1
|
Soares RN, Lessard SJ. Low Response to Aerobic Training in Metabolic Disease: Role of Skeletal Muscle. Exerc Sport Sci Rev 2024; 52:47-53. [PMID: 38112622 PMCID: PMC10963145 DOI: 10.1249/jes.0000000000000331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Aerobic exercise is established to increase cardiorespiratory fitness (CRF), which is linked to reduced morbidity and mortality. However, people with metabolic diseases such as type 1 and type 2 diabetes may be more likely to display blunted improvements in CRF with training. Here, we present evidence supporting the hypothesis that altered skeletal muscle signaling and remodeling may contribute to low CRF with metabolic disease.
Collapse
|
2
|
Song J, Duivenvoorde LPM, Grefte S, Kuda O, Martínez-Ramírez F, van der Stelt I, Mastorakou D, van Schothorst EM, Keijer J. Normobaric hypoxia shows enhanced FOXO1 signaling in obese mouse gastrocnemius muscle linked to metabolism and muscle structure and neuromuscular innervation. Pflugers Arch 2023; 475:1265-1281. [PMID: 37656229 PMCID: PMC10567817 DOI: 10.1007/s00424-023-02854-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
Skeletal muscle relies on mitochondria for sustainable ATP production, which may be impacted by reduced oxygen availability (hypoxia). Compared with long-term hypoxia, the mechanistic in vivo response to acute hypoxia remains elusive. Therefore, we aimed to provide an integrated description of the Musculus gastrocnemius response to acute hypoxia. Fasted male C57BL/6JOlaHsd mice, fed a 40en% fat diet for six weeks, were exposed to 12% O2 normobaric hypoxia or normoxia (20.9% O2) for six hours (n = 12 per group). Whole-body energy metabolism and the transcriptome response of the M. gastrocnemius were analyzed and confirmed by acylcarnitine determination and Q-PCR. At the whole-body level, six hours of hypoxia reduced energy expenditure, increased blood glucose and tended to decreased the respiratory exchange ratio (RER). Whole-genome transcriptome analysis revealed upregulation of forkhead box-O (FOXO) signalling, including an increased expression of tribbles pseudokinase 3 (Trib3). Trib3 positively correlated with blood glucose levels. Upregulated carnitine palmitoyltransferase 1A negatively correlated with the RER, but the significantly increased in tissue C14-1, C16-0 and C18-1 acylcarnitines supported that β-oxidation was not regulated. The hypoxia-induced FOXO activation could also be connected to altered gene expression related to fiber-type switching, extracellular matrix remodeling, muscle differentiation and neuromuscular junction denervation. Our results suggest that a six-hour exposure of obese mice to 12% O2 normobaric hypoxia impacts M. gastrocnemius via FOXO1, initiating alterations that may contribute to muscle remodeling of which denervation is novel and warrants further investigation. The findings support an early role of hypoxia in tissue alterations in hypoxia-associated conditions such as aging and obesity.
Collapse
Affiliation(s)
- Jingyi Song
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | | | - Sander Grefte
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Ondrej Kuda
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Felipe Martínez-Ramírez
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | - Inge van der Stelt
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Dimitra Mastorakou
- Laboratory of Metabolism of Bioactive Lipids, Institute of Physiology, Czech Academy of Sciences, 14220, Prague 4, Czech Republic
| | | | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Ferreira RP, Duarte JA. Protein Turnover in Skeletal Muscle: Looking at Molecular Regulation towards an Active Lifestyle. Int J Sports Med 2023; 44:763-777. [PMID: 36854391 DOI: 10.1055/a-2044-8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Skeletal muscle is a highly plastic tissue, able to change its mass and functional properties in response to several stimuli. Skeletal muscle mass is influenced by the balance between protein synthesis and breakdown, which is regulated by several signaling pathways. The relative contribution of Akt/mTOR signaling, ubiquitin-proteasome pathway, autophagy among other signaling pathways to protein turnover and, therefore, to skeletal muscle mass, differs depending on the wasting or loading condition and muscle type. By modulating mitochondria biogenesis, PGC-1α has a major role in the cell's bioenergetic status and, thus, on protein turnover. In fact, rates of protein turnover regulate differently the levels of distinct protein classes in response to atrophic or hypertrophic stimuli. Mitochondrial protein turnover rates may be enhanced in wasting conditions, whereas the increased turnover of myofibrillar proteins triggers muscle mass gain. The present review aims to update the knowledge on the molecular pathways implicated in the regulation of protein turnover in skeletal muscle, focusing on how distinct muscle proteins may be modulated by lifestyle interventions with emphasis on exercise training. The comprehensive analysis of the anabolic effects of exercise programs will pave the way to the tailored management of muscle wasting conditions.
