1
|
Cao TBT, Moon JY, Yoo HJ, Ban GY, Kim SH, Park HS. Down-regulated surfactant protein B in obese asthmatics. Clin Exp Allergy 2022; 52:1321-1329. [PMID: 35294785 DOI: 10.1111/cea.14124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Obesity is a common comorbid condition in adult asthmatics and known as a feature of asthma severity. However, the molecular mechanism under obesity-induced inflammation has not yet been fully understood. OBJECTIVE Considering the essential role of hydrophobic surfactant protein B (SP-B) in lung function, SP-B was targeted to examine its involvement in the development of obesity-induced airway inflammation in asthmatics. METHODS The aim was to examine an alteration in circulating SP-B according to obesity in adult asthmatics, 129 asthmatics were enrolled and classified into 3 groups (obese, overweight and normal-weight groups) according to body mass index (BMI). Circulating SP-B levels were determined by enzyme-linked immunosorbent assay. Four single nucleotide polymorphisms of SFTPB gene were genotyped. Serum ceramide levels were measured by liquid chromatography-tandem mass spectrometry. RESULTS Significantly lower serum SP-B levels were noted in the obese group than in the overweight or normal-weight group (p = .002). The serum SP-B level was significantly correlated with serum levels of C18:0 ceramide and transforming growth factor beta 1 as well as BMI (r = -0.200; r = -0.215; r = -0.332, p < .050 for all). An inverse correlation was noted between serum SP-B and fractional exhaled nitric oxide levels in female asthmatics (r = -0.287, p = .009). Genetic predisposition of the SFTPB gene at 9306 A>G to the obese and overweight groups was noted. CONCLUSION Obesity altered ceramide metabolism leading to pulmonary surfactant dysfunction and impaired resolution of airway inflammation, finally contributing to the phenotypes of obese asthmatics.
Collapse
Affiliation(s)
- Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ji-Young Moon
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hyun-Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy, and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine Institute for Life Sciences, Seoul, Korea
| | - Seung-Hyun Kim
- Translational Research Laboratory for Inflammatory Disease, Clinical Trial Center, Ajou University Medical Center, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
2
|
Sudhadevi T, Ha AW, Ebenezer DL, Fu P, Putherickal V, Natarajan V, Harijith A. Advancements in understanding the role of lysophospholipids and their receptors in lung disorders including bronchopulmonary dysplasia. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158685. [PMID: 32169655 PMCID: PMC7206974 DOI: 10.1016/j.bbalip.2020.158685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/25/2020] [Accepted: 03/09/2020] [Indexed: 12/14/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a devastating chronic neonatal lung disease leading to serious adverse consequences. Nearly 15 million babies are born preterm accounting for >1 in 10 births globally. The aetiology of BPD is multifactorial and the survivors suffer lifelong respiratory morbidity. Lysophospholipids (LPL), which include sphingosine-1-phosphate (S1P), and lysophosphatidic acid (LPA) are both naturally occurring bioactive lipids involved in a variety of physiological and pathological processes such as cell survival, death, proliferation, migration, immune responses and vascular development. Altered LPL levels have been observed in a number of lung diseases including BPD, which underscores the importance of these signalling lipids under normal and pathophysiological situations. Due to the paucity of information related to LPLs in BPD, most of the ideas related to BPD and LPL are speculative. This article is intended to promote discussion and generate hypotheses, in addition to the limited review of information related to BPD already established in the literature.
Collapse
Affiliation(s)
- Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America
| | - Alison W Ha
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - David L Ebenezer
- Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America
| | - Panfeng Fu
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Vijay Putherickal
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America
| | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, IL, United States of America; Department of Medicine, University of Illinois, Chicago, IL, United States of America
| | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, IL, United States of America; Department of Biochemistry and Molecular Genetics, University of Illinois, Chicago, IL, United States of America; Department of Pharmacology, University of Illinois, Chicago, IL, United States of America.
| |
Collapse
|
3
|
Yeganeh B, Lee J, Bilodeau C, Lok I, Ermini L, Ackerley C, Caniggia I, Tibboel J, Kroon A, Post M. Acid Sphingomyelinase Inhibition Attenuates Cell Death in Mechanically Ventilated Newborn Rat Lung. Am J Respir Crit Care Med 2020; 199:760-772. [PMID: 30326731 DOI: 10.1164/rccm.201803-0583oc] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RATIONALE Premature infants subjected to mechanical ventilation (MV) are prone to lung injury that may result in bronchopulmonary dysplasia. MV causes epithelial cell death and halts alveolar development. The exact mechanism of MV-induced epithelial cell death is unknown. OBJECTIVES To determine the contribution of autophagy to MV-induced epithelial cell death in newborn rat lungs. METHODS Newborn rat lungs and fetal rat lung epithelial (FRLE) cells were exposed to MV and cyclic stretch, respectively, and were then analyzed by immunoblotting and mass spectrometry for autophagy, apoptosis, and bioactive sphingolipids. MEASUREMENTS AND MAIN RESULTS Both MV and stretch first induce autophagy (ATG 5-12 [autophagy related 5-12] and LC3B-II [microtubule-associated proteins 1A/1B light chain 3B-II] formation) followed by extrinsic apoptosis (cleaved CASP8/3 [caspase-8/3] and PARP [poly(ADP-ribose) polymerase] formation). Stretch-induced apoptosis was attenuated by inhibiting autophagy. Coimmunoprecipitation revealed that stretch promoted an interaction between LC3B and the FAS (first apoptosis signal) cell death receptor in FRLE cells. Ceramide levels, in particular C16 ceramide, were rapidly elevated in response to ventilation and stretch, and C16 ceramide treatment of FRLE cells induced autophagy and apoptosis in a temporal pattern similar to that seen with MV and stretch. SMPD1 (sphingomyelin phosphodiesterase 1) was activated by ventilation and stretch, and its inhibition prevented ceramide production, LC3B-II formation, LC3B/first apoptosis signal interaction, caspase-3 activation, and, ultimately, FLRE cell death. SMPD1 inhibition also attenuated ventilation-induced autophagy and apoptosis in newborn rats. CONCLUSIONS Ventilation-induced ceramides promote autophagy-mediated cell death, and identifies SMPD1 as a potential therapeutic target for the treatment of ventilation-induced lung injury in newborns.
