1
|
Rivera A, Vega C, Ramos-Rivera A, Maldonado ER, Prado GN, Karnes HE, Fesko YA, Snyder LM, Alper SL, Romero JR. Blockade of the mineralocorticoid receptor improves markers of human endothelial cell dysfunction and hematological indices in a mouse model of sickle cell disease. FASEB J 2023; 37:e23092. [PMID: 37482902 PMCID: PMC10372847 DOI: 10.1096/fj.202300671r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023]
Abstract
Increased endothelin-1 (ET-1) levels in patients with sickle cell disease (SCD) and transgenic mouse models of SCD contribute to disordered hematological, vascular, and inflammatory responses. Mineralocorticoid receptor (MR) activation by aldosterone, a critical component of the Renin-Angiotensin-Aldosterone-System, modulates inflammation and vascular reactivity, partly through increased ET-1 expression. However, the role of MR in SCD remains unclear. We hypothesized that MR blockade in transgenic SCD mice would reduce ET-1 levels, improve hematological parameters, and reduce inflammation. Berkeley SCD (BERK) mice, a model of severe SCD, were randomized to either sickle standard chow or chow containing the MR antagonist (MRA), eplerenone (156 mg/Kg), for 14 days. We found that MRA treatment reduced ET-1 plasma levels (p = .04), improved red cell density gradient profile (D50 ; p < .002), and increased mean corpuscular volume in both erythrocytes (p < .02) and reticulocytes (p < .024). MRA treatment also reduced the activity of the erythroid intermediate-conductance Ca2+ -activated K+ channel - KCa 3.1 (Gardos channel, KCNN4), reduced cardiac levels of mRNAs encoding ET-1, Tumor Necrosis Factor Receptor-1, and protein disulfide isomerase (PDI) (p < .01), and decreased plasma PDI and myeloperoxidase activity. Aldosterone (10-8 M for 24 h in vitro) also increased PDI mRNA levels (p < .01) and activity (p < .003) in EA.hy926 human endothelial cells, in a manner blocked by pre-incubation with the MRA canrenoic acid (1 μM; p < .001). Our results suggest a novel role for MR activation in SCD that may exacerbate SCD pathophysiology and clinical complications.
Collapse
Affiliation(s)
- Alicia Rivera
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
| | - Christopher Vega
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Arelys Ramos-Rivera
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Enrique R. Maldonado
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Gregory N. Prado
- Departments of Laboratory Medicine and Pathology, Boston Children’s Hospital, Harvard Medical School, Boston, MA
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | | | | | | | - Seth L. Alper
- Division of Nephrology, Vascular Biology Research Center, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, Massachusetts, USA
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
2
|
Bou-Fakhredin R, De Franceschi L, Motta I, Eid AA, Taher AT, Cappellini MD. Redox Balance in β-Thalassemia and Sickle Cell Disease: A Love and Hate Relationship. Antioxidants (Basel) 2022; 11:antiox11050967. [PMID: 35624830 PMCID: PMC9138068 DOI: 10.3390/antiox11050967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are inherited hemoglobinopathies that result in both quantitative and qualitative variations in the β-globin chain. These in turn lead to instability in the generated hemoglobin (Hb) or to a globin chain imbalance that affects the oxidative environment both intracellularly and extracellularly. While oxidative stress is not among the primary etiologies of β-thalassemia and SCD, it plays a significant role in the pathogenesis of these diseases. Different mechanisms exist behind the development of oxidative stress; the result of which is cytotoxicity, causing the oxidation of cellular components that can eventually lead to cell death and organ damage. In this review, we summarize the mechanisms of oxidative stress development in β-thalassemia and SCD and describe the current and potential antioxidant therapeutic strategies. Finally, we discuss the role of targeted therapy in achieving an optimal redox balance.
Collapse
Affiliation(s)
- Rayan Bou-Fakhredin
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
| | - Lucia De Franceschi
- Department of Medicine, University of Verona, and Azienda Ospedaliera Universitaria Verona, 37128 Verona, Italy;
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Ali T. Taher
- Division of Hematology-Oncology, Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon;
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy; (R.B.-F.); (I.M.)
