1
|
Zhang T, Wang Y, Nie X, Chen X, Jin Y, Sun L, Yang R, Wang J, Xu W, Song T, Xie W, Chen X, Li C, Zhou J, Wu S, Li Y, Li T. ENKD1 modulates innate immune responses through enhanced geranylgeranyl pyrophosphate synthase activity. Cell Rep 2025; 44:115397. [PMID: 40048432 DOI: 10.1016/j.celrep.2025.115397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/22/2024] [Accepted: 02/14/2025] [Indexed: 03/29/2025] Open
Abstract
Inflammation is a crucial element of immune responses, with pivotal roles in host defenses against pathogens. Comprehensive understanding of the molecular mechanisms underlying inflammation is imperative for developing effective strategies to combat infectious diseases. Here, we conducted a screening analysis and identified enkurin domain-containing protein 1 (ENKD1) as a promising regulator of inflammation. We observed that ENKD1 expression was significantly reduced on activation of multiple Toll-like receptor (TLR) molecules. Deletion of ENKD1 resulted in enhanced innate immune system activation and exacerbation of septic inflammation. Mechanistically, ENKD1 interacted with geranylgeranyl diphosphate synthase 1 (GGPS1) and modulated its enzymatic activity, thereby influencing geranylgeranyl diphosphate production. This interaction ultimately led to Ras-related C3 botulinum toxin substrate 1 (RAC1) inactivation and suppression of pro-inflammatory signaling pathways. Our findings establish ENKD1 as a critical regulator of innate immune cell activation, underscoring its significant role in septic inflammation.
Collapse
Affiliation(s)
- Tianyu Zhang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Yixuan Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiaotong Nie
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Xiangrong Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Yueyi Jin
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Lulu Sun
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ruqian Yang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Jie Wang
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wenqing Xu
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Ting Song
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China
| | - Wei Xie
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Science), Jinan, Shandong, China
| | - Chaojun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine and School of Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| | - Yan Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| | - Tianliang Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
2
|
Wang Y, Bendre SV, Krauklis SA, Steelman AJ, Nelson ER. Role of Protein Regulators of Cholesterol Homeostasis in Immune Modulation and Cancer Pathophysiology. Endocrinology 2025; 166:bqaf031. [PMID: 39951497 DOI: 10.1210/endocr/bqaf031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/30/2025] [Accepted: 02/12/2025] [Indexed: 02/16/2025]
Abstract
Cholesterol metabolism and homeostasis have emerged as important factors governing various aspects of cancer biology. Clinical associations between circulating cholesterol and poor prognosis or use of cholesterol-lowering medication and improved prognosis have been noted for several different solid tumors. Mechanistically, cholesterol has many different direct and indirect effects on cancer cells themselves but is also critically involved in shaping the function of other cells of the tumor microenvironment, especially immune cells. There are 2 major feedback loops regulating cholesterol homeostasis. Here we highlight the major proteins involved in the so-called oxysterol-bile acid feedback loop and discuss how each has been implicated in cancer biology. We focus on roles within the immune system with implications for cancer. Given that many of these proteins are enzymes or nuclear receptors, both of which are amenable to small molecule intervention, we posit that this axis may represent a promising area for therapeutic intervention.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Shruti V Bendre
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew J Steelman
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801 USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology- Anticancer Discovery from Pets to People (ERN) and Regenerative Biology & Tissue Engineering (AJS), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
3
|
Krauklis SA, Hussain J, Murphy KM, Dray EL, Ousley CG, Justyna K, Distefano MD, Steelman AJ, McKim DB. Mononuclear phagocyte morphological response to chemoattractants is dependent on geranylgeranyl pyrophosphate. Am J Physiol Endocrinol Metab 2024; 327:E55-E68. [PMID: 38717364 PMCID: PMC11390116 DOI: 10.1152/ajpendo.00359.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/25/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024]
Abstract
Statins are used to treat hypercholesterolemia and function by inhibiting the production of the rate-limiting metabolite mevalonate. As such, statin treatment not only inhibits de novo synthesis of cholesterol but also isoprenoids that are involved in prenylation, the posttranslational lipid modification of proteins. The immunomodulatory effects of statins are broad and often conflicting. Previous work demonstrated that statins increased survival and inhibited myeloid cell trafficking in a murine model of sepsis, but the exact mechanisms underlying this phenomenon were unclear. Herein, we investigated the role of prenylation in chemoattractant responses. We found that simvastatin treatment abolished chemoattractant responses induced by stimulation by C5a and FMLP. The inhibitory effect of simvastatin treatment was unaffected by the addition of either farnesyl pyrophosphate (FPP) or squalene but was reversed by restoring geranylgeranyl pyrophosphate (GGPP). Treatment with prenyltransferase inhibitors showed that the chemoattractant response to both chemoattractants was dependent on geranylgeranylation. Proteomic analysis of C15AlkOPP-prenylated proteins identified several geranylgeranylated proteins involved in chemoattractant responses, including RHOA, RAC1, CDC42, and GNG2. Chemoattractant responses in THP-1 human macrophages were also geranylgeranylation dependent. These studies provide data that help clarify paradoxical findings on the immunomodulatory effects of statins. Furthermore, they establish the role of geranylgeranylation in mediating the morphological response to chemoattractant C5a.NEW & NOTEWORTHY The immunomodulatory effect of prenylation is ill-defined. We investigated the role of prenylation on the chemoattractant response to C5a. Simvastatin treatment inhibits the cytoskeletal remodeling associated with a chemotactic response. We showed that the chemoattractant response to C5a was dependent on geranylgeranylation, and proteomic analysis identified several geranylgeranylated proteins that are involved in C5a receptor signaling and cytoskeletal remodeling. Furthermore, they establish the role of geranylgeranylation in mediating the response to chemoattractant C5a.