Collapse
Affiliation(s)
- Rita Pinho Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Jose Alberto Duarte
- TOXRUN - Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra, Portugal
- CIAFEL, Faculty of Sports, University of Porto and Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
4
|
Kuhnen G, Guedes Russomanno T, Murgia M, Pillon NJ, Schönfelder M, Wackerhage H. Genes Whose Gain or Loss of Function Changes Type 1, 2A, 2X, or 2B Muscle Fibre Proportions in Mice—A Systematic Review. Int J Mol Sci 2022; 23:ijms232112933. [PMID: 36361732 PMCID: PMC9658117 DOI: 10.3390/ijms232112933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022] Open
Abstract
Adult skeletal muscle fibres are classified as type 1, 2A, 2X, and 2B. These classifications are based on the expression of the dominant myosin heavy chain isoform. Muscle fibre-specific gene expression and proportions of muscle fibre types change during development and in response to exercise, chronic electrical stimulation, or inactivity. To identify genes whose gain or loss-of-function alters type 1, 2A, 2X, or 2B muscle fibre proportions in mice, we conducted a systematic review of transgenic mouse studies. The systematic review was conducted in accordance with the 2009 PRISMA guidelines and the PICO framework. We identified 25 “muscle fibre genes” (Akirin1, Bdkrb2, Bdnf, Camk4, Ccnd3, Cpt1a, Epas1, Esrrg, Foxj3, Foxo1, Il15, Mapk12, Mstn, Myod1, Ncor1, Nfatc1, Nol3, Ppargc1a, Ppargc1b, Sirt1, Sirt3, Thra, Thrb, Trib3, and Vgll2) whose gain or loss-of-function significantly changes type 1, 2A, 2X or 2B muscle fibre proportions in mice. The fact that 15 of the 25 muscle fibre genes are transcriptional regulators suggests that muscle fibre-specific gene expression is primarily regulated transcriptionally. A reanalysis of existing datasets revealed that the expression of Ppargc1a and Vgll2 increases and Mstn decreases after exercise, respectively. This suggests that these genes help to regulate the muscle fibre adaptation to exercise. Finally, there are many known DNA sequence variants of muscle fibre genes. It seems likely that such DNA sequence variants contribute to the large variation of muscle fibre type proportions in the human population.
Collapse
Affiliation(s)
- Gabryela Kuhnen
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Tiago Guedes Russomanno
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Marta Murgia
- Max Planck Institute, Martinsried, 82152 Munich, Germany
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi, 58/B, 35131 Padua, Italy
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Martin Schönfelder
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| | - Henning Wackerhage
- Department of Sports and Health Sciences, Technical University of Munich, 80809 Munich, Germany
| |
Collapse
|
5
|
Alves-Wagner AB, Kusuyama J, Nigro P, Ramachandran K, Makarewicz N, Hirshman MF, Goodyear LJ. Grandmaternal exercise improves metabolic health of second-generation offspring. Mol Metab 2022; 60:101490. [PMID: 35398278 PMCID: PMC9036117 DOI: 10.1016/j.molmet.2022.101490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/11/2022] [Accepted: 03/28/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE A major factor in the growing world-wide epidemic of obesity and type 2 diabetes is the increased risk of transmission of metabolic disease from obese mothers to both first (F1) and second (F2) generation offspring. Fortunately, recent pre-clinical studies demonstrate that exercise before and during pregnancy improves F1 metabolic health, providing a potential means to disrupt this cycle of disease. Whether the beneficial effects of maternal exercise can also be transmitted to the F2 generation has not been investigated. METHODS C57BL/6 female mice were fed a chow or high-fat diet (HFD) and housed in individual cages with or without running wheels for 2 wks before breeding and during gestation. Male F1 offspring were sedentary and chow-fed, and at 8-weeks of age were bred with age-matched females from untreated parents. This resulted in 4 F2 groups based on grandmaternal treatment: chow sedentary; chow trained; HFD sedentary; HFD trained. F2 were sedentary and chow-fed and studied up to 52-weeks of age. RESULTS We find that grandmaternal exercise improves glucose tolerance and decreases fat mass in adult F2 males and females, in the absence of any treatment intervention of the F1 after birth. Grandmaternal exercise also improves F2 liver metabolic function, including favorable effects on gene and miRNA expression, triglyceride concentrations and hepatocyte glucose production. CONCLUSION Grandmaternal exercise has beneficial effects on the metabolic health of grandoffspring, demonstrating an important means by which exercise during pregnancy could help reduce the worldwide incidence of obesity and type 2 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Laurie J. Goodyear
- Corresponding author. Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Vega RB, Brouwers B, Parsons SA, Stephens NA, Pino MF, Hodges A, Yi F, Yu G, Pratley RE, Smith SR, Sparks LM. An improvement in skeletal muscle mitochondrial capacity with short-term aerobic training is associated with changes in Tribbles 1 expression. Physiol Rep 2021; 8:e14416. [PMID: 32562350 PMCID: PMC7305239 DOI: 10.14814/phy2.14416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 12/18/2022] Open
Abstract
Exercise training and physical activity are known to be associated with high mitochondrial content and oxidative capacity in skeletal muscle. Metabolic diseases including obesity and insulin resistance are associated with low mitochondrial capacity in skeletal muscle. Certain transcriptional factors such as PGC-1α are known to mediate the exercise response; however, the precise molecular mechanisms involved in the adaptation to exercise are not completely understood. We performed multiple measurements of mitochondrial capacity both in vivo and ex vivo in lean or overweight individuals before and after an 18-day aerobic exercise training regimen. These results were compared to lean, active individuals. Aerobic training in these individuals resulted in a marked increase in mitochondrial oxidative respiratory capacity without an appreciable increase in mitochondrial content. These adaptations were associated with robust transcriptome changes. This work also identifies the Tribbles pseudokinase 1, TRIB1, as a potential mediator of the exercise response in human skeletal muscle.
