1
|
Ekpruke CD, Borges-Sosa O, Hassel CA, Rousselle D, Dinwiddie L, Babayev M, Bakare A, Silveyra P. Sex-Specific Anti-Inflammatory Effects of a Ketogenic Diet in a Mouse Model of Allergic Airway Inflammation. Int J Mol Sci 2025; 26:3046. [PMID: 40243683 PMCID: PMC11989016 DOI: 10.3390/ijms26073046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Asthma, a chronic inflammatory airway disease, leads to airflow obstruction and exhibits sex differences in prevalence and severity. Immunomodulatory diets, such as the ketogenic diet (high fat, low carbohydrate, moderate protein), may offer complementary benefits in managing airway inflammation. While anti-inflammatory effects of ketogenic diets are documented in cardiovascular diseases, their impact on asthma, especially regarding sex-specific differences, remains unexplored. Few studies on diet and asthma have considered sex as a biological factor. To test the hypothesis that a ketogenic diet affects airway inflammation in a sex-specific manner, we used a mouse allergic airway inflammation model. Male and female C57BL/6J mice (3-4 weeks old, n = 5-6/group) were fed a ketogenic diet or normal chow for 12 weeks. From weeks 7 to 12, mice were challenged intranasally with house dust mite allergens (HDM) 5 days/week to induce airway inflammation. Lung tissue was analyzed 72 h post-exposure using flow cytometry to assess immune cell populations, and data were analyzed with two-way ANOVA. The ketogenic diet increased body weight in allergen-exposed mice, with a greater effect in males than females (p = 0.0512). Significant sex-diet interactions were noted for alveolar macrophages, CD103+, CD11B+, and plasmacytoid dendritic cells (p < 0.05). Eosinophil reductions were observed in males but not females on the ketogenic diet. The diet also increased NKT cells and decreased NK cells in males but not females (p < 0.001). These findings highlight sex-specific effects of ketogenic diets on lung immune responses, with stronger impacts in males.
Collapse
Affiliation(s)
- Carolyn D. Ekpruke
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Omar Borges-Sosa
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | | | - Dustin Rousselle
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Lyidia Dinwiddie
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Maksat Babayev
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
| | - Ahmed Bakare
- School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Patricia Silveyra
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN 47405, USA; (C.D.E.); (O.B.-S.); (D.R.); (L.D.); (M.B.)
- School of Medicine, Indiana University, Indianapolis, IN 46202, USA
| |
Collapse
|
2
|
Fastiggi VA, Mank MM, Caporizzo MA, Poynter ME. Beta-Hydroxybutyrate Inhibits Bronchial Smooth Muscle Contraction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639075. [PMID: 40060651 PMCID: PMC11888348 DOI: 10.1101/2025.02.24.639075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Asthma is a chronic respiratory condition characterized by airway inflammation, remodeling, and hyperresponsiveness to triggers causing airway constriction. Bronchial smooth muscle plays a critical role by narrowing airways, leading to obstruction and breathing difficulties, often exacerbated by mast cell infiltration and histamine release. Whereas current treatments, including bronchodilators, corticosteroids, and biologics provide effective management for most patients, alternative therapies are needed for difficult-to-treat asthma. Recent research highlights the potential of therapeutic ketosis, achieved through dietary interventions or supplementation with exogenous ketones, to reduce airway hyperresponsiveness and inflammation. Ketone bodies, known for providing energy during carbohydrate scarcity, also influence asthma by activating cell-surface receptors and transporters. In vivo, interventions like weight loss and caloric restriction increase ketone body levels, correlating with improved asthma symptoms, reduced oxidative stress, and inflammation. These effects suggest ketone bodies, particularly β-hydroxybutyrate, may play a therapeutic role in mitigating bronchoconstriction and smooth muscle contraction in asthma. We utilize human bronchial smooth muscle cells (in vitro) and mouse precision-cut lung slices (PCLS) (ex vivo) to assess the effects of BHB on histamine-induced bronchoconstriction. Brightfield microscopy showed that BHB reduces contraction in human bronchial smooth muscle cells, an effect involving free fatty acid receptor 3 (FFAR3) activation. Light microscopy of PCLS revealed that BHB inhibits airway narrowing and cellular extrusion, demonstrating its ability to mitigate bronchoconstriction by suppressing smooth muscle contraction. These results implicate bronchial smooth muscle as a cellular target of therapeutic ketosis, an important contributor to the beneficial effects of BHB in preclinical models of asthma.
