulation of RAGE pathway, which has a potential value in the clinical therapy.
Collapse
Affiliation(s)
- Hongyi Hu
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Dongsheng Shi
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Chenlu Hu
- Department of General Surgery, The Second Affiliated Hospital Zhejiang University School of MedicineZhejiang, China
| | - Xiao Yuan
- Department of Endocrinology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Juan Zhang
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| | - Huaqin Sun
- Department of Anesthesiology, Zhejiang Provincial Hospital of TCMHangzhou 310006, Zhejiang, China
| |
Collapse
|
21
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
22
|
Wang H, Zheng R, Chen Q, Shao J, Yu J, Hu S. Mesenchymal stem cells microvesicles stabilize endothelial barrier function partly mediated by hepatocyte growth factor (HGF). Stem Cell Res Ther 2017; 8:211. [PMID: 28969681 PMCID: PMC5623961 DOI: 10.1186/s13287-017-0662-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/31/2017] [Accepted: 09/06/2017] [Indexed: 12/27/2022] Open
Abstract
Background Mesenchymal stem cells microvesicles (MSC-MVs) stabilize endothelial barrier function in acute lung injury (ALI); however, the detailed mechanism remains to be further defined. Hepatocyte growth factor (HGF), which is derived from MSC-MVs, might have a key role in the restoration of endothelial barrier function by MSC-MVs. Methods MSCs with lentiviral vector-mediated HGF gene knockdown (siHGF-MSC) were generated. A co-culture model of pulmonary microvascular endothelial cells and MSC-MVs collected from MSCs or siHGF-MSCs after 24 h of hypoxic culture was utilized. Then, endothelial paracellular and transcellular permeabilities were detected. VE-cadherin, and occludin protein expression in the endothelial cells was measured using Western blot. Endothelial cell proliferation was analysed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. Endothelial cell apoptosis was analysed using TUNEL assay. Finally, IL-6 and IL-10 production was determined via an enzyme-linked immunosorbent assay (ELISA). Results Treatment with MSC-MVs significantly decreased LPS-induced endothelial paracellular and transcellular permeabilities, and the effect was significantly inhibited after HGF gene knockdown in MSC-MVs. Furthermore, treatment with MSC-MVs increased the expression of the endothelial intercellular junction proteins VE-cadherin and occludin. Treatment with MSC-MVs also decreased endothelial apoptosis and induced endothelial cell proliferation. Finally, the treatment reduced IL-6 production and increased IL-10 production in the conditioned media of endothelial cells. However, the effects of the treatment with MSC-MVs were inhibited after HGF gene knockdown. Conclusions MSC-MVs protect the barrier functions of pulmonary microvascular endothelial cells, which can be partly attributed to the presence of HGF in the MSC-MVs.
Collapse
Affiliation(s)
- Hualing Wang
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Ruiqiang Zheng
- Department of Cardiology, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Qihong Chen
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China.
| | - Jun Shao
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Jiangquan Yu
- Department of Critical Care Medicine, Subei People's Hospital, School of Medicine, Yangzhou University, 98 Nantong West Road, Yangzhou, 225001, People's Republic of China
| | - Shuling Hu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| |
Collapse
|
23
|
Karki P, Birukova AA. Microtubules-associated Rac regulation of endothelial barrier: a role of Asef in acute lung injury. J Investig Med 2017; 65:1089-1092. [PMID: 28923883 DOI: 10.1136/jim-2017-000571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/13/2022]
Abstract
The endothelial barrier function regulated by the cytoskeletal reorganizations has been implicated in the pathogenesis of multiple lung diseases including asthma, sepsis, edema, and acute respiratory distress syndrome. The extensive studies have established that activation of small GTPase Rac is a key mechanism in endothelial barrier protection but the role of microtubules-associated Rac in the endothelial functions remains poorly understood. With the emerging evidences that microtubules disassembly also plays a critical role in actin cytoskeleton remodeling leading to endothelial permeability, the knowledge on microtubules-mediated regulation of endothelial barrier is imperative to better understand the etiology of lung injuries as well as to develop novel therapeutics against these disorders. In this regard, our recent studies have revealed some novel aspects of microtubules-mediated regulation of endothelial barrier functions and unraveled a putative role of Rac-specific guanine nucleotide exchange factor Asef in mediating the barrier protective effects of hepatocyte growth factor. In this review, we will discuss the role of this novel Rac activator Asef in endothelial barrier protection and its regulation by microtubules.
