1
|
Farrell AP. Getting to the heart of anatomical diversity and phenotypic plasticity: fish hearts are an optimal organ model in need of greater mechanistic study. J Exp Biol 2023; 226:jeb245582. [PMID: 37578108 DOI: 10.1242/jeb.245582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Natural selection has produced many vertebrate 'solutions' for the cardiac life-support system, especially among the approximately 30,000 species of fishes. For example, across species, fish have the greatest range for central arterial blood pressure and relative ventricular mass of any vertebrate group. This enormous cardiac diversity is excellent ground material for mechanistic explorations. Added to this species diversity is the emerging field of population-specific diversity, which is revealing that cardiac design and function can be tailored to a fish population's local environmental conditions. Such information is important to conservation biologists and ecologists, as well as physiologists. Furthermore, the cardiac structure and function of an individual adult fish are extremely pliable (through phenotypic plasticity), which is typically beneficial to the heart's function when environmental conditions are variable. Consequently, exploring factors that trigger cardiac remodelling with acclimation to new environments represents a marvellous opportunity for performing mechanistic studies that minimize the genetic differences that accompany cross-species comparisons. What makes the heart an especially good system for the investigation of phenotypic plasticity and species diversity is that its function can be readily evaluated at the organ level using established methodologies, unlike most other organ systems. Although the fish heart has many merits as an organ-level model to provide a mechanistic understanding of phenotypic plasticity and species diversity, bringing this potential to fruition will require productive research collaborations among physiologists, geneticists, developmental biologists and ecologists.
Collapse
|
2
|
Sandra I, Verri T, Filice M, Barca A, Schiavone R, Gattuso A, Cerra MC. Shaping the cardiac response to hypoxia: NO and its partners in teleost fish. Curr Res Physiol 2022; 5:193-202. [PMID: 35434651 PMCID: PMC9010694 DOI: 10.1016/j.crphys.2022.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
The reduced availability of dissolved oxygen is a common stressor in aquatic habitats that affects the ability of the heart to ensure tissue oxygen supply. Among key signalling molecules activated during cardiac hypoxic stress, nitric oxide (NO) has emerged as a central player involved in the related adaptive responses. Here, we outline the role of the nitrergic control in modulating tolerance and adaptation of teleost heart to hypoxia, as well as major molecular players that participate in the complex NO network. The purpose is to provide a framework in which to depict how the heart deals with limitations in oxygen supply. In this perspective, defining the relational interplay between the multiple (sets of) proteins that, due to the gene duplication events that occurred during the teleost fish evolutive radiation, do operate in parallel with similar functions in the (different) heart (districts) and other body districts under low levels of oxygen supply, represents a next goal of the comparative research in teleost fish cardiac physiology. The flexibility of the teleost heart to O2 limitations is illustrated by using cyprinids as hypoxia tolerance models. Major molecular mediators of the teleost cardiac response are discussed with a focus on the nitrergic system. A comparative analysis of gene duplication highlights conserved targets which may orchestrate the cardiac response to hypoxia.
Collapse
|
3
|
Gamperl AK, Thomas AL, Syme DA. Can temperature-dependent changes in myocardial contractility explain why fish only increase heart rate when exposed to acute warming? J Exp Biol 2022; 225:274498. [PMID: 35076075 PMCID: PMC8920037 DOI: 10.1242/jeb.243152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 01/20/2022] [Indexed: 11/21/2022]
Abstract
Fish increase heart rate (fH), not stroke volume (VS), when acutely warmed as a way to increase cardiac output (Q). To assess whether aspects of myocardial function may have some basis in determining temperature-dependent cardiac performance, we measured work and power (shortening, lengthening and net) in isolated segments of steelhead trout (Oncorhynchus mykiss) ventricular muscle at the fish's acclimation temperature (14°C), and at 22°C, when subjected to increased rates of contraction (30–105 min−1, emulating increased fH) and strain amplitude (8–14%, mimicking increased VS). At 22°C, shortening power (indicative of Q) increased in proportion to fH, and the work required to re-lengthen (stretch) the myocardium (fill the heart) was largely independent of fH. In contrast, the increase in shortening power was less than proportional when strain was augmented, and lengthening work approximately doubled when strain was increased. Thus, the derived relationships between fH, strain and myocardial shortening power and lengthening work, suggest that increasing fH would be preferable as a mechanism to increase Q at high temperatures, or in fact may be an unavoidable response given constraints on muscle mechanics as temperatures rise. Interestingly, at 14°C, lengthening work increased substantially at higher fH, and the duration of lengthening (i.e. diastole) became severely constrained when fH was increased. These data suggest that myocardial contraction/twitch kinetics greatly constrain maximal fH at cool temperatures, and may underlie observations that fish elevate VS to an equal or greater extent than fH to meet demands for increased Q at lower temperatures. Summary: Myocardial contraction and twitch kinetics provide mechanistic explanations as to why heart rate, but not stroke volume, increases in fish with temperature, and why maximal heart rate is constrained at cool/cold temperatures.