Collapse
Affiliation(s)
- Rick B Vega
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Bram Brouwers
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | | | - Maria F Pino
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Andrew Hodges
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Fanchao Yi
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Gongxin Yu
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | | | - Steven R Smith
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| |
Collapse
|
7
|
Harris JE, Pinckard KM, Wright KR, Baer LA, Arts PJ, Abay E, Shettigar VK, Lehnig AC, Robertson B, Madaris K, Canova TJ, Sims C, Goodyear LJ, Andres A, Ziolo MT, Bode L, Stanford KI. Exercise-induced 3'-sialyllactose in breast milk is a critical mediator to improve metabolic health and cardiac function in mouse offspring. Nat Metab 2020; 2:678-687. [PMID: 32694823 PMCID: PMC7438265 DOI: 10.1038/s42255-020-0223-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 05/27/2020] [Indexed: 01/22/2023]
Abstract
Poor maternal environments, such as under- or overnutrition, can increase the risk for the development of obesity, type 2 diabetes and cardiovascular disease in offspring1-9. Recent studies in animal models have shown that maternal exercise before and during pregnancy abolishes the age-related development of impaired glucose metabolism10-15, decreased cardiovascular function16 and increased adiposity11,15; however, the underlying mechanisms for maternal exercise to improve offspring's health have not been identified. In the present study, we identify an exercise-induced increase in the oligosaccharide 3'-sialyllactose (3'-SL) in milk in humans and mice, and show that the beneficial effects of maternal exercise on mouse offspring's metabolic health and cardiac function are mediated by 3'-SL. In global 3'-SL knockout mice (3'-SL-/-), maternal exercise training failed to improve offspring metabolic health or cardiac function in mice. There was no beneficial effect of maternal exercise on wild-type offspring who consumed milk from exercise-trained 3'-SL-/- dams, whereas supplementing 3'-SL during lactation to wild-type mice improved metabolic health and cardiac function in offspring during adulthood. Importantly, supplementation of 3'-SL negated the detrimental effects of a high-fat diet on body composition and metabolism. The present study reveals a critical role for the oligosaccharide 3'-SL in milk to mediate the effects of maternal exercise on offspring's health. 3'-SL supplementation is a potential therapeutic approach to combat the development of obesity, type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Johan E Harris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Kelsey M Pinckard
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Katherine R Wright
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lisa A Baer
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Peter J Arts
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Eaman Abay
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Vikram K Shettigar
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Adam C Lehnig
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bianca Robertson
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kendra Madaris
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Tyler J Canova
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Clark Sims
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Aline Andres
- Department of Pediatrics, University of Arkansas for Medical Sciences and Arkansas Children's Nutrition Center, Little Rock, Arkansas, USA
| | - Mark T Ziolo
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lars Bode
- Department of Pediatrics and Larsson-Rosenquist-Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, USA
| | - Kristin I Stanford
- Dorothy M. Davis Heart and Lung Research Institute, Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Characterization and Functional Analysis of Polyadenylation Sites in Fast and Slow Muscles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2626584. [PMID: 32258109 PMCID: PMC7102456 DOI: 10.1155/2020/2626584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/01/2019] [Accepted: 01/16/2020] [Indexed: 12/05/2022]
Abstract
Many increasing documents have proved that alternative polyadenylation (APA) events with different polyadenylation sites (PAS) contribute to posttranscriptional regulation. However, little is known about the detailed molecular features of PASs and its role in porcine fast and slow skeletal muscles through microRNAs (miRNAs) and RNA binding proteins (RBPs). In this study, we combined single-molecule real-time sequencing and Illumina RNA-seq datasets to comprehensively analyze polyadenylation in pigs. We identified a total of 10,334 PASs, of which 8734 were characterized by reference genome annotation. 32.86% of PAS-associated genes were determined to have more than one PAS. Further analysis demonstrated that tissue-specific PASs between fast and slow muscles were enriched in skeletal muscle development pathways. In addition, we obtained 1407 target genes regulated by APA events through potential binding 69 miRNAs and 28 RBPs in variable 3′ UTR regions and some are involved in myofiber transformation. Furthermore, the de novo motif search confirmed that the most common usage of canonical motif AAUAAA and three types of PASs may be related to the strength of motifs. In summary, our results provide a useful annotation of PASs for pig transcriptome and suggest that APA may serve as a role in fast and slow muscle development under the regulation of miRNAs and RBPs.