Collapse
Affiliation(s)
- Pratap Karki
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Anna A Birukova
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Mueller M, Kramer BW. Stem cells and Bronchopulmonary Dysplasia - The five questions: Which cells, when, in which dose, to which patients via which route? Paediatr Respir Rev 2017; 24:54-59. [PMID: 28162941 DOI: 10.1016/j.prrv.2016.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/06/2016] [Indexed: 12/14/2022]
Abstract
Preterm birth is the leading cause of death in newborns and children. Despite advances in perinatology, immature infants continue to face serious risks such chronic respiratory impairment from bronchopulmonary dysplasia (BPD). Current treatment options are insufficient and novel approaches are desperately needed. In recent years stem cells have emerged as potential candidates to treat BPD with mesenchymal stem/stromal cells (MSCs) being particularly promising. MSCs originate from several stem cell niches including bone marrow, skin, or adipose, umbilical cord, and placental tissues. Although the first MSCs clinical trials in BPD are ongoing, multiple questions remain open. In this review, we discuss the question of the optimal cell source (live cells or cell products), route and timing of the transplantation. Furthermore, we discuss MSCs possible capacities including migration, homing, pro-angiogenesis, anti-inflammatory, and tissue-regenerative potential as well.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics and Gynecology, University Hospital Bern, Bern, Switzerland; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA; Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands; School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; School of Oncology and Developmental Biology (GROW), Maastricht, The Netherlands.
| |
Collapse
|
25
|
Temporal Profiling of Astrocyte Precursors Reveals Parallel Roles for Asef during Development and after Injury. J Neurosci 2017; 36:11904-11917. [PMID: 27881777 DOI: 10.1523/jneurosci.1658-16.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/12/2016] [Accepted: 09/18/2016] [Indexed: 12/21/2022] Open
Abstract
Lineage development is a stepwise process, governed by stage-specific regulatory factors and associated markers. Astrocytes are one of the principle cell types in the CNS and the stages associated with their development remain very poorly defined. To identify these stages, we performed gene-expression profiling on astrocyte precursor populations in the spinal cord, identifying distinct patterns of gene induction during their development that are strongly correlated with human astrocytes. Validation studies identified a new cohort of astrocyte-associated genes during development and demonstrated their expression in reactive astrocytes in human white matter injury (WMI). Functional studies on one of these genes revealed that mice lacking Asef exhibited impaired astrocyte differentiation during development and repair after WMI, coupled with compromised blood-brain barrier integrity in the adult CNS. These studies have identified distinct stages of astrocyte lineage development associated with human WMI and, together with our functional analysis of Asef, highlight the parallels between astrocyte development and their reactive counterparts associated with injury. SIGNIFICANCE STATEMENT Astrocytes play a central role in CNS function and associated diseases. Yet the mechanisms that control their development remain poorly defined. Using the developing mouse spinal cord as a model system, we identify molecular changes that occur in developing astrocytes. These molecular signatures are strongly correlated with human astrocyte expression profiles and validation in mouse spinal cord identifies a host of new genes associated with the astrocyte lineage. These genes are present in reactive astrocytes in human white matter injury, and functional studies reveal that one of these genes, Asef, contributes to reactive astrocyte responses after injury. These studies identify distinct stages of astrocyte lineage development and highlight the parallels between astrocyte development and their reactive counterparts associated with injury.
Collapse
|
26
|
Mueller M, Wolfs TGA, Schoeberlein A, Gavilanes AWD, Surbek D, Kramer BW. Mesenchymal stem/stromal cells-a key mediator for regeneration after perinatal morbidity? Mol Cell Pediatr 2016; 3:6. [PMID: 26869264 PMCID: PMC4751100 DOI: 10.1186/s40348-016-0034-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Perinatal complications in both term- and preterm-born infants are a leading cause of neonatal morbidities and mortality. Infants face different challenges in the neonatal intensive care unit with long-term morbidities such as perinatal brain injury and bronchopulmonary dysplasia being particularly devastating. While advances in perinatal medicine have improved our understanding of the pathogenesis, effective therapies to prevent and/or reduce the severity of these disorders are still lacking. The potential of mesenchymal stem/stromal cell (MSC) therapy has emerged during the last two decades, and an increasing effort is conducted to address brain- and lung-related morbidities in neonates at risk. Various studies support the notion that MSCs have protective effects. MSCs are an easy source and may be readily available after birth in a clinical setting. MSCs' mechanisms of action are diverse, including migration and homing, release of growth factors and immunomodulation, and the potential to replace injured cells. Here, we review the pathophysiology of perinatally acquired brain and lung injuries and focus on MSCs as potential candidates for therapeutic strategies summarizing preclinical and clinical evidence.