Collapse
Affiliation(s)
- Steven A Krauklis
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Jamal Hussain
- Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katherine M Murphy
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Evan L Dray
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Carey G Ousley
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Katarzyna Justyna
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States
| | - Andrew J Steelman
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Daniel B McKim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Department of Animal Sciences,University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
4
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
5
|
Wang W, Chen Y, Chen Y, Liu E, Li J, An N, Xu J, Gu S, Dang X, Yi J, An Q, Hu X, Yin W. Supernatant of platelet- Klebsiella pneumoniae coculture induces apoptosis-like death in Klebsiella pneumoniae. Microbiol Spectr 2024; 12:e0127923. [PMID: 38289116 PMCID: PMC10913751 DOI: 10.1128/spectrum.01279-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/13/2023] [Indexed: 03/06/2024] Open
Abstract
Multidrug-resistant Klebsiella pneumoniae strains, especially carbapenem-resistant K. pneumoniae, have become a rapidly emerging crisis worldwide, greatly limiting current therapeutic options and posing new challenges to infection management. Therefore, it is imperative to develop novel and effective biological agents for the treatment of multidrug-resistant K. pneumoniae infections. Platelets play an important role in the development of inflammation and immune responses. The main component responsible for platelet antibacterial activity lies in the supernatant stimulated by gram-positive bacteria. However, little research has been conducted on the interaction of gram-negative bacteria with platelets. Therefore, we aimed to explore the bacteriostatic effect of the supernatant derived from platelet-K. pneumoniae coculture and the mechanism underlying this effect to further assess the potential of platelet-bacterial coculture supernatant. We conducted this study on the gram-negative bacteria K. pneumoniae and CRKP and detected turbidity changes in K. pneumoniae and CRKP cultures when grown with platelet-K. pneumoniae coculture supernatant added to the culture medium. We found that platelet-K. pneumoniae coculture supernatant significantly inhibited the growth of K. pneumoniae and CRKP in vitro. Furthermore, transfusion of platelet-K. pneumoniae coculture supernatant alleviated the symptoms of K. pneumoniae and CRKP infection in a murine model. Additionally, we observed apoptosis-like changes, such as phosphatidylserine exposure, chromosome condensation, DNA fragmentation, and overproduction of reactive oxygen species in K. pneumoniae following treatment with the supernatant. Our study demonstrates that the platelet-K. pneumoniae coculture supernatant can inhibit K. pneumoniae growth by inducing an apoptosis-like death, which is important for the antibacterial strategies development in the future.IMPORTANCEWith the widespread use of antibiotics, bacterial resistance is increasing, and a variety of multi-drug resistant Gram-negative bacteria have emerged, which brings great challenges to the treatment of infections caused by Gram-negative bacteria. Therefore, finding new strategies to inhibit Gram-negative bacteria and even multi-drug- resistant Gram-negative bacteria is crucial for treating infections caused by Gram-negative bacteria, improving the abuse of antibiotics, and maintaining the balance between bacteria and antibiotics. K. pneumoniae is a common clinical pathogen, and drug-resistant CRKP is increasingly difficult to cure, which brings great clinical challenges. In this study, we found that the platelet-K. pneumoniae coculture supernatant can inhibit K. pneumoniae growth by inducing an apoptosis-like death. This finding has inspired the development of future antimicrobial strategies, which are expected to improve the clinical treatment of Gram-negative bacteria and control the development of multidrug-resistant strains.