Collapse
Affiliation(s)
- A Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Alexander L Thomas
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St. John's, NL. A1C 5S7, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
4
|
Gamperl AK, Syme DA. Temperature effects on the contractile performance and efficiency of oxidative muscle from a eurythermal versus a stenothermal salmonid. J Exp Biol 2021; 224:jeb242487. [PMID: 34350949 PMCID: PMC8353165 DOI: 10.1242/jeb.242487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/24/2021] [Indexed: 01/18/2023]
Abstract
We compared the thermal sensitivity of oxidative muscle function between the eurythermal Atlantic salmon (Salmo salar) and the more stenothermal Arctic char (Salvelinus alpinus; which prefers cooler waters). Power output was measured in red skeletal muscle strips and myocardial trabeculae, and efficiency (net work/energy consumed) was measured for trabeculae, from cold (6°C) and warm (15°C) acclimated fish at temperatures from 2 to 26°C. The mass-specific net power produced by char red muscle was greater than in salmon, by 2-to 5-fold depending on test temperature. Net power first increased, then decreased, when the red muscle of 6°C-acclimated char was exposed to increasing temperature. Acclimation to 15°C significantly impaired mass-specific power in char (by ∼40-50%) from 2 to 15°C, but lessened its relative decrease between 15 and 26°C. In contrast, maximal net power increased, and then plateaued, with increasing temperature in salmon from both acclimation groups. Increasing test temperature resulted in a ∼3- to 5-fold increase in maximal net power produced by ventricular trabeculae in all groups, and this effect was not influenced by acclimation temperature. Nonetheless, lengthening power was higher in trabeculae from warm-acclimated char, and char trabeculae could not contract as fast as those from salmon. Finally, the efficiency of myocardial net work was approximately 2-fold greater in 15°C-acclimated salmon than char (∼15 versus 7%), and highest at 20°C in salmon. This study provides several mechanistic explanations as to their inter-specific difference in upper thermal tolerance, and potentially why southern char populations are being negatively impacted by climate change.
Collapse
Affiliation(s)
- A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland, St John's, NL, CanadaA1C 5S7
| | - Douglas A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, AB, CanadaT2N 1N4
| |
Collapse
|
5
|
Carnevale C, Syme DA, Gamperl AK. Effects of hypoxic acclimation, muscle strain, and contraction frequency on nitric oxide-mediated myocardial performance in steelhead trout ( Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 2021; 320:R588-R610. [PMID: 33501888 DOI: 10.1152/ajpregu.00014.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Whether hypoxic acclimation influences nitric oxide (NO)-mediated control of fish cardiac function is not known. Thus, we measured the function/performance of myocardial strips from normoxic- and hypoxic-acclimated (40% air saturation; ∼8 kPa O2) trout at several frequencies (20-80 contractions·min-1) and two muscle strain amplitudes (8% and 14%) when exposed to increasing concentrations of the NO donor sodium nitroprusside (SNP) (10-9 to 10-4 M). Further, we examined the influence of 1) nitric oxide synthase (NOS) produced NO [by blocking NOS with 10-4 M NG-monomethyl-l-arginine (l-NMMA)] and 2) soluble guanylyl cyclase mediated, NOS-independent, NO effects (i.e., after blockade with 10-4 M ODQ), on myocardial contractility. Hypoxic acclimation increased twitch duration by 8%-10% and decreased mass-specific net power by ∼35%. However, hypoxic acclimation only had minor impacts on the effects of SNP and the two blockers on myocardial function. The most surprising finding of the current study was the degree to which contraction frequency and strain amplitude influenced NO-mediated effects on myocardial power. For example, at 8% strain, 10-4 SNP resulted in a decrease in net power of ∼30% at 20 min-1 but an increase of ∼20% at 80 min-1, and this effect was magnified at 14% strain. This research suggests that hypoxic acclimation has only minor effects on NO-mediated myocardial contractility in salmonids, is the first to report the high frequency- and strain-dependent nature of NO effects on myocardial contractility in fishes, and supports previous work showing that NO effects on the heart (myocardium) are finely tuned spatiotemporally.