Collapse
Affiliation(s)
- Behzad Yeganeh
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Joyce Lee
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,2 Institute of Medical Science and
| | - Claudia Bilodeau
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,3 Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Irene Lok
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Leonardo Ermini
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cameron Ackerley
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Isabella Caniggia
- 4 Mount Sinai Hospital, the Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada; and
| | - Jeroen Tibboel
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,5 Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Andre Kroon
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,5 Department of Pediatrics, Erasmus MC-Sophia, Rotterdam, the Netherlands
| | - Martin Post
- 1 Translational Medicine Program, Peter Gilgan Centre for Research and Learning, Hospital for Sick Children, Toronto, Ontario, Canada.,2 Institute of Medical Science and
| |
Collapse
|
4
|
Fuentes-Mateos R, Jimeno D, Gómez C, Calzada N, Fernández-Medarde A, Santos E. Concomitant deletion of HRAS and NRAS leads to pulmonary immaturity, respiratory failure and neonatal death in mice. Cell Death Dis 2019; 10:838. [PMID: 31685810 PMCID: PMC6828777 DOI: 10.1038/s41419-019-2075-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
We reported previously that adult (HRAS-/-; NRAS-/-) double knockout (DKO) mice showed no obvious external phenotype although lower-than-expected numbers of weaned DKO animals were consistently tallied after crossing NRAS-KO and HRAS-KO mice kept on mixed genetic backgrounds. Using mouse strains kept on pure C57Bl/6 background, here we performed an extensive analysis of the offspring from crosses between HRAS-KO and NRAS-KO mice and uncovered the occurrence of very high rates of perinatal mortality of the resulting DKO littermates due to respiratory failure during the first postnatal 24-48 h. The lungs of newborn DKO mice showed normal organ structure and branching but displayed marked defects of maturation including much-reduced alveolar space with thick separating septa and significant alterations of differentiation of alveolar (AT1, AT2 pneumocytes) and bronchiolar (ciliated, Clara cells) cell lineages. We also observed the retention of significantly increased numbers of undifferentiated progenitor precursor cells in distal lung epithelia and the presence of substantial accumulations of periodic acid-Schiff-positive (PAS+) material and ceramide in the lung airways of newborn DKO mice. Interestingly, antenatal dexamethasone treatment partially mitigated the defective lung maturation phenotypes and extended the lifespan of the DKO animals up to 6 days, but was not sufficient to abrogate lethality in these mice. RNA microarray hybridization analyses of the lungs of dexamethasone-treated and untreated mice uncovered transcriptional changes pointing to functional and metabolic alterations that may be mechanistically relevant for the defective lung phenotypes observed in DKO mice. Our data suggest that delayed alveolar differentiation, altered sphingolipid metabolism and ceramide accumulation are primary contributors to the respiratory stress and neonatal lethality shown by DKO mice and uncover specific, critical roles of HRAS and NRAS for correct lung differentiation that are essential for neonatal survival and cannot be substituted by the remaining KRAS function in this organ.
Collapse
Affiliation(s)
- Rocío Fuentes-Mateos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - David Jimeno
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Carmela Gómez
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Nuria Calzada
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain
| | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain.
| | - Eugenio Santos
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC- Universidad de Salamanca) and CIBERONC, 37007, Salamanca, Spain.
| |
Collapse
|
5
|
TTF-1/Nkx2.1 functional connection with mutated EGFR relies on LRIG1 and β-catenin pathways in lung cancer cells. Biochem Biophys Res Commun 2018; 505:1027-1031. [PMID: 30314701 DOI: 10.1016/j.bbrc.2018.10.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 11/22/2022]
Abstract
In non-small lung cancer, the expression of the transcription factor TTF-1/Nkx2.1 correlates with the presence of EGFR mutations, therefore TTF-1/Nkx2.1 expression is used to optimize an EGFR testing strategy and to guide clinical treatment. We investigate the molecular mechanisms underlying the functional connection between EGFR and TTF-1/Nkx2.1 gene expression in lung adenocarcinoma. Using the H1975 cell line as a non-small cell lung cancer model system and short hairpin RNA, we have selected clones with TTF-1/Nkx2.1 silenced expression. We have found that Leucine-rich immunoglobulin repeats-1 (LRIG1) gene is a direct target of TTF-1/Nkx2.1 and the transcription factor binding to the LRIG1 genomic sequence inhibits its gene expression. In TTF-1/Nkx2.1 depleted clones, we have found high levels of LRIG1 and decreased presence of EGFR protein. Furthermore, in TTF-1/Nkx2.1 depleted clones we detected a reduced β-catenin level and we provide experimental evidence indicating that TTF-1/Nkx2.1 gene expression is regulated by β-catenin. Published studies indicate that LRIG1 triggers EGFR degradation and that mutated EGFR induces β-catenin activity. Hence, with the present study we show that mutated EGFR, enhancing β-catenin, stimulates TTF-1/Nkx2.1 gene expression and, at the same time, TTF-1/Nkx2.1, down-regulating LRIG1, sustains EGFR pathway. Therefore, LRIG1 and β-catenin mediate the functional connection between TTF-1/Nkx2.1 and mutated EGFR.