- UOC General Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
3
|
Sengupta R, Coppo L, Sircar E, Mishra P, Holmgren A. S‐Denitrosylation by the C‐Terminal Swinging Arm of R1 Subunit: A Novel Mechanism to Restore Ribonucleotide Reductase Activity. ChemistrySelect 2021. [DOI: 10.1002/slct.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Rajib Sengupta
- Division of Biochemistry Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm Sweden
- Amity Institute of Biotechnology Amity University, Major Arterial Road, Rajarhat, New Town Kolkata 700135, West Bengal India
| | - Lucia Coppo
- Division of Biochemistry Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm Sweden
| | - Esha Sircar
- Amity Institute of Biotechnology Amity University, Major Arterial Road, Rajarhat, New Town Kolkata 700135, West Bengal India
| | - Pradeep Mishra
- Division of Biochemistry Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm Sweden
| | - Arne Holmgren
- Division of Biochemistry Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm Sweden
| |
Collapse
|
4
|
New Therapeutic Options for the Treatment of Sickle Cell Disease. Mediterr J Hematol Infect Dis 2019; 11:e2019002. [PMID: 30671208 PMCID: PMC6328043 DOI: 10.4084/mjhid.2019.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023] Open
Abstract
Sickle cell disease (SCD; ORPHA232; OMIM # 603903) is a chronic and invalidating disorder distributed worldwide, with high morbidity and mortality. Given the disease complexity and the multiplicity of pathophysiological targets, development of new therapeutic options is critical, despite the positive effects of hydroxyurea (HU), for many years the only approved drug for SCD. New therapeutic strategies might be divided into (1) pathophysiology-related novel therapies and (2) innovations in curative therapeutic options such as hematopoietic stem cell transplantation and gene therapy. The pathophysiology related novel therapies are: a) Agents which reduce sickling or prevent sickle red cell dehydration; b) Agents targeting SCD vasculopathy and sickle cell-endothelial adhesive events; c) Anti-oxidant agents. This review highlights new therapeutic strategies in SCD and discusses future developments, research implications, and possible innovative clinical trials.
Collapse
|
5
|
Resolution of sickle cell disease-associated inflammation and tissue damage with 17 R-resolvin D1. Blood 2018; 133:252-265. [PMID: 30404812 DOI: 10.1182/blood-2018-07-865378] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Resolvins (Rvs), endogenous lipid mediators, play a key role in the resolution of inflammation. Sickle cell disease (SCD), a genetic disorder of hemoglobin, is characterized by inflammatory and vaso-occlusive pathologies. We document altered proresolving events following hypoxia/reperfusion in humanized SCD mice. We demonstrate novel protective actions of 17R-resolvin D1 (17R-RvD1; 7S, 8R, 17R-trihydroxy-4Z, 9E, 11E, 13Z, 15E, 19Z-docosahexaenoic acid) in reducing ex vivo human SCD blood leukocyte recruitment by microvascular endothelial cells and in vivo neutrophil adhesion and transmigration. In SCD mice exposed to hypoxia/reoxygenation, oral administration of 17R -RvD1 reduces systemic/local inflammation and vascular dysfunction in lung and kidney. The mechanism of action of 17R-RvD1 involves (1) enhancement of SCD erythrocytes and polymorphonuclear leukocyte efferocytosis, (2) blunting of NF-κB activation, and (3) a reduction in inflammatory cytokines, vascular activation markers, and E-selectin expression. Thus, 17R-RvD1 might represent a new therapeutic strategy for the inflammatory vasculopathy of SCD.
Collapse
|
6
|
Data demonstrating the role of peroxiredoxin 2 as important anti-oxidant system in lung homeostasis. Data Brief 2017; 15:376-381. [PMID: 29034295 PMCID: PMC5636020 DOI: 10.1016/j.dib.2017.09.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/19/2017] [Accepted: 09/26/2017] [Indexed: 11/25/2022] Open
Abstract
The data presented in this article are related to the research paper entitled “peroxiredoxin-2 plays a pivotal role as multimodal cytoprotector in the early phase of pulmonary hypertension” (Federti et al., 2017) [1]. Data show that the absence of peroxiredoxin-2 (Prx2) is associated with increased lung oxidation and pulmonary vascular endothelial dysfunction. Prx2−/− mice displayed activation of the redox-sensitive transcriptional factors, NF-kB and Nrf2, and increased expression of cytoprotective system such as heme-oxygenase-1 (HO-1). We also noted increased expression of both markers of vascular activation and extracellular matrix remodeling. The administration of the recombinant fusion protein PEP Prx2 reduced the activation of NF-kB and Nrf2 and was paralleled by a decrease in HO-1 and in vascular endothelial abnormal activation. Prolonged hypoxia was used to trigger pulmonary artery hypertension (PAH). Prx2−/− precociously developed PAH compared to wildtype animals.