Collapse
Affiliation(s)
- Wenting Wang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- Faculty of Life Science College, Southwest Forestry University, Kunming, Yunnan, China
| | - Yaozhen Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yutong Chen
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Erxiong Liu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Li
- Faculty of Life Science College, Southwest Forestry University, Kunming, Yunnan, China
| | - Ning An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jinmei Xu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Shunli Gu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xuan Dang
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Jing Yi
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Qunxing An
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Xingbin Hu
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Wen Yin
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Chao-shun W, Xiao-Li W. The impacts of SphK1 on inflammatory response and oxidative stress in LPS-induced ALI/ARDS. EUR J INFLAMM 2023. [DOI: 10.1177/1721727x231158310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
As severe conditions, acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) threaten human health. Inflammation and oxidative stress play a vital role in the pathogenesis of ALI/ARDS. Sphingosine kinase 1 (SphK1) significantly contributes to mediating inflammatory responses. Nevertheless, the impact of SphK1 on lipopolysaccharide (LPS)-triggered ALI/ARDS remains largely undetermined. In our current work, we explored the impact of SphK1 on ALI/ARDS using a mouse model. We studied whether it could reduce LPS-triggered inflammatory response and oxidative stress by suppressing SphK1 in ALI/ARDS. The mice were treated with the inhibitor of SphK1 (N,N-dimethylsphingosine, DMS) before intraperitoneal injection of LPS. Moreover, we assessed the survival rate, and several parameters, such as the lung wet/dry (W/D) ratio, myeloperoxidase (MPO) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, and the release of inflammatory cytokines. Western blotting analysis was adopted to evaluate the levels of phosphoinositide 3-kinase (PI3K)/serine/threonine kinase (AKT) pathways. We showed that the inhibitor of SphK1 not only ameliorated LPS-stimulated lung histopathological changes and W/D ratio of lung tissue but also elevated the survival rate, the SOD activity and decreased the MDA content, MPO activity, interleukin-6 (IL-6) and tumor necrosis factor-ɑ (TNF-ɑ) production by regulating the PI3K/AKT signaling pathway in lung tissue. Taken together, SphK1 played an essential role in inflammatory responses and oxidative stress. The underlying mechanism might be linked to the activation and up-regulation of the PI3K/AKT signaling pathway in LPS-triggered ALI/ARDS.
Collapse
Affiliation(s)
- Wei Chao-shun
- Medical College of Jishou University, Jishou, P. R. China
| | - Wang Xiao-Li
- Medical College of Jishou University, Jishou, P. R. China
| |
Collapse
|
7
|
Hussain J, Ousley CG, Krauklis SA, Dray EL, Drnevich J, McKim DB. Prophylactic simvastatin increased survival during endotoxemia and inhibited granulocyte trafficking in a cell-intrinsic manner. Immunobiology 2023; 228:152411. [PMID: 37329824 DOI: 10.1016/j.imbio.2023.152411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023]
Abstract
Cross sectional studies have shown that statin-users have improved odds of surviving severe sepsis. Meanwhile controlled clinical trials failed to demonstrate improved sepsis survival with acute statin administration following hospitalization. Here, a lethal murine peritoneal lipopolysaccharide (LPS) endotoxemia model was used to assess the efficacy of chronic versus acute simvastatin on survival. Mirroring clinical observations, chronic but not acute treatment with simvastatin significantly increased survival. At a pre-mortality time point in LPS-treated mice, chronic simvastatin suppressed granulocyte trafficking in to the lungs and peritoneum without otherwise suppressing emergency myelopoiesis, myeloid cells in circulation, or inflammatory cytokines. Chronic simvastatin treatment significantly downregulated inflammatory chemokine gene signature in the lungs of LPS-treated mice. Thus, it was unclear if simvastatin was inhibiting granulocyte chemotaxis in a cell intrinsic or extrinsic manner. Adoptive transfer of fluorescently labeled granulocytes from statin and vehicle treated mice into LPS-treated mice showed that simvastatin inhibited lung-granulocyte trafficking in a cell intrinsic manner. Congruent with this, chemotaxis experiments using in vitro macrophages and ex vivo granulocytes demonstrated that simvastatin inhibited chemotaxis in a cell-intrinsic manner. Collectively, chronic but not acute simvastatin treatment improved survival in murine endotoxemia, and this was associated with cell-intrinsic inhibition of granulocyte chemotaxis.
Collapse
Affiliation(s)
- Jamal Hussain
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, United States
| | - Carey G Ousley
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States
| | - Steven A Krauklis
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, United States
| | - Evan L Dray
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, United States
| | - Daniel B McKim
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, United States; Neuroscience Program, University of Illinois at Urbana-Champaign, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, United States; Beckman Institute, University of Illinois at Urbana-Champaign, United States.
| |
Collapse
|
8
|
Hawez A, Ding Z, Taha D, Madhi R, Rahman M, Thorlacius H. c-Abl kinase regulates neutrophil extracellular trap formation and lung injury in abdominal sepsis. J Transl Med 2022; 102:263-271. [PMID: 34732849 PMCID: PMC8860741 DOI: 10.1038/s41374-021-00683-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/23/2021] [Accepted: 10/07/2021] [Indexed: 11/14/2022] Open
Abstract
Sepsis is associated with exaggerated neutrophil responses although mechanisms remain elusive. The aim of this study was to investigate the role of c-Abelson (c-Abl) kinase in neutrophil extracellular trap (NET) formation and inflammation in septic lung injury. Abdominal sepsis was induced by cecal ligation and puncture (CLP). NETs were detected by electron microscopy in the lung and by confocal microscopy in vitro. Plasma levels of DNA-histone complexes, interleukin-6 (IL-6) and CXC chemokines were quantified. CLP-induced enhanced phosphorylation of c-Abl kinase in circulating neutrophils. Administration of the c-Abl kinase inhibitor GZD824 not only abolished activation of c-Abl kinase in neutrophils but also reduced NET formation in the lung and plasma levels of DNA-histone complexes in CLP mice. Moreover, inhibition of c-Abl kinase decreased CLP-induced lung edema and injury. Administration of GDZ824 reduced CLP-induced increases in the number of alveolar neutrophils. Inhibition of c-Abl kinase also markedly attenuated levels of CXC chemokines in the lung and plasma as well as IL-6 levels in the plasma of septic animals. Taken together, this study demonstrates that c-Abl kinase is a potent regulator of NET formation and we conclude that c-Abl kinase might be a useful target to ameliorate lung damage in abdominal sepsis.