Collapse
Affiliation(s)
- Martin Mueller
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA.
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Tim G A Wolfs
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| | - Andreina Schoeberlein
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Antonio W D Gavilanes
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- Institute of Biomedicine, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador.
- Department of Neuropsychology, Division Neuroscience, School of Mental Health and neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| | - Daniel Surbek
- Department of Obstetrics and Gynecology, University Hospital Bern and Department of Clinical Research, University of Bern, Bern, Switzerland.
| | - Boris W Kramer
- Department of Pediatrics, Maastricht University Medical Center (MUMC), Maastricht, The Netherlands.
- School of Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
- Department of Neuropsychology, Division Neuroscience, School of Mental Health and neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
27
|
Gao B, Sun W, Meng X, Xue D, Zhang W. Screening of differentially expressed protein kinases in bone marrow endothelial cells and the protective effects of the p38a inhibitor SB203580 on bone marrow in liver fibrosis. Mol Med Rep 2016; 14:4629-4637. [PMID: 27748901 PMCID: PMC5102023 DOI: 10.3892/mmr.2016.5837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2016] [Indexed: 11/15/2022] Open
Abstract
Hematological abnormalities are frequently observed in patients with liver cirrhosis (LC). A previous study demonstrated that the apoptosis and damage of endothelial cells could cause the hematological abnormalities in LC. Protein kinases are one of the most important factors that regulate cell behavior, and are potential therapeutic targets for the treatment of a number of diseases. In a previous study, whole genome profiling was used to identify differentially expressed genes in human bone marrow endothelial cells treated with serum from 26 patients with LC. From this data set, the present study identified 14 differentially expressed kinase genes in human bone marrow endothelial cells in LC from the microarray data, including p38a, AKT1 and PDK1. Pathway analysis revealed that these kinase genes were enriched in certain important LC‑associated pathways (e.g. MAPK and WNT signaling pathway). Literature mining revealed that p38a was associated with bone marrow apoptosis; therefore, p38a and its inhibitor, SB203580, were selected as potential therapeutic targets in the present study. The results of hematoxylin‑eosin and Masson's trichrome staining of livers from a rat model of liver fibrosis (LF) that underwent ligation of the bile duct demonstrated that SB203580 reduced the degree of LF. In addition, SB203580‑treated rats with LF demonstrated a significantly higher number of platelets when compared with the untreated group. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) analysis indicated that apoptosis of bone marrow tissue in rats with LF was inhibited by SB203580. In addition, the results from the immunohistochemical analysis demonstrated that SB203580 reduced the expression of von Willebrand factor and caspase 3 in the bone marrow of rats with LF. In conclusion, the results from the present study indicate that the p38a kinase inhibitor, SB203580, may exhibit a protective effect on bone marrow tissues in rats with LF. This suggests that protein kinases and their inhibitors may present novel therapeutic strategies for the treatment of hematological abnormalities in patients with LC.
Collapse
Affiliation(s)
- Bo Gao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wang Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianzhi Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weihui Zhang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
28
|
Villalón H, Peñaloza G, Tuma D. TERAPIA REGENERATIVA EN NEONATOLOGÍA. REVISTA MÉDICA CLÍNICA LAS CONDES 2016. [DOI: 10.1016/j.rmclc.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
29
|
Seedorf G, Metoxen AJ, Rock R, Markham N, Ryan S, Vu T, Abman SH. Hepatocyte growth factor as a downstream mediator of vascular endothelial growth factor-dependent preservation of growth in the developing lung. Am J Physiol Lung Cell Mol Physiol 2016; 310:L1098-110. [PMID: 27036872 PMCID: PMC4935471 DOI: 10.1152/ajplung.00423.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/29/2016] [Indexed: 01/18/2023] Open
Abstract
Impaired vascular endothelial growth factor (VEGF) signaling contributes to the pathogenesis of bronchopulmonary dysplasia (BPD). We hypothesized that the effects of VEGF on lung structure during development may be mediated through its downstream effects on both endothelial nitric oxide synthase (eNOS) and hepatocyte growth factor (HGF) activity, and that, in the absence of eNOS, trophic effects of VEGF would be mediated through HGF signaling. To test this hypothesis, we performed an integrative series of in vitro (fetal rat lung explants and isolated fetal alveolar and endothelial cells) and in vivo studies with normal rat pups and eNOS(-/-) mice. Compared with controls, fetal lung explants from eNOS(-/-) mice had decreased terminal lung bud formation, which was restored with recombinant human VEGF (rhVEGF) treatment. Neonatal eNOS(-/-) mice were more susceptible to hyperoxia-induced inhibition of lung growth than controls, which was prevented with rhVEGF treatment. Fetal alveolar type II (AT2) cell proliferation was increased with rhVEGF treatment only with mesenchymal cell (MC) coculture, and these effects were attenuated with anti-HGF antibody treatment. Unlike VEGF, HGF directly stimulated isolated AT2 cells even without MC coculture. HGF directly stimulates fetal pulmonary artery endothelial cell growth and tube formation, which is attenuated by treatment with JNJ-38877605, a c-Met inhibitor. rHGF treatment preserves alveolar and vascular growth after postnatal exposure to SU-5416, a VEGF receptor inhibitor. We conclude that the effects of VEGF on AT2 and endothelial cells during lung development are partly mediated through HGF-c-Met signaling and speculate that reciprocal VEGF-HGF signaling between epithelia and endothelia is disrupted in infants who develop BPD.