Collapse
|
9
|
Shiragaki-Ogitani M, Kono K, Nara F, Aoyagi A. Neuromuscular stimulation ameliorates ischemia-induced walking impairment in the rat claudication model. J Physiol Sci 2019; 69:885-893. [PMID: 31388976 PMCID: PMC10717074 DOI: 10.1007/s12576-019-00701-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
Intermittent claudication (IC) is the most common symptom of peripheral arterial disease which significantly deteriorates the quality of life of patients. Exercise training is by far the most effective treatment for IC; however, the underlying mechanisms remain elusive. To determine the local mechanisms by which exercise training improves walking performance in claudicants, we developed an implantable device to locally induce ischemic skeletal muscle contraction mimicking exercise via electrical stimulation (ES). Rats were assigned to four groups, Sham, Ischemia (Isch), Isch + exercise and Isch + ES groups. Following both unilateral femoral and iliac artery occlusion, rats showed sustained impairment of walking performance in the treadmill test. Chronic low-frequency ES of ischemic skeletal muscles for 2 weeks significantly recovered the occlusion-induced walking impairment in the rat claudication model. We further analyzed the ischemic skeletal muscles immunohistochemically following ES or exercise training; both ES and exercise training significantly increased capillaries in the ischemic skeletal muscles and shifted the muscle fibers toward oxidative types. These findings demonstrate that ES takes on common features of exercise in the rat claudication model, which may facilitate investigations on the local mechanisms of exercise-induced functional recovery.
Collapse
Affiliation(s)
- Momoko Shiragaki-Ogitani
- Venture Science Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan.
| | - Keita Kono
- Global Project Management Department, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| | - Futoshi Nara
- Ube Industries, Ltd. Pharmaceuticals Research Laboratory, 1978-5, Kogushi, Ube, Yamaguchi, 755-8633, Japan
| | - Atsushi Aoyagi
- Venture Science Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo, 140-8710, Japan
| |
Collapse
|
10
|
Yaghoob Nezhad F, Verbrugge SAJ, Schönfelder M, Becker L, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-of-Function Increases Endurance Performance in Mice: A Systematic Literature Review. Front Physiol 2019; 10:262. [PMID: 30967789 PMCID: PMC6439621 DOI: 10.3389/fphys.2019.00262] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/28/2019] [Indexed: 01/23/2023] Open
Abstract
Endurance is not only a key factor in many sports but endurance-related variables are also associated with good health and low mortality. Twin and family studies suggest that several endurance-associated traits are ≈50% inherited. However, we still poorly understand what DNA sequence variants contribute to endurance heritability. To address this issue, we conducted a systematic review to identify genes whose experimental loss or gain-of-function increases endurance capacity in mice. We found 31 genes including two isoforms of Ppargc1a whose manipulation increases running or swimming endurance performance by up to 1800%. Genes whose gain-of-function increases endurance are Adcy5, Adcy8, Hk2, Il15, Mef2c, Nr4a3, Pck1 (Pepck), Ppard, Ppargc1a (both the a and b isoforms of the protein Pgc-1α), Ppargc1b, Ppp3ca (calcineurin), Scd1, Slc5a7, Tfe3, Tfeb, Trib3 & Trpv1. Genes whose loss-of-function increases endurance in mice are Actn3, Adrb2, Bdkrb2, Cd47, Crym, Hif1a, Myoz1, Pappa, Pknox1, Pten, Sirt4, Thbs1, Thra, and Tnfsf12. Of these genes, human DNA sequence variants of ACTN3, ADCY5, ADRB2, BDKRB2, HIF1A, PPARD, PPARGC1A, PPARGC1B, and PPP3CA are also associated with endurance capacity and/or VO2max trainability suggesting evolutionary conservation between mice and humans. Bioinformatical analyses show that there are numerous amino acid or copy number-changing DNA variants of endurance genes in humans, suggesting that genetic variation of endurance genes contributes to the variation of human endurance capacity, too. Moreover, several of these genes/proteins change their expression or phosphorylation in skeletal muscle or the heart after endurance exercise, suggesting a role in the adaptation to endurance exercise.