Collapse
Affiliation(s)
- V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT, 05405, USA
| | - Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| | - Matthew A Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT, 05405, USA
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| |
Collapse
|
3
|
Fastiggi VA, Mank MM, Poynter ME. Beta-Hydroxybutyrate Attenuates Bronchial Smooth Muscle Pro-Inflammatory Cytokine Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639048. [PMID: 40027689 PMCID: PMC11870512 DOI: 10.1101/2025.02.19.639048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Asthma is a common airway condition causing breathing difficulties due to reversible airflow obstruction. It often affects obese individuals, with symptoms triggered by environmental factors that induce immune responses, leading to inflammation and bronchoconstriction. Bronchial smooth muscle (BSM) plays a central role in airway narrowing, driven by type 2 immune responses involving cytokines like IL-4, IL-5, and IL-13, along with leukocytes including eosinophils and type 2 T-helper cells. These responses cause structural changes such as fibrosis and airway thickening, while BSM cells worsen asthma by releasing pro-inflammatory cytokines in response to allergens, microbial signals, or inflammatory cytokines from other cells. While current treatments manage asthma in most patients, alternative therapies are needed for difficult-to-treat cases, particularly prevalent in obese, allergic individuals. Emerging research suggests that therapeutic ketosis, induced by dietary changes or ketone supplementation, may reduce airway hyperresponsiveness and inflammation. The primary ketone body, β-hydroxybutyrate (BHB), produced during carbohydrate scarcity, acts via cell-surface receptors and transporters, potentially mitigating asthma symptoms. Weight loss and caloric restriction increase ketone levels, correlating with reduced inflammation and improved asthma outcomes. We hypothesized that β-hydroxybutyrate (BHB) reduces bronchoconstriction and inflammation in asthma by targeting bronchial smooth muscle. Using human bronchial smooth muscle cells (HBSMC) in vitro, we demonstrate herein that BHB suppresses IL-1β-induced pro-inflammatory cytokine production through Free Fatty Acid Receptor 3 (FFAR3) activation. These findings suggest that bronchial smooth muscle is a key target of therapeutic ketosis, supporting BHB's potential benefits in preclinical asthma models.
Collapse
Affiliation(s)
- V. Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
- Cellular, Molecular, and Biomedical Sciences Doctoral Program, University of Vermont, Burlington, VT, 05405, USA
| | - Madeleine M. Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| | - Matthew E. Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington, VT, 05405, USA
| |
Collapse
|
4
|
Tang X, Zhuang H, Yu H. Mendelian randomization study on the association of circulating ketone bodies with lung cancer and respiratory diseases. Sci Rep 2024; 14:30205. [PMID: 39632975 PMCID: PMC11618345 DOI: 10.1038/s41598-024-81591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
The liver produces various ketone bodies (KBs) including 3-Hydroxybutyrate (3-OHB), acetoacetate (AcAc), and acetone, with 3-OHB being the major component. Previous studies have shown that KBs protect against respiratory diseases; however, there is no evidence of a genetic link. To avoid biases existing in traditional observational studies, a two-sample Mendelian randomization (MR) analysis was carried out to investigate genetic causation and novel therapeutic uses for KBs. This study used databases from genome-wide association studies (GWAS) and single nucleotide polymorphisms as instrumental variables for KBs from a recently published metabonomics study (n = 121,584) and respiratory diseases [lung cancer, n = 85,716; asthma, n = 127,669; chronic bronchitis, n = 450,422; chronic obstructive pulmonary disease (COPD), n = 468,475; FEV1/FVC < 0.7, n = 353,315] from their publicly available GWAS, respectively. Strong sets of instrumental variables (P < 5 × 10- 8) were selected, with inverse-variance weighted as the