Collapse
|
6
|
Hendricks-Muñoz KD, Xu J, Voynow JA. Tracheal aspirate VEGF and sphingolipid metabolites in the preterm infant with later development of bronchopulmonary dysplasia. Pediatr Pulmonol 2018; 53:1046-1052. [PMID: 29687638 DOI: 10.1002/ppul.24022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/03/2018] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) and sphingolipid metabolites, sphingosine 1-phosphate (S1P), and ceramides are important to lung development and repair. We hypothesized specific sphingolipid and VEGF alterations would be associated with BPD development and aimed to investigate the early tracheal aspirate (TA) VEGF and S1P relationship with later diagnosis of preterm infant bronchopulmonary dysplasia, BPD. DESIGN TA VEGF and lipidomics were measured in TA from Infants <32 weeks gestational age at birth with and without later BPD. BPD was defined using the NICHD severity BPD definition. Clinical demographics and medical course were identified with statistical analysis performed with JMP, Statistical Analysis Software. RESULTS The analysis included 25 infants (9 NoBPD and 16 BPD) with mean gestational age of 27.8 ± 2.5 SD weeks and 25.1 ± 1.9 SD weeks respectively, P < 0.01. Later development of BPD was associated with elevated mean TA VEGF 604.3 ± 150.2 SE pg/mL versus NoBPD 120 ± 34.3 SE pg/mL, elevated S1P, 11.5 ± 2.3 SE pmol/mL versus NoBPD 4.8 ± 0.6 SE pmol/mL, and elevated selected ceramides during the first week of life. CONCLUSIONS Airway VEGF and sphingolipid metabolites were distinctly elevated within the first days of postnatal life in preterm infants with later BPD progression. These biomarkers may be useful as indicators of lung injury development or as targets to decrease BPD risk.
Collapse
Affiliation(s)
- Karen D Hendricks-Muñoz
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Jie Xu
- Division of Neonatal Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU, School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Judith A Voynow
- Division of Pulmonary Medicine, Department of Pediatrics, Children's Hospital of Richmond at VCU and School of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
7
|
Association between high-density lipoprotein cholesterol level and pulmonary function in healthy Korean adolescents: the JS high school study. BMC Pulm Med 2017; 17:190. [PMID: 29228928 PMCID: PMC5725943 DOI: 10.1186/s12890-017-0548-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 11/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background Accumulating evidence suggests that high-density lipoprotein (HDL) cholesterol is associated with pulmonary function and pulmonary disorders. The aim of this study was to evaluate the association between HDL cholesterol and pulmonary function in healthy adolescents. Methods This cross-sectional study was based on data collected for the JS High School study. The analysis included 644 adolescents (318 male and 326 female) aged 15–16 years old and free from asthma or chronic obstructive pulmonary disease. Fasting blood samples were collected for hematologic and biochemical assessment. Forced vital capacity volume (FVC) and forced expiratory volume in the 1 s (FEV1) were measured using dry-rolling-seal spirometry. The associations between HDL cholesterol and pulmonary function were analyzed using multiple linear regression models. Results Among male adolescents, an increase of 1.0 mg/dL in HDL cholesterol was associated with 10 mL decrease in FVC (p = 0.013) and FEV1 (p = 0.013) after adjusting for age, height, weight, alcohol drinking, smoking, physical activity, systolic blood pressure, total cholesterol, triglyceride, and monthly household income. Percent predicted values of FVC (p = 0.036) and FEV1 (p = 0.017) were also inversely associated with HDL cholesterol. However, among female adolescents, HDL cholesterol level was not significantly associated with absolute or percent predictive value of FVC and FEV1. Conclusions Higher HDL cholesterol level may be associated with decreased pulmonary function among healthy male adolescents. The sex differences observed in the association between HDL cholesterol and pulmonary function need further investigation. Electronic supplementary material The online version of this article (10.1186/s12890-017-0548-6) contains supplementary material, which is available to authorized users.
Collapse
|
8
|
Malt EA, Juhasz K, Malt UF, Naumann T. A Role for the Transcription Factor Nk2 Homeobox 1 in Schizophrenia: Convergent Evidence from Animal and Human Studies. Front Behav Neurosci 2016; 10:59. [PMID: 27064909 PMCID: PMC4811959 DOI: 10.3389/fnbeh.2016.00059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a highly heritable disorder with diverse mental and somatic symptoms. The molecular mechanisms leading from genes to disease pathology in schizophrenia remain largely unknown. Genome-wide association studies (GWASs) have shown that common single-nucleotide polymorphisms associated with specific diseases are enriched in the recognition sequences of transcription factors that regulate physiological processes relevant to the disease. We have used a “bottom-up” approach and tracked a developmental trajectory from embryology to physiological processes and behavior and recognized that the transcription factor NK2 homeobox 1 (NKX2-1) possesses properties of particular interest for schizophrenia. NKX2-1 is selectively expressed from prenatal development to adulthood in the brain, thyroid gland, parathyroid gland, lungs, skin, and enteric ganglia, and has key functions at the interface of the brain, the endocrine-, and the immune system. In the developing brain, NKX2-1-expressing progenitor cells differentiate into distinct subclasses of forebrain GABAergic and cholinergic neurons, astrocytes, and oligodendrocytes. The transcription factor is highly expressed in mature limbic circuits related to context-dependent goal-directed patterns of behavior, social interaction and reproduction, fear responses, responses to light, and other homeostatic processes. It is essential for development and mature function of the thyroid gland and the respiratory system, and is involved in calcium metabolism and immune responses. NKX2-1 interacts with a number of genes identified as susceptibility genes for schizophrenia. We suggest that NKX2-1 may lie at the core of several dose dependent pathways that are dysregulated in schizophrenia. We correlate the symptoms seen in schizophrenia with the temporal and spatial activities of NKX2-1 in order to highlight promising future research areas.