Collapse
Affiliation(s)
- Fakhreddin Yaghoob Nezhad
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Sander A J Verbrugge
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Chair of Experimental Genetics, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.,German Center for Diabetes Research, Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
11
|
Choi RH, McConahay A, Silvestre JG, Moriscot AS, Carson JA, Koh HJ. TRB3 regulates skeletal muscle mass in food deprivation-induced atrophy. FASEB J 2019; 33:5654-5666. [PMID: 30681896 DOI: 10.1096/fj.201802145rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tribbles 3 (TRB3) is a pseudokinase that has been found in multiple tissues in response to various stress stimuli, such as nutrient deprivation and endoplasmic reticulum (ER) stress. We recently found that TRB3 has the potential to regulate skeletal muscle mass at the basal state. However, it has not yet been explored whether TRB3 regulates skeletal muscle mass under atrophic conditions. Here, we report that food deprivation for 48 h in mice significantly reduces muscle mass by ∼15% and increases TRB3 expression, which is associated with increased ER stress. Interestingly, inhibition of ER stress in C2C12 myotubes reduces food deprivation-induced expression of TRB3 and muscle-specific E3-ubiquitin ligases. In further in vivo experiments, muscle-specific TRB3 transgenic mice increase food deprivation-induced muscle atrophy compared with wild-type (WT) littermates presumably by the increased proteolysis. On the other hand, TRB3 knockout mice ameliorate food deprivation-induced atrophy compared with WT littermates by preserving a higher protein synthesis rate. These results indicate that TRB3 plays a pivotal role in skeletal muscle mass regulation under food deprivation-induced muscle atrophy and TRB3 could be a pharmaceutical target to prevent skeletal muscle atrophy.-Choi, R. H., McConahay, A., Silvestre, J. G., Moriscot, A. S., Carson, J. A., Koh, H.-J. TRB3 regulates skeletal muscle mass in food deprivation-induced atrophy.
Collapse
Affiliation(s)
- Ran Hee Choi
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Abigail McConahay
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - João G Silvestre
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA.,Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anselmo S Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - James A Carson
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| | - Ho-Jin Koh
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, South Carolina, USA
| |
Collapse
|
12
|
Sasaki N, Katagiri S, Komazaki R, Watanabe K, Maekawa S, Shiba T, Udagawa S, Takeuchi Y, Ohtsu A, Kohda T, Tohara H, Miyasaka N, Hirota T, Tamari M, Izumi Y. Endotoxemia by Porphyromonas gingivalis Injection Aggravates Non-alcoholic Fatty Liver Disease, Disrupts Glucose/Lipid Metabolism, and Alters Gut Microbiota in Mice. Front Microbiol 2018; 9:2470. [PMID: 30405551 PMCID: PMC6207869 DOI: 10.3389/fmicb.2018.02470] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/27/2018] [Indexed: 12/17/2022] Open
Abstract
Many risk factors related to the development of non-alcoholic fatty liver disease (NAFLD) have been proposed, including the most well-known of diabetes and obesity as well as periodontitis. As periodontal pathogenic bacteria produce endotoxins, periodontal treatment can result in endotoxemia. The aim of this study was to investigate the effects of intravenous, sonicated Porphyromonas gingivalis (Pg) injection on glucose/lipid metabolism, liver steatosis, and gut microbiota in mice. Endotoxemia was induced in C57BL/6J mice (8 weeks old) by intravenous injection of sonicated Pg; Pg was deactivated but its endotoxin remained. The mice were fed a high-fat diet and administered sonicated Pg (HFPg) or saline (HFco) injections for 12 weeks. Liver steatosis, glucose metabolism, and gene expression in the liver were evaluated. 16S rRNA gene sequencing with metagenome prediction was performed on the gut microbiota. Compared to HFco mice, HFPg mice exhibited impaired glucose tolerance and insulin resistance along with increased liver steatosis. Liver microarray analysis demonstrated that 1278 genes were differentially expressed between HFco and HFPg mice. Gene set enrichment analysis showed that fatty acid metabolism, hypoxia, and TNFα signaling via NFκB gene sets were enriched in HFPg mice. Although sonicated Pg did not directly reach the gut, it changed the gut microbiota and decreased bacterial diversity in HFPg mice. Metagenome prediction in the gut microbiota showed enriched citrate cycle and carbon fixation pathways in prokaryotes. Overall, intravenous injection of sonicated Pg caused impaired glucose tolerance, insulin resistance, and liver steatosis in mice fed high-fat diets. Thus, blood infusion of Pg contributes to NAFLD and alters the gut microbiota.