Collapse
Affiliation(s)
- Avin Hawez
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Zhiyi Ding
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Dler Taha
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Raed Madhi
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Skåne University Hospital, Lund University, 205 02, Malmö, Sweden.
| |
Collapse
|
9
|
Liu Y, Xiang D, Gao F, Yao H, Ye Q, Wang Y. The Inhibition of P-Selectin Reduced Severe Acute Lung Injury in Immunocompromised Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8430465. [PMID: 32377309 PMCID: PMC7196163 DOI: 10.1155/2020/8430465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/26/2020] [Indexed: 01/05/2023]
Abstract
In an immunocompetent host, excess infiltration of immune cells in the lung is a key factor in infection-induced severe acute lung injury. Kidney transplant patients are immunocompromised by the use of immunosuppressive drugs. Immune cell infiltration in the lung in a renal transplant recipient suffering from pulmonary infection is significantly less than that in an immunocompetent host; however, the extent of lung injury in renal transplant patients is more serious than that in immunocompetent hosts. Therefore, we explored the role of platelet activation in a Klebsiella pneumoniae-induced lung injury model with P-selectin gene knockout mice or wild-type mice. Our study suggested that the inhibition of platelets reduced severe acute lung injury and increased survival after acute lung infection in mice. In addition, P-selectin expression on the surface of platelets in mice increased after administration of immunosuppressive drugs, and the extent of lung injury induced by infection decreased in P-selectin gene knockout mice. In conclusion, p-selectin plays a key role in severe acute lung injury in immunocompromised mice by reducing platelet activation and inflammatory processes.
Collapse
Affiliation(s)
- Yang Liu
- Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Du Xiang
- Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Fang Gao
- Binzhou People's Hospital Health Management Center, Binzhou 256600, Shandong Province, China
| | - Hanlin Yao
- Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
- Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, The 3rd Xiangya Hospital of Central South University, Changsha 410000, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University; Institute of Hepatobiliary Diseases of Wuhan University; Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan 430071, China
| |
Collapse
|
10
|
Cangrelor alleviates bleomycin-induced pulmonary fibrosis by inhibiting platelet activation in mice. Mol Immunol 2020; 120:83-92. [PMID: 32106023 DOI: 10.1016/j.molimm.2020.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary fibrosis is a progressive chronic inflammatory lung disease whose pathogenesis is complicated. Platelets and neutrophils play important roles in the progression of pulmonary inflammation. We have reported that cangrelor, a non-sepesific GPR17 antagonist, alleviates pulmonary fibrosis partly by inhibiting macrophage inflammation in mice. Cangrelor is also a well-known anti-platelet agent. To test whether cangrelor mitigated pulmonary fibrosis partly through the inhibition of platelets, bleomycin (BLM) was used to induce pulmonary fibrosis in C57BL/6 J mice. We found that cangrelor (10 mg/kg) not only significantly decreased BLM-induced release of inflammatory cytokines (PF4, CD40 L and MPO), but also decreased the increment of platelets, neutrophils and platelet-neutrophil aggregates in the fibrotic lung and in the peripheral blood of BLM-treated mice. In addition, cangrelor decreased the number of CD40 and MPO double positive neutrophils and the expression level of CD40 in BLM-treated mouse lungs. Based on these results we conclude that cangrelor alleviates BLM-induced lung inflammation and pulmonary fibrosis in mice, partly through inhibition of platelet activation, therefore reducing the infiltration of neutrophils due to the adhesion of platelets and neutrophils mediated by CD40 - CD40 L interaction. Cangrelor could be a potential therapeutic medicine for pulmonary fibrosis.