primary MR method. Sensitivity analyses included Cochran's Q test, MR Egger, MR-PRESSO, leave-one-out test, and funnel plots. The Steiger test and reversed MR were used to exclude reverse causality. Additionally, independent replication MR studies were conducted using databases from another large public GWAS and similar methods as described above. After MR analyses and sensitivity filtering, we discovered a protective effect of 3-OHB on lung cancer (odds ratio [OR] = 0.771; 95% confidence interval [CI] = 0.648-0.916; PFDR=0.006), small cell carcinoma (OR = 0.485, 95% CI = 0.301-0.781, PFDR=0.006), asthma (OR = 0.585, 95% CI = 0.395-0.867, PFDR=0.010), chronic bronchitis (OR = 0.753, 95% CI = 0.570-0.994, PFDR=0.045), COPD (OR = 0.690, 95% CI = 0.535-0.890, PFDR=0.008) and lung function (OR = 0.970, 95%CI = 0.950-0.990, PFDR =0.008). In summary, our findings suggest that 3-OHB acts as a protective factor against lung cancer and respiratory diseases. However, heterogeneity implies that other mechanisms may also be involved in COPD improvement by 3-OHB.
Collapse
Affiliation(s)
- Xisha Tang
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, Sichuan, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Sichuan university, Chengdu, China
| | - Huijia Zhuang
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, Sichuan, China
- Laboratory of Mitochondrial Metabolism and Perioperative Medicine, West China Hospital, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, Sichuan university, Chengdu, China
| | - Hai Yu
- Department of Anesthesiology, West China Hospital, Sichuan university, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
5
|
McClure TS, Phillips J, Koutnik AP, Coleman K, Chappe E, Cutter GR, Egan B, Norell T, Stubbs BJ, Bamman MM, Kernagis D. Ketone monoester attenuates declines in cognitive performance and oxygen saturation during acute severe hypoxic exposure under resting conditions. Exp Physiol 2024; 109:1672-1682. [PMID: 39190580 PMCID: PMC11442756 DOI: 10.1113/ep091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/19/2024] [Indexed: 08/29/2024]
Abstract
Exogenous ketone supplements are a potential augmentation strategy for cognitive resilience during acute hypoxic exposure due to their capacity to attenuate the decline in oxygen (O2) availability, and by providing an alternative substrate for cerebral metabolism. Utilizing a single-blind randomized crossover design, 16 male military personnel (age, 25.3 ± 2.4 year, body mass, 86.2 ± 9.3 kg) performed tests of cognitive performance at rest in three environments: room air (baseline), normoxia (20 min; 0 m; 20.9% O2) and hypoxia (20 min; 6096 m, 9.7% O2) using a reduced O2 breathing device (ROBD). (R)-3-Hydroxybutyl (R)-3-hydroxybutyrate (R-BD R-βHB) ketone monoester (KME; 650 mg/kg, split dose given at 30 min prior to each exposure) or taste-matched placebo (PLA) was ingested prior to normoxia and hypoxic exposure. Blood R-βHB and glucose concentrations, cognitive performance and O2 saturation (S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ) were collected throughout. KME ingestion increased blood R-βHB concentration, which was rapid and sustained (>4 mM 30 min post; P < 0.001) and accompanied by lower blood glucose concentration (∼20 mg/dL; P < 0.01) compared to PLA. Declines in cognitive performance during hypoxic exposure, assessed as cognitive efficiency during a Defense Automated Neurobehavioral Assessment (DANA) code substitution task, were attenuated with KME leading to 6.8 (95% CL: 1.0, 12.6) more correct responses per minute compared to PLA (P = 0.018). The decline inS p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ during hypoxic exposure was attenuated (6.40%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; 95% CL: 0.04, 12.75; P = 0.049) in KME compared to PLA (KME, 76.8 ± 6.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ; PLA, 70.4 ± 7.4%S p O 2 ${{S}_{{\mathrm{p}}{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ). Acute ingestion of KME attenuated the decline in cognitive performance during acute severe hypoxic exposure, which coincided with attenuation of declines in O2 saturation.