Collapse
Affiliation(s)
- Gregory Seedorf
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Alexander J Metoxen
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Robert Rock
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Neil Markham
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Sharon Ryan
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| | - Thiennu Vu
- Department of Medicine, University of California, San Francisco, California
| | - Steven H Abman
- Pediatric Heart Lung Center and Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado; and
| |
Collapse
|
30
|
Hu S, Li J, Xu X, Liu A, He H, Xu J, Chen Q, Liu S, Liu L, Qiu H, Yang Y. The hepatocyte growth factor-expressing character is required for mesenchymal stem cells to protect the lung injured by lipopolysaccharide in vivo. Stem Cell Res Ther 2016; 7:66. [PMID: 27129877 PMCID: PMC4850641 DOI: 10.1186/s13287-016-0320-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is a life-threatening condition in critically ill patients. Recently, we have found that mesenchymal stem cells (MSC) improved the permeability of human lung microvascular endothelial cells by secreting hepatocyte growth factor (HGF) in vitro. However, the properties and functions of MSC may change under complex circumstances in vivo. Here, we sought to determine the role of the HGF-expressing character of MSC in the therapeutic effects of MSC on ARDS in vivo. METHODS MSC with HGF gene knockdown (MSC-ShHGF) were constructed using lentiviral transduction. The HGF mRNA and protein levels in MSC-ShHGF were detected using quantitative real-time polymerase chain reaction and Western blotting analysis, respectively. HGF levels in the MSC culture medium were measured by enzyme-linked immunosorbent assay (ELISA). Rats with ARDS induced by lipopolysaccharide received MSC infusion via the tail vein. After 1, 6, and 24 h, rats were sacrificed. MSC retention in the lung was assessed by immunohistochemical assay. The lung wet weight to body weight ratio (LWW/BW) and Evans blue dye extravasation were obtained to reflect lung permeability. The VE-cadherin was detected with inmmunofluorescence, and the lung endothelial cell apoptosis was assessed by TUNEL assay. The severity of lung injury was evaluated using histopathology. The cytokines and HGF levels in the lung were measured by ELISA. RESULTS MSC-ShHGF with markedly lower HGF expression were successfully constructed. Treatment with MSC or MSC carrying green fluorescent protein (MSC-GFP) maintained HGF expression at relatively high levels in the lung at 24 h. MSC or MSC-GFP decreased the LWW/BW and the Evans Blue Dye extravasation, protected adherens junction VE-cadherin, and reduced the lung endothelial cell apoptosis. Furthermore, MSC or MSC-GFP reduced the inflammation and alleviated lung injury based on histopathology. However, HGF gene knockdown significantly decreased the HGF levels without any changes in the MSC retention in the lung, and diminished the protective effects of MSC on the injured lung, indicating the therapeutic effects of MSC on ARDS were partly associated with the HGF-expressing character of MSC. CONCLUSIONS MSC restores lung permeability and lung injury in part by maintaining HGF levels in the lung and the HGF-expressing character is required for MSC to protect the injured lung.