Collapse
Affiliation(s)
- Eva A Malt
- Department of Adult Habilitation, Akershus University HospitalLørenskog, Norway; Institute of Clinical Medicine, Ahus Campus University of OsloOslo, Norway
| | - Katalin Juhasz
- Department of Adult Habilitation, Akershus University Hospital Lørenskog, Norway
| | - Ulrik F Malt
- Institute of Clinical Medicine, University of OsloOslo, Norway; Department of Research and Education, Institution of Oslo University HospitalOslo, Norway
| | - Thomas Naumann
- Centre of Anatomy, Institute of Cell Biology and Neurobiology, Charite Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
9
|
Role of Sphingolipids in the Pathobiology of Lung Inflammation. Mediators Inflamm 2015; 2015:487508. [PMID: 26770018 PMCID: PMC4681829 DOI: 10.1155/2015/487508] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/24/2015] [Accepted: 10/27/2015] [Indexed: 12/31/2022] Open
Abstract
Sphingolipid bioactivities in the respiratory airways and the roles of the proteins that handle them have been extensively investigated. Gas or inhaled particles or microorganisms come into contact with mucus components, epithelial cells, blood barrier, and immune surveillance within the airways. Lung structure and functionality rely on a complex interplay of polar and hydrophobic structures forming the surfactant layer and governing external-internal exchanges, such as glycerol-phospholipids sphingolipids and proteins. Sphingolipids act as important signaling mediators involved in the control of cell survival and stress response, as well as secreted molecules endowed with inflammation-regulatory activities. Most successful respiratory infection and injuries evolve in the alveolar compartment, the critical lung functional unit involved in gas exchange. Sphingolipid altered metabolism in this compartment is closely related to inflammatory reaction and ceramide increase, in particular, favors the switch to pathological hyperinflammation. This short review explores a few mechanisms underlying sphingolipid involvement in the healthy lung (surfactant production and endothelial barrier maintenance) and in a selection of lung pathologies in which the impact of sphingolipid synthesis and metabolism is most apparent, such as acute lung injury, or chronic pathologies such as cystic fibrosis and chronic obstructive pulmonary disease.
Collapse
|
10
|
Kebaabetswe LP, Haick AK, Gritsenko MA, Fillmore TL, Chu RK, Purvine SO, Webb-Robertson BJ, Matzke MM, Smith RD, Waters KM, Metz TO, Miura TA. Proteomic analysis reveals down-regulation of surfactant protein B in murine type II pneumocytes infected with influenza A virus. Virology 2015; 483:96-107. [PMID: 25965799 DOI: 10.1016/j.virol.2015.03.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/13/2015] [Accepted: 03/18/2015] [Indexed: 11/29/2022]
Abstract
Infection of type II alveolar epithelial (ATII) cells by influenza A viruses (IAV) correlates with severe respiratory disease in humans and mice. To understand pathogenic mechanisms during IAV infection of ATII cells, murine ATII cells were cultured to maintain a differentiated phenotype, infected with IAV-PR8, which causes severe lung pathology in mice, and proteomics analyses were performed using liquid chromatography-mass spectrometry. PR8 infection increased levels of proteins involved in interferon signaling, antigen presentation, and cytoskeleton regulation. Proteins involved in mitochondrial membrane permeability, energy metabolism, and chromatin formation had reduced levels in PR8-infected cells. Phenotypic markers of ATII cells in vivo were identified, confirming the differentiation status of the cultures. Surfactant protein B had decreased levels in PR8-infected cells, which was confirmed by immunoblotting and immunofluorescence assays. Analysis of ATII cell protein profiles will elucidate cellular processes in IAV pathogenesis, which may provide insight into potential therapies to modulate disease severity.
Collapse
Affiliation(s)
- Lemme P Kebaabetswe
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anoria K Haick
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas L Fillmore
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Bobbie-Jo Webb-Robertson
- Computational and Statistical Analytics Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Melissa M Matzke
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Katrina M Waters
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Thomas O Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| |
Collapse
|
11
|
Tibboel J, Reiss I, de Jongste JC, Post M. Sphingolipids in lung growth and repair. Chest 2014; 145:120-128. [PMID: 24394822 DOI: 10.1378/chest.13-0967] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Sphingolipids comprise a class of bioactive lipids that are involved in a variety of pathophysiologic processes, including cell death and survival. Ceramide and sphingosine-1-phosphate (S1P) form the center of sphingolipid metabolism and determine proapoptotic and antiapoptotic balance. Findings in animal models suggest a possible pathophysiologic role of ceramide and S1P in COPD, cystic fibrosis, and asthma. Sphingolipid research is now focusing on the role of ceramides during lung inflammation and its regulation by sphingomyelinases. Recently, sphingolipids have been shown to play a role in the pathogenesis of bronchopulmonary dysplasia (BPD). Ceramide upregulation was linked with vascular endothelial growth factor suppression and decreased surfactant protein B levels, pathways important for the development of BPD. In a murine model of BPD, intervention with an S1P analog had a favorable effect on histologic abnormalities and ceramide levels. Ceramides and S1P also regulate endothelial permeability through cortical actin cytoskeletal rearrangement, which is relevant for the pathogenesis of ARDS. On the basis of these observations, the feasibility of pharmacologic intervention in the sphingolipid pathway to influence disease development and progression is presently explored, with promising early results. The prospect of new strategies to prevent and repair lung disease by interfering with sphingolipid metabolism is exciting and could potentially reduce morbidity and mortality in patients with severe lung disorders.