Collapse
Affiliation(s)
- Tyler S. McClure
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Jeffrey Phillips
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Andrew P. Koutnik
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Sansum Diabetes Research InstituteSanta BarbaraCaliforniaUSA
| | - Kody Coleman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Ed Chappe
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Gary R. Cutter
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Brendan Egan
- School of Health and Human PerformanceDublin City UniversityDublinIreland
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Todd Norell
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | | | - Marcas M. Bamman
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
| | - Dawn Kernagis
- Healthspan, Resilience and Performance ResearchFlorida Institute for Human and Machine CognitionPensacolaFloridaUSA
- Department of NeurosurgeryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| |
Collapse
|
6
|
Santangelo A, Corsello A, Spolidoro GCI, Trovato CM, Agostoni C, Orsini A, Milani GP, Peroni DG. The Influence of Ketogenic Diet on Gut Microbiota: Potential Benefits, Risks and Indications. Nutrients 2023; 15:3680. [PMID: 37686712 PMCID: PMC10489661 DOI: 10.3390/nu15173680] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/10/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The ketogenic diet (KD) restricts carbohydrate consumption, leading to an increase in ketone bodies, such as acetoacetate, β-hydroxybutyrate, and acetone, which are utilized as energy substrates. This dietary approach impacts several biochemical processes, resulting in improved clinical management of various disorders, particularly in childhood. However, the exact mechanisms underlying the efficacy of KD remain unclear. Interestingly, KD may also impact the gut microbiota, which plays a pivotal role in metabolism, nutrition, and the development of the immune and nervous systems. KD has gained popularity for its potential benefits in weight loss, blood sugar control, and certain neurological conditions. This narrative review sums up KD-related studies published over 30 years. While short-term studies have provided valuable insights into the effects of KD on the gut microbiota, persistent uncertainties surround its long-term efficacy and potential for inducing dysbiosis. The significant influence of KD on epigenetic mechanisms, intracellular pathways, and gut microbial composition underscores its potential as a therapeutic choice. However, a judicious consideration of the potential risks associated with the strict adherence to a low-carbohydrate, high-fat, and high-protein regimen over prolonged periods is imperative. As KDs gain popularity among the adolescent and young adult demographic for weight management, it becomes imperative to undertake additional research to comprehensively assess their impact on nutritional status and gut microbiota, ensuring a holistic and sustainable approach to medical nutrition.
Collapse
Affiliation(s)
- Andrea Santangelo
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Antonio Corsello
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Giulia Carla Immacolata Spolidoro
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
| | - Chiara Maria Trovato
- Hepatology Gastroenterology and Nutrition Unit, Bambino Gesù Children Hospital, 00165 Rome, Italy;
| | - Carlo Agostoni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessandro Orsini
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| | - Gregorio Paolo Milani
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy; (G.C.I.S.); (C.A.); (G.P.M.)
