1
|
Sahni M, Bhandari V. Patho-mechanisms of the origins of bronchopulmonary dysplasia. Mol Cell Pediatr 2021; 8:21. [PMID: 34894313 PMCID: PMC8665964 DOI: 10.1186/s40348-021-00129-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/15/2021] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) continues to be one of the most common complications of prematurity, despite significant advancement in neonatology over the last couple of decades. The new BPD is characterized histopathologically by impaired lung alveolarization and dysregulated vascularization. With the increased survival of extremely preterm infants, the risk for the development of BPD remains high, emphasizing the continued need to understand the patho-mechanisms that play a role in the development of this disease. This brief review summarizes recent advances in our understanding of the maldevelopment of the premature lung, highlighting recent research in pathways of oxidative stress-related lung injury, the role of placental insufficiency, growth factor signaling, the extracellular matrix, and microRNAs.
Collapse
Affiliation(s)
- Mitali Sahni
- Pediatrix Medical Group, Sunrise Children's Hospital, Las Vegas, NV, USA.,University of Nevada, Las Vegas, NV, USA
| | - Vineet Bhandari
- Neonatology Research Laboratory, Education and Research Building, Cooper University Hospital, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
2
|
Kim SH, Li M, Pyeon TH, So KY, Kwak SH. The volatile anesthetic sevoflurane attenuates ventilator-induced lung injury through inhibition of ERK1/2 and Akt signal transduction. Korean J Anesthesiol 2015; 68:62-9. [PMID: 25664157 PMCID: PMC4318867 DOI: 10.4097/kjae.2015.68.1.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 07/29/2014] [Accepted: 08/26/2014] [Indexed: 11/25/2022] Open
Abstract
Background Ventilator-induced lung injury (VILI) sustained during mechanical ventilator support is still a cause of a high rate of morbidity and mortality in intensive care units and in operating rooms. VILI is characterized by pulmonary inflammation that appears to be mediated by proinflammatory cytokines. This study investigates whether the volatile anesthetic sevoflurane has an anti-inflammatory effect that attenuates VILI. Methods Twenty one male rabbits were anesthetized and were mechanically ventilated with 50% oxygen at a peak inspiratory pressure (PIP) of 10 cmH2O, I : E ratio of 1 : 4, and positive end expiratory pressure of 5 cmH2O. All animals were randomly assigned to one of three groups that were ventilated for 5 h with 10 cmH2O of PIP (Sham group, n = 7); 30 cmH2O of PIP (Control group, n = 7); or 30 cmH2O of PIP and 0.8 vol% sevoflurane (Sevoflurane group, n = 7). The wet/dry weight (W/D) ratio and histopathology of the lung; concentration of interleukin-8 (IL-8) in the bronchoalveolar lavage fluid; and activation of extracellular signal-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase, and Akt were measured in the lung tissue after completing the protocol. Results Histopathology indicated that the sevoflurane group showed fewer inflammatory cells and architectural changes than the control group did. The W/D ratio [(5.36 ± 0.13) versus (6.61 ± 0.20)], expression of IL-8 [(144.08 ± 14.61) versus (228.56 ± 15.13) pg/ml] and phosphorylation of ERK1/2 and Akt decreased significantly in the sevoflurane group relative to the control group. Conclusions Sevoflurane attenuates VILI in rabbits mainly by inhibiting expression of IL-8, and Sevoflurane-induced inhibition of phosphorylated ERK1/2 and Akt might be a possible pathway for protection.
Collapse
Affiliation(s)
- Sang-Hun Kim
- Department of Anesthesiology and Pain Meidicne, Chosun University Medical School, Gwangju, Korea
| | - Mei Li
- Department of Anesthesiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Tae-Hee Pyeon
- Department of Anesthesiology and Pain Meidicne, Chonnam National University Medical School, Gwangju, Korea
| | - Keum-Young So
- Department of Anesthesiology and Pain Meidicne, Chosun University Medical School, Gwangju, Korea
| | - Sang-Hyun Kwak
- Department of Anesthesiology and Pain Meidicne, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
3
|
Liu YY, Li LF, Fu JY, Kao KC, Huang CC, Chien Y, Liao YW, Chiou SH, Chang YL. Induced pluripotent stem cell therapy ameliorates hyperoxia-augmented ventilator-induced lung injury through suppressing the Src pathway. PLoS One 2014; 9:e109953. [PMID: 25310015 PMCID: PMC4195701 DOI: 10.1371/journal.pone.0109953] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 09/12/2014] [Indexed: 01/20/2023] Open
Abstract
Background High tidal volume (VT) mechanical ventilation (MV) can induce the recruitment of neutrophils, release of inflammatory cytokines and free radicals, and disruption of alveolar epithelial and endothelial barriers. It is proposed to be the triggering factor that initiates ventilator-induced lung injury (VILI) and concomitant hyperoxia further aggravates the progression of VILI. The Src protein tyrosine kinase (PTK) family is one of the most critical families to intracellular signal transduction related to acute inflammatory responses. The anti-inflammatory abilities of induced pluripotent stem cells (iPSCs) have been shown to improve acute lung injuries (ALIs); however, the mechanisms regulating the interactions between MV, hyperoxia, and iPSCs have not been fully elucidated. In this study, we hypothesize that Src PTK plays a critical role in the regulation of oxidants and inflammation-induced VILI during hyperoxia. iPSC therapy can ameliorate acute hyperoxic VILI by suppressing the Src pathway. Methods Male C57BL/6 mice, either wild-type or Src-deficient, aged between 2 and 3 months were exposed to high VT (30 mL/kg) ventilation with or without hyperoxia for 1 to 4 h after the administration of Oct4/Sox2/Parp1 iPSCs at a dose of 5×107 cells/kg of mouse. Nonventilated mice were used for the control groups. Results High VT ventilation during hyperoxia further aggravated VILI, as demonstrated by the increases in microvascular permeability, neutrophil infiltration, macrophage inflammatory protein-2 (MIP-2) and plasminogen activator inhibitor-1 (PAI-1) production, Src activation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, and malaldehyde (MDA) level. Administering iPSCs attenuated ALI induced by MV during hyperoxia, which benefited from the suppression of Src activation, oxidative stress, acute inflammation, and apoptosis, as indicated by the Src-deficient mice. Conclusion The data suggest that iPSC-based therapy is capable of partially suppressing acute inflammatory and oxidant responses that occur during hyperoxia-augmented VILI through the inhibition of Src-dependent signaling pathway.
Collapse
Affiliation(s)
- Yung-Yang Liu
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Li-Fu Li
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail: (LFL); (YLC)
| | - Jui-Ying Fu
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Chin Kao
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chung-Chi Huang
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yueh Chien
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Wen Liao
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yuh-Lih Chang
- Department of Medical Research & Education, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
- * E-mail: (LFL); (YLC)
| |
Collapse
|
4
|
Aggarwal NR, King LS, D'Alessio FR. Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 2014; 306:L709-25. [PMID: 24508730 PMCID: PMC3989724 DOI: 10.1152/ajplung.00341.2013] [Citation(s) in RCA: 446] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 02/05/2014] [Indexed: 12/14/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a devastating disease with distinct pathological stages. Fundamental to ARDS is the acute onset of lung inflammation as a part of the body's immune response to a variety of local and systemic stimuli. In patients surviving the inflammatory and subsequent fibroproliferative stages, transition from injury to resolution and recovery is an active process dependent on a series of highly coordinated events regulated by the immune system. Experimental animal models of acute lung injury (ALI) reproduce key components of the injury and resolution phases of human ARDS and provide a methodology to explore mechanisms and potential new therapies. Macrophages are essential to innate immunity and host defense, playing a featured role in the lung and alveolar space. Key aspects of their biological response, including differentiation, phenotype, function, and cellular interactions, are determined in large part by the presence, severity, and chronicity of local inflammation. Studies support the importance of macrophages to initiate and maintain the inflammatory response, as well as a determinant of resolution of lung inflammation and repair. We will discuss distinct roles for lung macrophages during early inflammatory and late resolution phases of ARDS using experimental animal models. In addition, each section will highlight human studies that relate to the diverse role of macrophages in initiation and resolution of ALI and ARDS.