Collapse
Affiliation(s)
- Shuling Hu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Jinze Li
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Xiuping Xu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Hongli He
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Jingyuan Xu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Qihong Chen
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Songqiao Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Ling Liu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China
| | - Yi Yang
- Department of Critical Care Medicine, Zhongda Hospital, Southeast University School of Medicine, No.87 Dingjiaqiao Road, Nanjing, 210009, Jiansu, P.R. China.
| |
Collapse
|
31
|
Wang X, Ji P, Zhang Y, LaComb JF, Tian X, Li E, Williams JL. Aberrant DNA Methylation: Implications in Racial Health Disparity. PLoS One 2016; 11:e0153125. [PMID: 27111221 PMCID: PMC4844165 DOI: 10.1371/journal.pone.0153125] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/14/2016] [Indexed: 02/06/2023] Open
Abstract
Background Incidence and mortality rates of colorectal carcinoma (CRC) are higher in African Americans (AAs) than in Caucasian Americans (CAs). Deficient micronutrient intake due to dietary restrictions in racial/ethnic populations can alter genetic and molecular profiles leading to dysregulated methylation patterns and the inheritance of somatic to germline mutations. Materials and Methods Total DNA and RNA samples of paired tumor and adjacent normal colon tissues were prepared from AA and CA CRC specimens. Reduced Representation Bisulfite Sequencing (RRBS) and RNA sequencing were employed to evaluate total genome methylation of 5’-regulatory regions and dysregulation of gene expression, respectively. Robust analysis was conducted using a trimming-and-retrieving scheme for RRBS library mapping in conjunction with the BStool toolkit. Results DNA from the tumor of AA CRC patients, compared to adjacent normal tissues, contained 1,588 hypermethylated and 100 hypomethylated differentially methylated regions (DMRs). Whereas, 109 hypermethylated and 4 hypomethylated DMRs were observed in DNA from the tumor of CA CRC patients; representing a 14.6-fold and 25-fold change, respectively. Specifically; CHL1, 4 anti-inflammatory genes (i.e., NELL1, GDF1, ARHGEF4, and ITGA4), and 7 miRNAs (of which miR-9-3p and miR-124-3p have been implicated in CRC) were hypermethylated in DNA samples from AA patients with CRC. From the same sample set, RNAseq analysis revealed 108 downregulated genes (including 14 ribosomal proteins) and 34 upregulated genes (including POLR2B and CYP1B1 [targets of miR-124-3p]) in AA patients with CRC versus CA patients. Conclusion DNA methylation profile and/or products of its downstream targets could serve as biomarker(s) addressing racial health disparity.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Ping Ji
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Division of Cancer Prevention, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Yuanhao Zhang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Joseph F. LaComb
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Division of Cancer Prevention, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Xinyu Tian
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Ellen Li
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Division of Gastroenterology, Stony Brook University, Stony Brook, NY, 11794, United States of America
| | - Jennie L. Williams
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Department of Medicine, Stony Brook University, Stony Brook, NY, 11794, United States of America
- Division of Cancer Prevention, Stony Brook University, Stony Brook, NY, 11794, United States of America
- * E-mail:
| |
Collapse
|
32
|
Millar FR, Summers C, Griffiths MJ, Toshner MR, Proudfoot AG. The pulmonary endothelium in acute respiratory distress syndrome: insights and therapeutic opportunities. Thorax 2016; 71:462-73. [DOI: 10.1136/thoraxjnl-2015-207461] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 02/12/2016] [Indexed: 01/23/2023]
|
33
|
Abstract
Met tyrosine kinase receptor, also known as c-Met, is the HGF (hepatocyte growth factor) receptor. The HGF/Met pathway has a prominent role in cardiovascular remodelling after tissue injury. The present review provides a synopsis of the cellular and molecular mechanisms underlying the effects of HGF/Met in the heart and blood vessels. In vivo, HGF/Met function is particularly important for the protection of the heart in response to both acute and chronic insults, including ischaemic injury and doxorubicin-induced cardiotoxicity. Accordingly, conditional deletion of Met in cardiomyocytes results in impaired organ defence against oxidative stress. After ischaemic injury, activation of Met provides strong anti-apoptotic stimuli for cardiomyocytes through PI3K (phosphoinositide 3-kinase)/Akt and MAPK (mitogen-activated protein kinase) cascades. Recently, we found that HGF/Met is also important for autophagy regulation in cardiomyocytes via the mTOR (mammalian target of rapamycin) pathway. HGF/Met induces proliferation and migration of endothelial cells through Rac1 (Ras-related C3 botulinum toxin substrate 1) activation. In fibroblasts, HGF/Met antagonizes the actions of TGFβ1 (transforming growth factor β1) and AngII (angiotensin II), thus preventing fibrosis. Moreover, HGF/Met influences the inflammatory response of macrophages and the immune response of dendritic cells, indicating its protective function against atherosclerotic and autoimmune diseases. The HGF/Met axis also plays an important role in regulating self-renewal and myocardial regeneration through the enhancement of cardiac progenitor cells. HGF/Met has beneficial effects against myocardial infarction and endothelial dysfunction: the cellular and molecular mechanisms underlying repair function in the heart and blood vessels are common and include pro-angiogenic, anti-inflammatory and anti-fibrotic actions. Thus administration of HGF or HGF mimetics may represent a promising therapeutic agent for the treatment of both coronary and peripheral artery disease.