Collapse
|
7
|
Kalish BT, Matte A, Andolfo I, Iolascon A, Weinberg O, Ghigo A, Cimino J, Siciliano A, Hirsch E, Federti E, Puder M, Brugnara C, De Franceschi L. Dietary ω-3 fatty acids protect against vasculopathy in a transgenic mouse model of sickle cell disease. Haematologica 2015; 100:870-80. [PMID: 25934765 DOI: 10.3324/haematol.2015.124586] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/27/2015] [Indexed: 12/12/2022] Open
Abstract
The anemia of sickle cell disease is associated with a severe inflammatory vasculopathy and endothelial dysfunction, which leads to painful and life-threatening clinical complications. Growing evidence supports the anti-inflammatory properties of ω-3 fatty acids in clinical models of endothelial dysfunction. Promising but limited studies show potential therapeutic effects of ω-3 fatty acid supplementation in sickle cell disease. Here, we treated humanized healthy and sickle cell mice for 6 weeks with ω-3 fatty acid diet (fish-oil diet). We found that a ω-3 fatty acid diet: (i) normalizes red cell membrane ω-6/ω-3 ratio; (ii) reduces neutrophil count; (iii) decreases endothelial activation by targeting endothelin-1 and (iv) improves left ventricular outflow tract dimensions. In a hypoxia-reoxygenation model of acute vaso-occlusive crisis, a ω-3 fatty acid diet reduced systemic and local inflammation and protected against sickle cell-related end-organ injury. Using isolated aortas from sickle cell mice exposed to hypoxia-reoxygenation, we demonstrated a direct impact of a ω-3 fatty acid diet on vascular activation, inflammation, and anti-oxidant systems. Our data provide the rationale for ω-3 dietary supplementation as a therapeutic intervention to reduce vascular dysfunction in sickle cell disease.
Collapse
Affiliation(s)
- Brian T Kalish
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandro Matte
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | | | - Achille Iolascon
- Department of Biochemistry, University Federico II, Naples, Italy
| | - Olga Weinberg
- Departments of Pathology and Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alessandra Ghigo
- Molecular Biotechnology Center and Department of Molecular Biotechology and Health Science, University of Turin, Italy
| | - James Cimino
- Molecular Biotechnology Center and Department of Molecular Biotechology and Health Science, University of Turin, Italy
| | - Angela Siciliano
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Emilio Hirsch
- Molecular Biotechnology Center and Department of Molecular Biotechology and Health Science, University of Turin, Italy
| | - Enrica Federti
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, Verona, Italy
| | - Mark Puder
- Department of Surgery and The Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlo Brugnara
- Departments of Pathology and Laboratory Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lucia De Franceschi
- Department of Medicine, University of Verona-AOUI Verona, Policlinico GB Rossi, Verona, Italy
| |
Collapse
|
8
|
Therapeutic approaches to limit hemolysis-driven endothelial dysfunction: scavenging free heme to preserve vasculature homeostasis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:396527. [PMID: 23781294 PMCID: PMC3678425 DOI: 10.1155/2013/396527] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/29/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
Hemolysis results in the release of hemoglobin and heme into the bloodstream and is associated with the development of several pathologic conditions of different etiology, including hemoglobinopathies, hemolytic anemias, bacterial infections, malaria, and trauma. In addition, hemolysis is associated with surgical procedures, hemodialysis, blood transfusion, and other conditions in which mechanical forces can lead to red blood cell rupture. Free plasma hemoglobin and heme are toxic for the vascular endothelium since heme iron promotes oxidative stress that causes endothelial activation responsible for vasoocclusive events and thrombus formation. Moreover, free hemoglobin scavenges nitric oxide, reducing its bioavailability, and heme favours ROS production, thus causing oxidative nitric oxide consumption. This results in the dysregulation of the endothelium vasodilator:vasoconstrictor balance, leading to severe vasoconstriction and hypertension. Thus, endothelial dysfunction and impairment of cardiovascular function represent a common feature of pathologic conditions associated with hemolysis. In this review, we discuss how hemoglobin/heme released following hemolysis may affect vascular function and summarise the therapeutic approaches available to limit hemolysis-driven endothelial dysfunction. Particular emphasis is put on recent data showing the beneficial effects obtained through the use of the plasma heme scavenger hemopexin in counteracting heme-mediated endothelial damage in mouse models of hemolytic diseases.