Collapse
Affiliation(s)
- Neil R Aggarwal
- Johns Hopkins Univ. School of Medicine, Pulmonary and Critical Care Medicine, Johns Hopkins Asthma & Allergy Center, Rm. 4B.68, 5501 Hopkins Bayview Circle, Baltimore, MD 21224.
| | | | | |
Collapse
|
5
|
Morgan CI, Ledford JR, Zhou P, Page K. Zinc supplementation alters airway inflammation and airway hyperresponsiveness to a common allergen. JOURNAL OF INFLAMMATION-LONDON 2011; 8:36. [PMID: 22151973 PMCID: PMC3250936 DOI: 10.1186/1476-9255-8-36] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 12/07/2011] [Indexed: 02/07/2023]
Abstract
Background Zinc supplementation can modulate immunity through inhibition of NF-κB, a transcription factor that controls many immune response genes. Thus, we sought to examine the mechanism by which zinc supplementation tempers the response to a common allergen and determine its effect on allergic airway inflammation. Methods Mice were injected with zinc gluconate prior to German cockroach (GC) feces (frass) exposure and airway inflammation was assessed. Primary bone marrow-derived neutrophils and DMSO-differentiated HL-60 cells were used to assess the role of zinc gluconate on tumor necrosis factor (TNF)α expression. NF-κB:DNA binding and IKK activity were assessed by EMSA and in vitro kinase assay. Protein levels of A20, RIP1 and TRAF6 were assessed by Western blot analysis. Establishment of allergic airway inflammation with GC frass was followed by administration of zinc gluconate. Airway hyperresponsiveness, serum IgE levels, eosinophilia and Th2 cytokine production were assessed. Results Administration of zinc gluconate prior to allergen exposure resulted in significantly decreased neutrophil infiltration and TNFα cytokine release into the airways. This correlated with decreased NF-κB activity in the whole lung. Treatment with zinc gluconate significantly decreased GC frass-mediated TNFα production from bone-marrow derived neutrophils and HL-60 cells. We confirmed zinc-mediated decreases in NF-κB:DNA binding and IKK activity in HL-60 cells. A20, a natural inhibitor of NF-κB and a zinc-fingered protein, is a potential target of zinc. Zinc treatment did not alter A20 levels in the short term, but resulted in the degradation of RIP1, an important upstream activator of IKK. TRAF6 protein levels were unaffected. To determine the application for zinc as a therapeutic for asthma, we administered zinc following the establishment of allergic airway inflammation in a murine model. Zinc supplementation decreased airway hyperresponsiveness and serum IgE levels, but had no effect on Th2 cytokine expression. Conclusions This report suggests that the mechanism by which zinc supplementation alters NF-κB activity is via the alteration of A20 activity. In addition, this study provides evidence that supplementation of zinc to asthmatics may alter airway reactivity and serum IgE levels, suggesting zinc supplementation as a potential treatment for asthmatics.
Collapse
Affiliation(s)
- Carrie I Morgan
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | | | | | | |
Collapse
|
6
|
Day SB, Zhou P, Ledford JR, Page K. German cockroach frass proteases modulate the innate immune response via activation of protease-activated receptor-2. J Innate Immun 2010; 2:495-504. [PMID: 20588004 DOI: 10.1159/000317195] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 05/08/2010] [Indexed: 12/13/2022] Open
Abstract
Allergen exposure can induce an early innate immune response; however, the mechanism by which this occurs has not been addressed. In this report, we demonstrate a role for the active serine proteases in German cockroach (GC) feces (frass) and protease-activated receptor (PAR)-2 in modulating the innate immune response. A single exposure of GC frass induced inflammatory cytokine production and cellular infiltration in the airways of mice. In comparison, exposure to protease-depleted GC frass resulted in diminution of inflammatory cytokine production and airway neutrophilia, but had no effect on macrophage infiltration. Selective activation of PAR-2 confirmed that PAR-2 was sufficient to induce airway inflammation. Exposure of GC frass to PAR-2-deficient mice led to decreased immune responses to GC frass compared to wild-type mice. Using the macrophage as an early marker of the innate immune response, we found that GC frass induced significant release of tumor necrosis factor-alpha from primary alveolar macrophages. This effect was dependent on the intrinsic proteases in GC frass. We confirmed GC frass-induced cytokine expression was mediated by activation of NF-kappaB and ERK in a macrophage cell line. Collectively, these data suggest a central role for GC frass protease-PAR-2 activation in regulating the innate immune response through the activation of alveolar macrophages. Understanding the potential role of protease-PAR-2 activation as a danger signal or adjuvant could yield attractive therapeutic targets.
Collapse
Affiliation(s)
- Scottie B Day
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
7
|
Wheeler DS, Chase MA, Senft AP, Poynter SE, Wong HR, Page K. Extracellular Hsp72, an endogenous DAMP, is released by virally infected airway epithelial cells and activates neutrophils via Toll-like receptor (TLR)-4. Respir Res 2009; 10:31. [PMID: 19405961 PMCID: PMC2679007 DOI: 10.1186/1465-9921-10-31] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 04/30/2009] [Indexed: 11/25/2022] Open
Abstract
Background Neutrophils play an important role in the pathophysiology of RSV, though RSV does not appear to directly activate neutrophils in the lower airways. Therefore locally produced cytokines or other molecules released by virally-infected airway epithelial cells are likely responsible for recruiting and activating neutrophils. Heat shock proteins (HSPs) are generally regarded as intracellular proteins acting as molecular chaperones; however, HSP72 can also be released from cells, and the implications of this release are not fully understood. Methods Human bronchial epithelial cells (16HBE14o-) were infected with RSV and Hsp72 levels were measured by Western blot and ELISA. Tracheal aspirates were obtained from critically ill children infected with RSV and analyzed for Hsp72 levels by ELISA. Primary human neutrophils and differentiated HL-60 cells were cultured with Hsp72 and supernatants analyzed for cytokine production. In some cases, cells were pretreated with polymyxin B prior to treatment with Hsp72. IκBα was assessed by Western blot and EMSA's were performed to determine NF-κB activation. HL-60 cells were pretreated with neutralizing antibody against TLR4 prior to Hsp72 treatment. Neutrophils were harvested from the bone marrow of wild type or TLR4-deficient mice prior to treatment with Hsp72. Results Infection of 16HBE14o- with RSV showed an induction of intracellular Hsp72 levels as well as extracellular release of Hsp72. Primary human neutrophils from normal donors and differentiated HL-60 cells treated with increasing concentrations of Hsp72 resulted in increased cytokine (IL-8 and TNFα) production. This effect was independent of the low levels of endotoxin in the Hsp72 preparation. Hsp72 mediated cytokine production via activation of NF-κB translocation and DNA binding. Using bone marrow-derived neutrophils from wild type and TLR4-mutant mice, we showed that Hsp72 directly activates neutrophil-derived cytokine production via the activation of TLR4. Conclusion Collectively these data suggest that extracellular Hsp72 is released from virally infected airway epithelial cells resulting in the recruitment and activation of neutrophils.