Collapse
|
34
|
Synergism of MSC-secreted HGF and VEGF in stabilising endothelial barrier function upon lipopolysaccharide stimulation via the Rac1 pathway. Stem Cell Res Ther 2015; 6:250. [PMID: 26674641 PMCID: PMC4682264 DOI: 10.1186/s13287-015-0257-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/09/2015] [Accepted: 12/03/2015] [Indexed: 11/24/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) stabilise endothelial barrier function in acute lung injury via paracrine hepatocyte growth factor (HGF). Vascular endothelial growth factor (VEGF), which is secreted by MSCs, is another key regulator of endothelial permeability; however, its role in adjusting permeability remains controversial. In addition, whether an interaction occurs between HGF and VEGF, which are secreted by MSCs, is not completely understood. Methods We introduced a co-cultured model of human pulmonary microvascular endothelial cells (HPMECs) and MSC conditioned medium (CM) collected from MSCs after 24 h of hypoxic culture. The presence of VEGF and HGF in the MSC-CM was neutralised by anti-VEGF and anti-HGF antibodies, respectively. To determine the roles and mechanisms of MSC-secreted HGF and VEGF, we employed recombinant humanised HGF and recombinant humanised VEGF to co-culture with HPMECs. Additionally, we employed the RhoA inhibitor C3 transferase and the Rac1 inhibitor NSC23766 to inhibit the activities of RhoA and Rac1 in HPMECs treated with MSC-CM or VEGF/HGF with the same dosage as in the MSC-CM. Then, endothelial paracellular and transcellular permeability was detected. VE-cadherin, occludin and caveolin-1 protein expression in HPMECs was measured by western blot. Adherens junction proteins, including F-actin and VE-cadherin, were detected by immunofluorescence. Results MSC-CM treatment significantly decreased lipopolysaccharide-induced endothelial paracellular and transcellular permeability, which was significantly inhibited by pretreatment with HGF antibody or with both VEGF and HGF antibodies. Furthermore, MSC-CM treatment increased the expression of the endothelial intercellular adherence junction proteins VE-cadherin and occludin and decreased the expression of caveolin-1 protein. MSC-CM treatment also decreased endothelial apoptosis and induced endothelial cell proliferation; however, the effects of MSC-CM treatment were inhibited by pretreatment with HGF antibody or with both HGF and VEGF antibodies. Additionally, the effects of MSC-CM and VEGF/HGF on reducing endothelial paracellular and transcellular permeability were weakened when HPMECs were pretreated with the Rac1 inhibitor NSC23766. Conclusion HGF secreted by MSCs protects the endothelial barrier function; however, VEGF secreted by MSCs may synergize with HGF to stabilise endothelial cell barrier function. Rac1 is the pathway by which MSC-secreted VEGF and HGF regulate endothelial permeability.
Collapse
|
35
|
Ren Q, Ren L, Ren C, Liu X, Dong C, Zhang X. Platelet endothelial cell adhesion molecule-1 (PECAM1) plays a critical role in the maintenance of human vascular endothelial barrier function. Cell Biochem Funct 2015; 33:560-5. [PMID: 26607202 DOI: 10.1002/cbf.3155] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/22/2015] [Accepted: 10/21/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Qi Ren
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Limin Ren
- Department of Neurosurgery; Zoucheng People's Hospital; Jining 273500 Shandong China
| | - Changjie Ren
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xuefei Liu
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| | - Chun Dong
- Department of Cardiology; Jining No. 1 People's Hospital; Jining 272011 Shandong China
| | - Xinghua Zhang
- Department of Cardiology; Shandong Provincial Hospital Affiliated to Shandong University; Shandong China
| |
Collapse
|
36
|
Schossleitner K, Habertheuer A, Finsterwalder R, Friedl HP, Rauscher S, Gröger M, Kocher A, Wagner C, Wagner SN, Fischer G, Schultz MJ, Wiedemann D, Petzelbauer P. A Peptide to Reduce Pulmonary Edema in a Rat Model of Lung Transplantation. PLoS One 2015; 10:e0142115. [PMID: 26536466 PMCID: PMC4633234 DOI: 10.1371/journal.pone.0142115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite significant advances in organ preservation, surgical techniques and perioperative care, primary graft dysfunction is a serious medical problem in transplantation medicine in general and a specific problem in patients undergoing lung transplantation. As a result, patients develop lung edema, causing reduced tissue oxygenation capacity, reduced lung compliance and increased requirements for mechanical ventilatory support. Yet, there is no effective strategy available to protect the grafted organ from stress reactions induced by ischemia/reperfusion and by the surgical procedure itself. METHODS We assessed the effect of a cingulin-derived peptide, XIB13 or a random peptide in an established rat model of allogeneic lung transplantation. Donor lungs and recipients received therapeutic peptide at the time of transplantation and outcome was analyzed 100min and 28 days post grafting. RESULTS XIB13 improved blood oxygenation and reduced vascular leak 100min post grafting. Even after 28 days, lung edema was significantly reduced by XIB13 and lungs had reduced fibrotic or necrotic zones. Moreover, the induction of an allogeneic T cell response was delayed indicating a reduced antigen exchange between the donor and the host. CONCLUSIONS In summary, we provide a new tool to strengthen endothelial barrier function thereby improving outcomes in lung transplantation.