Collapse
|
9
|
Vinchi F, De Franceschi L, Ghigo A, Townes T, Cimino J, Silengo L, Hirsch E, Altruda F, Tolosano E. Hemopexin therapy improves cardiovascular function by preventing heme-induced endothelial toxicity in mouse models of hemolytic diseases. Circulation 2013; 127:1317-29. [PMID: 23446829 DOI: 10.1161/circulationaha.112.130179] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hemolytic diseases are characterized by enhanced intravascular hemolysis resulting in heme-catalyzed reactive oxygen species generation, which leads to endothelial dysfunction and oxidative damage. Hemopexin (Hx) is a plasma heme scavenger able to prevent endothelial damage and tissue congestion in a model of heme overload. Here, we tested whether Hx could be used as a therapeutic tool to counteract heme toxic effects on the cardiovascular system in hemolytic diseases. METHODS AND RESULTS By using a model of heme overload in Hx-null mice, we demonstrated that heme excess in plasma, if not bound to Hx, promoted the production of reactive oxygen species and the induction of adhesion molecules and caused the reduction of nitric oxide availability. Then, we used β-thalassemia and sickle cell disease mice as models of hemolytic diseases to evaluate the efficacy of an Hx-based therapy in the treatment of vascular dysfunction related to heme overload. Our data demonstrated that Hx prevented heme-iron loading in the cardiovascular system, thus limiting the production of reactive oxygen species, the induction of adhesion molecules, and the oxidative inactivation of nitric oxide synthase/nitric oxide, and promoted heme recovery and detoxification by the liver mainly through the induction of heme oxygenase activity. Moreover, we showed that in sickle cell disease mice, endothelial activation and oxidation were associated with increased blood pressure and altered cardiac function, and the administration of exogenous Hx was found to almost completely normalize these parameters. CONCLUSIONS Hemopexin treatment is a promising novel therapy to protect against heme-induced cardiovascular dysfunction in hemolytic disorders.
Collapse
Affiliation(s)
- Francesca Vinchi
- Molecular Biotechnology Center and Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Maron BA, Tang SS, Loscalzo J. S-nitrosothiols and the S-nitrosoproteome of the cardiovascular system. Antioxid Redox Signal 2013; 18:270-87. [PMID: 22770551 PMCID: PMC3518544 DOI: 10.1089/ars.2012.4744] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 06/26/2012] [Accepted: 07/08/2012] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Since their discovery in the early 1990's, S-nitrosylated proteins have been increasingly recognized as important determinants of many biochemical processes. Specifically, S-nitrosothiols in the cardiovascular system exert many actions, including promoting vasodilation, inhibiting platelet aggregation, and regulating Ca(2+) channel function that influences myocyte contractility and electrophysiologic stability. RECENT ADVANCES Contemporary developments in liquid chromatography-mass spectrometry methods, the development of biotin- and His-tag switch assays, and the availability of cyanide dye-labeling for S-nitrosothiol detection in vitro have increased significantly the identification of a number of cardiovascular protein targets of S-nitrosylation in vivo. CRITICAL ISSUES Recent analyses using modern S-nitrosothiol detection techniques have revealed the mechanistic significance of S-nitrosylation to the pathophysiology of numerous cardiovascular diseases, including essential hypertension, pulmonary hypertension, ischemic heart disease, stroke, and congestive heart failure, among others. FUTURE DIRECTIONS Despite enhanced insight into S-nitrosothiol biochemistry, translating these advances into beneficial pharmacotherapies for patients with cardiovascular diseases remains a primary as-yet unmet goal for investigators within the field.
Collapse
Affiliation(s)
- Bradley A Maron
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
11
|
The role of thioredoxin in the regulation of cellular processes by S-nitrosylation. Biochim Biophys Acta Gen Subj 2011; 1820:689-700. [PMID: 21878369 DOI: 10.1016/j.bbagen.2011.08.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 07/27/2011] [Accepted: 08/16/2011] [Indexed: 01/29/2023]
Abstract
BACKGROUND S-nitrosylation (or S-nitrosation) by Nitric Oxide (NO), i.e., the covalent attachment of a NO group to a cysteine thiol and formation of S-nitrosothiols (R-S-N=O or RSNO), has emerged as an important feature of NO biology and pathobiology. Many NO-related biological functions have been directly associated with the S-nitrosothiols and a considerable number of S-nitrosylated proteins have been identified which can positively or negatively regulate various cellular processes including signaling and metabolic pathways. SCOPE OF THE REVIEW Taking account of the recent progress in the field of research, this review focuses on the regulation of cellular processes by S-nitrosylation and Trx-mediated cellular homeostasis of S-nitrosothiols. MAJOR CONCLUSIONS Thioredoxin (Trx) system in mammalian cells utilizes thiol and selenol groups to maintain a reducing intracellular environment to combat oxidative/nitrosative stress. Reduced glutathione (GSH) and Trx system perform the major role in denitrosylation of S-nitrosylated proteins. However, under certain conditions, oxidized form of mammalian Trx can be S-nitrosylated and then it can trans-S-nitrosylate target proteins, such as caspase 3. GENERAL SIGNIFICANCE Investigations on the role of thioredoxin system in relation to biologically relevant RSNOs, their functions, and the mechanisms of S-denitrosylation facilitate the development of drugs and therapies. This article is part of a Special Issue entitled Regulation of Cellular Processes.