Collapse
Affiliation(s)
- Derek S Wheeler
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Wright CJ, Zhuang T, La P, Yang G, Dennery PA. Hyperoxia-induced NF-kappaB activation occurs via a maturationally sensitive atypical pathway. Am J Physiol Lung Cell Mol Physiol 2008; 296:L296-306. [PMID: 19074556 DOI: 10.1152/ajplung.90499.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
NF-kappaB activation is exaggerated in neonatal organisms after oxidant and inflammatory insults, but the reason for this and the downstream effects are unclear. We hypothesized that specific phosphorylation patterns of IkappaBalpha could account for differences in NF-kappaB activation in hyperoxia-exposed fetal and adult lung fibroblasts. After exposure to hyperoxia (>95% O(2)), nuclear NF-kappaB binding increased in fetal, but not adult, lung fibroblasts. Unique to fetal cells, phosphorylation of IkappaBalpha on tyrosine 42, rather than serine 32/36 as seen in TNF-alpha-exposed cells, preceded NF-kappaB nuclear translocation. In fetal cells stably transfected with an NF-kappaB-driven luciferase reporter, hyperoxia significantly suppressed reporter activity, in contrast to increased reporter activity after TNF-alpha incubation. Targeted gene profiling analysis showed that hyperoxia resulted in decreased expression of multiple genes, including proapoptotic factors. Transfection with a dominant-negative IkappaBalpha (Y42F), which cannot be phosphorylated on tyrosine 42, resulted in upregulation of multiple proapoptotic genes. In support of this finding, caspase-3 activity and DNA laddering were specifically increased in fetal lung fibroblasts expressing Y42F after exposure to hyperoxia. These data demonstrate a unique pathway of NF-kappaB activation in fetal lung fibroblasts after exposure to hyperoxia, whereby these cells are protected against apoptosis. Activation of this pathway in fetal cells may prevent the normal pattern of fibroblast apoptosis necessary for normal lung development, resulting in aberrant lung morphology in vivo.
Collapse
Affiliation(s)
- Clyde J Wright
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
9
|
Joseph A, Li Y, Koo HC, Davis JM, Pollack S, Kazzaz JA. Superoxide dismutase attenuates hyperoxia-induced interleukin-8 induction via AP-1. Free Radic Biol Med 2008; 45:1143-9. [PMID: 18692129 DOI: 10.1016/j.freeradbiomed.2008.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 05/30/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
Abstract
Exposure of lung epithelial cells to hyperoxia results in the generation of excess reactive oxygen species (ROS), cell damage, and production of proinflammatory cytokines (interleukin-8; IL-8). Although activation of the NF-kappaB and c-Jun N-terminal kinase (JNK)/activator protein (AP)-1 transcription pathways occurs in hyperoxia, it is unclear whether activation of the AP-1 pathway has a direct impact on IL-8 production and whether overexpression of superoxide dismutase (SOD) can mitigate these proinflammatory processes. A549 cells were exposed to 95% O(2), and ROS production, AP-1 activation, and IL-8 levels were determined. Experimental groups included cells transduced with a recombinant adenovirus encoding CuZnSOD or MnSOD (two- to threefold increased activity) or transfected with a JNK1 small interfering RNA (RNAi). Hyperoxia resulted in significant increases in ROS generation, AP-1 activation, and IL-8 production, which were significantly attenuated by overexpression of either MnSOD or CuZnSOD. JNK1 RNAi also moderated IL-8 induction. The data indicate that activation of JNK1/AP-1 and subsequent IL-8 induction in hyperoxia are mediated by intracellular ROS, with SOD having significant protective effects.
Collapse
Affiliation(s)
- Ansamma Joseph
- CardioPulmonary Research Institute, Department of Medicine, Winthrop University Hospital, State University of New York Stony Brook School of Medicine, Mineola, NY 11501, USA
| | | | | | | | | | | |
Collapse
|
10
|
Page K, Lierl KM, Hughes VS, Zhou P, Ledford JR, Wills-Karp M. TLR2-mediated activation of neutrophils in response to German cockroach frass. THE JOURNAL OF IMMUNOLOGY 2008; 180:6317-24. [PMID: 18424755 DOI: 10.4049/jimmunol.180.9.6317] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that innate immune mediators play a role in regulating adaptive immune responses in asthma pathogenesis. Cockroach exposure is a major risk factor for the development of asthma. In this study we asked whether German cockroach (GC) feces (frass) could initiate an innate immune response. Naive BALB/c mice were challenged with a single intratracheal inhalation of GC frass. Proinflammatory cytokines were significantly increased in the bronchoalveolar lavage fluid at 3 h and were maintained at higher than baseline levels for at least 24 h. Neutrophil migration into the airways was evident as early as 3 h but was maximal between 6 and 24 h postinhalation. The early increase in cytokine expression was independent of TLR2 or TLR4. Newly infiltrated airway neutrophils were responsible for maintaining high levels of cytokines in the airways. Using neutrophils as an early marker of the innate immune response, we show that show that neutrophils isolated from the airways following GC frass inhalation express TLR2 and release cytokines. GC frass directly affected neutrophil cytokine production via TLR2, but not TLR4, as evidenced by the use of TLR-neutralizing Abs and neutrophils from TLR-deficient mice. Activation of cytokine expression occurred via GC frass-induced NF-kappaB translocation and DNA binding. These data show that GC frass contains a TLR2 agonist and, to our knowledge, this is the first report of an allergen directly activating cells of the innate immune system via TLR2 and suggests an important link between innate and adaptive immunity.