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Diego Giampietro Peroni
- Department of Pediatrics, Santa Chiara Hospital, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.S.); (A.O.); (D.G.P.)
| |
Collapse
|
7
|
The Role of Ketone Bodies in Various Animal Models of Kidney Disease. ENDOCRINES 2023. [DOI: 10.3390/endocrines4010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The kidney is a vital organ that carries out significant metabolic functions in our body. Due to the complexity of its role, the kidney is also susceptible to many disease conditions, such as acute kidney injury (AKI) and chronic kidney disease (CKD). Despite the prevalence and our increased understanding of the pathophysiology of both AKI and CKD as well as the transition of AKI to CKD, no well-established therapeutics have been applied clinically to these conditions, rendering an urgent need for a novel potential therapeutic target to be developed. In this article, we reviewed the function of ketone bodies in some common kidney conditions, such as drug-induced nephrotoxicity, ischemia and reperfusion injury, fibrosis development, diabetic kidney disease, kidney aging, hypertension, and CKD progression. All the selected studies reviewed were performed in animal models by primarily utilizing rodents, which also provide invaluable sources for future clinical applications. Ketone bodies have shown significant renal protective properties via attenuation of oxidative stress, increased expression of anti-inflammatory proteins, gene regulation, and a reduction of apoptosis of renal cells. A physiological level of ketone bodies could be achieved by fasting, a ketogenic diet, and an exogenous ketone supplement. Finally, the limitations of the long-term ketogenic diet were also discussed.
Collapse
|
8
|
The Role of Nutrition in Mitigating the Effects of COVID-19 from Infection through PASC. Nutrients 2023; 15:nu15040866. [PMID: 36839224 PMCID: PMC9961621 DOI: 10.3390/nu15040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
The expansive and rapid spread of the SARS-CoV-2 virus has resulted in a global pandemic of COVID-19 infection and disease. Though initially perceived to be acute in nature, many patients report persistent and recurrent symptoms beyond the infectious period. Emerging as a new epidemic, "long-COVID", or post-acute sequelae of coronavirus disease (PASC), has substantially altered the lives of millions of people globally. Symptoms of both COVID-19 and PASC are individual, but share commonality to established respiratory viruses, which include but are not limited to chest pain, shortness of breath, fatigue, along with adverse metabolic and pulmonary health effects. Nutrition plays a critical role in immune function and metabolic health and thus is implicated in reducing risk or severity of symptoms for both COVID-19 and PASC. However, despite the impact of nutrition on these key physiological functions related to COVID-19 and PASC, the precise role of nutrition in COVID-19 infection and PASC onset or severity remains to be elucidated. This narrative review will discuss established and emerging nutrition approaches that may play a role in COVID-19 and PASC, with references to the established nutrition and clinical practice guidelines that should remain the primary resources for patients and practitioners.
Collapse
|
9
|
Al-Rebdi M, Rabbani U. Alleviation of Asthma Symptoms After Ketogenic Diet: A Case Report. Cureus 2023; 15:e34526. [PMID: 36879703 PMCID: PMC9984737 DOI: 10.7759/cureus.34526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Asthma is a chronic disease that affects the quality of life of patients, and asthma exacerbations are often a reason for hospitalization and activity limitations. Obesity has been linked to asthma as a risk and exacerbating factor. Evidence suggests that weight reduction has a positive effect on asthma control. However, there is also debate on the role of the ketogenic diet in asthma control. Here we present a case of asthma who reported markedly improved asthma after starting a ketogenic diet in the absence of any other lifestyle change. Over the four months on the ketogenic diet, the patient reported losing 20 kg of weight, reduction in blood pressure (without antihypertensives), and complete alleviation of asthma symptoms. This case report is important as the control of asthma after a ketogenic diet is not studied well in humans and therefore needs to be studied extensively.
