1
|
Luo X, Zhang S, Wang L, Li J. Pathological roles of mitochondrial dysfunction in endothelial cells during the cerebral no-reflow phenomenon: A review. Medicine (Baltimore) 2024; 103:e40951. [PMID: 39705421 PMCID: PMC11666140 DOI: 10.1097/md.0000000000040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/18/2024] [Accepted: 11/25/2024] [Indexed: 12/22/2024] Open
Abstract
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance. As integral components of the cerebral microvascular structure, endothelial cells (ECs) attach importance to regulating microcirculatory blood flow. Unlike neurons and microglia, ECs harbor a relatively low abundance of mitochondria, acting as key sensors of environmental and cellular stress in regulating the viability, structural integrity, and function of ECs rather than generating energy. Mitochondria dysfunction including increased mitochondrial reactive oxygen species levels and disturbed mitochondrial dynamics causes endothelial injury, further causing microcirculation disturbance involved in the cerebral no-reflow phenomenon. Therefore, this review aims to discuss the role of mitochondrial changes in regulating the role of ECs and cerebral microcirculation blood flow during I/R injury. The outcomes of the review will provide promising potential therapeutic targets for future prevention and effective improvement of the cerebral no-reflow phenomenon.
Collapse
Affiliation(s)
- Xia Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shaotao Zhang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Longbing Wang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
2
|
Dominiak K, Galganski L, Budzinska A, Jarmuszkiewicz W. Coenzyme Q deficiency in endothelial mitochondria caused by hypoxia; remodeling of the respiratory chain and sensitivity to anoxia/reoxygenation. Free Radic Biol Med 2024; 214:158-170. [PMID: 38364943 DOI: 10.1016/j.freeradbiomed.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/18/2024]
Abstract
This study examined the effects of hypoxia on coenzyme Q (Q) levels and mitochondrial function in EA. hy926 endothelial cells, shedding light on their responses to changes in oxygen levels. Chronic hypoxia during endothelial cell culture reduced Q synthesis by reducing hydroxy-methylglutaryl-CoA reductase (HMGCR) levels via hypoxia-inducible factor 1α (HIF1α), leading to severe Q deficiency. In endothelial mitochondria, hypoxia led to reorganization of the respiratory chain through upregulation of supercomplexes (I+III2+IV), forming a complete mitochondrial Q (mQ)-mediated electron transfer pathway. Mitochondria of endothelial cells cultured under hypoxic conditions showed reduced respiratory rates and membrane potential, as well as increased production of mitochondrial reactive oxygen species (mROS) as a result of increased mQ reduction levels (mQH2/mQtot). Anoxia/reoxygenation (A/R) in vitro caused impairment of endothelial mitochondria, manifested by reduced maximal respiration, complex III activity, membrane potential, coupling parameters, and increased mQ reduction and mROS production. Weaker A/R-induced changes compared to control mitochondria indicated better tolerance of A/R stress by the mitochondria of hypoxic cells. Moreover, in endothelial mitochondria, hypoxia-induced increases in uncoupling protein 3 (UCP3) and mitochondrial large-conductance Ca2+-activated potassium channel (mitoBKCa) levels and activities appear to have alleviated reoxygenation injury after A/R. These results not only highlight hypoxia-induced changes in mQ redox homeostasis and related mitochondrial function, but also indicate that chronic hypoxia during endothelial cell culture leads to mitochondrial adaptations that help mitochondria better withstand subsequent oxygen fluctuations.
Collapse
Affiliation(s)
- Karolina Dominiak
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Lukasz Galganski
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Adrianna Budzinska
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
3
|
Williams TR, Childs EW. Evaluation of Mesenteric Microvascular Hyperpermeability Following Hemorrhagic Shock Using Intravital Microscopy. Methods Mol Biol 2024; 2711:39-46. [PMID: 37776447 DOI: 10.1007/978-1-0716-3429-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Intravital microscopy is a powerful tool for evaluating vascular hyperpermeability in various vascular beds. Hemorrhagic shock after traumatic injury is known to induce microvascular hyperpermeability, life-threatening edema, and microcirculatory perfusion disturbances. Here we describe the microsurgical and imaging methods to study mesenteric vascular hyperpermeability using intravital microscopy, in a rat model of hemorrhagic shock. In this protocol, hemorrhagic shock is induced by controlled withdrawal of blood to reduce the mean arterial pressure (MAP) to 40 mmHg for 60 min, followed by resuscitation for 60 min. To study the changes in vascular permeability, the rats are given FITC-albumin, a fluorescent tracer, intravenously. The FITC-albumin flux across the vessel wall is measured in mesenteric postcapillary venules by determining intravascular and extravascular fluorescence intensity under intravital microscopy. Intravital microscopic evaluation of high molecular weight FITC-albumin permeability is a reliable indicator of microvascular hyperpermeability.
Collapse
Affiliation(s)
- Taylor R Williams
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA
| | - Ed W Childs
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Xin J, Zhang H, He Y, Duren Z, Bai C, Chen L, Luo X, Yan DS, Zhang C, Zhu X, Yuan Q, Feng Z, Cui C, Qi X, Ouzhuluobu, Wong WH, Wang Y, Su B. Chromatin accessibility landscape and regulatory network of high-altitude hypoxia adaptation. Nat Commun 2020; 11:4928. [PMID: 33004791 PMCID: PMC7529806 DOI: 10.1038/s41467-020-18638-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/03/2020] [Indexed: 12/27/2022] Open
Abstract
High-altitude adaptation of Tibetans represents a remarkable case of natural selection during recent human evolution. Previous genome-wide scans found many non-coding variants under selection, suggesting a pressing need to understand the functional role of non-coding regulatory elements (REs). Here, we generate time courses of paired ATAC-seq and RNA-seq data on cultured HUVECs under hypoxic and normoxic conditions. We further develop a variant interpretation methodology (vPECA) to identify active selected REs (ASREs) and associated regulatory network. We discover three causal SNPs of EPAS1, the key adaptive gene for Tibetans. These SNPs decrease the accessibility of ASREs with weakened binding strength of relevant TFs, and cooperatively down-regulate EPAS1 expression. We further construct the downstream network of EPAS1, elucidating its roles in hypoxic response and angiogenesis. Collectively, we provide a systematic approach to interpret phenotype-associated noncoding variants in proper cell types and relevant dynamic conditions, to model their impact on gene regulation.
Collapse
Affiliation(s)
- Jingxue Xin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- Bio-X Program, Stanford University, Stanford, CA, 94305, USA
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhana Duren
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA
- Center for Human Genetics and Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, 29646, USA
| | - Caijuan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Lang Chen
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xin Luo
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Dong-Sheng Yan
- School of Mathematical Science, Inner Mongolia University, 010021, Huhhot, China
| | - Chaoyu Zhang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiang Zhu
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA
| | - Qiuyue Yuan
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100101, Beijing, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, 850000, Lhasa, China
| | - Wing Hung Wong
- Bio-X Program, Stanford University, Stanford, CA, 94305, USA.
- Departments of Statistics, Stanford University, Stanford, CA, 94305, USA.
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, 100190, Beijing, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
- University of Chinese Academy of Sciences, 100101, Beijing, China.
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 330106, Hangzhou, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China.
| |
Collapse
|
5
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Integrin αvβ3-Specific Hydrocyanine for Cooperative Targeting of Glioblastoma with High Sensitivity and Specificity. Anal Chem 2019; 91:12587-12595. [PMID: 31496223 DOI: 10.1021/acs.analchem.9b03725] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Glioblastoma is a highly malignant brain tumor with poor prognosis and survival rate because of a lack of effective diagnostic methods. Hydrocyanines are a type of reactive oxygen species (ROS)-responsive fluorescent probes, allowing for distinguishing tumor cells from normal cells based on their different intracellular levels of ROS. However, their diagnostic applications for glioblastoma have been limited because of the inability to discriminate between tumor cells and other tissues with high ROS production, leading to high false-positive diagnosis. Therefore, tumor-responsive and -specific hydrocyanines with cooperative targeting ability have great potential for improving the diagnosis and treatment of glioblastoma. Integrin αvβ3 plays a critical role in the progression and angiogenesis of glioblastoma and has become a promising target for diagnosing glioblastoma. Herein, we identify a specific peptide ligand for integrin αvβ3, Arg-Trp-(d-Arg)-Asn-Arg (RWrNR), which shows high binding affinity to human glioblastoma U87MG cells. Importantly, hydro-Cy5-RWrNR conjugation allowed for distinguishing U87MG cells from normal cells in response to intracellular ROS. Particularly, hydro-Cy5-RWrNR could not only selectively accumulate in orthotopic U87MG tumor with minimal background fluorescence but also effectively discriminate between glioblastoma and inflammatory tissues for the first time, leading to detection of glioblastoma in vivo with high target-to-background ratios and minimal background fluorescence. Therefore, hydro-Cy5-RWrNR is the first integrin αvβ3-specific hydrocyanine probe and has great potential in precise tumor diagnosis because of its cooperative targeting of integrin αvβ3 and ROS.