Collapse
Affiliation(s)
- Kristen Page
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Li LF, Liao SK, Lee CH, Huang CC, Quinn DA. Involvement of Akt and endothelial nitric oxide synthase in ventilation-induced neutrophil infiltration: a prospective, controlled animal experiment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2008; 11:R89. [PMID: 17714594 PMCID: PMC2206484 DOI: 10.1186/cc6101] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Revised: 07/16/2007] [Accepted: 08/23/2007] [Indexed: 12/24/2022]
Abstract
Introduction Positive pressure ventilation with large tidal volumes has been shown to cause release of cytokines, including macrophage inflammatory protein-2 (MIP-2), a functional equivalent of human IL-8, and neutrophil infiltration. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between a large tidal volume and hyperoxia are unclear. We hypothesized that large tidal volume ventilation using hyperoxia would increase MIP-2 production and neutrophil infiltration via the serine/threonine kinase/protein kinase B (Akt) pathway and the endothelial nitric oxide synthase (eNOS) pathway. Methods C57BL/6 mice were exposed to large tidal volume (30 ml/kg) mechanical ventilation with room air or hyperoxia for 1–5 hours. Results Large tidal volume ventilation using hyperoxia induced neutrophil migration into the lung, MIP-2 production, and Akt and eNOS activation in a time-dependent manner. Both the large tidal volume ventilation of Akt mutant mice and the pharmacological inhibition of Akt with LY294002 attenuated neutrophil sequestration, MIP-2 protein production, and Akt and eNOS activation. Conclusion We conclude that hyperoxia increased large tidal volume-induced MIP-2 production and neutrophil influx through activation of the Akt and eNOS pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kweishan, Taoyuan 333, Taiwan
| | - Cheng-Huei Lee
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Chung-Chi Huang
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, Kweishan, Taoyuan 333, Taiwan
| | - Deborah A Quinn
- Pulmonary and Critical Care Units, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, Massachusetts, USA
- Novartis Institute of Biomedical Research, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
Chase MA, Wheeler DS, Lierl KM, Hughes VS, Wong HR, Page K. Hsp72 induces inflammation and regulates cytokine production in airway epithelium through a TLR4- and NF-kappaB-dependent mechanism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2007; 179:6318-24. [PMID: 17947709 PMCID: PMC2755189 DOI: 10.4049/jimmunol.179.9.6318] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Heat shock proteins are generally regarded as intracellular proteins acting as molecular chaperones; however, Hsp72 is also detected in the extracellular compartment. Hsp72 has been identified in the bronchoalveolar lavage fluid (BALF) of patients with acute lung injury. To address whether Hsp72 directly activated airway epithelium, human bronchial epithelial cells (16HBE14o-) were treated with recombinant Hsp72. Hsp72 induced a dose-dependent increase in IL-8 expression, which was inhibited by the NF-kappaB inhibitor parthenolide. Hsp72 induced activation of NF-kappaB, as evidenced by NF-kappaB trans-activation and by p65 RelA and p50 NF-kappaB1 binding to DNA. Endotoxin contamination of the Hsp72 preparation was not responsible for these effects. Next, BALB/c mice were challenged with a single intratracheal inhalation of Hsp72 and killed 4 h later. Hsp72 induced significant up-regulation of KC, TNF-alpha, neutrophil recruitment, and myeloperoxidase in the BALF. A similar challenge with Hsp72 in TLR4 mutant mice did not stimulate the inflammatory response, stressing the importance of TLR4 in Hsp72-mediated lung inflammation. Last, cultured mouse tracheal epithelial cells (MTEC) from BALB/c and TLR4 mutant and wild-type mice were treated ex vivo with Hsp72. Hsp72 induced a significant increase in KC expression from BALB/c and wild-type MTEC in an NF-kappaB-dependent manner; however, TLR4 mutant MTEC had minimal cytokine release. Taken together, these data suggest that Hsp72 is released and biologically active in the BALF and can regulate airway epithelial cell cytokine expression in a TLR4 and NF-kappaB-dependent mechanism.
Collapse
Affiliation(s)
- Margaret A. Chase
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Derek S. Wheeler
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati, Cincinnati OH 45267
| | - Kristin M. Lierl
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Valerie S. Hughes
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
| | - Hector R. Wong
- Division of Critical Care Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229
- Department of Pediatrics, University of Cincinnati, Cincinnati OH 45267
| | - Kristen Page
- Department of Pediatrics, University of Cincinnati, Cincinnati OH 45267
| |
Collapse
|
13
|
Li LF, Liao SK, Ko YS, Lee CH, Quinn DA. Hyperoxia increases ventilator-induced lung injury via mitogen-activated protein kinases: a prospective, controlled animal experiment. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2007; 11:R25. [PMID: 17316425 PMCID: PMC2151853 DOI: 10.1186/cc5704] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2006] [Revised: 01/09/2007] [Accepted: 02/22/2007] [Indexed: 01/13/2023]
Abstract
Introduction Large-tidal volume (VT) mechanical ventilation and hyperoxia used in patients with acute respiratory distress syndrome can damage pulmonary epithelial cells through lung inflammation and apoptotic cell death. Hyperoxia has been shown to increase ventilator-induced lung injury, but the mechanisms regulating interaction between large VT and hyperoxia are unclear. We hypothesized that the addition of hyperoxia to large-VT ventilation would increase neutrophil infiltration by upregulation of the cytokine macrophage inflammatory protein-2 (MIP-2) and would increase apoptosis via the mitogen-activated protein kinase pathways. Methods C57BL/6 mice were exposed to high-VT (30 ml/kg) mechanical ventilation with room air or hyperoxia for one to five hours. Results The addition of hyperoxia to high-VT ventilation augmented lung injury, as demonstrated by increased apoptotic cell death, neutrophil migration into the lung, MIP-2 production, MIP-2 mRNA expression, increased DNA binding activity of activator protein-1, increased microvascular permeability, and c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) 1/2 activation. Hyperoxia-induced augmentation of high-VT-induced lung injury was attenuated in JNK-deficient mice and in mice with pharmacologic inhibition of ERK activity by PD98059. However, only JNK-deficient mice, and not mice with ERK activity inhibition by PD98059, were protected from high-VT-induced lung injury without hyperoxia. Conclusion We conclude that hyperoxia increased high-VT-induced cytokine production, neutrophil influx, and apoptotic cell death through activation of the JNK and ERK1/2 pathways.
Collapse
Affiliation(s)
- Li-Fu Li
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Shuen-Kuei Liao
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, 259 Wen-Hwa 1st Road, Kweishan, Taoyuan 333, Taiwan
| | - Yu-Shien Ko
- The First Cardiovascular Division, Department of Internal Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Cheng-Huei Lee
- Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital, and Chang Gung University, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
- Department of Respiratory Therapy, Chang Gung Memorial Hospital, 5 Fu-Hsing Street, Kweishan, Taoyuan 333, Taiwan
| | - Deborah A Quinn
- Pulmonary and Critical Care Units, Department of Medicine, Massachusetts General Hospital, and Harvard Medical School, 55 Fruit Street, Boston, MA, USA
| |
Collapse
|
14
|
Zaher TE, Miller EJ, Morrow DMP, Javdan M, Mantell LL. Hyperoxia-induced signal transduction pathways in pulmonary epithelial cells. Free Radic Biol Med 2007; 42:897-908. [PMID: 17349918 PMCID: PMC1876680 DOI: 10.1016/j.freeradbiomed.2007.01.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/05/2007] [Accepted: 01/08/2007] [Indexed: 10/23/2022]
Abstract
Mechanical ventilation with hyperoxia is necessary to treat critically ill patients. However, prolonged exposure to hyperoxia leads to the generation of excessive reactive oxygen species (ROS), which can cause acute inflammatory lung injury. One of the major effects of hyperoxia is the injury and death of pulmonary epithelium, which is accompanied by increased levels of pulmonary proinflammatory cytokines and excessive leukocyte infiltration. A thorough understanding of the signaling pathways leading to pulmonary epithelial cell injury/death may provide some insights into the pathogenesis of hyperoxia-induced acute inflammatory lung injury. This review focuses on epithelial responses to hyperoxia and some of the major factors regulating pathways to epithelial cell injury/death, and proinflammatory responses on exposure to hyperoxia. We discuss in detail some of the most interesting players, such as NF-kappaB, that can modulate both proinflammatory responses and cell injury/death of lung epithelial cells. A better appreciation for the functions of these factors will no doubt help us to delineate the pathways to hyperoxic cell death and proinflammatory responses.