Collapse
|
12
|
Gladwin MT, Kato GJ, Weiner D, Onyekwere OC, Dampier C, Hsu L, Hagar RW, Howard T, Nuss R, Okam MM, Tremonti CK, Berman B, Villella A, Krishnamurti L, Lanzkron S, Castro O, Gordeuk VR, Coles WA, Peters-Lawrence M, Nichols J, Hall MK, Hildesheim M, Blackwelder WC, Baldassarre J, Casella JF. Nitric oxide for inhalation in the acute treatment of sickle cell pain crisis: a randomized controlled trial. JAMA 2011; 305:893-902. [PMID: 21364138 PMCID: PMC3403835 DOI: 10.1001/jama.2011.235] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
CONTEXT Inhaled nitric oxide has shown evidence of efficacy in mouse models of sickle cell disease (SCD), case series of patients with acute chest syndrome, and 2 small placebo-controlled trials for treatment of vaso-occlusive pain crisis (VOC). OBJECTIVE To determine whether inhaled nitric oxide gas reduces the duration of painful crisis in patients with SCD who present to the emergency department or hospital for care. DESIGN, SETTING, AND PARTICIPANTS Prospective, multicenter, double-blind, randomized, placebo-controlled clinical trial for up to 72 hours of inhaled nitric oxide gas vs inhaled nitrogen placebo in 150 participants presenting with VOC of SCD at 11 centers between October 5, 2004, and December 22, 2008. Intervention Inhaled nitric oxide gas vs inhaled nitrogen placebo. MAIN OUTCOME MEASURES The primary end point was the time to resolution of painful crisis, defined by (1) freedom from parenteral opioid use for 5 hours; (2) pain relief as assessed by visual analog pain scale scores of 6 cm or lower (on 0-10 scale); (3) ability to walk; and (4) patient's and family's decision, with physician consensus, that the remaining pain could be managed at home. RESULTS There was no significant change in the primary end point between the nitric oxide and placebo groups, with a median time to resolution of crisis of 73.0 hours (95% confidence interval [CI], 46.0-91.0) and 65.5 hours (95% CI, 48.1-84.0), respectively (P = .87). There were no significant differences in secondary outcome measures, including length of hospitalization, visual analog pain scale scores, cumulative opioid usage, and rate of acute chest syndrome. Inhaled nitric oxide was well tolerated, with no increase in serious adverse events. Increases in venous methemoglobin concentration confirmed adherence and randomization but did not exceed 5% in any study participant. Significant increases in plasma nitrate occurred in the treatment group, but there were no observed increases in plasma or whole blood nitrite. CONCLUSION Among patients with SCD hospitalized with VOC, the use of inhaled nitric oxide compared with placebo did not improve time to crisis resolution. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00094887.
Collapse
Affiliation(s)
- Mark T Gladwin
- Division of Pulmonary, Allergy, and Critical Care Medicine, Vascular Medicine Institute, University of Pittsburgh, 3459 Fifth Ave, 628 NW, Pittsburgh, PA 15213.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Li HH, Xu J, Wasserloos KJ, Li J, Tyurina YY, Kagan VE, Wang X, Chen AF, Liu ZQ, Stoyanovsky D, Pitt BR, Zhang LM. Cytoprotective effects of albumin, nitrosated or reduced, in cultured rat pulmonary vascular cells. Am J Physiol Lung Cell Mol Physiol 2011; 300:L526-33. [PMID: 21239532 DOI: 10.1152/ajplung.00282.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
S-nitrosoalbumin (SNO-Alb) has been shown to be an efficacious cytoprotective molecule in acute lung injury, as well as ischemia-reperfusion injury in heart and skeletal muscle. Nonetheless, limited information is available on the cellular mechanism of such protection. Accordingly, we investigated the protective effects of SNO-Alb [ and its denitrosated congener, reduced albumin (SH-Alb) ] on tert-butyl hydroperoxide (tBH)-mediated cytotoxicity in cultured rat pulmonary microvascular endothelial cells (RPMEC), as well as hydrogen sulfide (H(2)S)-mediated cytotoxicity in rat pulmonary artery smooth muscle cells (RPASMC). We noted that tBH caused a concentration-dependent necrosis in RPMEC, and pretreatment of RPMEC with SNO-Alb dose-dependently decreased the sensitivity of these cells to tBH. A component of SNO-Alb cytoprotection was sensitive to N(G)-nitro-L-arginine methyl ester and was associated with activation of endothelial nitric oxide synthase (eNOS), phenomena that could be reproduced with pretreatment with SH-Alb. Exogenous H(2)S caused concentration-dependent apoptosis in RPASMC due to activation of ERK1/2 and p38, as well as downregulation of Bcl-2. Pretreatment with SNO-Alb reduced H(2)S-mediated apoptosis in a concentration-dependent manner that was associated with SNO-Alb-mediated inhibition of activation of ERK1/2 and p38. Pretreatment with SNO-Alb reduced toxicity of 1 mM sodium hydrosulfide in an N(G)-nitro-L-arginine methyl ester-sensitive fashion in RPASMC that expressed gp60 and neuronal NOS and was capable of transporting fluorescently labeled SH-Alb. Therefore, SNO-Alb is cytoprotective against models of oxidant-induced necrosis (tBH) and inhibitors of cellular respiration and apoptosis (H(2)S) in both pulmonary endothelium and smooth muscle, respectively, and a component of such protection can be attributed to a SH-Alb-mediated activation of constitutive NOS.