Collapse
|
7
|
Rutkai I, Merdzo I, Wunnava SV, Curtin GT, Katakam PVG, Busija DW. Cerebrovascular function and mitochondrial bioenergetics after ischemia-reperfusion in male rats. J Cereb Blood Flow Metab 2019; 39:1056-1068. [PMID: 29215305 PMCID: PMC6547195 DOI: 10.1177/0271678x17745028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/06/2017] [Indexed: 12/16/2022]
Abstract
The underlying factors promoting increased mitochondrial proteins, mtDNA, and dilation to mitochondrial-specific agents in male rats following tMCAO are not fully elucidated. Our goal was to determine the morphological and functional effects of ischemia/reperfusion (I/R) on mitochondria using electron microscopy, Western blot, mitochondrial oxygen consumption rate (OCR), and Ca2+ sparks activity measurements in middle cerebral arteries (MCAs) from male Sprague Dawley rats (Naïve, tMCAO, Sham). We found a greatly increased OCR in ipsilateral MCAs (IPSI) compared with contralateral (CONTRA), Sham, and Naïve MCAs. Consistent with our earlier findings, the expression of Mitofusin-2 and OPA-1 was significantly decreased in IPSI arteries compared with Sham and Naïve. Mitochondrial morphology was disrupted in vascular smooth muscle, but morphology with normal and perhaps greater numbers of mitochondria were observed in IPSI compared with CONTRA MCAs. Consistently, there were significantly fewer baseline Ca2+ events in IPSI MCAs compared with CONTRA, Sham, and Naïve. Mitochondrial depolarization significantly increased Ca2+ sparks activity in the IPSI, Sham, Naïve, but not in the CONTRA group. Our data indicate that altered mitochondrial structure and function occur in MCAs exposed to I/R and that these changes impact not only OCR but Ca2+ sparks activity in both IPSI and CONTRA MCAs.
Collapse
Affiliation(s)
- Ibolya Rutkai
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Ivan Merdzo
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
- Department of Pharmacology, University
of Mostar School of Medicine, Mostar, Bosnia and Herzegovina
| | - Sanjay V Wunnava
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Genevieve T Curtin
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - Prasad VG Katakam
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| | - David W Busija
- Department of Pharmacology,
Tulane
University School of Medicine, New Orleans,
LA, USA
| |
Collapse
|
8
|
Wong BW, Marsch E, Treps L, Baes M, Carmeliet P. Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J 2017. [PMID: 28637793 DOI: 10.15252/embj.201696150] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In contrast to the general belief, endothelial cell (EC) metabolism has recently been identified as a driver rather than a bystander effect of angiogenesis in health and disease. Indeed, different EC subtypes present with distinct metabolic properties, which determine their function in angiogenesis upon growth factor stimulation. One of the main stimulators of angiogenesis is hypoxia, frequently observed in disease settings such as cancer and atherosclerosis. It has long been established that hypoxic signalling and metabolism changes are highly interlinked. In this review, we will provide an overview of the literature and recent findings on hypoxia-driven EC function and metabolism in health and disease. We summarize evidence on metabolic crosstalk between different hypoxic cell types with ECs and suggest new metabolic targets.
Collapse
Affiliation(s)
- Brian W Wong
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Elke Marsch
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| | - Myriam Baes
- Laboratory for Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Leuven Cancer Institute KU Leuven, Leuven, Belgium .,Laboratory of Angiogenesis and Vascular Metabolism, VIB Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
9
|
Yao H, He G, Chen C, Yan S, Lu L, Song L, Vijayan KV, Li Q, Xiong L, Miao X, Deng X. PAI1: a novel PP1-interacting protein that mediates human plasma's anti-apoptotic effect in endothelial cells. J Cell Mol Med 2017; 21:2068-2076. [PMID: 28296156 PMCID: PMC5571515 DOI: 10.1111/jcmm.13127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 01/17/2017] [Indexed: 11/27/2022] Open
Abstract
Activation of apoptotic signalling in endothelial cells contributes to the detrimental effects of a variety of pathological stimuli. In investigating the molecular events underlying the anti‐apoptotic effect of human plasma in cultured human endothelial cells, we unexpectedly uncovered a novel mechanism of apoptosis suppression by human plasma through an interaction between two previously unrelated proteins. Human plasma inhibited hypoxia–serum deprivation‐induced apoptosis and stimulated BADS136 and AktS473 phosphorylation. Akt1 silencing reversed part (~52%) of the anti‐apoptotic effect of human plasma, suggesting the existence of additional mechanisms mediating the anti‐apoptotic effect other than Akt signalling. Human plasma disrupted the interaction of BAD with protein phosphatase 1 (PP1). Mass spectrometry identified fourteen PP1‐interacting proteins induced by human plasma. Notably, a group of serine protease inhibitors including plasminogen activator inhibitor 1 (PAI1), a major inhibitor of fibrinolysis, were involved. Silencing of PAI1 attenuated the anti‐apoptotic effect of human plasma. Furthermore, combined Akt1 and PAI1 silencing attenuated the majority of the anti‐apoptotic effect of human plasma. We conclude that human plasma protects against endothelial cell apoptosis through sustained BAD phosphorylation, which is achieved by, at least in part, a novel interaction between PP1 with PAI1.
Collapse
Affiliation(s)
- Hui Yao
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Guangchun He
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Chao Chen
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Shichao Yan
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Lu Lu
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| | - Liujiang Song
- Department of Pediatrics, Hunan Normal University Medical College, Changsha, Hunan, China
| | - K Vinod Vijayan
- Department of Medicine, Baylor College of Medicine and Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey Veterans Affairs Medical Center (MEDVAMC), Houston, TX, USA
| | - Qinglong Li
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Xiong
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiongying Miao
- Department of General Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiyun Deng
- Department of Pathology, Hunan Normal University Medical College, Changsha, Hunan, China
| |
Collapse
|
10
|
Zhang YQ, Hu SY, Chen YD, Guo MZ, Wang S. Hepatocyte growth factor inhibits hypoxia/reoxygenation-induced activation of xanthine oxidase in endothelial cells through the JAK2 signaling pathway. Int J Mol Med 2016; 38:1055-62. [PMID: 27573711 PMCID: PMC5029971 DOI: 10.3892/ijmm.2016.2708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 07/19/2016] [Indexed: 11/05/2022] Open
Abstract
Vascular endothelial cells (ECs) appear to be one of the primary targets of hypoxia/reoxygenation (H/R) injury. In our previous study, we demonstrated that hepatocyte growth factor (HGF) exhibited a protective effect in cardiac microvascular endothelial cells (CMECs) subjected to H/R by inhibiting xanthine oxidase (XO) by reducing the cytosolic Ca2+ concentration increased in response to H/R. The precise mechanisms through which HGF inhibits XO activation remain to be determined. In the present study, we examined the signaling pathway through which HGF regulates Ca2+ concentrations and the activation of XO during H/R in primary cultured rat CMECs. CMECs were exposed to 4 h of hypoxia and 1 h of reoxygenation. The protein expression of XO and the activation of the phosphoinositide 3-kinase (PI3K), janus kinase 2 (JAK2) and p38 mitogen-activated protein kinase (p38 MAPK) signaling pathways were detected by western blot analysis. Cytosolic calcium (Ca2+) concentrations and reactive oxygen species (ROS) levels were measured by flow cytometry. The small interfering RNA (siRNA)‑mediated knockdown of XO inhibited the increase in ROS production induced by H/R. LY294002 and AG490 inhibited the H/R-induced increase in the production and activation of XO. The PI3K and JAK2 signaling pathways were activated by H/R. The siRNA‑mediated knockdown of PI3K and JAK2 also inhibited the increase in the production of XO protein. HGF inhibited JAK2 activation whereas it had no effect on PI3K activation. The siRNA-mediated knockdown of JAK2 prevented the increase in cytosolic Ca2+ induced by H/R. Taken together, these findings suggest that H/R induces the production and activation of XO through the JAK2 and PI3K signaling pathways. Furthermore, HGF prevents XO activation following H/R primarily by inhibiting the JAK2 signaling pathway and in turn, inhibiting the increase in cytosolic Ca2+.