Collapse
Affiliation(s)
- Tahereh E. Zaher
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Edmund J. Miller
- Surgercal Immunology, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Dympna M. P. Morrow
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Mohammad Javdan
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
| | - Lin L. Mantell
- Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, Queens, NY 11439
- Cardiopulmonary Research, The Feinstein Institute for Medical Research, North Shore-LIJ Health System, Manhasset, NY 11030
- *Correspondence author: Lin L. Mantell, Department of Pharmaceutical Sciences, St. John’s University College of Pharmacy, 108/SB28 St. Albert Hall, 8000 Utopia Parkway, Queens, New York 11439, Tel: 718-990-5933, Fax: 718-990-1877,
| |
Collapse
|
15
|
Baginski TK, Dabbagh K, Satjawatcharaphong C, Swinney DC. Cigarette smoke synergistically enhances respiratory mucin induction by proinflammatory stimuli. Am J Respir Cell Mol Biol 2006; 35:165-74. [PMID: 16543607 DOI: 10.1165/rcmb.2005-0259oc] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pathogenic factors associated with chronic obstructive pulmonary disease (COPD), such as cigarette smoke, proinflammatory cytokines, and bacterial infections, can individually induce respiratory mucins in vitro and in vivo. Since co-presence of these factors is common in lungs of patients with COPD, we hypothesized that cigarette smoke can amplify mucin induction by bacterial exoproducts and proinflammatory cytokines, resulting in mucin hyperproduction. We demonstrated that cigarette smoke extract (CSE) synergistically increased gene expression and protein production of MUC5AC mucin induced by LPS or TNF-alpha in human airway epithelial NCI-H292 cells. CSE also enhanced expression and production of MUC5AC mucin induced by epidermal growth factor receptor (EGFR) ligands TGF-alpha and amphiregulin, as well as LPS- and TNF-alpha- induced expression and/or release of TGF-alpha and amphiregulin. Furthermore, (4-[(3-bromophenyl)amino]-6,7-diaminoquinazoline), a potent inhibitor of EGFR, blocked synergistic induction of MUC5AC mucin. H(2)O(2) mimicked the synergistic effects of CSE, while antioxidant N-acetyl-L-cysteine prevented synergistic induction of MUC5AC mucin by CSE. In a rat model of LPS-induced airway inflammation, concurrent cigarette smoke inhalation enhanced mucin content of the bronchoalveolar lavage fluid, muc5AC gene expression, and mucous cell metaplasia in the airways. These results suggest that cigarette smoke has the potential to synergistically amplify induction of respiratory mucins by proinflammatory stimuli relevant to COPD pathogenesis and contribute to mucin hyperproduction observed in patients with COPD.
Collapse
|
16
|
Parilla NW, Hughes VS, Lierl KM, Wong HR, Page K. CpG DNA modulates interleukin 1beta-induced interleukin-8 expression in human bronchial epithelial (16HBE14o-) cells. Respir Res 2006; 7:84. [PMID: 16740161 PMCID: PMC1489942 DOI: 10.1186/1465-9921-7-84] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 06/01/2006] [Indexed: 01/13/2023] Open
Abstract
Background Recognition of repeat unmethylated CpG motifs from bacterial DNA through Toll-like receptor (TLR-9) has been shown to induce interleukin (IL)-8 expression in immune cells. We sought to investigate the role of CpG oligodeoxynucleotides (ODN) on a human bronchial epithelial cells. Methods RT-PCR and Western blot analysis were used to determine expression of TLR-9 in human bronchial epithelial cells (16HBE14o-). Cells were treated with CpG ODN in the presence or absence of IL-1β and IL-8 protein was determined using ELISA. In some cases cells were pretreated with chloroquine, an inhibitor of TLR-9 signaling, or SB202190, an inhibitor of the mitogen activated protein kinase p38, prior to treatment with IL-1β and CpG. TLR9 siRNA was used to silence TLR9 prior to treatment with IL-1β and CpG. IκBα and p38 were assessed by Western blot, and EMSA's were performed to determine NF-κB activation. To investigate IL-8 mRNA stability, cells were treated with IL-1β in the absence or presence of CpG for 2 h and actinomycin D was added to induce transcriptional arrest. Cells were harvested at 15 min intervals and Northern blot analysis was performed. Results TLR-9 is expressed in 16HBE14o- cells. CpG synergistically increased IL-1β-induced IL-8 protein abundance, however treatment with CpG alone had no effect. CpC (a control ODN) had no effect on IL-1β-induced IL-8 levels. In addition, CpG synergistically upregulated TNFα-induced IL-8 expression. Silencing TLR9 using siRNA or pretreatment of cells with chloroquine had little effect on IL-1β-induced IL-8 levels, but abolished CpG-induced synergy. CpG ODN had no effect on NF-κB translocation or DNA binding in 16HBE14o- cells. Treatment with CpG increased phosphorylation of p38 and pretreatment with the p38 inhibitor SB202190 attenuated the synergistic increase in IL-8 protein levels. Analysis of the half-life of IL-8 mRNA revealed that IL-8 mRNA had a longer half-life following the co-treatment of CpG and IL-1β compared to treatment with IL-1β alone. Conclusion Together, these data demonstrate that CpG modulates IL-8 synthesis in the presence of a pro-inflammatory mediator utilizing TLR9 and post-transcriptional mechanisms involving the activation of p38 and stabilization of IL-8 mRNA.
Collapse
Affiliation(s)
- N William Parilla
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Valerie S Hughes
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kristin M Lierl
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH, USA
| | - Kristen Page
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati OH, USA
| |
Collapse
|
17
|
Abstract
Heat shock modulates cellular proinflammatory responses, and we have been interested in elucidating the mechanisms that govern this modulation. The dual specific phosphatase, MAP kinase phosphatase-1 (MKP-1), is an important modulator of cellular inflammatory responses, and we recently reported that heat shock increases expression of MKP-1. Herein we sought to elucidate the mechanisms by which heat shock modulates MKP-1 gene expression. Subjecting RAW264.7 macrophages to heat shock increased MKP-1 gene expression in a time-dependent manner. Transfection with a wild-type murine MKP-1 promoter luciferase reporter plasmid demonstrated that heat shock activates the MKP-1 promoter. When the reporter plasmid was transfected into heat shock factor-1 (HSF-1)-null fibroblasts, the MKP-1 promoter was activated in response to heat shock in a manner similar to that of wild-type fibroblasts with intact HSF-1. Site-directed mutagenesis of two potential heat shock elements in the MKP-1 promoter demonstrated that both sites are required for basal promoter activity. mRNA stability assays demonstrated that heat shock increased MKP-1 mRNA stability compared with cells maintained at 37 degrees C. Inhibition of p38 MAP kinase activity inhibited heat shock-mediated expression of MKP-1. These data demonstrate that heat shock regulates MKP-1 gene expression at both the transcriptional and posttranscriptional levels. Transcriptional mechanisms are HSF-1 independent but are dependent on putative heat shock elements in the MKP-1 promoter. Posttranscriptional mechanisms involve increased stability of MKP-1 mRNA that is partially dependent on p38 MAP kinase activity. These data demonstrate another potential mechanism by which heat shock can modulate inflammation-related signal transduction.