Collapse
Affiliation(s)
- Naoki Sasaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayaka Katagiri
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rina Komazaki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazuki Watanabe
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Shiba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Sayuri Udagawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasuo Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Anri Ohtsu
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Kohda
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Haruka Tohara
- Gerodontology and Oral Rehabilitation, Department of Gerontology and Gerodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Naoyuki Miyasaka
- Department of Comprehensive Reproductive Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomomitsu Hirota
- Research Center for Medical Science, Core Research Facilities for Basic Science (Molecular Genetics), The Jikei University School of Medicine, Tokyo, Japan
| | - Mayumi Tamari
- Research Center for Medical Science, Core Research Facilities for Basic Science (Molecular Genetics), The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Izumi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
13
|
Choi RH, McConahay A, Jeong HW, McClellan JL, Hardee JP, Carson JA, Hirshman MF, Goodyear LJ, Koh HJ. Tribbles 3 regulates protein turnover in mouse skeletal muscle. Biochem Biophys Res Commun 2017; 493:1236-1242. [PMID: 28962861 DOI: 10.1016/j.bbrc.2017.09.134] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/24/2017] [Indexed: 11/15/2022]
Abstract
Skeletal muscle atrophy is associated with a disruption in protein turnover involving increased protein degradation and suppressed protein synthesis. Although it has been well studied that the IGF-1/PI3K/Akt pathway plays an essential role in the regulation of the protein turnover, molecule(s) that triggers the change in protein turnover still remains to be elucidated. TRB3 has been shown to inhibit Akt through direct binding. In this study, we hypothesized that TRB3 in mouse skeletal muscle negatively regulates protein turnover via the disruption of Akt and its downstream molecules. Muscle-specific TRB3 transgenic (TRB3TG) mice had decreased muscle mass and fiber size, resulting in impaired muscle function. We also found that protein synthesis rate and signaling molecules, mTOR and S6K1, were significantly reduced in TRB3TG mice, whereas the protein breakdown pathway was significantly activated. In contrast, TRB3 knockout mice showed increased muscle mass and had an increase in protein synthesis rate, but decreases in FoxOs, atrogin-1, and MuRF-1. These findings indicate that TRB3 regulates protein synthesis and breakdown via the Akt/mTOR/FoxO pathways.
Collapse
Affiliation(s)
- Ran Hee Choi
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Abigail McConahay
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Ha-Won Jeong
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Jamie L McClellan
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Justin P Hardee
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - James A Carson
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA
| | - Michael F Hirshman
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Laurie J Goodyear
- Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, MA 02215, USA
| | - Ho-Jin Koh
- Division of Applied Physiology, Department of Exercise Science, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
14
|
Rines AK, Chang HC, Wu R, Sato T, Khechaduri A, Kouzu H, Shapiro J, Shang M, Burke MA, Abdelwahid E, Jiang X, Chen C, Rawlings TA, Lopaschuk GD, Schumacker PT, Abel ED, Ardehali H. Snf1-related kinase improves cardiac mitochondrial efficiency and decreases mitochondrial uncoupling. Nat Commun 2017; 8:14095. [PMID: 28117339 PMCID: PMC5286102 DOI: 10.1038/ncomms14095] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022] Open
Abstract
Ischaemic heart disease limits oxygen and metabolic substrate availability to the heart, resulting in tissue death. Here, we demonstrate that the AMP-activated protein kinase (AMPK)-related protein Snf1-related kinase (SNRK) decreases cardiac metabolic substrate usage and mitochondrial uncoupling, and protects against ischaemia/reperfusion. Hearts from transgenic mice overexpressing SNRK have decreased glucose and palmitate metabolism and oxygen consumption, but maintained power and function. They also exhibit decreased uncoupling protein 3 (UCP3) and mitochondrial uncoupling. Conversely, Snrk knockout mouse hearts have increased glucose and palmitate oxidation and UCP3. SNRK knockdown in cardiac cells decreases mitochondrial efficiency, which is abolished with UCP3 knockdown. We show that Tribbles homologue 3 (Trib3) binds to SNRK, and downregulates UCP3 through PPARα. Finally, SNRK is increased in cardiomyopathy patients, and SNRK reduces infarct size after ischaemia/reperfusion. SNRK also decreases cardiac cell death in a UCP3-dependent manner. Our results suggest that SNRK improves cardiac mitochondrial efficiency and ischaemic protection.
Collapse
Affiliation(s)
- Amy K. Rines
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Arineh Khechaduri
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Hidemichi Kouzu
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Jason Shapiro
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Meng Shang
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Michael A. Burke
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Eltyeb Abdelwahid
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Xinghang Jiang
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Chunlei Chen
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Tenley A. Rawlings
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah, School of Medicine, Salt Lake City, Utah 84132, USA
| | - Gary D. Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada T6G 2B7
| | - Paul T. Schumacker
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - E. Dale Abel
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah, School of Medicine, Salt Lake City, Utah 84132, USA
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
15
|
Transcriptional profiling of rat skeletal muscle hypertrophy under restriction of blood flow. Gene 2016; 594:229-237. [PMID: 27613141 DOI: 10.1016/j.gene.2016.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 08/16/2016] [Accepted: 09/05/2016] [Indexed: 01/03/2023]
Abstract
Blood flow restriction (BFR) under low-intensity resistance training (LIRT) can produce similar effects upon muscles to that of high-intensity resistance training (HIRT) while overcoming many of the restrictions to HIRT that occurs in a clinical setting. However, the potential molecular mechanisms of BFR induced muscle hypertrophy remain largely unknown. Here, using a BFR rat model, we aim to better elucidate the mechanisms regulating muscle hypertrophy as induced by BFR and reveal possible clinical therapeutic targets for atrophy cases. We performed genome wide screening with microarray analysis to identify unique differentially expressed genes during rat muscle hypertrophy. We then successfully separated the differentially expressed genes from BRF treated soleus samples by comparing the Affymetrix rat Genome U34 2.0 array with the control. Using qRT-PCR and immunohistochemistry (IHC) we also analyzed other related differentially expressed genes. Results suggested that muscle hypertrophy induced by BFR is essentially regulated by the rate of protein turnover. Specifically, PI3K/AKT and MAPK pathways act as positive regulators in controlling protein synthesis where ubiquitin-proteasome acts as a negative regulator. This represents the first general genome wide level investigation of the gene expression profile in the rat soleus after BFR treatment. This may aid our understanding of the molecular mechanisms regulating and controlling muscle hypertrophy and provide support to the BFR strategies aiming to prevent muscle atrophy in a clinical setting.