Collapse
Affiliation(s)
- Jeroen Tibboel
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada; Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Irwin Reiss
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Johan C de Jongste
- Department of Pediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martin Post
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
12
|
Ceramides: a potential therapeutic target in pulmonary emphysema. Respir Res 2013; 14:96. [PMID: 24083966 PMCID: PMC3851206 DOI: 10.1186/1465-9921-14-96] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022] Open
Abstract
Background The aim of this manuscript was to characterize airway ceramide profiles in a rodent model of elastase-induced emphysema and to examine the effect of pharmacological intervention directed towards ceramide metabolism. Methods Adult mice were anesthetized and treated with an intratracheal instillation of elastase. Lung function was measured, broncho-alveolar lavage fluid collected and histological and morphometrical analysis of lung tissue performed within 3 weeks after elastase injection, with and without sphingomyelinase inhibitors or serine palmitoyltransferase inhibitor. Ceramides in broncho-alveolar lavage (BAL) fluid were quantified by tandem mass spectrometry. Results BAL fluid showed a transient increase in total protein and IgM, and activated macrophages and neutrophils. Ceramides were transiently upregulated at day 2 after elastase treatment. Histology showed persistent patchy alveolar destruction at day 2 after elastase installation. Acid and neutral sphingomyelinase inhibitors had no effect on BAL ceramide levels, lung function or histology. Addition of a serine palmitoyltransferase inhibitor ameliorated lung function changes and reduced ceramides in BAL. Conclusions Ceramides were increased during the acute inflammatory phase of elastase-induced lung injury. Since addition of a serine palmitoyltransferase inhibitor diminished the rise in ceramides and ameliorated lung function, ceramides likely contributed to the early phase of alveolar destruction and are a potential therapeutic target in the elastase model of lung emphysema.
Collapse
|
13
|
Bein K, Di Giuseppe M, Mischler SE, Ortiz LA, Leikauf GD. LPS-treated macrophage cytokines repress surfactant protein-B in lung epithelial cells. Am J Respir Cell Mol Biol 2013; 49:306-15. [PMID: 23590297 PMCID: PMC3824031 DOI: 10.1165/rcmb.2012-0283oc] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 03/07/2013] [Indexed: 02/04/2023] Open
Abstract
In the mouse lung, Escherichia coli LPS can decrease surfactant protein-B (SFTPB) mRNA and protein concentrations. LPS also regulates the expression, synthesis, and concentrations of a variety of gene and metabolic products that inhibit SFTPB gene expression. The purpose of the present study was to determine whether LPS acts directly or indirectly on pulmonary epithelial cells to trigger signaling pathways that inhibit SFTPB expression, and whether the transcription factor CCAAT/enhancer binding protein (C/EBP)-β (CEBPB) is a downstream inhibitory effector. To investigate the mechanism of SFTPB repression, the human pulmonary epithelial cell lines NCI-H441 (H441) and NCI-H820 (H820) and the mouse macrophage-like cell line RAW264.7 were treated with LPS. Whereas LPS did not decrease SFTPB transcripts in H441 or H820 cells, the conditioned medium of LPS-treated RAW264.7 cells decreased SFTPB transcripts in H441 and H820 cells, and inhibited SFTPB promoter activity in H441 cells. In the presence of neutralizing anti-tumor necrosis factor (TNF) antibodies, the conditioned medium of LPS-treated RAW264.7 cells did not inhibit SFTPB promoter activity. In H441 cells treated with recombinant TNF protein, SFTPB transcripts decreased, whereas CEBPB transcripts increased and the transient coexpression of CEBPB decreased SFTPB promoter activity. Further, CEBPB short, interfering RNA increased basal SFTPB transcripts and countered the decrease of SFTPB transcripts by TNF. Together, these findings suggest that macrophages participate in the repression of SFTPB expression by LPS, and that macrophage-released cytokines (including TNF) regulate the transcription factor CEBPB, which can function as a downstream transcriptional repressor of SFTPB gene expression in pulmonary epithelial cells.
Collapse
Affiliation(s)
- Kiflai Bein
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219-3130, USA.
| | | | | | | | | |
Collapse
|
14
|
Antony N, Weir JR, McDougall ARA, Mantamadiotis T, Meikle PJ, Cole TJ, Bird AD. cAMP response element binding protein1 is essential for activation of steroyl co-enzyme a desaturase 1 (Scd1) in mouse lung type II epithelial cells. PLoS One 2013; 8:e59763. [PMID: 23637738 PMCID: PMC3630165 DOI: 10.1371/journal.pone.0059763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/18/2013] [Indexed: 01/20/2023] Open
Abstract
Cyclic AMP Response Element-Binding Protein 1 (Creb1) is a transcription factor that mediates cyclic adenosine 3′, 5′-monophosphate (cAMP) signalling in many tissues. Creb1−/− mice die at birth due to respiratory failure and previous genome-wide microarray analysis of E17.5 Creb1−/− fetal mouse lung identified important Creb1-regulated gene targets during lung development. The lipogenic enzymes stearoyl-CoA desaturase 1 (Scd1) and fatty acid synthase (Fasn) showed highly reduced gene expression in Creb1−/− lungs. We therefore hypothesized that Creb1 plays a crucial role in the transcriptional regulation of genes involved in pulmonary lipid biosynthetic pathways during lung development. In this study we confirmed that Scd1 and Fasn mRNA levels were down regulated in the E17.5 Creb1−/− mouse lung while the lipogenic-associated transcription factors SrebpF1, C/ebpα and Pparγ were increased. In vivo studies using germline (Creb1−/−) and lung epithelial-specific (Creb1EpiΔ/Δ) Creb1 knockout mice showed strongly reduced Scd1, but not Fasn gene expression and protein levels in lung epithelial cells. In vitro studies using mouse MLE-15 epithelial cells showed that forskolin-mediated activation of Creb1 increased both Scd1 gene expression and protein synthesis. Additionally, MLE15 cells transfected with a dominant-negative ACreb vector blocked forskolin-mediated stimulation of Scd1 gene expression. Lipid profiling in MLE15 cells showed that dominant-negative ACreb suppressed forskolin-induced desaturation of ether linked lipids to produce plasmalogens, as well as levels of phosphatidylethanolamine, ceramide and lysophosphatidylcholine. Taken together these results demonstrate that Creb1 is essential for the induction and maintenance of Scd1 in developing fetal mouse lung epithelial cells.