Collapse
Affiliation(s)
- Hector R Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave., Cincinnati, OH 45229, USA.
| | | | | | | |
Collapse
|
18
|
Kim YM, Reed W, Lenz AG, Jaspers I, Silbajoris R, Nick HS, Samet JM. Ultrafine carbon particles induce interleukin-8 gene transcription and p38 MAPK activation in normal human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2005; 288:L432-41. [PMID: 15695543 DOI: 10.1152/ajplung.00285.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Epidemiological studies suggest that ultrafine particles contribute to particulate matter-induced adverse health effects. Interleukin (IL)-8 is an important proinflammatory cytokine in the human lung that is induced in respiratory cells exposed to a variety of environmental insults, including ambient air ultrafine particles. In this study, we examined the effect of a model ultrafine particle on IL-8 expression and the cellular mechanisms responsible for this event. Here, we report that carbonaceous ultrafine particles consisting of synthetic elemental carbon particles (UfCP) markedly increase the expression of IL-8 mRNA and protein in normal human bronchial epithelial (NHBE) cells. IL-8 promoter activity was increased by UfCP exposure in NHBE cells, indicating UfCP-induced IL-8 expression is transcriptionally regulated. IL-8 expression in NHBE is known to be regulated by nuclear factor (NF)-κB activation. However, UfCP did not induce inhibitory factor κBα degradation, NF-κB-DNA binding, or NF-κB-dependent promoter activity in NHBE cells, indicating that UfCP induces IL-8 expression through a mechanism that is independent of NF-κB activation. Additionally, we observed that UfCP exposure induces the phosphorylation and activation of p38 mitogen-activated protein kinase (MAPK) in a biphasic manner and that the inhibition of p38 MAPK activity can block IL-8 mRNA expression induced by UfCP in NHBE cells. These results demonstrate that UfCP-induced expression of IL-8 involves a transcriptional mechanism and activation of p38 MAPK in NHBE cells.
Collapse
Affiliation(s)
- Yu-Mee Kim
- Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Franek WR, Morrow DMP, Zhu H, Vancurova I, Miskolci V, Darley-Usmar K, Simms HH, Mantell LL. NF-kappaB protects lung epithelium against hyperoxia-induced nonapoptotic cell death-oncosis. Free Radic Biol Med 2004; 37:1670-9. [PMID: 15477018 DOI: 10.1016/j.freeradbiomed.2004.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 08/12/2004] [Indexed: 01/26/2023]
Abstract
Prolonged exposure to hyperoxia induces pulmonary epithelial cell death and acute lung injury. Although both apoptotic and nonapoptotic morphologies are observed in hyperoxic animal lungs, nonapoptotic cell death had only been recorded in transformed lung epithelium cultured in hyperoxia. To test whether the nonapoptotic characteristics in hyperoxic animal lungs are direct effects of hyperoxia, the mode of cell death was determined both morphologically and biochemically in human primary lung epithelium exposed to 95% O(2). In contrast to characteristics observed in apoptotic cells, hyperoxia induced swelling of nuclei and an increase in cell size, with no evidence for any augmentation in the levels of either caspase-3 activity or annexin V incorporation. These data suggest that hyperoxia can directly induce nonapoptotic cell death in primary lung epithelium. Although hyperoxia-induced nonapoptotic cell death was associated with NF-kappaB activation, it is unknown whether NF-kappaB activation plays any causal role in nonapoptotic cell death. This study shows that inhibition of NF-kappaB activation can accelerate hyperoxia-induced epithelial cell death in both primary and transformed lung epithelium. Corresponding to the reduced cell survival in hyperoxia, the levels of MnSOD were also low in NF-kappaB-deficient cells. These results demonstrate that NF-kappaB protects lung epithelial cells from hyperoxia-induced nonapoptotic cell death.
Collapse
Affiliation(s)
- William R Franek
- Department of Surgery, North Shore University Hospital, New York University School of Medicine, 350 Community Drive, Manhasset, NY 11030, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
D'Angio CT, LoMonaco MB, Johnston CJ, Reed CK, Finkelstein JN. Differential roles for NF-kappa B in endotoxin and oxygen induction of interleukin-8 in the macrophage. Am J Physiol Lung Cell Mol Physiol 2004; 286:L30-6. [PMID: 12909591 DOI: 10.1152/ajplung.00360.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The alveolar macrophage is an important source of interleukin (IL)-8 during pulmonary injury. The IL-8 gene promoter sequence contains nuclear factor (NF)-kappa B, NF-IL6, and activator protein (AP)-1 binding sequences. These sites may have differing regulatory roles in hyperoxia-exposed macrophages than in those stimulated by bacterial lipopolysaccharide (LPS). U-937 and THP-1 macrophage-like cells were exposed to air-5% CO2 or 95% O2-5% CO2, with or without 1.0 microg/ml of LPS, and transfected with an IL-8 promoter-reporter containing NF-kappa B, NF-IL6, or AP-1 mutations. Hyperoxia and LPS caused additive increases in IL-8 production by U-937 cells, whereas THP-1 cells responded only to LPS. An NF-kappa B mutation ablated baseline and O2- and LPS-stimulated reporter activity in both cell lines, whereas NF-IL6 mutations had little effect. An AP-1 mutation had an intermediate effect. LPS, but not hyperoxia, stimulated nuclear translocation of NF-kappa B in both cell lines. Pharmacological blockade of NF-kappa B nuclear translocation ablated LPS-, but not hyperoxia-, stimulated IL-8 production. Although an intact promoter NF-kappa B site is crucial to macrophage IL-8 production, only LPS-stimulated production appears to require additional nuclear translocation of NF-kappa B.
Collapse
Affiliation(s)
- Carl T D'Angio
- Departmentof Pediatrics, Strong Children's Research Center, University of Rochester School of Medicine, NY 14642, USA.
| | | | | | | | | |
Collapse
|
21
|
Danielson DS, Heagy W, Nieman KM, West MA. Relative hyperoxia augments lipopolysaccharide-stimulated cytokine secretion by murine macrophages. Surgery 2003; 133:538-46. [PMID: 12773982 DOI: 10.1067/msy.2003.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Increased systemic levels of inflammatory mediators are seen after open abdominal operations. Macrophages that are exposed to lipopolysaccharide secrete cytokines. Peritoneal macrophages normally reside in a pO(2) of 40 mm Hg. We hypothesize that exposure of lipopolysaccharide-stimulated macrophages to "non-physiologic" pO(2) augments cytokine secretion. METHOD Murine macrophages were preconditioned to a pO(2) of 40 mm Hg for 24 hours. The medium then was discarded and exchanged for a medium containing a pO(2) of 40, 150, or 440 mm Hg. Macrophages were incubated in the desired pO(2) for 6 and 24 hours while stimulated with lipopolysaccharide (0 to 100 ng/mL). The effect of pO(2) was compared. Supernatant tumor necrosis factor (TNF) and interleukin-6 were measured with enzyme-linked immunosorbent assay. Statistics were performed with analysis of variance. RESULTS We found dose-dependent lipopolysaccharide-stimulated TNF and interleukin-6 production with macrophages incubated at physiologic pO(2). Higher pO(2) did not stimulate TNF and interleukin-6 in the absence of lipopolysaccharide. However, a pO(2) of 150 and 440 mm Hg significantly (P <.05) increased lipopolysaccharide-stimulated TNF and interleukin-6 production versus 45 mm Hg. CONCLUSION Our data suggest synergy between increased pO(2) and lipopolysaccharide for macrophage TNF and interleukin-6 production. Similar pO(2) elevations may occur with an open peritoneum or high supplemental O(2). Cytokines from peritoneal macrophages may contribute to the increased systemic inflammation after open operations.