Collapse
Affiliation(s)
- Ying Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shun Ying Hu
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yun Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ming Zhou Guo
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Shan Wang
- Central Laboratory, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
11
|
HUANG WENJUAN, ZHANG XIA, CHEN WEIWEI. Role of oxidative stress in Alzheimer's disease. Biomed Rep 2016; 4:519-522. [PMID: 27123241 PMCID: PMC4840676 DOI: 10.3892/br.2016.630] [Citation(s) in RCA: 653] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/15/2016] [Indexed: 01/19/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of disability in individuals aged >65 years worldwide. AD is characterized by the abnormal deposition of amyloid β (Aβ) peptide, and intracellular accumulation of neurofibrillary tangles of hyperphosphorylated τ protein and dementia. The neurotoxic oligomer Aβ peptide, which is the neuropathological diagnostic criterion of the disease, together with τ protein, are mediators of the neurodegeneration that is among the main causative factors. However, these phenomena are mainly initiated and enhanced by oxidative stress, a process referring to an imbalance between antioxidants and oxidants in favour of oxidants. This imbalance can occur as a result of increased free radicals or a decrease in antioxidant defense, free radicals being a species that contains one or more unpaired electrons in its outer shell. The major source of potent free radicals is the reduction of molecular oxygen in water, that initially yields the superoxide radical, which produces hydrogen peroxide by the addition of an electron. The reduction of hydrogen peroxide produces highly reactive hydroxyl radicals, termed reactive oxygen species (ROS) that can react with lipids, proteins, nucleic acids, and other molecules and may also alter their structures and functions. Thus, tissues and organs, particularly the brain, a vulnerable organ, are affected by ROS due to its composition. The brain is largely composed of easily oxidizable lipids while featuring a high oxygen consumption rate. The current review examined the role of oxidative stress in AD.
Collapse
Affiliation(s)
- WEN-JUAN HUANG
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - XIA ZHANG
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - WEI-WEI CHEN
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
12
|
Long Y, Dong X, Yuan Y, Huang J, Song J, Sun Y, Lu Z, Yang L, Yu W. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress. J Clin Biochem Nutr 2015; 57:50-9. [PMID: 26236101 PMCID: PMC4512893 DOI: 10.3164/jcbn.14-147] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.
Collapse
Affiliation(s)
- Yue Long
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China ; Department of Anesthesiology, 163th Hospital of PLA, Hunan 410003, China
| | - Xin Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yawei Yuan
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jinqiang Huang
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Jiangang Song
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yumin Sun
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Zhijie Lu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anaesthesiology, Eastern Hepatobiliary Surgical Hospital, Second Military Medical University, Shanghai 200438, China
| |
Collapse
|
13
|
Induction of autophagy by Tongxinluo through the MEK/ERK pathway protects human cardiac microvascular endothelial cells from hypoxia/reoxygenation injury. J Cardiovasc Pharmacol 2015; 64:180-90. [PMID: 24705173 DOI: 10.1097/fjc.0000000000000104] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
: In contrast to cardiomyocytes, autophagy in cardiac microvascular endothelial cells (CMECs) during ischemia/reperfusion (I/R) injury has not been fully investigated. Tongxinluo (TXL), a traditional Chinese medicine, was shown to be vascular protective. We aimed to elucidate the role of autophagy and its regulatory mechanisms by TXL in CMECs subjected to I/R injury. CMECs were exposed to different treatments for 30 minutes and subjected to hypoxia/reoxygenation each for 2 hours. The results indicated that hypoxia/reoxygenation significantly induced autophagy, as identified by an increased number of monodansylcadaverine-positive CMECs, increased autophagosome formation, and a higher type II/type I of light chain 3 ratio, but not Beclin-1 expression. Autophagy inhibition using 3-methyladenine was proapoptotic, but rapamycin-induced autophagy was antiapoptotic. TXL enhanced autophagy and decreased apoptosis in a dose-dependent manner, reaching its largest effect at 800 μg/mL. 3-methyladenine attenuated the TXL-promoted autophagy and antiapoptotic effects, whereas rapamycin had no additional effects compared with TXL alone. TXL upregulated mitogen-activated protein kinase and extracellular signal-regulated kinase (ERK) phosphorylation; however, PD98059 abrogated ERK phosphorylation and decreased autophagy and increased apoptosis compared with TXL alone. These results suggest that autophagy is a protective mechanism in CMECs subjected to I/R injury and that TXL can promote autophagy through activation of the mitogen-activated protein kinase/ERK pathway.
Collapse
|
14
|
Zhao S, Li G, Chen J. A proteomic analysis of prenatal transfer of microcystin-LR induced neurotoxicity in rat offspring. J Proteomics 2015; 114:197-213. [DOI: 10.1016/j.jprot.2014.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/23/2014] [Indexed: 01/25/2023]
|
15
|
Giordo R, Cossu A, Pasciu V, Hoa PT, Posadino AM, Pintus G. Different redox response elicited by naturally occurring antioxidants in human endothelial cells. Open Biochem J 2013; 7:44-53. [PMID: 23730364 PMCID: PMC3664460 DOI: 10.2174/1874091x01307010044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/10/2023] Open
Abstract
Evidences that higher natural antioxidant (NA) intake provides protection against cardiovascular disease (CVD) are contradictory. Oxidative-induced endothelial cells (ECs) injury is the key step in the onset and progression of CVD and for this reason the cellular responses resulting from NA interaction with ECs are actively investigated. This study was designed to investigate the direct impact of different naturally occurring antioxidants on the intracellular ROS levels in cultured human ECs. NA-induced redox changes, in terms of modulation of the intracellular ROS levels, were assessed by using the ROS fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). While caffeic and caftaric acid exerted an anti-oxidant effect, both coumaric acid and resveratrol were pro-oxidant. Anti- and pro-oxidant effects of the tested compounds were concentration dependent, showing the induction or the tendency to promote a pro-oxidant outcome with increasing concentrations. Interestingly, the anti- and pro-oxidant behavior of chlorogenic and ferulic acid was dependent on the basal intracellular redox state. Our data indicate that naturally occurring antioxidants are able to induce a rapid modification of the intracellular ROS levels in human ECs, which is dependent on both the applied concentration and the intracellular redox state.
Collapse
Affiliation(s)
- Roberta Giordo
- Laboratory of Vascular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
16
|
Kloner RA, Hale SL, Dai W, Gorman RC, Shuto T, Koomalsingh KJ, Gorman JH, Sloan RC, Frasier CR, Watson CA, Bostian PA, Kypson AP, Brown DA. Reduction of ischemia/reperfusion injury with bendavia, a mitochondria-targeting cytoprotective Peptide. J Am Heart Assoc 2012; 1:e001644. [PMID: 23130143 PMCID: PMC3487333 DOI: 10.1161/jaha.112.001644] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 04/20/2012] [Indexed: 12/26/2022]
Abstract
Background Manifestations of reperfusion injury include myocyte death leading to infarction, contractile dysfunction, and vascular injury characterized by the “no-reflow” phenomenon. Mitochondria-produced reactive oxygen species are believed to be centrally involved in each of these aspects of reperfusion injury, although currently no therapies reduce reperfusion injury by targeting mitochondria specifically. Methods and Results We investigated the cardioprotective effects of a mitochondria-targeted peptide, Bendavia (Stealth Peptides), across a spectrum of experimental cardiac ischemia/reperfusion models. Postischemic administration of Bendavia reduced infarct size in an in vivo sheep model by 15% (P=0.02) and in an ex vivo guinea pig model by 38% to 42% (P<0.05). In an in vivo rabbit model, the extent of coronary no-reflow was assessed with Thioflavin S staining and was significantly smaller in the Bendavia group for any given ischemic risk area than in the control group (P=0.0085). Myocardial uptake of Bendavia was ≈25% per minute, and uptake remained consistent throughout reperfusion. Postischemic recovery of cardiac hemodynamics was not influenced by Bendavia in any of the models studied. Isolated myocytes exposed to hypoxia/reoxygenation showed improved survival when treated with Bendavia. This protection appeared to be mediated by lowered reactive oxygen species–mediated cell death during reoxygenation, associated with sustainment of mitochondrial membrane potential in Bendavia-treated myocytes. Conclusions Postischemic administration of Bendavia protected against reperfusion injury in several distinct models of injury. These data suggest that Bendavia is a mitochondria-targeted therapy that reduces reperfusion injury by maintaining mitochondrial energetics and suppressing cellular reactive oxygen species levels. (J Am Heart Assoc. 2012;1:e001644 doi: 10.1161/JAHA.112.001644.)
Collapse
Affiliation(s)
- Robert A Kloner
- Heart Institute of Good Samaritan Hospital, University of Southern California, Los Angeles (R.A.K., S.H., W.D.) ; Keck School of Medicine, Division of Cardiovascular Medicine, University of Southern California, Los Angeles (R.A.K., W.D.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Crean D, Felice L, Taylor CT, Rabb H, Jennings P, Leonard MO. Glucose reintroduction triggers the activation of Nrf2 during experimental ischemia reperfusion. Mol Cell Biochem 2012; 366:231-8. [DOI: 10.1007/s11010-012-1300-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/17/2012] [Indexed: 12/01/2022]
|
18
|
Abaci HE, Devendra R, Soman R, Drazer G, Gerecht S. Microbioreactors to manipulate oxygen tension and shear stress in the microenvironment of vascular stem and progenitor cells. Biotechnol Appl Biochem 2012; 59:97-105. [DOI: 10.1002/bab.1010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/07/2012] [Indexed: 11/09/2022]
|
19
|
Abstract
Mitochondria are often regarded as the powerhouse of the cell by generating the ultimate energy transfer molecule, ATP, which is required for a multitude of cellular processes. However, the role of mitochondria goes beyond their capacity to create molecular fuel, to include the generation of reactive oxygen species, the regulation of calcium, and activation of cell death. Mitochondrial dysfunction is part of both normal and premature ageing, but can contribute to inflammation, cell senescence, and apoptosis. Cardiovascular disease, and in particular atherosclerosis, is characterized by DNA damage, inflammation, cell senescence, and apoptosis. Increasing evidence indicates that mitochondrial damage and dysfunction also occur in atherosclerosis and may contribute to the multiple pathological processes underlying the disease. This review summarizes the normal role of mitochondria, the causes and consequences of mitochondrial dysfunction, and the evidence for mitochondrial damage and dysfunction in vascular disease. Finally, we highlight areas of mitochondrial biology that may have therapeutic targets in vascular disease.