Collapse
Affiliation(s)
- Klaudia Schossleitner
- Department of Dermatology, Skin and Endothelium Research Division (SERD) Medical University of Vienna, Vienna, Austria
| | | | - Richard Finsterwalder
- Department of Dermatology, Skin and Endothelium Research Division (SERD) Medical University of Vienna, Vienna, Austria
| | - Heinz P. Friedl
- Department of Dermatology, Skin and Endothelium Research Division (SERD) Medical University of Vienna, Vienna, Austria
| | - Sabine Rauscher
- Core Facility Imaging Medical University of Vienna, Vienna, Austria
| | - Marion Gröger
- Core Facility Imaging Medical University of Vienna, Vienna, Austria
| | - Alfred Kocher
- Department of Cardiac Surgery Medical University of Vienna, Vienna, Austria
| | - Christine Wagner
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases Medical University of Vienna, Vienna, Austria
| | - Stephan N. Wagner
- Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases Medical University of Vienna, Vienna, Austria
| | - Gottfried Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Vienna, Austria
| | - Marcus J. Schultz
- Department of Intensive Care & Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dominik Wiedemann
- Department of Cardiac Surgery Medical University of Vienna, Vienna, Austria
| | - Peter Petzelbauer
- Department of Dermatology, Skin and Endothelium Research Division (SERD) Medical University of Vienna, Vienna, Austria
- * E-mail:
| |
Collapse
|
37
|
Huang Y, Tan Q, Chen R, Cao B, Li W. Sevoflurane prevents lipopolysaccharide-induced barrier dysfunction in human lung microvascular endothelial cells: Rho-mediated alterations of VE-cadherin. Biochem Biophys Res Commun 2015; 468:119-24. [PMID: 26529544 DOI: 10.1016/j.bbrc.2015.10.150] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 10/28/2015] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) mainly occurs as increased permeability of lung tissue and pleural effusion. Inhaled anesthetic sevoflurane has been demonstrated to alleviate lung permeability by upregulating junction proteins after ischemia-reperfusion. However, the exact mechanisms of its protective effect on reperfusion injury remain elusive. The aim of this study was to assess possible preconditioning with sevoflurane in an in vitro model of lipopolysaccharide (LPS)-induced barrier dysfunction in human lung microvascular endothelial cells (HMVEC-Ls). In this study, HMVEC-Ls were exposed to minimum alveolar concentration of sevoflurane for 2 h. LPS significantly increased the permeability of HMVEC-L. Moreover, the distribution of junction protein, vascular endothelial (VE)-cadherin, in cell-cell junction area and the total expression in HMVEC-Ls were significantly decreased by LPS treatment. However, the abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly reversed by pretreatment with sevoflurane. Furthermore, LPS-induced activation of the RhoA/ROCK signaling pathway was significantly inhibited with sevoflurane. Such activation, abnormal distribution and decreased expression of VE-cadherin and hyperpermeability of HMVEC-Ls were significantly inhibited with sevoflurane pretreatment or knockdown of RhoA or ROCK-2. In conclusion, sevoflurane prevented LPS-induced rupture of HMVEC-L monolayers by suppressing the RhoA/ROCK-mediated VE-cadherin signaling pathway. Our results may explain, at least in part, some beneficial effects of sevoflurane on pulmonary dysfunction such as ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Yiran Huang
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China.