Collapse
Affiliation(s)
- Hui-Hua Li
- Department of Anesthesiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Well over 2 decades have passed since the endothelium-derived relaxation factor was reported to be the gaseous molecule nitric oxide (NO). Although soluble guanylyl cyclase (which generates cyclic guanosine monophosphate, cGMP) was the first identified receptor for NO, it has become increasingly clear that NO exerts a ubiquitous influence in a cGMP-independent manner. In particular, many, if not most, effects of NO are mediated by S-nitrosylation, the covalent modification of a protein cysteine thiol by an NO group to generate an S-nitrosothiol (SNO). Moreover, within the current framework of NO biology, endothelium-derived relaxation factor activity (ie, G protein-coupled receptor-mediated, or shear-induced endothelium-derived NO bioactivity) is understood to involve a central role for SNOs, acting both as second messengers and signal effectors. Furthermore, essential roles for S-nitrosylation have been implicated in virtually all major functions of NO in the cardiovascular system. Here, we review the basic biochemistry of S-nitrosylation (and denitrosylation), discuss the role of S-nitrosylation in the vascular and cardiac functions of NO, and identify current and potential clinical applications.
Collapse
Affiliation(s)
- Brian Lima
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | |
Collapse
|
15
|
Bajenaru ML, Piña Y, Murray TG, Cebulla CM, Feuer W, Jockovich ME, Marin Castaño ME. Gelatinase expression in retinoblastoma: modulation of LH(BETA)T(AG) retinal tumor development by anecortave acetate. Invest Ophthalmol Vis Sci 2010; 51:2860-4. [PMID: 20107171 DOI: 10.1167/iovs.09-4500] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Gelatinases, matrix metalloproteinase (MMP)-2, and MMP-9 are known for their importance in angiogenesis and tumor biology. The purpose of this study was to test the hypothesis that anecortave acetate (AA) decreases transgenic retinoblastoma (RB) tumor burden by modulating gelatinase activity. METHODS To assess the possible gelatinase modulation after AA treatment, a single subconjunctival injection of AA (300 microg) was delivered to the right eyes of 10-week-old LH(BETA)T(AG) mice. Eyes were evaluated for gelatinase expression and activity by gel and in situ zymography at 24 hours, 48 hours, and 1 week after treatment. RESULTS Gel zymography of whole eye extracts and in situ zymography of retinal tumors showed strong gelatinase expression and activity within transgenic RB tumors. AA treatment in RB transgenic mice resulted in a significant decrease of gelatinase activity 1 week after AA treatment. Surprisingly, there was an initial transient upregulation of MMP-9 activity in whole eye extracts at 24 and 48 hours after AA treatment in both LH(BETA)T(AG) transgenic and wild-type mice. This increase was not observed in the tumors. CONCLUSIONS As suggested by our data, inhibition of gelatinase activity appears to be a mechanism of action of AA. AA treatment results in a decrease in gelatinase activity that correlates with the significant decrease in tumor burden shown by the authors' previous studies. However, the significance of the initial, transient upregulation of gelatinase by AA injection is unknown, and further studies are warranted. Combining antiangiogenic agents with multiple mechanisms of action has the potential to enhance RB tumor control.