Collapse
|
16
|
Shin J, Nunomiya A, Kitajima Y, Dan T, Miyata T, Nagatomi R. Prolyl hydroxylase domain 2 deficiency promotes skeletal muscle fiber-type transition via a calcineurin/NFATc1-dependent pathway. Skelet Muscle 2016; 6:5. [PMID: 26949511 PMCID: PMC4779261 DOI: 10.1186/s13395-016-0079-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 01/06/2016] [Indexed: 12/18/2022] Open
Abstract
Background Hypoxia exposure is known to induce an alteration in skeletal muscle fiber-type distribution mediated by hypoxia-inducible factor (HIF)-α. The downstream pathway of HIF-α leading to fiber-type shift, however, has not been elucidated. The calcineurin pathway is one of the pathways responsible for slow muscle fiber transition. Because calcineurin pathway is activated by vascular endothelial growth factor (VEGF), one of the factors induced by HIF-1α, we hypothesized that the stabilization of HIF-1α may lead to slow muscle fiber transition via the activation of calcineurin pathway in skeletal muscles. To induce HIF-1α stabilization, we used a loss of function strategy to abrogate Prolyl hydroxylase domain protein (PHD) 2 responsible for HIF-1α hydroxylation making HIF-1α susceptible to ubiquitin dependent degradation by proteasome. The purpose of this study was therefore to examine the effect of HIF-1α stabilization in PHD2 conditional knockout mouse on skeletal muscle fiber-type transition and to elucidate the involvement of calcineurin pathway on muscle fiber-type transition. Results PHD2 deficiency resulted in an increased capillary density in skeletal muscles due to the induction of vascular endothelial growth factor. It also elicited an alteration of skeletal muscle phenotype toward the type I fibers in both of the soleus (35.8 % in the control mice vs. 46.7 % in the PHD2-deficient mice, p < 0.01) and the gastrocnemius muscle (0.94 vs. 1.89 %, p < 0.01), and the increased proportion of type I fibers appeared to correspond to the area of increased capillary density. In addition, calcineurin and nuclear factor of activated T cell (NFATc1) protein levels were increased in both the gastrocnemius and soleus muscles, suggesting that the calcineurin/NFATc1 pathway was responsible for the type I fiber transition regardless of PGC-1α, which responded minimally to PHD2 deficiency. Indeed, we found that tacrolimus (FK-506), a calcineurin inhibitor, successfully suppressed slow fiber-type formation in PHD2-deficient mice. Conclusions Taken together, stabilized HIF-1α induced by PHD2 conditional knockout resulted in the transition of muscle fibers toward a slow fiber type via a calcineurin/NFATc1 signaling pathway. PHD2 conditional knockout mice may serve as a model for chronic HIF-1α stabilization as in mice exposed to low oxygen concentration. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0079-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junchul Shin
- Department of Medicine & Science in Sport & Exercise, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Aki Nunomiya
- Department of Medicine & Science in Sport & Exercise, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Yasuo Kitajima
- Department of Medicine & Science in Sport & Exercise, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Takashi Dan
- Division of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| | - Ryoichi Nagatomi
- Department of Medicine & Science in Sport & Exercise, Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan.,Division of Biomedical Engineering for Health and Welfare, Tohoku University Graduate School of Biomedical Engineering, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan.,Center for Sports Medicine and Science, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575 Japan
| |
Collapse
|
17
|
Transcriptomic and metabolic analyses reveal salvage pathways in creatine-deficient AGAT−/− mice. Amino Acids 2016; 48:2025-39. [PMID: 26940723 DOI: 10.1007/s00726-016-2202-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/17/2016] [Indexed: 11/26/2022]
|
18
|
Pierre N, Fernández-Verdejo R, Regnier P, Vanmechelen S, Demeulder B, Francaux M. IRE1α and TRB3 do not contribute to the disruption of proximal insulin signaling caused by palmitate in C2C12 myotubes. Cell Biol Int 2015; 40:91-9. [DOI: 10.1002/cbin.10542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/29/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Nicolas Pierre
- Institute of Neuroscience; Université Catholique de Louvain; Louvain-la-Neuve Belgium
| | | | - Pauline Regnier
- Institute of Neuroscience; Université Catholique de Louvain; Louvain-la-Neuve Belgium
| | - Simon Vanmechelen
- Institute of Neuroscience; Université Catholique de Louvain; Louvain-la-Neuve Belgium
| | - Bénédicte Demeulder
- Institute of Neuroscience; Université Catholique de Louvain; Louvain-la-Neuve Belgium