Collapse
Affiliation(s)
| | - Unaib Rabbani
- Family Medicine, Qassim Health Cluster, Buraidah, SAU
| |
Collapse
|
10
|
Mank MM, Reed LF, Fastiggi VA, Peña-García PE, Hoyt LR, Van Der Vliet KE, Ather JL, Poynter ME. Ketone body augmentation decreases methacholine hyperresponsiveness in mouse models of allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2022; 1:282-298. [PMID: 36466740 PMCID: PMC9718535 DOI: 10.1016/j.jacig.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Background Individuals with allergic asthma exhibit lung inflammation and remodeling accompanied by methacholine hyperresponsiveness manifesting in proximal airway narrowing and distal lung tissue collapsibility, and they can present with a range of mild-to-severe disease amenable or resistant to therapeutic intervention, respectively. There remains a need for alternatives or complements to existing treatments that could control the physiologic manifestations of allergic asthma. Objectives Our aim was to examine the hypothesis that because ketone bodies elicit anti-inflammatory activity and are effective in mitigating the methacholine hyperresponsiveness associated with obese asthma, increasing systemic concentrations of ketone bodies would diminish pathologic outcomes in asthma-relevant cell types and in mouse models of allergic asthma. Methods We explored the effects of ketone bodies on allergic asthma-relevant cell types (macrophages, airway epithelial cells, CD4 T cells, and bronchial smooth muscle cells) in vitro as well as in vivo by using preclinical models representative of several endotypes of allergic asthma to determine whether promotion of ketosis through feeding a ketogenic diet or providing a ketone precursor or a ketone ester dietary supplement could affect immune and inflammatory parameters as well as methacholine hyperresponsiveness. Results In a dose-dependent manner, the ketone bodies acetoacetate and β-hydroxybutyrate (BHB) decreased proinflammatory cytokine secretion from mouse macrophages and airway epithelial cells, decreased house dust mite (HDM) extract-induced IL-8 secretion from human airway epithelial cells, and decreased cytokine production from polyclonally and HDM-activated T cells. Feeding a ketogenic diet, providing a ketone body precursor, or supplementing the diet with a ketone ester increased serum BHB concentrations and decreased methacholine hyperresponsiveness in several acute HDM sensitization and challenge models of allergic asthma. A ketogenic diet or ketone ester supplementation decreased methacholine hyperresponsiveness in an HDM rechallenge model of chronic allergic asthma. Ketone ester supplementation synergized with corticosteroid treatment to decrease methacholine hyperresponsiveness in an HDM-driven model of mixed-granulocytic severe asthma. HDM-induced morphologic changes in bronchial smooth muscle cells were inhibited in a dose-dependent manner by BHB, as was HDM protease activity. Conclusions Increasing systemic BHB concentrations through dietary interventions could provide symptom relief for several endotypes of allergic asthmatic individuals through effects on multiple asthma-relevant cells.
Collapse
Affiliation(s)
- Madeleine M Mank
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Leah F Reed
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - V Amanda Fastiggi
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Paola E Peña-García
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Laura R Hoyt
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Katherine E Van Der Vliet
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Jennifer L Ather
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| | - Matthew E Poynter
- Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, and The Vermont Lung Center, Burlington
| |
Collapse
|
11
|
Zhang L, Li S, Tai Z, Yu C, Xu Z. Gut Microbes Regulate Innate Immunity and Epilepsy. Front Neurosci 2022; 16:870197. [PMID: 35720723 PMCID: PMC9198293 DOI: 10.3389/fnins.2022.870197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/13/2022] [Indexed: 12/03/2022] Open
Abstract
Epilepsy is a common chronic brain disease. There are many clinical methods to control epileptic seizures, such as anti-seizure medications (ASMs) or surgical removal of epileptogenic lesions. However, the pathophysiology of epilepsy is still unknown, making it difficult to control or prevent it. The host’s immune system monitors gut microbes, interacts with microbes through pattern recognition receptors such as Toll-like receptors (TLRs) and NOD-like receptors (NLRs) expressed by innate immune cells, and activates immune responses in the body to kill pathogens and balance the relationship between microbes and host. In addition, inflammatory responses induced by the innate immune system are seen in animal models of epilepsy and temporal lobe epilepsy brain tissue to combat pathogens or injuries. This review summarizes the potential relationship between gut microbes, innate immunity, and epilepsy based on recent research to provide more hints for researchers to explore this field further.
Collapse
Affiliation(s)
- Linhai Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Shuang Li
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhenzhen Tai
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, China
| |
Collapse
|