Collapse
Affiliation(s)
- M Livia Bajenaru
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Pathophisiology of sickle cell disease and new drugs for the treatment. Mediterr J Hematol Infect Dis 2009; 1:e2009024. [PMID: 21415994 PMCID: PMC3033152 DOI: 10.4084/mjhid.2009.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 12/26/2009] [Indexed: 02/02/2023] Open
Abstract
A homozygous mutation in the gene for β globin, a subunit of adult hemoglobin A (HbA), is the proximate cause of sickle cell disease (SCD). Sickle hemoglobin (HbS) shows peculiar biochemical properties, which lead to polymerizing when deoxygenated. HbS polymerization is associated with a reduction in cell ion and water content (cell dehydration), increased red cell density which further accelerate HbS polymerization. Dense, dehydrated erythrocytes are likely to undergo instant polymerization in conditions of mild hypoxia due to their high HbS concentration, and HbS polymers may be formed under normal oxygen pressure. Pathophysiological studies have shown that the dense, dehydrated red cells may play a central role in acute and chronic clinical manifestations of sickle cell disease, in which intravascular sickling in capillaries and small vessels leads to vaso-occlusion and impaired blood flow in a variety of organs and tissue. The persistent membrane damage associated with HbS polymerization also favors the generation of distorted rigid cells and further contributes to vaso-occlusive crisis (VOCs) and cell destruction in the peripheral circulation. These damaged, dense sickle red cells also show a loss of phospholipid asymmetry with externalization of phosphatidylserine (PS), which is believed to play a significant role in promoting macrophage recognition with removal of erythrocytes (erythrophagocytosis). Vaso-occlusive events in the microcirculation result from a complex scenario involving the interactions between different cell types, including dense, dehydrated sickle cells, reticulocytes, abnormally activated endothelial cells, leukocytes, platelets and plasma factors such as cytokine and oxidized pro-inflammatory lipids. Hydroxycarbamide (hydroxyurea) is currently the only drug approved for chronic administration in adult patients with sickle cell disease to prevent acute painful crises and reduce the incidence of transfusion and acute chest crises. Here, we will focus on consolidated and experimental therapeutic strategies for the treatment of sickle cell disease, including:
agents which reduce or prevent sickle cell dehydration agents which reduce sickle cell-endothelial adhesive events nitric oxide (NO) or NO-related compounds anti-oxidant agents
Correction of the abnormalities ranging from membrane cation transport pathways to red cell-endothelial adhesive events, might constitute new pharmacological targets for treating sickle cell disease.
Collapse
|
17
|
Tajiri M, Takeuchi T, Wada Y. Distinct Features of Matrix-Assisted 6 μm Infrared Laser Desorption/Ionization Mass Spectrometry in Biomolecular Analysis. Anal Chem 2009; 81:6750-5. [DOI: 10.1021/ac900695q] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michiko Tajiri
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho Izumi, Osaka 594-1101, Japan, CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan
| | - Takae Takeuchi
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho Izumi, Osaka 594-1101, Japan, CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan
| | - Yoshinao Wada
- Department of Molecular Medicine, Osaka Medical Center and Research Institute for Maternal and Child Health, 840 Murodo-cho Izumi, Osaka 594-1101, Japan, CREST, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan, and Department of Chemistry, Faculty of Science, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan
| |
Collapse
|
18
|
Sabaa N, de Franceschi L, Bonnin P, Castier Y, Malpeli G, Debbabi H, Galaup A, Maier-Redelsperger M, Vandermeersch S, Scarpa A, Janin A, Levy B, Girot R, Beuzard Y, Leboeuf C, Henri A, Germain S, Dussaule JC, Tharaux PL. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J Clin Invest 2008; 118:1924-33. [PMID: 18382768 DOI: 10.1172/jci33308] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 02/06/2008] [Indexed: 01/08/2023] Open
Abstract
Patients with sickle-cell disease (SCD) suffer from tissue damage and life-threatening complications caused by vasoocclusive crisis (VOC). Endothelin receptors (ETRs) are mediators of one of the most potent vasoconstrictor pathways in mammals, but the relationship between vasoconstriction and VOC is not well understood. We report here that pharmacological inhibition of ETRs prevented hypoxia-induced acute VOC and organ damage in a mouse model of SCD. An in vivo ultrasonographic study of renal hemodynamics showed a substantial increase in endothelin-mediated vascular resistance during hypoxia/reoxygenation-induced VOC. This increase was reversed by administration of the dual ETR antagonist (ETRA) bosentan, which had pleiotropic beneficial effects in vivo. It prevented renal and pulmonary microvascular congestion, systemic inflammation, dense rbc formation, and infiltration of activated neutrophils into tissues with subsequent nitrative stress. Bosentan also prevented death of sickle-cell mice exposed to a severe hypoxic challenge. These findings in mice suggest that ETRA could be a potential new therapy for SCD, as it may prevent acute VOC and limit organ damage in sickle-cell patients.