Collapse
Affiliation(s)
- Emma Yu
- Division of Cardiovascular Medicine, University of Cambridge, Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | | |
Collapse
|
20
|
Striatal GABA Receptor Alterations in Hypoxic Neonatal Rats: Role of Glucose, Oxygen and Epinephrine Treatment. Neurochem Res 2011; 37:629-38. [DOI: 10.1007/s11064-011-0654-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 12/18/2022]
|
21
|
Abaci HE, Devendra R, Smith Q, Gerecht S, Drazer G. Design and development of microbioreactors for long-term cell culture in controlled oxygen microenvironments. Biomed Microdevices 2011; 14:145-52. [DOI: 10.1007/s10544-011-9592-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Anju TR, Jayanarayanan S, Paulose CS. Decreased GABAB receptor function in the cerebellum and brain stem of hypoxic neonatal rats: role of glucose, oxygen and epinephrine resuscitation. J Biomed Sci 2011; 18:31. [PMID: 21569387 PMCID: PMC3114712 DOI: 10.1186/1423-0127-18-31] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 05/12/2011] [Indexed: 01/25/2023] Open
Abstract
Background- Hypoxia during the first week of life can induce neuronal death in vulnerable brain regions usually associated with an impairment of cognitive function that can be detected later in life. The neurobiological changes mediated through neurotransmitters and other signaling molecules associated with neonatal hypoxia are an important aspect in establishing a proper neonatal care. Methods- The present study evaluated total GABA, GABAB receptor alterations, gene expression changes in GABAB receptor and glutamate decarboxylase in the cerebellum and brain stem of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen and epinephrine. Radiolabelled GABA and baclofen were used for receptor studies of GABA and GABAB receptors respectively and Real Time PCR analysis using specific probes for GABAB receptor and GAD mRNA was done for gene expression studies. Results- The adaptive response of the body to hypoxic stress resulted in a reduction in total GABA and GABAB receptors along with decreased GABAB receptor and GAD gene expression in the cerebellum and brain stem. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. Conclusions- Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. The present study suggests that reduction in the GABAB receptors functional regulation during hypoxia plays an important role in central nervous system damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- Thoppil R Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin-682022 Kerala, India.
| | | | | |
Collapse
|
23
|
Abaci HE, Truitt R, Tan S, Gerecht S. Unforeseen decreases in dissolved oxygen levels affect tube formation kinetics in collagen gels. Am J Physiol Cell Physiol 2011; 301:C431-40. [PMID: 21543738 DOI: 10.1152/ajpcell.00074.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The availability of oxygen (O(2)) is a critical parameter affecting vascular tube formation. In this study, we hypothesize that dissolved oxygen (DO) levels in collagen gels change during the three-dimensional (3D) culture of human umbilical vein endothelial cells (HUVECs) in atmospheric conditions and that such changes affect the kinetics of tube formation through the production of reactive oxygen species (ROS). We demonstrate a decrease in O(2) tension during 3D cultures of HUVECs. Noninvasive measurements of DO levels during culture under atmospheric conditions revealed a profound decrease that reached as low as 2% O(2) at the end of 24 h. After media replacement, DO levels rose rapidly and equilibrated at ∼15% O(2), creating a reoxygenated environment. To accurately estimate DO gradients in 3D collagen gels, we developed a 3D mathematical model and determined the Michaelis-Menten parameters, V(max) and K(m), of HUVECs in collagen gels. We detected an increase in ROS levels throughout the culture period. Using diphenyliodonium to inhibit ROS production resulted in the complete inhibition of tube formation. Interference RNA studies further showed that hypoxia-inducible factors (HIFs)-1α and -2α are not involved in the formation of 3D tubes in collagen gels. We conclude that ROS affect the tubulogenesis process through HIFα-independent pathways, where the levels of ROS are influenced by the uncontrolled variations in DO levels. This study is the first demonstration of the critical and unexpected role of O(2) during 3D in vitro culture models of tubulogenesis in atmospheric conditions.
Collapse
Affiliation(s)
- Hasan Erbil Abaci
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
24
|
Gadd45α as an upstream signaling molecule of p38 MAPK triggers oxidative stress-induced sFlt-1 and sEng upregulation in preeclampsia. Cell Tissue Res 2011; 344:551-65. [DOI: 10.1007/s00441-011-1164-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 03/09/2011] [Indexed: 01/28/2023]
|
25
|
Childs EW, Tharakan B, Hunter FA, Smythe WR. 17beta-estradiol mediated protection against vascular leak after hemorrhagic shock: role of estrogen receptors and apoptotic signaling. Shock 2010; 34:229-35. [PMID: 20160663 PMCID: PMC2896991 DOI: 10.1097/shk.0b013e3181d75b50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vascular hyperpermeability is a clinical complication associated with hemorrhagic shock (HS) and occurs mainly because of the disruption of the adherens junctional complex. The objective of this study was to understand the role of 17beta-estradiol in HS-induced hyperpermeability particularly focusing on estrogen receptors. In male Sprague-Dawley rats, HS was induced by withdrawing blood to reduce the mean arterial pressure to 40 mmHg for 1 hour followed by 1 hour of resuscitation to 90 mmHg. The study groups were 17beta-estradiol, tamoxifen, fulvestrant plus 17beta-estradiol, propyl pyrazole triol plus 17beta-estradiol, and diarylpropionitrile plus 17beta-estradiol. Intravital microscopy was used to study changes in mesenteric postcapillary venules. Mitochondrial reactive oxygen species formation was studied in vivo using dihydrorhodamine 123. The mitochondrial transmembrane potential was studied using the fluorescent cationic probe 5,5',6,6'tetrachloro-1,1',3,3'tetraethylbenzimidazolyl carbocyanine iodide (JC-1). The mesenteric microvasculature was analyzed for cytochrome c levels by enzyme-linked immunosorbent assay and caspase-3 activity by a fluorometric assay. Our results demonstrated that 17beta-estradiol attenuated HS-induced hyperpermeability. Fulvestrant reversed this protective effect (P < 0.05). Tamoxifen 5 mg/kg attenuated HS-induced hyperpermeability, whereas 10 mg/kg induced permeability (P < 0.05). Both alpha and beta estrogen receptor agonists inhibited HS-induced hyperpermeability (P < 0.05). 17beta-Estradiol decreased HS-induced reactive oxygen species formation and restored mitochondrial transmembrane potential. 17beta-Estradiol decreased both cytosolic cytochrome c level and activation of caspase-3 (P < 0.05). These findings suggest that 17beta-estradiol protects the microvasculature after HS, and that this protection may be mediated through the alpha and beta estrogen receptors.
Collapse
Affiliation(s)
- Ed W Childs
- Department of Surgery, Texas A&M University Health Science Center, Temple, TX, USA.