Collapse
Affiliation(s)
- Daren S Danielson
- Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
22
|
Mukaida N. Pathophysiological roles of interleukin-8/CXCL8 in pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2003; 284:L566-L577. [PMID: 12618418 DOI: 10.1152/ajplung.00233.2002] [Citation(s) in RCA: 308] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Fifteen years have passed since the first description of interleukin (IL)-8/CXCL8 as a potent neutrophil chemotactic factor. Accumulating evidence has demonstrated that various types of cells can produce a large amount of IL-8/CXCL8 in response to a wide variety of stimuli, including proinflammatory cytokines, microbes and their products, and environmental changes such as hypoxia, reperfusion, and hyperoxia. Numerous observations have established IL-8/CXCL8 as a key mediator in neutrophil-mediated acute inflammation due to its potent actions on neutrophils. However, several lines of evidence indicate that IL-8/CXCL8 has a wide range of actions on various types of cells, including lymphocytes, monocytes, endothelial cells, and fibroblasts, besides neutrophils. The discovery of these biological functions suggests that IL-8/CXCL8 has crucial roles in various pathological conditions such as chronic inflammation and cancer. Here, an overview of its protein structure, mechanisms of production, and receptor system will be discussed as well as the pathophysiological roles of IL-8/CXCL8 in various types of lung pathologies.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, 13-1 Takara-machi, Japan.
| |
Collapse
|
23
|
Barazzone-Argiroffo C, Pagano A, Juge C, Métrailler I, Rochat A, Vesin C, Donati Y. Glucocorticoids aggravate hyperoxia-induced lung injury through decreased nuclear factor-kappa B activity. Am J Physiol Lung Cell Mol Physiol 2003; 284:L197-204. [PMID: 12388343 DOI: 10.1152/ajplung.00239.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that exposure of mice to hyperoxia is characterized by extensive lung cell necrosis and apoptosis, mild inflammatory response, and elevated circulating levels of corticosterone. Administration of hydroxycortisone acetate during hyperoxia aggravated lung injury. Using adrenalectomized (ADX) and sham-operated (sham) mice, we studied the role of the glucocorticoids in hyperoxia-induced lung injury. Lung damage was attenuated in ADX mice as measured by lung weight and protein and cell content in bronchoalveolar lavage and as seen by light microscopy. Mortality was delayed by 10 h. Nuclear factor-kappaB (NF-kappaB) activity was significantly decreased in lungs of sham mice exposed to hyperoxia but was preserved in ADX mice. There was a correlation between NF-kappaB activity in ADX mice and decreased levels of IkappaBalpha. In contrast, activator protein-1 activity increased similarly in both groups of mice. Levels of interleukin-6 (IL-6), a transcriptional target of NF-kappaB, were higher in bronchoalveolar lavage and serum of ADX than sham mice. However, the protective effect of ADX was not mediated by IL-6, because administration of recombinant human IL-6 to sham mice did not prevent lung damage. These results demonstrate that the adrenal response aggravates alveolar injury and is likely to be mediated by the decrease of NF-kappaB function involved in cell survival.
Collapse
|
24
|
Baier RJ, Loggins J, Kruger TE. Increased interleukin-8 and monocyte chemoattractant protein-1 concentrations in mechanically ventilated preterm infants with pulmonary hemorrhage. Pediatr Pulmonol 2002; 34:131-7. [PMID: 12112780 DOI: 10.1002/ppul.10141] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pulmonary hemorrhage (PH) is a serious complication causing acute respiratory distress in the premature infant, and it is associated with significant mortality and morbidity. The role of inflammatory mediators in this condition is largely undefined. Serial tracheal aspirates (TA) were obtained at intervals from 65 mechanically ventilated infants with birth weights less than 1,250 g during the first 21 days of life. Clinically significant PH developed in 15 infants. TA concentrations of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1) were determined by enzyme-linked immunosorbent assay (ELISA).PH was associated with an increased risk of death, bronchopulmonary dysplasia, intraventricular hemorrhage, and prolonged need for mechanical ventilation and supplemental oxygen. TA aspirate concentrations of IL-8 and MCP-1 (P = 0.001, ANOVA) were significantly increased in infants with PH compared to infants who did not develop this condition. TA cytokine concentrations were also significantly increased in infants who developed bronchopulmonary dysplasia (BPD). Peak TA concentrations of IL-8 and MCP-1 were significantly higher in infants with poor outcome (BPD or death). TA MCP-1 but not IL-8 concentrations were significantly higher in infants who were oxygen-dependent at 36 weeks postconceptional age. These data suggest a pathogenic role for IL-8 and MCP-1 in the development of adverse pulmonary outcome in preterm infants with clinically significant PH.
Collapse
Affiliation(s)
- R John Baier
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport 71130-3932, USA.
| | | | | |
Collapse
|
25
|
Chen PC, Wheeler DS, Malhotra V, Odoms K, Denenberg AG, Wong HR. A green tea-derived polyphenol, epigallocatechin-3-gallate, inhibits IkappaB kinase activation and IL-8 gene expression in respiratory epithelium. Inflammation 2002; 26:233-41. [PMID: 12238566 PMCID: PMC7101574 DOI: 10.1023/a:1019718718977] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Interleukin-8 (IL-8) is a principle neutrophil chemoattractant and activator in humans. There is interest in developing novel pharmacological inhibitors of IL-8 gene expression as a means for modulating inflammation in disease states such as acute lung injury. Herein we determined the effects of epigallocatechin-3-gallate (EGCG), a green tea-derived polyphenol, on tumor necrosis factor-alpha (TNF-alpha)-mediated expression of the IL-8 gene in A549 cells. EGCG inhibited TNF-alpha-mediated IL-8 gene expression in a dose response manner, as measured by ELISA and Northern blot analysis. This effect appears to primarily involve inhibition of IL-8 transcription because EGCG inhibited TNF-alpha-mediated activation of the IL-8 promoter in cells transiently transfected with an IL-8 promoter-luciferase reporter plasmid. In addition, EGCG inhibited TNF-alpha-mediated activation of IkappaB kinase and subsequent activation of the IkappaB alpha/NF-kappaB pathway. We conclude that EGCG is a potent inhibitor of IL-8 gene expression in vitro. The proximal mechanism of this effect involves, in part, inhibition of IkappaB kinase activation.
Collapse
Affiliation(s)
- Philip C. Chen
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| | - Derek S. Wheeler
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| | - Vivek Malhotra
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| | - Kelli Odoms
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| | - Alvin G. Denenberg
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| | - Hector R. Wong
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, OH 45244
| |
Collapse
|
26
|
Sugita-Konishi Y, Pestka JJ. Differential upregulation of TNF-alpha, IL-6, and IL-8 production by deoxynivalenol (vomitoxin) and other 8-ketotrichothecenes in a human macrophage model. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2001; 64:619-636. [PMID: 11766169 DOI: 10.1080/152873901753246223] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effects of deoxynivalenol (DON or vomitoxin) and four closely related 8-ketotrichothecenes on proinflammatory cytokine and chemokine production were evaluated in a clonal human macrophage model. U-937 cells, which represent a human monocytelike histocytic lymphoma, were differentiated into macrophages by preincubation with phorbol 12-myristate 13-acetate (PMA). Differentiated macrophages were incubated with DON in the absence or presence of lipopolysaccharide (LPS), and supernatant was analyzed by enzyme-linked immunosorbent assay (ELISA) for the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha), and for the chemokine interleukin-8 (IL-8). In the absence of LPS, DON at 500 or 1,000 ng/ml upregulated TNF-alpha production as early as 3 h and up to 6 h, whereas 100 to 1,000 ng/ml of DON significantly increased production of IL-6 from 3 to 24 h and IL-8 from 6 to 48 h. In cells costimulated with 0.2 microg/ml LPS, DON at 500 or 1000 ng/ml markedly superinduced TNF-alpha and IL-8 production. Although 100 ng/ml of DON also potentiated LPS-induced IL-6 production, 500 or 1,000 ng/ ml of the toxin suppressed the LPS-induced IL-6 response. Four other 8-ketotrichothecenes, fusarenon X, nivalenol, 3-acetyl DON, and 15-acetyl DON, were also capable of upregulating or suppressing TNF-alpha, IL-6, and IL-8 production at concentrations similar to that of DON. In total, the results suggest that DON and other 8-ketotrichothecenes have the potential to both directly induce and superinduce proinflammatory cytokine and chemokine expression in human macrophages, even at toxin concentrations that are cytotoxic.