| | - Marc Francaux
- Institute of Neuroscience; Université Catholique de Louvain; Louvain-la-Neuve Belgium
| |
Collapse
|
19
|
Sebastian S, Goulding L, Kuchipudi SV, Chang KC. Extended 2D myotube culture recapitulates postnatal fibre type plasticity. BMC Cell Biol 2015; 16:23. [PMID: 26382633 PMCID: PMC4574010 DOI: 10.1186/s12860-015-0069-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The traditional problems of performing skeletal muscle cell cultures derived from mammalian or avian species are limited myotube differentiation, and transient myotube persistence which greatly restricts the ability of myotubes to undergo phenotypic maturation. We report here on a major technical breakthrough in the establishment of a simple and effective method of extended porcine myotube cultures (beyond 50 days) in two-dimension (2D) that recapitulates key features of postnatal fibre types. RESULTS Primary porcine muscle satellite cells (myoblasts) were isolated from the longissimus dorsi of 4 to 6 weeks old pigs for 2D cultures to optimise myotube formation, improve surface adherence and characterise myotube maturation. Over 95 % of isolated cells were myoblasts as evidenced by the expression of Pax3 and Pax7. Our relatively simple approach, based on modifications of existing surface coating reagents (Maxgel), and of proliferation and differentiation (Ultroser G) media, typically achieved by 5 days of differentiation fusion index of around 80 % manifested in an abundance of discrete myosin heavy chain (MyHC) slow and fast myotubes. There was little deterioration in myotube viability over 50 days, and the efficiency of myotube formation was maintained over seven myoblast passages. Regular spontaneous contractions of myotubes were frequently observed throughout culture. Myotubes in extended cultures were able to undergo phenotypic adaptation in response to different culture media, including the adoption of a dominant postnatal phenotype of fast-glycolytic MyHC 2x and 2b expression by about day 20 of differentiation. Furthermore, fast-glycolytic myotubes coincided with enhanced expression of the putative porcine long intergenic non-coding RNA (linc-MYH), which has recently been shown to be a key coordinator of MyHC 2b expression in vivo. CONCLUSIONS Our revised culture protocol allows the efficient differentiation and fusion of porcine myoblasts into myotubes and their prolonged adherence to the culture surface. Furthermore, we are able to recapitulate in 2D the maturation process of myotubes to resemble postnatal fibre types which represent a major technical advance in opening access to the in vitro study of coordinated postnatal muscle gene expression.
Collapse
Affiliation(s)
- Sujith Sebastian
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Leah Goulding
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
20
|
Dietary protein ingested before and during short photoperiods makes an impact on affect-related behaviours and plasma composition of amino acids in mice. Br J Nutr 2015; 114:1734-43. [DOI: 10.1017/s0007114515003396] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn mammals, short photoperiod is associated with high depression- and anxiety-like behaviours with low levels of the brain serotonin and its precursor tryptophan (Trp). Because the brain Trp levels are regulated by its ratio to large neutral amino acids (Trp:LNAA) in circulation, this study elucidated whether diets of various protein sources that contain different Trp:LNAA affect depression- and anxiety-like behaviours in C57BL/6J mice under short-day conditions (SD). In the control mice on a casein diet, time spent in the central area in the open field test (OFT) was lower in the mice under SD than in those under long-day conditions (LD), indicating that SD exposure induces anxiety-like behaviour. The SD-induced anxiety-like behaviour was countered by an α-lactalbumin diet given under SD. In the mice that were on a gluten diet before transition to SD, the time spent in the central area in the OFT under SD was higher than that in the SD control mice. Alternatively, mice that ingested soya protein before the transition to SD had lower immobility in the forced swim test, a depression-like behaviour, compared with the SD control. Analysis of Trp:LNAA revealed lower Trp:LNAA in the SD control compared with the LD control, which was counteracted by an α-lactalbumin diet under SD. Furthermore, mice on gluten or soya protein diets before transition to SD exhibited high Trp:LNAA levels in plasma under SD. In conclusion, ingestion of specific proteins at different times relative to photoperiodic transition may modulate anxiety- and/or depression-like behaviours, partially through changes in plasma Trp:LNAA.
Collapse
|