| | | | | | | |
Collapse
|
26
|
Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of Endothelial Cells in Myocardial Ischemia-Reperfusion Injury. ACTA ACUST UNITED AC 2010; 7:1-14. [PMID: 25558187 PMCID: PMC4280830 DOI: 10.2174/1874120701007010001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Minimizing myocardial ischemia-reperfusion injury has broad clinical implications and is a critical mediator of cardiac surgical outcomes. “Ischemic injury” results from a restriction in blood supply leading to a mismatch between oxygen supply and demand of a sufficient intensity and/or duration that leads to cell necrosis, whereas ischemia-reperfusion injury occurs when blood supply is restored after a period of ischemia and is usually associated with apoptosis (i.e. programmed cell death). Compared to vascular endothelial cells, cardiac myocytes are more sensitive to ischemic injury and have received the most attention in preventing myocardial ischemia-reperfusion injury. Many comprehensive reviews exist on various aspects of myocardial ischemia-reperfusion injury. The purpose of this review is to examine the role of vascular endothelial cells in myocardial ischemia-reperfusion injury, and to stimulate further research in this exciting and clinically relevant area. Two specific areas that are addressed include: 1) data suggesting that coronary endothelial cells are critical mediators of myocardial dysfunction after ischemia-reperfusion injury; and 2) the involvement of the mitochondrial permeability transition pore in endothelial cell death as a result of an ischemia-reperfusion insult. Elucidating the cellular signaling pathway(s) that leads to endothelial cell injury and/or death in response to ischemia-reperfusion is a key component to developing clinically applicable strategies that might minimize myocardial ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Arun K Singhal
- Cardiothoracic Division, Edward J. Hines Veterans Administration Hospital, and Loyola University, Chicago, IL, USA
| | - J David Symons
- College of Health and Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Bharat Jaishy
- Division of Endocrinology, Metabolism and Diabetes, and Program in Molecular Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Yan-Ting Shiu
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
27
|
Tharakan B, Hunter FA, Smythe WR, Childs EW. Curcumin inhibits reactive oxygen species formation and vascular hyperpermeability following haemorrhagic shock. Clin Exp Pharmacol Physiol 2010; 37:939-44. [DOI: 10.1111/j.1440-1681.2010.05414.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Anju TR, Abraham PM, Antony S, Paulose CS. Alterations in cortical GABAB receptors in neonatal rats exposed to hypoxic stress: role of glucose, oxygen, and epinephrine resuscitation. Mol Cell Biochem 2010; 343:1-11. [PMID: 20473556 DOI: 10.1007/s11010-010-0491-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 05/04/2010] [Indexed: 12/12/2022]
Abstract
Hypoxia in neonates can cause permanent brain damage by gene and receptor level alterations mediated through changes in neurotransmitters. The present study evaluated GABA(B) receptor alterations, gene expression changes in glutamate decarboxylase and hypoxia-inducible factor 1A in the cerebral cortex of hypoxic neonatal rats and the resuscitation groups with glucose, oxygen, and epinephrine. Under hypoxic stress, a significant decrease in total GABA and GABA(B) receptors, GABA(B) and GAD gene expression was observed in the cerebral cortex, which accounts for the respiratory inhibition. Hypoxia-inducible factor 1A was upregulated under hypoxia to maintain body homeostasis. Hypoxic rats supplemented with glucose alone and with oxygen showed a reversal of the receptor alterations and changes in GAD and HIF-1A to near control. Being a source of immediate energy, glucose can reduce the ATP-depletion-induced changes in GABA and oxygenation, which helps in encountering hypoxia. Resuscitation with oxygen alone and epinephrine was less effective in reversing the receptor alterations. Thus, our study suggests that reduction in the GABA(B) receptors functional regulation during hypoxia plays an important role in cortical damage. Resuscitation with glucose alone and glucose and oxygen to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- T R Anju
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | | | |
Collapse
|
29
|
Zhang YL, Tavakoli H, Chachisvilis M. Apparent PKA activity responds to intermittent hypoxia in bone cells: a redox pathway? Am J Physiol Heart Circ Physiol 2010; 299:H225-35. [PMID: 20453101 DOI: 10.1152/ajpheart.01073.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We studied hypoxia-induced dynamic changes in the balance between PKA and PKA-counteracting phosphatases in the microfluidic environment in single cells using picosecond fluorescence spectroscopy and intramolecular fluorescence resonance energy transfer (FRET)-based sensors of PKA activity. First, we found that the apparent PKA activity in bone cells (MC3T3-E1 cells) and endothelial cells (bovine aortic endothelial cells) is rapidly and sensitively modulated by the level of O(2) in the media. When the O(2) concentration in the glucose-containing media was lowered due to O(2) consumption by the cells in the microfluidic chamber, the apparent PKA activity increases; the reoxygenation of cells under hypoxia leads to a rapid ( approximately 2 min) decrease of the apparent PKA activity. Second, lack of glucose in the media led to a lower apparent PKA activity and to a reversal of the response of the apparent PKA activity to hypoxia and reoxygenation. Third, the apparent PKA activity in cells under hypoxia was predominantly regulated via a cAMP-independent pathway since 1) changes in the cAMP level in the cells were not detected using a cAMP FRET sensor, 2) the decay of cAMP levels was too slow to account for the fast decrease in PKA activity levels in response to reoxygenation, and 3) the response of the apparent PKA activity due to hypoxia/reoxygenation was not affected by an adenylate cyclase inhibitor (MDL-12,330A) at 1 mM concentration. Fourth, the immediate onset of ROS accumulation in MC3T3-E1 cells subjected to hypoxia and the sensitivity of the apparent PKA activity to redox levels suggest that the apparent PKA activity change during hypoxia and reoxygenation in this study can be linked to a redox potential change in response to intermittent hypoxia through the regulation of activities of PKA-counteracting phosphatases such as protein phosphatase 1. Finally, our results suggest that the detection of PKA activity could be used to monitor responses of cells to hypoxia in real time.
Collapse
Affiliation(s)
- Yan-Liang Zhang
- La Jolla Bioengineering Institute, 505 Coast Blvd. S., La Jolla, CA 92037, USA
| | | | | |
Collapse
|
30
|
Anju TR, Peeyush Kumar T, Paulose CS. Decreased GABAA receptors functional regulation in the cerebral cortex and brainstem of hypoxic neonatal rats: effect of glucose and oxygen supplementation. Cell Mol Neurobiol 2010; 30:599-606. [PMID: 20033840 PMCID: PMC11498792 DOI: 10.1007/s10571-009-9485-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 12/11/2009] [Indexed: 10/20/2022]
Abstract
Hypoxia in neonates can lead to biochemical and molecular alterations mediated through changes in neurotransmitters resulting in permanent damage to brain. In this study, we evaluated the changes in the receptor status of GABA(A) in the cerebral cortex and brainstem of hypoxic neonatal rats and hypoxic rats supplemented with glucose and oxygen using binding assays and gene expression of GABA(Aalpha1) and GABA(Agamma5). In the cerebral cortex and brainstem of hypoxic neonatal rats, a significant decrease in GABA(A) receptors was observed, which accounts for the respiratory inhibition. Hypoxic rats supplemented with glucose alone and with glucose and oxygen showed a reversal of the GABA(A) receptors, andGABA(Aalpha1) and GABA(Agamma5) gene expression to control. Glucose acts as an immediate energy source thereby reducing the ATP-depletion-induced increase in GABA and oxygenation, which helps in encountering anoxia. Resuscitation with oxygen alone was less effective in reversing the receptor alterations. Thus, the results of this study suggest that reduction in the GABA(A) receptors functional regulation during hypoxia plays an important role in mediating the brain damage. Glucose alone and glucose and oxygen supplementation to hypoxic neonatal rats helps in protecting the brain from severe hypoxic damage.
Collapse
Affiliation(s)
- T. R. Anju
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| | - T. Peeyush Kumar
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| | - C. S. Paulose
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022 Kerala India
| |
Collapse
|
31
|
Abstract
Although ascorbic acid is an important water-soluble antioxidant and enzyme cofactor in plants and animals, humans and some other species do not synthesize ascorbate due to the lack of the enzyme catalyzing the final step of the biosynthetic pathway, and for them it has become a vitamin. This review focuses on the role of ascorbate in various hydroxylation reactions and in the redox homeostasis of subcellular compartments including mitochondria and endoplasmic reticulum. Recently discovered functions of ascorbate in nucleic acid and histone dealkylation and proteoglycan deglycanation are also summarized. These new findings might delineate a role for ascorbate in the modulation of both pro- and anti-carcinogenic mechanisms. Recent advances and perspectives in therapeutic applications are also reviewed. On the basis of new and earlier observations, the advantages of the lost ability to synthesize ascorbate are pondered. The increasing knowledge of the functions of ascorbate and of its molecular sites of action can mechanistically substantiate a place for ascorbate in the treatment of various diseases.
Collapse
Affiliation(s)
- J Mandl
- Department of Medical Chemistry, Molecular Biology and Patobiochemistry, Semmelweis University Budapest, Budapest, Hungary.
| | | | | |
Collapse
|
32
|
Eligini S, Arenaz I, Barbieri SS, Faleri ML, Crisci M, Tremoli E, Colli S. Cyclooxygenase-2 mediates hydrogen peroxide-induced wound repair in human endothelial cells. Free Radic Biol Med 2009; 46:1428-36. [PMID: 19269318 DOI: 10.1016/j.freeradbiomed.2009.02.026] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 02/09/2009] [Accepted: 02/25/2009] [Indexed: 01/07/2023]
Abstract
Cyclooxygenase-2 (Cox-2) metabolites produced by endothelial cells, particularly prostacyclin and prostaglandin E(2), profoundly affect vascular tone, regional blood flow, and angiogenesis. We have previously shown that reactive oxygen species induce Cox-2 expression in human endothelial cells (HUVEC), either on their own or as components of the signaling pathway triggered by TNFalpha, the prototypical inflammatory cytokine. Here we investigated the role of Cox-2 induced by hydrogen peroxide (H(2)O(2)), either exogenous or endogenously generated by TNFalpha, in the repair of a mechanically wounded HUVEC monolayer and probed the sources of H(2)O(2) that are involved in TNFalpha signaling and the pathways through which H(2)O(2) modulates Cox-2 expression. Results indicate that H(2)O(2)-induced Cox-2 activity participates in the repair of wounded monolayers. Both NADPH oxidase and the mitochondrial electron transport chain are involved in H(2)O(2) generation. Signaling triggered by H(2)O(2) for Cox-2 induction acts by increasing the protein tyrosine kinase phosphorylation that follows inhibition of protein phosphatase activity. The activation of p38 MAPK and its interaction in the inhibition of serine/threonine phosphatase activity are both critical steps in this event. We conclude that Cox-2 induced by H(2)O(2) plays an important role in promoting endothelial wound repair after injury, so that the cardioprotective effect of Cox-2 is due at least in part to its power of healing damaged endothelium.