Collapse
Affiliation(s)
- Christian Carnevale
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
6
|
Roberts JC, Carnevale C, Gamperl AK, Syme DA. Effects of hypoxic acclimation on contractile properties of the spongy and compact ventricular myocardium of steelhead trout (Oncorhynchus mykiss). J Comp Physiol B 2020; 191:99-111. [PMID: 33084921 DOI: 10.1007/s00360-020-01318-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The trout ventricle has an outer compact layer supplied with well-oxygenated arterial blood from the coronary circulation, and an inner spongy myocardium supplied with oxygen poor venous blood. It was hypothesized that: (1) the spongy myocardium of steelhead trout (Oncorhynchus mykiss), given its routine exposure to low partial pressures of oxygen (PO2), would be better able to maintain contractile performance (work) when exposed to acute hypoxia (100 to 10% air saturation) relative to the compact myocardium, and would show little benefit from hypoxic acclimation; and (2) the compact myocardium from hypoxia-acclimated (40% air saturation) fish would be better able to maintain work during acute exposure to hypoxia relative to normoxia-acclimated individuals. Consistent with our expectations, when PO2 was acutely lowered, net work from the compact myocardium of normoxia-acclimated fish declined more (by ~ 73%) than the spongy myocardium (~ 50%), and more than the compact myocardium of hypoxia-acclimated fish (~ 55%), and hypoxic acclimation did not benefit the spongy myocardium in the face of reduced PO2. Further, while hypoxic acclimation resulted in a 25% (but not significant) decrease in net work of the spongy myocardium, the performance of the compact myocardium almost doubled. This research suggests that, in contrast to the spongy myocardium, performance of the compact myocardium is improved by hypoxic acclimation; and supports previous research suggesting that the decreased contractile performance of the myocardium upon exposure to lowered PO2 may be adaptive and mediated by mechanisms within the muscle itself.
Collapse
Affiliation(s)
- Jordan C Roberts
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Christian Carnevale
- Departments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Departments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
7
|
Carnevale C, Roberts JC, Syme DA, Gamperl AK. Hypoxic acclimation negatively impacts the contractility of steelhead trout ( Oncorhynchus mykiss) spongy myocardium. Am J Physiol Regul Integr Comp Physiol 2020; 318:R214-R226. [PMID: 31747300 PMCID: PMC7052596 DOI: 10.1152/ajpregu.00107.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Cardiac stroke volume (SV) is compromised in Atlantic cod and rainbow trout following acclimation to hypoxia (i.e., 40% air saturation; ~8 kPa O2) at 10-12°C, and this is not due to changes in heart morphometrics or maximum achievable in vitro end-diastolic volume. To examine if this diminished SV may be related to compromised myocardial contractility, we used the work-loop method to measure work and power in spongy myocardial strips from normoxic- and hypoxic-acclimated steelhead trout when exposed to decreasing Po2 levels (21 to 1.5 kPa) at several frequencies (30-90 contractions/min) at 14°C (their acclimation temperature). Work required to lengthen the muscle, as during filling of the heart, was strongly frequency dependent (i.e., increased with contraction rate) but was not affected by hypoxic acclimation or test Po2. In contrast, although shortening work was less frequency dependent, this parameter and network (and power) 1) were consistently lower (by ~30-50 and ~15%, respectively) in strips from hypoxic-acclimated fish and 2) fell by ~40-50% in both groups from 20 to 1.5 kPa Po2, despite the already-reduced myocardial performance in the hypoxic-acclimated group. In addition, strips from hypoxic-acclimated trout showed a poorer recovery of net power (by ~15%) when returned to normoxia. These results strongly suggest that hypoxic acclimation reduces myocardial contractility, and in turn, may limit SV (possibly by increasing end-systolic volume), but that this diminished performance does not improve the capacity to maintain myocardial performance under oxygen limiting conditions.
Collapse
Affiliation(s)
- C. Carnevale
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s Newfoundland and Labrador, Canada
| | - J. C. Roberts
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - D. A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A. K. Gamperl
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Ma KGL, Gamperl AK, Syme DA, Weber LP, Rodnick KJ. Echocardiography and electrocardiography reveal differences in cardiac hemodynamics, electrical characteristics, and thermal sensitivity between northern pike, rainbow trout, and white sturgeon. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:427-442. [PMID: 31385459 DOI: 10.1002/jez.2310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022]
Abstract
Doppler and B-mode ultrasonography and electrocardiography (ECG) were used to determine cardiac hemodynamics and electrical characteristics in 12°C-acclimated and metomidate-anesthetized northern pike, rainbow trout and white sturgeon (7-9 per species) at 12°C and 20°C, and at a comparable heart rate (fH , ~60 beats/min). Despite similar relative ventricle masses and cardiac output (Q), interspecific differences were observed at 12°C in fH , ventricular filling and ejection, stroke volume, the duration ECG intervals, and cardiac valve cross-sectional areas. Vis-a-fronte filling of the atrium due to ventricular contraction was observed in all species. However, biphasic ventricular filling (i.e., due to central venous pressure and then atrial contraction) was only observed in rainbow trout and white sturgeon. Changes in atrial and ventricular performance varied between the species as temperature increased from 12°C to 20°C. Rainbow trout had the highest thermal sensitivity for fH (Q10 = 3.73), which doubled Q, and the largest increase in transvalvular blood velocity during ventricular filling. Conversely, northern pike had the lowest Q10 for fH (1.58) and did not increase Q. At ~60 beats/min, the rainbow trout heart had the shortest period of electrical activity, which also resulted in the longest recovery period (TP interval) between successive beats. The QT interval at ~60 beats/min was also longer in the white sturgeon versus the other species. These results suggest that interspecific differences in fish cardiac hemodynamics may be related to cardiac morphology, the duration of electrical impulses through the heart, cardiac thermal sensitivity, and valve dimensions.