Collapse
|
11
|
Xu WJ, Wang XX, Jin JJ, Zou Q, Wu L, Lv TF, Wan B, Zhan P, Zhu SH, Liu HB, Zhao NW, Li CJ, Song Y. Inhibition of GGPPS1 attenuated LPS-induced acute lung injury and was associated with NLRP3 inflammasome suppression. Am J Physiol Lung Cell Mol Physiol 2019; 316:L567-L577. [PMID: 30652497 DOI: 10.1152/ajplung.00190.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Inhibition of the mevalonate pathway using statins has been shown to be beneficial in the treatment of acute lung injury (ALI). Here, we investigated whether partial inhibition of this pathway by targeting geranylgeranyl pyrophosphate synthase large subunit 1 (GGPPS1), a catalase downstream of the mevalonate pathway, was effective at treating lung inflammation in ALI. Lipopolysaccharide (LPS) was intratracheally instilled to induce ALI in lung-specific GGPPS1-knockout and wild-type mice. Expression of GGPPS1 in lung tissues and alveolar epithelial cells was examined. The severity of lung injury and inflammation was determined in lung-specific GGPPS1 knockout and wild-type mice by measuring alveolar exudate, neutrophil infiltration, lung injury, and cell death. Change in global gene expression in response to GGPPS1 depletion was measured using mRNA microarray and verified in vivo and in vitro. We found that GGPPS1 levels increased significantly in lung tissues and alveolar epithelial cells in LPS-induced ALI mice. Compared with wild-type and simvastatin treated mice, the specific deletion of pulmonary GGPPS1 attenuated the severity of lung injury by inhibiting apoptosis of AECs. Furthermore, deletion of GGPPS1 inhibited LPS-induced inflammasome activation, in terms of IL-1β release and pyroptosis, by downregulating NLRP3 expression. Finally, downregulation of GGPPS1 reduced the membrane expression of Ras-related protein Rab10 and Toll-like receptor 4 (TLR4) and inhibited the phosphonation of IκB. This effect might be attributed to the downregulation of GGPP levels. Our results suggested that inhibition of pulmonary GGPPS1 attenuated LPS-induced ALI predominantly by suppressing the NLRP3 inflammasome through Rab10-mediated TLR4 replenishment.
Collapse
Affiliation(s)
- Wu-jian Xu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Xiao-xia Wang
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Intensive Care Unit, Inner Mongolia People’s Hospital, Hohhot, Inner Mongolia Autonomous Region, China
| | - Jia-jia Jin
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Qian Zou
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Lin Wu
- Department of Gastrointestinal Disease, Jinling Hospital, Nanjing, China
| | - Tang-feng Lv
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Bing Wan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Ping Zhan
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Su-hua Zhu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Hong-bing Liu
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| | - Ning-wei Zhao
- Laboratory of Pharmacology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Chao-jun Li
- Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and the Medical School of Nanjing University, National Resource Center for Mutant Mice, Nanjing, China
| | - Yong Song
- Department of Respiratory Medicine, Jinling Hospital, Nanjing, China
- Nanjing University Institute of Respiratory Medicine, Nanjing, China
| |
Collapse
|
12
|
Wang XL, Deng HF, Li T, Miao SY, Xiao ZH, Liu MD, Liu K, Xiao XZ. Clopidogrel reduces lipopolysaccharide-induced inflammation and neutrophil-platelet aggregates in an experimental endotoxemic model. J Biochem Mol Toxicol 2018; 33:e22279. [PMID: 30537341 DOI: 10.1002/jbt.22279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 09/11/2018] [Accepted: 11/08/2018] [Indexed: 12/11/2022]
Abstract
Platelet activation contributes to organs failure in inflammation and plays an important role in endotoxemia. Clopidogrel inhibits platelet aggregation and activation. However, the role of clopidogrel in modulating inflammatory progression of endotoxemia remains largely unexplored. Therefore, we investigated the role of clopidogrel on the activation of platelet and leukocytes in lipopolysaccharide (LPS)-induced inflammation in mice. Animals were treated with clopidogrel or vehicle before LPS induction. The expression of neutrophil-platelet aggregates and platelet activation and tissue factor was determined. Immunofluorescence was used to analyze platelet-leukocyte interactions and tissue factor (TF) expression on leukocytes. Clopidogrel pretreatment markedly decreased lung damage, inhibited platelet-neutrophil aggregates and TF expression. In addition, clopidogrel reduced thrombocytopenia and affected the number of circulating white blood cell in endotoxemia mice. Moreover, clopidogrel also reduced platelet shedding of CD40L and CD62P in endotoxemic mice. Taken together, clopidogrel played an important role through reducing platelet activation and inflammatory process in endotoxemia.
Collapse
Affiliation(s)
- Xiao-Li Wang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Pathophysiology, Medical College of Jishou University, Jishou, Human, China
| | - Hua-Fei Deng
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ting Li
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Shu-Ying Miao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zi-Hui Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Mei-Dong Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Ke Liu
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Xian-Zhong Xiao
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
13
|
|
14
|
Hwaiz R, Rahman M, Zhang E, Thorlacius H. Platelet secretion of CXCL4 is Rac1-dependent and regulates neutrophil infiltration and tissue damage in septic lung damage. Br J Pharmacol 2015; 172:5347-59. [PMID: 26478565 DOI: 10.1111/bph.13325] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/30/2015] [Accepted: 09/02/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND AND PURPOSE Platelets are potent regulators of neutrophil accumulation in septic lung damage. We hypothesized that platelet-derived CXCL4 might support pulmonary neutrophilia in a murine model of abdominal sepsis. EXPERIMENTAL APPROACH Polymicrobial sepsis was triggered by coecal ligation and puncture (CLP) in C57BL/6 mice. Platelet secretion of CXCL4 was studied by using confocal microscopy. Plasma and lung levels of CXCL4, CXCL1 and CXCL2 were determined by elisa. Flow cytometry was used to examine surface expression of Mac-1 on neutrophils. KEY RESULTS CLP increased CXCL4 levels in plasma, and platelet depletion reduced plasma levels of CXCL4 in septic animals. Rac1 inhibitor NSC23766 decreased the CLP-enhanced CXCL4 in plasma by 77%. NSC23766 also abolished PAR4 agonist-induced secretion of CXCL4 from isolated platelets. Inhibition of CXCL4 reduced CLP-evoked neutrophil recruitment, oedema formation and tissue damage in the lung. However, immunoneutralization of CXCL4 had no effect on CLP-induced expression of Mac-1 on neutrophils. Targeting CXCL4 attenuated plasma and lung levels of CXCL1 and CXCL2 in septic mice. CXCL4 had no effect on neutrophil chemotaxis in vitro, indicating it has an indirect effect on pulmonary neutrophilia. Intratracheal CXCL4 enhanced infiltration of neutrophils and formation of CXCL2 in the lung. CXCR2 antagonist SB225002 markedly reduced CXCL4-provoked neutrophil accumulation in the lung. CXCL4 caused secretion of CXCL2 from isolated alveolar macrophages. CONCLUSIONS AND IMPLICATIONS Rac1 controls platelet secretion of CXCL4 and CXCL4 is a potent stimulator of neutrophil accumulation in septic lungs via generation of CXCL2 in alveolar macrophages. Platelet-derived CXCL4 plays an important role in lung inflammation and tissue damage in polymicrobial sepsis.