Collapse
Affiliation(s)
- Nisha Antony
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Jacqui R. Weir
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Annie R. A. McDougall
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Theo Mantamadiotis
- Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Peter J. Meikle
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria
- The Ritchie Centre, Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Timothy J. Cole
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- * E-mail:
| | - Anthony D. Bird
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
15
|
Preuß S, Omam FD, Scheiermann J, Stadelmann S, Winoto-Morbach S, von Bismarck P, Adam-Klages S, Knerlich-Lukoschus F, Lex D, Wesch D, Held-Feindt J, Uhlig S, Schütze S, Krause MF. Topical application of phosphatidyl-inositol-3,5-bisphosphate for acute lung injury in neonatal swine. J Cell Mol Med 2012; 16:2813-26. [PMID: 22882773 PMCID: PMC4118249 DOI: 10.1111/j.1582-4934.2012.01618.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/03/2012] [Indexed: 11/28/2022] Open
Abstract
Hypoxemic respiratory failure of the neonatal organism involves increased acid sphingomyelinase (aSMase) activity and production of ceramide, a second messenger of a pro-inflammatory pathway that promotes increased vascular permeability, surfactant alterations and alveolar epithelial apoptosis. We comparatively assessed the benefits of topical aSMase inhibition by either imipramine (Imi) or phosphatidylinositol-3,5-bisphosphate (PIP2) when administered into the airways together with surfactant (S) for fortification. In this translational study, a triple-hit acute lung injury model was used that entails repeated airway lavage, injurious ventilation and tracheal lipopolysaccharide instillation in newborn piglets subject to mechanical ventilation for 72 hrs. After randomization, we administered an air bolus (control), S, S+Imi, or S+PIP2. Only in the latter two groups we observed significantly improved oxygenation and ventilation, dynamic compliance and pulmonary oedema. S+Imi caused systemic aSMase suppression and ceramide reduction, whereas the S+PIP2 effect remained compartmentalized in the airways because of the molecule's bulky structure. The surfactant surface tensions improved by S+Imi and S+PIP2 interventions, but only to a minor extent by S alone. S+PIP2 inhibited the migration of monocyte-derived macrophages and granulocytes into airways by the reduction of CD14/CD18 expression on cell membranes and the expression of epidermal growth factors (amphiregulin and TGF-β1) and interleukin-6 as pro-fibrotic factors. Finally we observed reduced alveolar epithelial apoptosis, which was most apparent in S+PIP2 lungs. Exogenous surfactant "fortified" by PIP2, a naturally occurring surfactant component, improves lung function by topical suppression of aSMase, providing a potential treatment concept for neonates with hypoxemic respiratory failure.
Collapse
Affiliation(s)
- Stefanie Preuß
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Friede D Omam
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Julia Scheiermann
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Sabrina Stadelmann
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Supandi Winoto-Morbach
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Philipp von Bismarck
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| | - Sabine Adam-Klages
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | | | - Dennis Lex
- Universitätsklinikum, RWTH Aachen, Institute of Pharmacology and ToxicologyAachen, Germany
| | - Daniela Wesch
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Janka Held-Feindt
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of NeurosurgeryKiel, Germany
| | - Stefan Uhlig
- Universitätsklinikum, RWTH Aachen, Institute of Pharmacology and ToxicologyAachen, Germany
| | - Stefan Schütze
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Institute of ImmunologyKiel, Germany
| | - Martin F Krause
- Universitätsklinikum Schleswig-Holstein, Campus Kiel, Department of PediatricsKiel, Germany
| |
Collapse
|
16
|
Godbole MM, Rao G, Paul BN, Mohan V, Singh P, Khare D, Babu S, Nath A, Singh PK, Tiwari S. Prenatal iodine deficiency results in structurally and functionally immature lungs in neonatal rats. Am J Physiol Lung Cell Mol Physiol 2012; 302:L1037-43. [DOI: 10.1152/ajplung.00191.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Maternal hypothyroidism affects postnatal lung structure. High prevalence of hypothyroxinemia (low T4, normal T3) in iodine-deficient pregnant women and associated risk for neuropsychological development along with high infant/neonatal mortality ascribed to respiratory distress prompted us to study the effects of maternal hypothyroxinemia on postnatal lung development. Female Sprague Dawley rats were given a low-iodine diet (LID) with 1% KClO4in drinking water for 10 days, to minimize thyroid hormone differences. Half of these rats were continued on iodine-deficient diet; ID (LID with 0.005% KClO4) for 3 mo, whereas the rest were switched to an iodine-sufficient diet; IS [LID + potassium iodide (10 μg iodine/20 g of diet + normal drinking water)]. Pups born to ID mothers were compared with age-matched pups from IS mothers at postnatal days 8 (P8) and 16 (P16) ( n = 6–8/group). ID pups had normal circulating T3 but significantly low T4 levels ( P < 0.05) and concomitantly approximately sixfold higher thyroid hormone receptor-β mRNA in alveolar epithelium. Lung histology revealed larger and irregularly shaped alveoli in ID pups relative to controls. Lung function was assessed at P16 using a double-chambered plethysmograph and observed reduced tidal volume, peak inspiratory and expiratory flow, and dynamic lung compliance in ID pups compared with IS pups. Significant lowering of surfactant protein (SP)-B and SP-C mRNA and protein found in ID pups at P16. ID pups had 16-fold lower matrix metalloproteinase-9 mRNA levels in their alveolar epithelium. In addition, mRNA levels of thyroid transcription factor-1 and SP-D were significantly higher (3-fold) compared with IS pups. At P16, significantly lower levels of SP-B and SP-C found in ID pups may be responsible for immature lung development and reduced lung compliance. Our data suggest that maternal hypothyroxinemia may result in the development of immature lungs that, through respiratory distress, could contribute to the observed high infant mortality in ID neonates.