Collapse
Affiliation(s)
- Y Sugita-Konishi
- Department of Biomedical Food Research, National Institute of Infectious Diseases, Tokyo, Japan
| | | |
Collapse
|
27
|
Rahman I, Mulier B, Gilmour PS, Watchorn T, Donaldson K, Jeffery PK, MacNee W. Oxidant-mediated lung epithelial cell tolerance: the role of intracellular glutathione and nuclear factor-kappaB. Biochem Pharmacol 2001; 62:787-94. [PMID: 11551525 DOI: 10.1016/s0006-2952(01)00702-x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The airway epithelium is injured by oxidants inhaled as atmospheric pollutants or produced during inflammatory responses. We studied the effect of modulating the antioxidant intracellular glutathione, both using thiol compounds and by the adaptive effect of hyperoxia, on oxidant-induced injury and activation of the nuclear factor-kappaB (NF-kappaB) in two cell lines: the human bronchial (16HBE) and type II alveolar epithelial cells (A549). The thiol antioxidants glutathione (GSH) and glutathione monoethyl ester (GSH-MEE) [2 mM] increased GSH levels (nmol/mg protein) in A549 cells (GSH 383 +/- 26 and GSH-MEE 336 +/- 23 vs control 171 +/- 13, P < 0.001) and in 16HBE cells (GSH 405 +/- 33, GSH-MEE 362 +/- 37 vs control 198 +/- 12, P < 0.001, N = 3). Treatment of hyperoxia (95% oxygen) also increased GSH levels between 4 and 24 hr exposure compared with control (P < 0.01). Hydrogen peroxide (H(2)O(2)) (0.01 mM) induced NF-kappaB activation, whereas hyperoxia exposure did not affect NF-kappaB activation in either cell line. Pretreatment with dl-buthionine (SR)-sulfoximine, which decreased intracellular glutathione, increased NF-kappaB binding induced by H(2)O(2) and increased lactate dehydrogenase (LDH) release (P < 0.001). Pretreatment with the thiol compounds and hyperoxia totally inhibited H(2)O(2)-induced NF-kappaB binding and cell injury as measured by LDH release. These data indicate the importance of intracellular glutathione and inhibition of NF-kappaB in both protection/tolerance against oxidant-induced epithelial cell injury, and NF-kappaB activation in response to oxidative stress which may be important in lung inflammation. Thus, increasing intracellular glutathione may be of therapeutic relevance if able to modulate NF-kappaB activation and hence attenuate inflammation.
Collapse
Affiliation(s)
- I Rahman
- Respiratory Medicine Unit, ELEGI & Colt Research Laboratory, Wilkie Building, Medical School, University of Edinburgh, Teviot Place, EH8 9AG, Edinburgh, UK.
| | | | | | | | | | | | | |
Collapse
|
28
|
Malhotra V, Shanley TP, Pittet JF, Welch WJ, Wong HR. Geldanamycin inhibits NF-kappaB activation and interleukin-8 gene expression in cultured human respiratory epithelium. Am J Respir Cell Mol Biol 2001; 25:92-7. [PMID: 11472980 DOI: 10.1165/ajrcmb.25.1.4384] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Geldanamycin is a benzoquinone ansamycin with multiple pharmacologic properties. Recent data demonstrated that geldanamycin conferred protection in an animal model of inflammation-associated acute lung injury. In the current study, we investigated the effects of geldanamycin on interleukin (IL)-8 gene expression and nuclear factor (NF)-kappaB activation. Geldanamycin inhibited tumor necrosis factor (TNF)-alpha-mediated IL-8 gene expression in A549 human respiratory epithelial cells as measured by enzyme-linked immunosorbent assay and Northern blot analyses. In cells transiently transfected with an IL-8 promoter-luciferase reporter plasmid, geldanamycin inhibited TNF-alpha-mediated luciferase activity. Geldanamycin inhibited TNF-alpha-mediated NF-kappaB activation as measured by electromobility shift assays and transient transfections with a NF-kappaB-dependent luciferase reporter plasmid. In contrast, geldanamycin did not affect TNF-alpha-mediated degradation of the NF-kappaB inhibitory protein IkappaBalpha and did not block nuclear translocation of the NF-kappaB p65 subunit as measured by Western blot analyses. Geldanamycin added directly to nuclear extracts of TNF-alpha-treated cells reduced the formation of the NF-kappaB/DNA complex. These results demonstrate that geldanamycin inhibits TNF-alpha-mediated IL-8 gene expression in A549 cells by inhibiting activation of the IL-8 promoter. The mechanism of inhibition involves inhibition of NF-kappaB activation, which is independent of IkappaBalpha degradation or p65 nuclear translocation. Geldanamycin appears to directly inhibit the ability of NF-kappaB to bind DNA. The observed in vitro effects could account, in part, for the anti-inflammatory properties of geldanamycin observed in vivo.
Collapse
Affiliation(s)
- V Malhotra
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Oxygen is crucial to aerobic metabolism, but excesses of oxygen or reactive oxygen species (ROS) can injure cells. This minireview addresses two transcription factors that regulate several cellular responses to oxygen tension. Hypoxia inducible factor-1 (HIF-1) is a heterodimeric protein activated by hypoxia. Levels of HIF-1 are regulated by removal of the HIF-1alpha subunit through ubiquination and proteasomal destruction under normoxic conditions. Hypoxia inhibits the ubiquination of HIF-1alpha, preventing its destruction and allowing it to bind to hypoxia-responsive elements in gene promoter, enhancer, and intronic sequences. HIF-1 induces the expression of the hypoxia responsive genes vascular endothelial growth factor and erythropoietin. Its dysregulation has been implicated in von Hippel-Lindau disease. Nuclear factor kappaB (NFkappaB) is a family of pleotropic, dimeric transcription factors, and has a complex pattern of regulation. Under normoxic conditions, NFkappaB is bound to one of several inhibitory proteins (e.g., IkappaB) that prevent its nuclear translocation. Hyperoxia or elevations of ROS cause the ubiquination and destruction of the inhibitory proteins, freeing NFkappaB and allowing it to bind to target gene promoters. Hyperoxia in cell and animal models and acute lung injury in humans induce the expression of multiple proinflammatory cytokines through NFkappaB-dependent mechanisms. Although HIF-1 and NFkappaB respond to changes in pO(2), the precise nature of the oxygen sensing and transduction pathways is unclear in both cases. Both heme-protein and redox-sensitive mechanisms have been proposed. Improved understanding of oxygen-sensitive gene regulation may suggest targeted therapies for human disease.
Collapse
Affiliation(s)
- C T D'Angio
- Strong Children's Research Center, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | |
Collapse
|