Collapse
Affiliation(s)
- Sonia Eligini
- E. Grossi Paoletti Center, Department of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Wang P, Gong G, Wei Z, Li Y. Ethyl pyruvate prevents intestinal inflammatory response and oxidative stress in a rat model of extrahepatic cholestasis. J Surg Res 2009; 160:228-35. [PMID: 19628226 DOI: 10.1016/j.jss.2009.03.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 03/01/2009] [Accepted: 03/13/2009] [Indexed: 01/01/2023]
Abstract
BACKGROUND Ringer's ethyl pyruvate solution (REPS) has been shown to ameliorate liver injury in a murine model of extrahepatic cholestasis. The goal of the present investigation was to gain additional information about whether infusing REPS instead of Ringer's lactate solution (RLS) after inducing obstructive jaundice would be beneficial to intestinal barrier function, inflammatory response, and oxidative stress. METHODS Male Sprague Dawley rats were divided into three groups: Group Sham (n=6), sham-treated controls; Group RLS (n=9), common bile duct ligation (CBDL) plus RLS; and Group REPS (n=9), CBDL plus REPS. On 14 d after BDL, the rats were sacrificed and intestinal permeability was analyzed. Ileal IL-6 and TNF-alpha levels, malondialdehyde (MDA), glutathione (GSH), myeloperoxidase (MPO), and NF-kappaB activity were determined. Histologic examination and apoptosis of ileum were also examined. RESULTS Relative to sham-treated controls, CBDL in RLS-treated rats were associated with increased intestinal permeability to FITC-labeled dextran (4.51+/-0.85 versus 0.44+/-0.18, P<0.01), histopathologic damage and apoptosis (68.4+/-13.4 versus 6.7+/-1.9 pre-1000 villi cells, P<0.01). IL-6 and TNF-alpha level, MDA, MPO, and NF-kappaB activity in ileal tissues were also promoted, along with decreased GSH levels. Treatment with REPS significantly decreased intestinal permeability (3.37+/-0.71, P<0.01) and apoptosis (42.8+/-14.3 pre-1000 villi cells, P<0.01). Other changes were also significantly attenuated by treatment with REPS after CBDL. CONCLUSIONS The present study demonstrates that administration of REPS, but not RLS, maintains intestinal barrier function and reduces intestinal oxidative damage, inflammatory response, and apoptosis in cholestatic rats. This effect of ethyl pyruvate may be useful for preventing intestinal injury in patients with biliary obstruction.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of Intensive Care Unit, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | | | |
Collapse
|
34
|
Wang P, Li Y, Li J. Hydroxyethyl starch 130/0.4 prevents the early pulmonary inflammatory response and oxidative stress after hemorrhagic shock and resuscitation in rats. Int Immunopharmacol 2009; 9:347-53. [DOI: 10.1016/j.intimp.2008.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Revised: 12/20/2008] [Accepted: 12/22/2008] [Indexed: 11/16/2022]
|
35
|
Wang P, Li Y, Li J. Protective Roles of Hydroxyethyl Starch 130/0.4 in Intestinal Inflammatory Response and Oxidative Stress After Hemorrhagic Shock and Resuscitation in Rats. Inflammation 2009; 32:71-82. [DOI: 10.1007/s10753-009-9105-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Jendrach M, Mai S, Pohl S, Vöth M, Bereiter-Hahn J. Short- and long-term alterations of mitochondrial morphology, dynamics and mtDNA after transient oxidative stress. Mitochondrion 2008; 8:293-304. [PMID: 18602028 DOI: 10.1016/j.mito.2008.06.001] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/10/2008] [Accepted: 06/06/2008] [Indexed: 11/19/2022]
Abstract
Cells are exposed during their life span to fluctuating levels of reactive oxygen species (ROS). To investigate the effects of a single ROS boost in vitro, human endothelial cells (HUVEC) were treated with one short-term dose of hydrogen peroxide. This treatment resulted in a short, dose-dependent ROS peak that caused transient changes in the mitochondrial morphology and fine structure, in the frequency of mitochondrial fission and fusion and in the mRNA levels of distinct fission and fusion factors. Treatment with a higher dose induced prolonged mtDNA damage; these cells exhibited a significantly shortened replicative lifespan, indicating dose-dependent effects of oxidative stress on mitochondria.
Collapse
Affiliation(s)
- Marina Jendrach
- Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, Center of Excellence Frankfurt, Macromolecular Complexes, JW Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
37
|
Mitochondrial complex III is involved in proapoptotic BAK-induced microvascular endothelial cell hyperpermeability. Shock 2008; 29:636-41. [PMID: 18414238 DOI: 10.1097/shk.0b013e318157f524] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
It has been shown that the intrinsic mitochondrial apoptotic cascade is activated in vascular hyperpermeability after conditions such as hemorrhagic shock. Studies from our laboratory demonstrated mitochondrial reactive oxygen species (ROS) formation in endothelial cells during vascular hyperpermeability. We hypothesized that the participation of mitochondrial ROS in the intrinsic apoptotic cascade results in microvascular endothelial cell hyperpermeability. The purpose of this study was to identify the site(s) of ROS formation in the mitochondrial complex(es) that leads to hyperpermeability. Rat lung microvascular endothelial cell monolayers were pretreated with inhibitors of the complex(es) (I-V) before the activation of the mitochondrial apoptotic cascade using the proapoptotic peptide BAK (BH3). Inhibitors of the xanthine oxidase, nicotinamide adenine dinucleotide phosphate (reduced form) oxidase, NOS, and cytochrome P-450 monooxygenase were also studied. The hyperpermeability was determined by the fluorescence of fluorescein isothiocyanate-albumin that leaked across endothelial cells and ROS production by 2',7& rime;-dichlorofluorescein diacetate. Cytochrome c levels were also measured. BAK (BH3)-transfected cells showed increased ROS, cytosolic cytochrome c, and hyperpermeability (P<0.05). Complex III inhibitors antimycin A (10 microM) and stigmatellin (10 microM) attenuated BAK (BH3)-mediated ROS formation and hyperpermeability (P<0.05). The complex III inhibition decreased BAK (BH3)-mediated cytochrome c release. The results suggest that mitochondrial ROS formation, particularly at respiratory chain complex III, is involved in BAK-induced monolayer hyperpermeability.
Collapse
|
38
|
Jones CI, Han Z, Presley T, Varadharaj S, Zweier JL, Ilangovan G, Alevriadou BR. Endothelial cell respiration is affected by the oxygen tension during shear exposure: role of mitochondrial peroxynitrite. Am J Physiol Cell Physiol 2008; 295:C180-91. [PMID: 18480296 DOI: 10.1152/ajpcell.00549.2007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cultured vascular endothelial cell (EC) exposure to steady laminar shear stress results in peroxynitrite (ONOO(-)) formation intramitochondrially and inactivation of the electron transport chain. We examined whether the "hyperoxic state" of 21% O(2), compared with more physiological O(2) tensions (Po(2)), increases the shear-induced nitric oxide (NO) synthesis and mitochondrial superoxide (O(2)(*-)) generation leading to ONOO(-) formation and suppression of respiration. Electron paramagnetic resonance oximetry was used to measure O(2) consumption rates of bovine aortic ECs sheared (10 dyn/cm(2), 30 min) at 5%, 10%, or 21% O(2) or left static at 5% or 21% O(2). Respiration was inhibited to a greater extent when ECs were sheared at 21% O(2) than at lower Po(2) or left static at different Po(2). Flow in the presence of an endothelial NO synthase (eNOS) inhibitor or a ONOO(-) scavenger abolished the inhibitory effect. EC transfection with an adenovirus that expresses manganese superoxide dismutase in mitochondria, and not a control virus, blocked the inhibitory effect. Intracellular and mitochondrial O(2)(*-) production was higher in ECs sheared at 21% than at 5% O(2), as determined by dihydroethidium and MitoSOX red fluorescence, respectively, and the latter was, at least in part, NO-dependent. Accumulation of NO metabolites in media of ECs sheared at 21% O(2) was modestly increased compared with ECs sheared at lower Po(2), suggesting that eNOS activity may be higher at 21% O(2). Hence, the hyperoxia of in vitro EC flow studies, via increased NO and mitochondrial O(2)(*-) production, leads to enhanced ONOO(-) formation intramitochondrially and suppression of respiration.