| | - Qindong Tan
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan, PR China
| | - Rui Chen
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Biao Cao
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| | - Wenhong Li
- Department of Anesthesiology, The 157 Affiliated Hospital, General Hospital of Guangzhou Military Command of PLA, Guangzhou 510510, PR China
| |
Collapse
|
38
|
Liu H, Yu X, Yu S, Kou J. Molecular mechanisms in lipopolysaccharide-induced pulmonary endothelial barrier dysfunction. Int Immunopharmacol 2015; 29:937-946. [PMID: 26462590 DOI: 10.1016/j.intimp.2015.10.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/01/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022]
Abstract
The confluent pulmonary endothelium plays an important role as a semi-permeable barrier between the vascular space of blood vessels and the underlying tissues, and it contributes to the maintenance of circulatory fluid homeostasis. Pulmonary endothelial barrier dysfunction is a pivotal early step in the development of a variety of high mortality diseases, such as acute lung injury (ALI). Endothelium barrier dysfunction in response to inflammatory or infectious mediators, including lipopolysaccharide (LPS), is accompanied by invertible cell deformation and interendothelial gap formation. However, specific pharmacological therapies aiming at ameliorating pulmonary endothelial barrier function in patients are still lacking. A full understanding of the fundamental mechanisms that are involved in the regulation of pulmonary endothelial permeability is essential for the development of barrier protective therapeutic strategies. Therefore, this review summarizes several important molecular mechanisms involved in LPS-induced changes in pulmonary endothelial barrier function. As for barrier-disruption, the activation of myosin light chain kinase (MLCK), RhoA and tyrosine kinases; increase of calcium influx; and apoptosis of the endothelium lead to an elevation of lung endothelial permeability. Additionally, the activation of Rac1, Cdc42, protease activated receptor 1 (PAR1) and adenosine receptors (ARs), as well as the increase of cyclic AMP and sphingosine-1-phosphate (S1P) content, protect against LPS-induced lung endothelial barrier dysfunction. Furthermore, current regulatory factors and strategies against the development of LPS-induced lung endothelial hyper-permeability are discussed.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Xiu Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Sulan Yu
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China
| | - Junping Kou
- State Key Laboratory of Natural Products, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, Department of Complex Prescription of TCM, China Pharmaceutical University, 639, Longmian Road, Nanjing, 211198, PR China.
| |
Collapse
|
39
|
Stabler CT, Lecht S, Lazarovici P, Lelkes PI. Mesenchymal stem cells for therapeutic applications in pulmonary medicine. Br Med Bull 2015; 115:45-56. [PMID: 26063231 DOI: 10.1093/bmb/ldv026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2015] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Mesenchymal stem cells (MSCs) of different biological sources are in Phase 1 clinical trials and are being considered for Phase 2 therapy of lung disorders, and lung (progenitor) cells derived from pluripotent stem cells (SCs) are under development in preclinical animal models. SOURCES OF DATA PubMed.gov and ClinicalTrials.gov. AREAS OF AGREEMENT There is consensus about the therapeutic potential of transplanted SCs, mainly MSCs, primarily involves paracrine 'bystander' effects that confer protection of the epithelial and endothelial linings of the lung caused by inflammation and/or fibrosis and lead to increased survival in animal models. Clinical trials of Phase 1 indicate safety and suggest that the efficacy of SC therapy in patients with various lung diseases will require a higher dosage than previously evaluated. AREAS OF CONTROVERSY A growing interest in the re-epithelialization and re-endothelialization of damaged lung tissue involves the putative pulmonary differentiation of exogenous MSCs. Currently, it is not clear whether or not the observed regeneration of distal airways/vasculature is derived from lung-resident and/or transplanted SCs. GROWING POINTS Important topics under investigation include optimization of the cell source with a decrease in cell population heterogeneity characterized by defined markers, route of delivery for effective treatment, potential dose and therapeutic protocol of SC application, development of quantitative assays and biomarkers of lung disease and repair, and the potential use of tissue engineered lung. AREAS TIMELY FOR DEVELOPING RESEARCH Ability of MSCs to differentiate into epithelial cells of the lung, use of autologous induced pluripotent SCs (iPSCs) derived from the patients, complete biochemical characterization of the secretome of SCs used for therapy, and the incorporation of simultaneous and/or subsequent treatment with drugs which also aid in lung repair and regeneration. CAUTIONARY NOTE Although safety of MSC-based cell therapy was proved in Phase 1, efficacy, long-term survival and preservation of lung respiratory function need to be further evaluated, cautioning against hastily translating SCs therapy from animal models of lung injury to clinical trials of patients with lung disorders.
Collapse
Affiliation(s)
- Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Shimon Lecht
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA
| | - Philip Lazarovici
- School of Pharmacy, Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA 19122, USA Temple Institute for Regenerative Medicine and Engineering (TIME), Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|