Collapse
Affiliation(s)
- Rundk Hwaiz
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| | - Enming Zhang
- Islet Pathophysiology, Lund University, Malmö, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, Malmö, Sweden
| |
Collapse
|
15
|
Hwaiz R, Rahman M, Syk I, Zhang E, Thorlacius H. Rac1-dependent secretion of platelet-derived CCL5 regulates neutrophil recruitment via activation of alveolar macrophages in septic lung injury. J Leukoc Biol 2015; 97:975-984. [DOI: 10.1189/jlb.4a1214-603r] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Abstract
Accumulating evidence suggest that platelets play an important role in regulating neutrophil recruitment in septic lung injury. Herein, we hypothesized that platelet-derived CCL5 might facilitate sepsis-induced neutrophil accumulation in the lung. Abdominal sepsis was induced by CLP in C57BL/6 mice. CLP increased plasma levels of CCL5. Platelet depletion and treatment with the Rac1 inhibitor NSC23766 markedly reduced CCL5 in the plasma of septic mice. Moreover, Rac1 inhibition completely inhibited proteasePAR4-induced secretion of CCL5 in isolated platelets. Immunoneutralization of CCL5 decreased CLP-induced neutrophil infiltration, edema formation, and tissue injury in the lung. However, inhibition of CCL5 function had no effect on CLP-induced expression of Mac-1 on neutrophils. The blocking of CCL5 decreased plasma and lung levels of CXCL1 and CXCL2 in septic animals. CCL5 had no effect on neutrophil chemotaxis in vitro, suggesting an indirect effect of CCL5 on neutrophil recruitment. Intratracheal challenge with CCL5 increased accumulation of neutrophils and formation of CXCL2 in the lung. Administration of the CXCR2 antagonist SB225002 abolished CCL5-induced pulmonary recruitment of neutrophils. Isolated alveolar macrophages expressed significant levels of the CCL5 receptors CCR1 and CCR5. In addition, CCL5 triggered significant secretion of CXCL2 from isolated alveolar macrophages. Notably, intratracheal administration of clodronate not only depleted mice of alveolar macrophages but also abolished CCL5-induced formation of CXCL2 in the lung. Taken together, our findings suggest that Rac1 regulates platelet secretion of CCL5 and that CCL5 is a potent inducer of neutrophil recruitment in septic lung injury via formation of CXCL2 in alveolar macrophages.
Collapse
Affiliation(s)
- Rundk Hwaiz
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Ingvar Syk
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| | - Enming Zhang
- Islet Pathophysiology, Lund University , Malmö , Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery , Malmö , Sweden
| |
Collapse
|
16
|
Zhang S, Hwaiz R, Luo L, Herwald H, Thorlacius H. STAT3-dependent CXC chemokine formation and neutrophil migration in streptococcal M1 protein-induced acute lung inflammation. Am J Physiol Lung Cell Mol Physiol 2015; 308:L1159-67. [PMID: 25840996 DOI: 10.1152/ajplung.00324.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/01/2015] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pyogenes cause infections ranging from mild pharyngitis to severe streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most frequently associated with STSS. Herein, it was hypothesized that STAT3 signaling might be involved in M1 protein-evoked lung inflammation. The STAT3 inhibitor, S3I-201, was administered to male C57Bl/6 mice before iv challenge with M1 protein. Bronchoalveolar fluid and lung tissue were harvested for quantification of STAT3 activity, neutrophil recruitment, edema, and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Levels of IL-6 and HMGB1 were determined in plasma. CXCL2-induced neutrophil chemotaxis was studied in vitro. Administration of S3I-201 markedly reduced M1 protein-provoked STAT3 activity, neutrophil recruitment, edema formation, and inflammatory changes in the lung. In addition, M1 protein significantly increased Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Treatment with S3I-201 had no effect on M1 protein-induced expression of Mac-1 on neutrophils. In contrast, inhibition of STAT3 activity greatly reduced M1 protein-induced formation of CXC chemokines in the lung. Interestingly, STAT3 inhibition markedly decreased plasma levels of IL-6 and HMGB1 in animals exposed to M1 protein. Moreover, we found that S3I-201 abolished CXCL2-induced neutrophil migration in vitro. In conclusion, these novel findings indicate that STAT3 signaling plays a key role in mediating CXC chemokine production and neutrophil infiltration in M1 protein-induced acute lung inflammation.