Collapse
Affiliation(s)
- Madan M. Godbole
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | - Geeta Rao
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | - B. N. Paul
- Indian Institute of Toxicology Research, Lucknow, India
| | - Vishwa Mohan
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | - Preeti Singh
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | - Drirh Khare
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | - Satish Babu
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| | | | - P. K. Singh
- Anesthesiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences,
| | - Swasti Tiwari
- Departments of 1Endocrinology, Molecular Medicine & Biotechnology,
| |
Collapse
|
17
|
Das A, Acharya S, Gottipati KR, McKnight JB, Chandru H, Alcorn JL, Boggaram V. Thyroid transcription factor-1 (TTF-1) gene: identification of ZBP-89, Sp1, and TTF-1 sites in the promoter and regulation by TNF-α in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L427-40. [PMID: 21784970 DOI: 10.1152/ajplung.00090.2011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the lung. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defense. In this study, we identified functionally important transcription factor binding sites in the TTF-1 proximal promoter and studied tumor necrosis factor-α (TNF-α) regulation of TTF-1 expression. TNF-α, a proinflammatory cytokine, has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) and inhibits surfactant protein levels. Deletion analysis of TTF-1 5'-flanking DNA indicated that the TTF-1 proximal promoter retained high-level activity. Electrophoretic mobility shift assay, chromatin immunoprecipitation, and mutational analysis experiments identified functional ZBP-89, Sp1, Sp3, and TTF-1 sites in the TTF-1 proximal promoter. TNF-α inhibited TTF-1 protein levels in H441 and primary alveolar type II cells. TNF-α inhibited TTF-1 gene transcription and promoter activity, indicating that transcriptional mechanisms play important roles in the inhibition of TTF-1 levels. TNF-α inhibited TTF-1 but not Sp1 or hepatocyte nuclear factor-3 DNA binding to TTF-1 promoter. Transactivation experiments in A549 cells indicated that TNF-α inhibited TTF-1 promoter activation by exogenous Sp1 and TTF-1 without altering their levels, suggesting inhibition of transcriptional activities of these proteins. TNF-α inhibition of TTF-1 expression was associated with increased threonine, but not serine, phosphorylation of Sp1. Because TTF-1 serves as a positive regulator for surfactant protein gene expression, TNF-α inhibition of TTF-1 expression could have important implications for the reduction of surfactant protein levels in diseases such as ARDS.
Collapse
Affiliation(s)
- Aparajita Das
- Center for Biomedical Research, The University of Texas Health Center at Tyler, 75708-3154, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Zou X, Gao Y, Ruvolo VR, Gardner TL, Ruvolo PP, Brown RE. Human glycolipid transfer protein gene (GLTP) expression is regulated by Sp1 and Sp3: involvement of the bioactive sphingolipid ceramide. J Biol Chem 2010; 286:1301-11. [PMID: 20974858 DOI: 10.1074/jbc.m110.127837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolipid transfer protein (GLTP) accelerates glycolipid intermembrane transfer via a unique lipid transfer/binding fold (GLTP fold) that defines the GLTP superfamily and is the prototype for functional GLTP-like domains in larger proteins, i.e. FAPP2. Human GLTP is encoded by the single-copy GLTP gene on chromosome 12 (12q24.11 locus), but regulation of GLTP gene expression remains completely unexplored. Herein, the ability of glycosphingolipids (and their sphingolipid metabolites) to regulate the transcriptional expression of GLTP via its promoter has been evaluated. Using luciferase and GFP reporters in concert with deletion mutants, the constitutive and basal (225 bp; ∼78% G+C) human GLTP promoters have been defined along with adjacent regulatory elements. Despite high G+C content, translational regulation was not evident by the mammalian target of rapamycin pathway. Four GC-boxes were shown to be functional Sp1/Sp3 transcription factor binding sites. Mutation of one GC-box was particularly detrimental to GLTP transcriptional activity. Sp1/Sp3 RNA silencing and mithramycin A treatment significantly inhibited GLTP promoter activity. Among tested sphingolipid analogs of glucosylceramide, sulfatide, ganglioside GM1, ceramide 1-phosphate, sphingosine 1-phosphate, dihydroceramide, sphingosine, only ceramide, a nonglycosylated precursor metabolite unable to bind to GLTP protein, induced GLTP promoter activity and raised transcript levels in vivo. Ceramide treatment partially blocked promoter activity decreases induced by Sp1/Sp3 knockdown. Ceramide treatment also altered the in vivo binding affinity of Sp1 and Sp3 for the GLTP promoter and decreased Sp3 acetylation. This study represents the first characterization of any Gltp gene promoter and links human GLTP expression to sphingolipid homeostasis through ceramide.
Collapse
Affiliation(s)
- Xianqiong Zou
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Thyroid transcription factor-1 (TTF-1) is a member of the homeodomain transcription family expressed in epithelial cells of the thyroid and lung. Although nuclear TTF-1 is generally considered a specific marker for lung and thyroid neoplasms, it has been reported to be positive in other types of tumors including colorectal carcinoma (CRC). During metastatic adenocarcinoma workup for patients who had a history of CRC, we identified 4 positive TTF-1 cases using clone 8G7G3/1. Three of the 4 corresponding primary carcinomas were also positive for TTF-1. Therefore, we sought to retrospectively investigate the expression of TTF-1 in 100 CRC cases constructed in tissue microarray blocks and whole tissue sections of the 4 primary tumors corresponding to the 4 positive metastases. In tissue microarray cases, all cases had negative nuclear staining. Our results suggest that during immunohistochemical workup for adenocarcinoma, especially when the differential diagnosis includes the lung and CRC, TTF-1 results should be interpreted with caution as a small percentage of CRC expresses this marker. Positive nuclear TTF-1 in a metastatic carcinoma does not rule out CRC primary. Clinicopathologic correlation, tumor morphology, and a panel of immunohistochemical markers are essential to render the correct diagnosis.