Collapse
Affiliation(s)
- Charles I Jones
- Davis Heart and Lung Research Institute, Department of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW To overview the emerging data in the literature showing the role of poly(ADP-ribose) polymerase (PARP) in the pathogenesis of critical illness. RECENT FINDINGS PARP, an abundant nuclear enzyme involved in DNA repair and transcriptional regulation, is now recognized as a key regulator of cell survival and cell death in response to noxious stimuli in various forms of cardiovascular collapse. PARP becomes activated in response to oxidative DNA damage and depletes cellular energy pools, thus leading to cellular dysfunction in various tissues. The activation of PARP may also induce various cell death processes, and promotes an inflammatory response. In circulatory shock PARP plays a crucial role both in the development of early cardiovascular dysfunction and in the delayed systemic inflammatory response syndrome with associated multiple organ failure. Inhibition of PARP activity is protective in various models of circulatory shock. SUMMARY A solid body of literature supports the view that PARP is an important target for therapeutic intervention in critical illness.
Collapse
|
40
|
Chathu F, Krishnakumar A, Paulose CS. Acetylcholine esterase activity and behavioral response in hypoxia induced neonatal rats: effect of glucose, oxygen and epinephrine supplementation. Brain Cogn 2008; 68:59-66. [PMID: 18406032 DOI: 10.1016/j.bandc.2008.02.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 12/15/2022]
Abstract
Brain damage due to an episode of hypoxia remains a major problem in infants causing deficit in motor and sensory function. Hypoxia leads to neuronal functional failure, cerebral palsy and neuro-developmental delay with characteristic biochemical and molecular alterations resulting in permanent or transitory neurological sequelae or even death. During neonatal hypoxia, traditional resuscitation practices include the routine administration of 100% oxygen, epinephrine and glucose. In the present study, we assessed the changes in the cholinergic system by measuring the acetylcholinesterase (AChE) activity and the behavioral responses shown by hypoxia induced neonatal rats and hypoxic rats supplemented with glucose, oxygen and epinephrine using elevated plus-maze and open-field test. The acetylcholine esterase enzyme activity showed a significant decrease in cerebral cortex, whereas it increased significantly in the muscle of experimental rats when compared to control. Hypoxic rats supplemented with glucose, glucose and oxygen showed a reversal to the control status. Behavioral studies were carried out in experimental rats with elevated plus-maze test and open-field test. Hypolocomotion and anxiogenic behavioral responses were observed in all experimental rats when compared to control, hypoxic rats supplemented with glucose, glucose and oxygen. Thus, our results suggest that brain damage due to hypoxia, oxygen and epinephrine supplementation in the neonatal rats cause acetylcholine-neuromuscular-defect leading to hypolocomotion and anxiogenic behavioral response. Glucose and glucose with oxygen supplementation to hypoxic neonates protect the brain damage for a better functional status in the later life.
Collapse
Affiliation(s)
- Finla Chathu
- Molecular Neurobiology and Cell Biology Unit, Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | | |
Collapse
|
41
|
Burckhardt IC, Gozal D, Dayyat E, Cheng Y, Li RC, Goldbart AD, Row BW. Green tea catechin polyphenols attenuate behavioral and oxidative responses to intermittent hypoxia. Am J Respir Crit Care Med 2008; 177:1135-41. [PMID: 18276944 DOI: 10.1164/rccm.200701-110oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE The intermittent hypoxia (IH) that characterizes sleep-disordered breathing impairs spatial learning and increases NADPH oxidase activity and oxidative stress in rodents. We hypothesized that green tea catechin polyphenols (GTPs) may attenuate IH-induced neurobehavioral deficits by reducing IH-induced NADPH oxidase expression, lipid peroxidation, and inflammation. OBJECTIVES To assess the effects of GTP administered in drinking water on the cognitive, inflammatory, and oxidative responses to long-term (>14 d) IH during sleep in male Sprague-Dawley rats. METHODS Cognitive assessments were conducted in the Morris water maze. We measured levels and expression of malondialdehyde (MDA), prostaglandin E(2), p47(phox) subunit of NADPH oxidase, receptor for advanced glycation end products (RAGE), and glial fibrillary acidic protein expression in rodent brain tissue. MEASUREMENTS AND MAIN RESULTS GTP treatment prevented IH-induced decreases in spatial bias for the hidden platform during the Morris water maze probe trails as well as IH-induced increases in p47phox expression within the hippocampal CA1 region. In untreated animals, IH exposure was associated with doubling of cortical MDA levels in comparison to room air control animals, and GTP-treated animals exposed to IH showed a 40% reduction in MDA levels. Increases in brain RAGE and glial fibrillary acidic protein expression were observed in IH-exposed animals, and these increases were attenuated in animals treated with GTP. CONCLUSIONS Oral GTP attenuates IH-induced spatial learning deficits and mitigates IH-induced oxidative stress through multiple beneficial effects on oxidant pathways. Because oxidative processes underlie neurocognitive deficits associated with IH, the potential therapeutic role of GTP in sleep-disordered breathing deserves further exploration.
Collapse
Affiliation(s)
- Isabel C Burckhardt
- Kosair Children's Hospital Research Institute, University of Louisville, 570 South Preston Street, Suite 204, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
The effect of hypoxemic resuscitationfrom hemorrhagic shock on blood pressure restoration and on oxidative and inflammatory responses. Intensive Care Med 2007; 34:1133-41. [DOI: 10.1007/s00134-007-0940-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/06/2007] [Indexed: 11/26/2022]
|
43
|
Baudry N, Laemmel E, Vicaut E. In vivo reactive oxygen species production induced by ischemia in muscle arterioles of mice: involvement of xanthine oxidase and mitochondria. Am J Physiol Heart Circ Physiol 2007; 294:H821-8. [PMID: 18055522 DOI: 10.1152/ajpheart.00378.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) participate in tissue injury after ischemia-reperfusion. Their implication in leukocyte adherence and increase in permeability at the venular side of the microcirculation have been reported, but very little is known about ROS production in arterioles. The objective of this work was to evaluate, in the arteriole wall in vivo, the temporal changes in superoxide anion production during ischemia and reperfusion and to identify the source of this production. Mouse cremaster muscle was exposed to 1 h of ischemia followed by 30 min of reperfusion, and superoxide anion production was assessed by a fluorescent probe, i.e., intracellular dihydroethidium oxidation. During ischemia, we found a significant increase in dihydroethidium oxidation; however, we observed no additional increase in fluorescence during the subsequent reperfusion. This phenomenon was significantly inhibited by pretreatment with superoxide dismutase. Allopurinol (xanthine oxidase inhibitor) or stigmatellin [Q(o)-site (oriented toward the intermembrane space) inhibitor of mitochondrial complex III] or simultaneous administration of these two inhibitors significantly reduced superoxide production during ischemia to 80%, 88%, and 72%, respectively, of that measured in the untreated ischemia-reperfusion group. By contrast, no significant inhibition was found when NADPH oxidase was inhibited by apocynin or when mitochondrial complex I or complex II was inhibited by rotenone or thenoyltrifluoroacetone. A significant increase in ROS was found with antimycin A [Q(i)-site (located in the inner membrane and facing the mitochondrial matrix) inhibitor of mitochondrial complex III]. We conclude that a significant increase in ROS production occurs during ischemia in the arteriolar wall. This increased production involves both a cytoplasmic source (i.e., xanthine oxidase) and the mitochondrial complex III at the Q(o) site.
Collapse
Affiliation(s)
- Nathalie Baudry
- Laboratoire d'Etude de la Microcirculation, Université de Medecine Denis Diderot, Paris, France
| | | | | |
Collapse
|
44
|
Abstract
Disturbances in vascular function contribute to the development of several diseases of increasing prevalence and thereby contribute significantly to human mortality and morbidity. Atherosclerosis, diabetes, heart failure, and ischemia with attendant reperfusion injury share many of the same risk factors, among the most important being oxidative stress and alterations in the blood concentrations of compounds that influence oxidative stress, such as oxidized low-density lipoprotein. In this review, we focus on endothelial cells: cells in the frontline against these disturbances. Because ATP supplies in endothelial cells are relatively independent of mitochondrial oxidative pathways, the mitochondria of endothelial cells have been somewhat neglected. However, they are emerging as agents with diverse roles in modulating the dynamics of intracellular calcium and the generation of reactive oxygen species and nitric oxide. The mitochondria may also constitute critical "targets" of oxidative stress, because survival of endothelial cells can be compromised by opening of the mitochondrial permeability transition pore or by mitochondrial pathways of apoptosis. In addition, evidence suggests that endothelial mitochondria may play a "reconnaissance" role. For example, although the exact mechanism remains obscure, endothelial mitochondria may sense levels of oxygen in the blood and relay this information to cardiac myocytes as well as modulating the vasodilatory response mediated by endothelial nitric oxide.