Collapse
Affiliation(s)
- Songen Zhang
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden and
| | - Rundk Hwaiz
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden and
| | - Lingtao Luo
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden and
| | - Heiko Herwald
- Division of Infection Medicine, Lund University, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden and
| |
Collapse
|
17
|
Zhang S, Zhang S, Garcia-Vaz E, Herwald H, Gomez MF, Thorlacius H. Streptococcal M1 protein triggers chemokine formation, neutrophil infiltration, and lung injury in an NFAT-dependent manner. J Leukoc Biol 2015; 97:1003-10. [PMID: 25583579 DOI: 10.1189/jlb.3hi0214-123rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/26/2014] [Indexed: 11/24/2022] Open
Abstract
Streptococcus pyogenes of the M1 serotype can cause STSS, which is associated with significant morbidity and mortality. The purpose of the present study was to examine the role of NFAT signaling in M1 protein-induced lung injury. NFAT-luc mice were treated with the NFAT inhibitor A-285222 before administration of the M1 protein. Neutrophil infiltration, edema, and CXC chemokines were quantified in the lung, 4 h after challenge with the M1 protein. Flow cytometry was used to determine Mac-1 expression. Challenge with the M1 protein increased NFAT-dependent transcriptional activity in the lung, spleen, and liver in NFAT-luc mice. Administration of the NFAT inhibitor A-285222 abolished M1 protein-evoked NFAT activation in the lung, spleen, and liver. M1 protein challenge induced neutrophil recruitment, edema, and CXC chemokine production in the lung, as well as up-regulation of Mac-1 on circulating neutrophils. Inhibition of NFAT activity attenuated M1 protein-induced neutrophil infiltration by 77% and edema formation by 50% in the lung. Moreover, administration of A-285222 reduced M1 protein-evoked pulmonary formation of CXC chemokine >80%. In addition, NFAT inhibition decreased M1 protein-triggered Mac-1 up-regulation on neutrophils. These findings indicate that NFAT signaling controls pulmonary infiltration of neutrophils in response to streptococcal M1 protein via formation of CXC chemokines and neutrophil expression of Mac-1. Thus, the targeting of NFAT activity might be a useful way to ameliorate lung injury in streptococcal infections.
Collapse
Affiliation(s)
- Songen Zhang
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| | - Su Zhang
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| | - Eliana Garcia-Vaz
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| | - Heiko Herwald
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| | - Maria F Gomez
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| | - Henrik Thorlacius
- Sections for *Surgery and Vascular Excitation-Transcription Coupling, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden; and Department of Clinical Sciences Lund, Section for Clinical and Experimental Infection Medicine, Lund University, Sweden
| |
Collapse
|
18
|
Iwamoto T, Suto A, Tanaka S, Takatori H, Suzuki K, Iwamoto I, Nakajima H. Interleukin-21-Producing c-Maf-Expressing CD4+ T Cells Induce Effector CD8+ T Cells and Enhance Autoimmune Inflammation in Scurfy Mice. Arthritis Rheumatol 2014; 66:2079-90. [DOI: 10.1002/art.38658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/01/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Taro Iwamoto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Akira Suto
- Chiba University Graduate School of Medicine; Chiba Japan
| | - Shigeru Tanaka
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | - Kotaro Suzuki
- Chiba University Graduate School of Medicine; Chiba Japan
| | | | | |
Collapse
|
19
|
Zhang S, Hwaiz R, Rahman M, Herwald H, Thorlacius H. Ras regulates alveolar macrophage formation of CXC chemokines and neutrophil activation in streptococcal M1 protein-induced lung injury. Eur J Pharmacol 2014; 733:45-53. [DOI: 10.1016/j.ejphar.2014.03.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 03/17/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
|
20
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
21
|
Zhang S, Song L, Wang Y, Herwald H, Thorlacius H. Targeting CD162 protects against streptococcal M1 protein-evoked neutrophil recruitment and lung injury. Am J Physiol Lung Cell Mol Physiol 2013; 305:L756-63. [PMID: 24039252 DOI: 10.1152/ajplung.00220.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung damage. CD162 is an adhesion molecule that has been reported to mediate neutrophil recruitment in acute inflammatory reactions. In this study, the purpose was to investigate the role of CD162 in M1 protein-provoked lung injury. Male C57BL/6 mice were treated with monoclonal antibody directed against CD162 or a control antibody before M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Fluorescence intravital microscopy was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. Inhibition of CD162 reduced M1 protein-provoked accumulation of neutrophils, edema, and CXC chemokine formation in the lung by >54%. Moreover, immunoneutralization of CD162 abolished leukocyte rolling and firm adhesion in pulmonary venules of M1 protein-treated animals. In addition, inhibition of CD162 decreased M1 protein-induced capillary trapping of leukocytes in the lung microvasculature and improved microvascular perfusion in the lungs of M1 protein-treated animals. Our findings suggest that CD162 plays an important role in M1 protein-induced lung damage by regulating leukocyte rolling in pulmonary venules. Consequently, inhibition of CD162 attenuates M1 protein-evoked leukocyte adhesion and extravasation in the lung. Thus, our results suggest that targeting the CD162 might pave the way for novel opportunities to protect against pulmonary damage in streptococcal infections.