Collapse
Affiliation(s)
- Kathleen G L Ma
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - A Kurt Gamperl
- Department of Ocean Sciences and Biology, Memorial University, St. Johns, Newfoundland, Canada.,Department of Biology, Memorial University, St. Johns, Newfoundland, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lynn P Weber
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kenneth J Rodnick
- Department of Biological Sciences, Idaho State University, Pocatello, Idaho
| |
Collapse
|
9
|
Roberts JC, Syme DA. Effects of epinephrine exposure on contractile performance of compact and spongy myocardium from rainbow trout (Oncorhynchus mykiss) during hypoxia. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:49-62. [PMID: 28795283 DOI: 10.1007/s10695-017-0412-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Hypoxia results in elevated circulating epinephrine for many fish species, and this is likely important for maintaining cardiac function. The aims of this study were to assess how hypoxia impacts contractile responses of ventricular compact and spongy myocardium from rainbow trout (Oncorhynchus mykiss) and to assess how and if epinephrine may protect myocardial performance from a depressive effect of hypoxia. Work output and maximum contraction rate of isolated preparations of spongy and compact ventricular myocardium from rainbow trout were measured. Tissues were exposed to the blood PO2 that they experience in vivo during environmental normoxia and hypoxia and also to low (5 nM) and high (500 nM) levels of epinephrine in 100% air saturation (PO2 20.2 kPa) and during hypoxia (PO2 2 kPa, 10% air saturation). It was hypothesized that hypoxia would result in a decrease in work output and maximum contraction rate in both tissue types, but that epinephrine exposure would mitigate the effect. Hypoxia resulted in a decline in net work output of both tissue types, but a decline in maximum contraction rate of only compact myocardium. Epinephrine restored the maximum contraction rate of compact myocardium in hypoxia, appeared to slightly enhance work output of only compact myocardium in air saturation but surprisingly not during hypoxia, and restored net work of hypoxic spongy myocardium toward normoxic levels. These results indicate hypoxia has a similar depressive effect on both layers of ventricular myocardium, but that high epinephrine may be important for maintaining inotropy in spongy myocardium and chronotropy in compact myocardium during hypoxia.
Collapse
Affiliation(s)
- Jordan C Roberts
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N1N4, Canada.
| |
Collapse
|
10
|
Keen AN, Klaiman JM, Shiels HA, Gillis TE. Temperature-induced cardiac remodelling in fish. ACTA ACUST UNITED AC 2016; 220:147-160. [PMID: 27852752 PMCID: PMC5278617 DOI: 10.1242/jeb.128496] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thermal acclimation causes the heart of some fish species to undergo significant remodelling. This includes changes in electrical activity, energy utilization and structural properties at the gross and molecular level of organization. The purpose of this Review is to summarize the current state of knowledge of temperature-induced structural remodelling in the fish ventricle across different levels of biological organization, and to examine how such changes result in the modification of the functional properties of the heart. The structural remodelling response is thought to be responsible for changes in cardiac stiffness, the Ca2+ sensitivity of force generation and the rate of force generation by the heart. Such changes to both active and passive properties help to compensate for the loss of cardiac function caused by a decrease in physiological temperature. Hence, temperature-induced cardiac remodelling is common in fish that remain active following seasonal decreases in temperature. This Review is organized around the ventricular phases of the cardiac cycle – specifically diastolic filling, isovolumic pressure generation and ejection – so that the consequences of remodelling can be fully described. We also compare the thermal acclimation-associated modifications of the fish ventricle with those seen in the mammalian ventricle in response to cardiac pathologies and exercise. Finally, we consider how the plasticity of the fish heart may be relevant to survival in a climate change context, where seasonal temperature changes could become more extreme and variable. Summary: Thermal acclimation of some temperate fishes causes extensive remodelling of the heart. The resultant changes to the active and passive properties of the heart represent a highly integrated phenotypic response.
Collapse
Affiliation(s)
- Adam N Keen
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Jordan M Klaiman
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA 98109, USA
| | - Holly A Shiels
- Division of Cardiovascular Science, School of Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9NT, UK
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|