Collapse
Affiliation(s)
- Nathalie Sabaa
- Cardiovascular Research Center Lariboisière, INSERM U689, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Biondani A, Turrini F, Carta F, Matté A, Filippini A, Siciliano A, Beuzard Y, De Franceschi L. Heat-shock protein-27, -70 and peroxiredoxin–II show molecular chaperone function in sickle red cells: Evidence from transgenic sickle cell mouse model. Proteomics Clin Appl 2008; 2:706-19. [DOI: 10.1002/prca.200780058] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Mouse models of sickle cell disease. Transfus Clin Biol 2008; 15:7-11. [DOI: 10.1016/j.tracli.2008.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/01/2008] [Indexed: 11/16/2022]
|
21
|
Miller MR, Megson IL. Recent developments in nitric oxide donor drugs. Br J Pharmacol 2007; 151:305-21. [PMID: 17401442 PMCID: PMC2013979 DOI: 10.1038/sj.bjp.0707224] [Citation(s) in RCA: 445] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Revised: 02/05/2007] [Accepted: 02/12/2007] [Indexed: 12/16/2022] Open
Abstract
During the 1980s, the free radical, nitric oxide (NO), was discovered to be a crucial signalling molecule, with wide-ranging functions in the cardiovascular, nervous and immune systems. Aside from providing a credible explanation for the actions of organic nitrates and sodium nitroprusside that have long been used in the treatment of angina and hypertensive crises respectively, the discovery generated great hopes for new NO-based treatments for a wide variety of ailments. Decades later, however, we are still awaiting novel licensed agents in this arena, despite an enormous research effort to this end. This review explores some of the most promising recent advances in NO donor drug development and addresses the challenges associated with NO as a therapeutic agent.
Collapse
Affiliation(s)
- M R Miller
- Centre for Cardiovascular Science, University of Edinburgh, Queen's Medical Research Institute Edinburgh, UK
| | - I L Megson
- Free Radical Research Facility, Department of Diabetes, UHI Millennium Institute Inverness, UK
| |
Collapse
|
22
|
Bartolucci P, Ngo MT, Beuzard Y, Galactéros F, Saber G, Rideau D, Eddahibi S, Maitre B, Adnot S, Delclaux C. Decrease in lung nitric oxide production after peritonitis in mice with sickle cell disease*. Crit Care Med 2007; 35:502-9. [PMID: 17167352 DOI: 10.1097/01.ccm.0000253403.65602.ea] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Nitric oxide bioavailability may limit the occurrence or severity of acute vaso-occlusive episodes in patients with sickle cell disease. Because sepsis is frequently involved in the initiation of vaso-occlusive crisis and acute chest syndrome, we designed the present study in transgenic (SAD) sickle cell mice to investigate whether acute infectious peritonitis affects the enzymatic balance (nitric oxide synthases/arginases) that governs lung nitric oxide production. DESIGN Controlled animal study. SETTING Research laboratory of an academic institution. SUBJECTS Transgenic Hbbsingle/single SAD1 (SAD) mice and nontransgenic wild-type littermates (C57/Black mice, control group). INTERVENTIONS Cecal ligation and puncture-induced peritonitis. MEASUREMENTS AND MAIN RESULTS We found that 24 hrs after peritonitis, control littermate mice showed an increase in inducible and endothelial nitric oxide synthase messenger RNA and proteins, together with an increase in exhaled nitric oxide (shift of the balance toward nitric oxide synthesis). In contrast, SAD mice, which showed elevated inducible and endothelial nitric oxide synthase protein expression at baseline, showed a marked decrease in nitric oxide synthase proteins, lung nitric oxide end-products, and exhaled nitric oxide after peritonitis, reflecting a shift of the enzymatic balance toward inhibition of nitric oxide synthesis. Peritonitis increased messenger RNA levels of arginase I and arginase II in controls and SAD mice but with a greater increase in arginase I in SAD than in control mice. Peritonitis was associated with a higher mortality rate at 24 hrs in SAD mice. Inhalation of nitric oxide (40 ppm in air) abolished the mortality rate induced by acute peritonitis in SAD mice. CONCLUSIONS Acute peritonitis in SAD mice is associated with a defect in lung nitric oxide production and bioavailability that may participate in the acute systemic and lung vaso-occlusive complications of sickle cell disease.
Collapse
Affiliation(s)
- Pablo Bartolucci
- Unité INSERM U492-Université Paris XII, Créteil, and Laboratoire de Thérapie Génique Hématopoïétique, Hôpital Saint Louis, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|