Collapse
Affiliation(s)
- Songen Zhang
- Dept. of Clinical Sciences, Malmö, Section of Surgery, Skåne Univ. Hospital, Lund Univ., 205 02 Malmö, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Zhang S, Rahman M, Zhang S, Song L, Herwald H, Thorlacius H. Targeting Rac1 signaling inhibits streptococcal M1 protein-induced CXC chemokine formation, neutrophil infiltration and lung injury. PLoS One 2013; 8:e71080. [PMID: 23951087 PMCID: PMC3741375 DOI: 10.1371/journal.pone.0071080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.
Collapse
Affiliation(s)
- Songen Zhang
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Milladur Rahman
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Su Zhang
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Lei Song
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
| | - Heiko Herwald
- Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section for Surgery, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
23
|
Rahman M, Gustafsson D, Wang Y, Thorlacius H, Braun OÖ. Ticagrelor reduces neutrophil recruitment and lung damage in abdominal sepsis. Platelets 2013; 25:257-63. [PMID: 23855479 DOI: 10.3109/09537104.2013.809520] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Platelets play an important role in abdominal sepsis and P2Y12 receptor antagonists have been reported to exert anti-inflammatory effects. Herein, we assessed the impact of platelet inhibition with the P2Y12 receptor antagonist ticagrelor on pulmonary neutrophil recruitment and tissue damage in a model of abdominal sepsis. Wild-type C57BL/6 mice were subjected to cecal ligation and puncture (CLP). Animals were treated with ticagrelor (100 mg/kg) or vehicle prior to CLP induction. Edema formation and bronchoalveolar neutrophils as well as lung damage were quantified. Flow cytometry was used to determine expression of platelet-neutrophil aggregates, neutrophil activation and CD40L expression on platelets. CLP-induced pulmonary infiltration of neutrophils at 24 hours was reduced by 50% in ticagrelor-treated animals. Moreover, ticagrelor abolished CLP-provoked lung edema and decreased lung damage score by 41%. Notably, ticagrelor completely inhibited formation of platelet-neutrophil aggregates and markedly reduced thrombocytopenia in CLP animals. In addition, ticagrelor reduced platelet shedding of CD40L in septic mice. Our data indicate that ticagrelor can reduce CLP-induced pulmonary neutrophil recruitment and lung damage suggesting a potential role for platelet antagonists, such as ticagrelor, in the management of patients with abdominal sepsis.
Collapse
|
24
|
Merza M, Wetterholm E, Zhang S, Regner S, Thorlacius H. Inhibition of geranylgeranyltransferase attenuates neutrophil accumulation and tissue injury in severe acute pancreatitis. J Leukoc Biol 2013; 94:493-502. [PMID: 23744643 DOI: 10.1189/jlb.1112546] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leukocyte infiltration and acinar cell necrosis are hallmarks of severe AP, but the signaling pathways regulating inflammation and organ injury in the pancreas remain elusive. In the present study, we investigated the role of geranylgeranyltransferase in AP. Male C57BL/6 mice were treated with a geranylgeranyltransferase inhibitor GGTI-2133 (20 mg/kg) prior to induction of pancreatitis by infusion of taurocholate into the pancreatic duct. Pretreatment with GGTI-2133 reduced plasma amylase levels, pancreatic neutrophil recruitment, hemorrhage, and edema formation in taurocholate-evoked pancreatitis. Moreover, administration of GGTI-2133 decreased the taurocholate-induced increase of MPO activity in the pancreas and lung. Treatment with GGTI-2133 markedly reduced levels of CXCL2 in the pancreas and IL-6 in the plasma in response to taurocholate challenge. Notably, geranylgeranyltransferase inhibition abolished neutrophil expression of Mac-1 in mice with pancreatitis. Finally, inhibition of geranylgeranyltransferase had no direct effect on secretagogue-induced activation of trypsinogen in pancreatic acinar cells in vitro. A significant role of geranylgeranyltransferase was confirmed in an alternate model of AP induced by L-arginine challenge. Our findings show that geranylgeranyltransferase regulates neutrophil accumulation and tissue damage via expression of Mac-1 on neutrophils and CXCL2 formation in AP. Thus, these results reveal new signaling mechanisms in pancreatitis and indicate that targeting geranylgeranyltransferase might be an effective way to ameliorate severe AP.
Collapse
Affiliation(s)
- Mohammed Merza
- Department of Surgery, Clinical Sciences, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | | | | | | | | |
Collapse
|