Collapse
|
20
|
Boggaram V, Chandru H, Gottipati KR, Thakur V, Das A, Berhane K. Transcriptional regulation of SP-B gene expression by nitric oxide in H441 lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2010; 299:L252-62. [PMID: 20418387 PMCID: PMC2928609 DOI: 10.1152/ajplung.00062.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Accepted: 04/20/2010] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein B (SP-B) is essential for the surface tension-lowering function of pulmonary surfactant. Surfactant dysfunction and reduced SP-B levels are associated with elevated nitric oxide (NO) in inflammatory lung diseases, such as acute respiratory distress syndrome. We previously found that NO donors decreased SP-B expression in H441 and MLE-12 lung epithelial cells by reducing SP-B promoter activity. In this study, we determined the roles of DNA elements and interacting transcription factors necessary for NO inhibition of SP-B promoter activity in H441 cells. We found that the NO donor diethylenetriamine-nitric oxide adduct (DETA-NO) decreased SP-B promoter thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3 (HNF-3), and Sp1 binding activities but increased activator protein 1 (AP-1) binding activity. DETA-NO decreased TTF-1, but not Sp1, levels, suggesting that reduced TTF-1 expression contributes to reduced TTF-1 binding activity. Lack of effect on Sp1 levels suggested that DETA-NO inhibits Sp1 binding activity per se. Overexpression of Sp1, but not TTF-1, blocked DETA-NO inhibition of SP-B promoter activity. DETA-NO inhibited SP-B promoter induction by exogenous TTF-1 without altering TTF-1 levels. DETA-NO decreased TTF-1 mRNA levels and gene transcription rate, indicating that DETA-NO inhibits TTF-1 expression at the transcriptional level. We conclude that NO inhibits SP-B promoter by decreasing TTF-1, Sp1, and HNF-3 binding activities and increasing AP-1 binding activity. NO inhibits TTF-1 levels and activity to decrease SP-B expression. NO inhibition of SP-B expression could be a mechanism by which surfactant dysfunction occurs in inflammatory lung diseases.
Collapse
Affiliation(s)
- Vijay Boggaram
- Center for Biomedical Research, Univ. of Texas Health Science Center at Tyler, TX 75708-3154, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 2009; 116:27-35. [PMID: 19037882 DOI: 10.1042/cs20080068] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TTF-1 [thyroid transcription factor-1; also known as Nkx2.1, T/EBP (thyroid-specific-enhancer-binding protein) or TITF1] is a homeodomain-containing transcription factor essential for the morphogenesis and differentiation of the thyroid, lung and ventral forebrain. TTF-1 controls the expression of select genes in the thyroid, lung and the central nervous system. In the lung, TTF-1 controls the expression of surfactant proteins that are essential for lung stability and lung host defence. Human TTF-1 is encoded by a single gene located on chromosome 14 and is organized into two/three exons and one/two introns. Multiple transcription start sites and alternative splicing produce mRNAs with heterogeneity at the 5' end. The 3' end of the TTF-1 mRNA is characterized by a rather long untranslated region. The amino acid sequences of TTF-1 from human, rat, mouse and other species are very similar, indicating a high degree of sequence conservation. TTF-1 promoter activity is maintained by the combinatorial or co-operative actions of HNF-3 [hepatocyte nuclear factor-3; also known as FOXA (forkhead box A)], Sp (specificity protein) 1, Sp3, GATA-6 and HOXB3 (homeobox B3) transcription factors. There is limited information on the regulation of TTF-1 gene expression by hormones, cytokines and other biological agents. Glucocorticoids, cAMP and TGF-beta (transforming growth factor-beta) have stimulatory effects on TTF-1 expression, whereas TNF-alpha (tumour necrosis factor-alpha) and ceramide have inhibitory effects on TTF-1 DNA-binding activity in lung cells. Haplo-insufficiency of TTF-1 in humans causes hypothyroidism, respiratory dysfunction and recurring pulmonary infections, underlining the importance of optimal TTF-1 levels for the maintenance of thyroid and lung function. Recent studies have implicated TTF-1 as a lineage-specific proto-oncogene for lung cancer.
Collapse
|
22
|
Das A, Boggaram V. Proteasome dysfunction inhibits surfactant protein gene expression in lung epithelial cells: mechanism of inhibition of SP-B gene expression. Am J Physiol Lung Cell Mol Physiol 2007; 292:L74-84. [PMID: 16905641 DOI: 10.1152/ajplung.00103.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant proteins maintain lung function through their actions to reduce alveolar surface tension and control of innate immune responses in the lung. The ubiquitin proteasome pathway is responsible for the degradation of majority of intracellular proteins in eukaryotic cells, and proteasome dysfunction has been linked to the development of neurodegenerative, cardiac, and other diseases. Proteasome function is impaired in interstitial lung diseases associated with surfactant protein C (SP-C) mutation mapping to the BRICHOS domain located in the proSP-C protein. In this study we determined the effects of proteasome inhibition on surfactant protein expression in H441 and MLE-12 lung epithelial cells to understand the relationship between proteasome dysfunction and surfactant protein gene expression. Proteasome inhibitors lactacystin and MG132 reduced the levels of SP-A, SP-B, and SP-C mRNAs in a concentration-dependent manner in H441 and MLE-12 cells. In H441 cells, lactacystin and MG132 inhibition of SP-B mRNA was associated with similar decreases in SP-B protein, and the inhibition was due to inhibition of gene transcription. Proteasome inhibitors decreased thyroid transcription factor-1 (TTF-1)/Nkx2.1 DNA binding activity, and the reduced TTF-1 DNA binding activity was due to reduced expression levels of TTF-1 protein. These data indicated that the ubiquitin proteasome pathway is essential for the maintenance of surfactant protein gene expression and that disruption of this pathway inhibits surfactant protein gene expression via reduced expression of TTF-1 protein.
Collapse
Affiliation(s)
- Aparajita Das
- Department of Molecular Biology, The University of Texas Health Center at Tyler, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | | |
Collapse
|