Collapse
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, Department of Medicine, Royal Free and University College Medical School, London, United Kingdom.
| | | |
Collapse
|
45
|
Tsai MC, Chen WJ, Ching CH, Chuang JI. RESUSCITATION WITH HYDROXYETHYL STARCH SOLUTION PREVENTS NUCLEAR FACTOR κB ACTIVATION AND OXIDATIVE STRESS AFTER HEMORRHAGIC SHOCK AND RESUSCITATION IN RATS. Shock 2007; 27:527-33. [PMID: 17438458 DOI: 10.1097/01.shk.0000245032.31859.f2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fluid resuscitation is vital for treating traumatic hemorrhagic shock (HS), but reperfusion is believed to have the adverse consequences of generating reactive oxygen species and inflammatory cytokines, both of which cause multiple organ dysfunctions. We investigated the effects of various resuscitation fluids on the changes of redox-sensitive molecules after HS and fluid resuscitation (HS/R). We induced HS by bleeding male Sprague-Dawley rats to a blood pressure of 30 to 40 mmHg for 60 minutes. Thirty minutes later, the rats were killed (HS group) or immediately resuscitated with shed blood (HS + BL group), L-isomer lactated Ringer's solution (HS + LR group), or hydroxyethyl starch (HS + HES group). After HS, we found a significant increase in nuclear factor kappaB DNA binding activity, which was effectively inhibited using HES solution or blood resuscitation. Moreover, resuscitation with blood or LR solution, but not HES solution, induced significant oxidative stress, manifested by a high ratio of oxidized glutathione to reduced glutathione in the lungs, liver, and spleen. HS alone, however, did not increase the ratio of the oxidized glutathione to reduced glutathione in all organs. Although the protein expression of anti-apoptotic Bcl-2 and pro-apoptotic Bax varied in different organs, we found that resuscitation using HES solution prevented the HS-induced reduction of the Bcl-2/Bax ratio in the heart. HES solution was an appropriate resuscitation fluid in reversing nuclear factor kappaB activation, maintaining the Bcl-2/Bax ratio, and preventing oxidative stress after acute HS.
Collapse
Affiliation(s)
- Ming-Che Tsai
- Department of Emergency Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | | | | | | |
Collapse
|
46
|
Huet O, Obata R, Aubron C, Spraul-Davit A, Charpentier J, Laplace C, Nguyen-Khoa T, Conti M, Vicaut E, Mira JP, Duranteau J. Plasma-induced endothelial oxidative stress is related to the severity of septic shock*. Crit Care Med 2007; 35:821-6. [PMID: 17255877 DOI: 10.1097/01.ccm.0000257464.79067.af] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To estimate the capacity of plasma from septic shock patients to induce in vitro reactive oxygen species (ROS) production by endothelial cells and to analyze whether ROS production is related to the severity of the septic shock. DESIGN Prospective, observational study. SETTING Medical intensive care unit in a university hospital. PATIENTS Twenty-one patients with septic shock. INTERVENTIONS The in vitro capacity of plasma from septic shock patients to induce ROS production by naive human umbilical vein endothelial cells (HUVEC) was quantified by using a fluorescent probe (2',7'-dichlorodihydrofluorescein diacetate). MEASUREMENTS AND MAIN RESULTS Blood samples were collected on day 1, day 3, and day 5 from 21 consecutive septic shock adult patients and from ten healthy volunteers. Patients mean age was 58 yrs old, mean Sequential Organ Failure Assessment (SOFA) score at admission was 12, mean severity illness assessed by Simplified Acute Physiology Score (SAPS) II was 53, and the mortality rate was 47%. In addition to assessment of in vitro ROS generation by HUVEC, oxidative stress in blood was evaluated by measuring lipid peroxidation products and enzymatic and nonenzymatic antioxidants. Septic shock was associated with oxidative stress and an imbalance in antioxidant status. As compared with controls, plasma-induced ROS production by naive HUVEC was significantly higher in septic shock. Moreover ROS production was significantly correlated with SAPS II (p = .028) and SOFA values (p = .0012) and was higher in nonsurvivors than in survivors. In contrast, no correlation was found between the severity of the septic shock and any of the levels of lipid peroxidation products or enzymatic and nonenzymatic antioxidants. CONCLUSION Plasma from septic shock patients induces ROS formation by naive HUVEC, and the extent of ROS formation correlates with mortality and with criteria of the severity of septic shock as SOFA score and SAPS II.
Collapse
Affiliation(s)
- Olivier Huet
- Département D'Anesthésie Réanimation, UPRES EA 3540, Université Paris XI, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Busch KB, Bereiter-Hahn J, Wittig I, Schagger H, Jendrach M. Mitochondrial dynamics generate equal distribution but patchwork localization of respiratory Complex I. Mol Membr Biol 2007; 23:509-20. [PMID: 17127623 DOI: 10.1080/09687860600877292] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Highly dynamic mitochondrial morphology is a prerequisite for fusion and fission. Mitochondrial fusion may represent a rescue mechanism for impaired mitochondria by exchanging constituents (proteins, lipids and mitochondrial DNA) and thus maintaining functionality. Here we followed for the first time the dynamics of a protein complex of the respiratory chain during fusion and fission. HeLa cells with differently labelled respiratory Complex I were fused and the dynamics of Complex I were investigated. The mitochondrial proteins spread throughout the whole mitochondrial population within 3 to 6 h after induction of cell fusion. Mitochondria of fused cells displayed a patchy substructure where the differently labelled proteins occupied separate and distinct spaces. This patchy appearance was already--although less pronounced--observed within single mitochondria before fusion, indicating a specific localization of Complex I with restricted diffusion within the inner membrane. These findings substantiate the view of a homogenous mitochondrial population due to constantly rearranging mitochondria, but also indicate the existence of distinct inner mitochondrial sub-compartments for respiratory chain complexes.
Collapse
Affiliation(s)
- Karin B Busch
- Kinematic Cell Research Group, Institute for Cell Biology and Neuroscience, JW Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
48
|
Abstract
The development of a total synthetic approach for the antimitotic disorazole C1 and the design of a peptide isostere linked to the reactive oxygen scavenger 2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) demonstrate established as well as novel strategies for mining the therapeutic potential of natural products.
Collapse
|
49
|
Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dhakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT. Reoxygenation‐specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia‐reperfusion injury. FASEB J 2006; 20:2624-6. [PMID: 17142801 DOI: 10.1096/fj.06-5097fje] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tissue reoxygenation following hypoxia is associated with ischemia-reperfusion injury (IRI) and may signal the development of ischemic preconditioning, an adaptive state that is protective against subsequent IRI. Here we used microarray RNA analysis of in vivo and in vitro models of IRI to delineate the underlying molecular mechanisms. Microarray analysis of renal tissue after ischemia-reperfusion revealed a number of highly up-regulated antioxidant genes including aldehyde dehydrogenases (ALDH1A1 and ALDH1A7), glutathione S-transferases (GSTM5, GSTA2 and GSTP1), and NAD(P)H quinone oxidoreductase (NQO1). The transcription factor NF-E2-related factor-2 (Nrf2), a master regulator of this antioxidant response, is also elevated in IRI. Furthermore, microarray analysis of renal epithelial cells exposed to hypoxia/reoxygenation identified Nrf2 to be up-regulated on reoxygenation. We also reveal a reoxygenation-specific nuclear accumulation of Nrf2 protein and subsequent activation of a NQO1 promoter reporter construct. Attenuating reactive oxygen species (ROS) in reoxygenation using the antioxidant N-acetyl cysteine results in inhibition of Nrf-2 activation. mRNA levels for Nrf2-dependent genes were detected in human liver biopsy 1 h after transplantation. These results indicate that reoxygenation-dependent Nrf-2 activity facilitates ischemic preconditioning through the induction of antioxidant gene expression and that ROS may be critical in signaling this event.
Collapse
Affiliation(s)
- Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Griffioen KJS, Kamendi HW, Gorini CJ, Bouairi E, Mendelowitz D. Reactive oxygen species mediate central cardiorespiratory network responses to acute intermittent hypoxia. J Neurophysiol 2006; 97:2059-66. [PMID: 17093115 DOI: 10.1152/jn.00975.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although oxidative stress and reactive oxygen species generation is typically associated with localized neuronal injury, reactive oxygen species have also recently been shown to act as a physiological signal in neuronal plasticity. Here we define an essential role for reactive oxygen species as a critical stimulus for cardiorespiratory reflex responses to acute episodic hypoxia in the brain stem. To examine central cardiorespiratory responses to episodic hypoxia, we used an in vitro medullary slice that allows simultaneous examination of rhythmic respiratory-related activity and synaptic neurotransmission to cardioinhibitory vagal neurons. We show that whereas continuous hypoxia does not stimulate excitatory neurotransmission to cardioinhibitory vagal neurons, acute intermittent hypoxia of equivalent duration incrementally recruits an inspiratory-evoked excitatory neurotransmission to cardioinhibitory vagal neurons during intermittent hypoxia. This recruitment was dependent on the generation of reactive oxygen species. Further, we demonstrate that reactive oxygen species are incrementally generated in glutamatergic neurons in the ventrolateral medulla during intermittent hypoxia. These results suggest a neurochemical basis for the pronounced bradycardia that protects the heart against injury during intermittent hypoxia and demonstrates a novel role of reactive oxygen species in the brain stem.
Collapse
Affiliation(s)
- Kathleen J S Griffioen
- Department of Pharmacology and Physiology, George Washington University, 2300 Eye St. N.W., Washington, DC 20037, USA.
| | | | | | | | | |
Collapse
|