1
|
Zakyrjanova GF, Matigorova VA, Kuznetsova EA, Dmitrieva SA, Tyapkina OV, Tsentsevitsky AN, Andreyanova SN, Odnoshivkina JG, Shigapova RR, Mukhamedshina YO, Gogolev YV, Petrov AM. Key genes and processes affected by atorvastatin treatment in mouse diaphragm muscle. Arch Toxicol 2025:10.1007/s00204-025-04056-6. [PMID: 40234311 DOI: 10.1007/s00204-025-04056-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/03/2025] [Indexed: 04/17/2025]
Abstract
Statins are one of the top prescribed medications and are used for preventing or treating cardiovascular diseases. Myalgia, muscle fatigue, weakness, and inflammation are the most common side effects of these drugs collectively named statin-associated muscle symptoms (SAMS). The mechanisms underlying SAMS remain unclear. Given that statins inhibit 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate-limiting enzyme of mevalonate pathway, responsible for synthesis of cholesterol and other vital molecules, SAMS may be mediated by multiple reasons. Herein, using unbiased whole transcriptome sequencing, we identified statin-affected processes and then assessed them using fluorescent, biochemical, and histological approaches in the mouse diaphragm, the main respiratory muscle. Mice were orally treated for 1 month with atorvastatin, the most prescribed statin, at clinically relevant dose. We found that atorvastatin caused downregulation of genes encoding proteins required for oxidative phosphorylation and anabolic processes, whereas genes of proteins engaged inflammation and muscle atrophy were mainly up-regulated. Furthermore, alterations in gene expression pattern suggest oxidative stress and abnormal lipid accumulation. This transcriptome signature correlated to a decrease in mitochondrial polarization and protein synthesis capacity, as well as an increase in lipid peroxidation and reactive oxygen species production. In addition, atorvastatin treatment caused lipid raft disruption, phospholipidosis, myelin de-compactization, and appearance of greater heterogeneity of muscle fiber cross-section diameter. Thus, atorvastatin treatment can negatively affect diaphragm muscle via oxidative stress accompanied by decrease in mitochondrial activity, protein synthesis, and stability of plasma membrane. As a part of compensatory response can serve enhanced activity of superoxide dismutase and cholesterol uptake capacity.
Collapse
Affiliation(s)
- Guzel F Zakyrjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, 119234, Russia
| | - Valeriya A Matigorova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Eva A Kuznetsova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Svetlana A Dmitrieva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Oksana V Tyapkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Andrei N Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
| | - Sofya N Andreyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Julia G Odnoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia
| | - Rezeda R Shigapova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana O Mukhamedshina
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yuri V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Alexey M Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, Kazan, 420111, Russia.
- Department of Normal Physiology, Institute of Neuroscience, Kazan State Medical University, 49 Butlerova Street, Kazan, 420012, Russia.
| |
Collapse
|
2
|
Shakoor H, Kizhakkayil J, Khalid M, Mahgoub A, Platat C. Effect of Moderate-Intense Training and Detraining on Glucose Metabolism, Lipid Profile, and Liver Enzymes in Male Wistar Rats: A Preclinical Randomized Study. Nutrients 2023; 15:3820. [PMID: 37686852 PMCID: PMC10490015 DOI: 10.3390/nu15173820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Exercise training positively regulates glucose metabolism. This study investigated the impact of training and detraining on glucose metabolism, lipid profiles, and liver enzymes. Twenty-six rats completed an initial 4-week moderate-intense training (T0-T4). Then, the animals were randomly assigned to two groups at the end of week 4: AT4: detraining for 8 weeks; AT8: training for 8 weeks and 4-week detraining. Six animals were sacrificed at T0 and T4, four animals/group at T8, and three/group at T12. The study continued for 12 weeks, and all parameters were assessed at T0, T4, T8, and T12. IPGTT significantly improved after 4 weeks of training (p < 0.01) and was further reduced in AT8 at T8. In AT8, 8-week training significantly reduced total cholesterol at T4 and T12 vs. T0 (p < 0.05), LDL at T4, T8, and T12 vs. T0 (p < 0.01), ALP at T8, T12 vs. T0 (p < 0.01), and increased HDL at T8 and ALT at T8 and T12 vs. T0 (p < 0.05). Triglycerides and hexokinase activity increased significantly at T4 and T8 (p < 0.05) and then decreased at T12 in AT8. Pyruvate and glycogen increased at T12 in AT8 vs. AT4. Eight-week training improved LPL and ATGL expressions. Training positively modulated insulin, glucose metabolism, and lipid profiles, but detraining reduced the benefits associated with the initial training.
Collapse
Affiliation(s)
- Hira Shakoor
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (H.S.)
| | - Jaleel Kizhakkayil
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (H.S.)
| | - Mariyam Khalid
- Department of Pharmacology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - Amar Mahgoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Carine Platat
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (H.S.)
| |
Collapse
|
3
|
Gershman A, Hauck Q, Dick M, Jamison JM, Tassia M, Agirrezabala X, Muhammad S, Ali R, Workman RE, Valle M, Wong GW, Welch KC, Timp W. Genomic insights into metabolic flux in hummingbirds. Genome Res 2023; 33:703-714. [PMID: 37156619 PMCID: PMC10317124 DOI: 10.1101/gr.276779.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.
Collapse
Affiliation(s)
- Ariel Gershman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Quinn Hauck
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Morag Dick
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Jerrica M Jamison
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Michael Tassia
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Xabier Agirrezabala
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - Saad Muhammad
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Raafay Ali
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Rachael E Workman
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| | - Mikel Valle
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
| | - G William Wong
- Department of Physiology and Center for Metabolism and Obesity Research, School of Medicine, The Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Kenneth C Welch
- Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - Winston Timp
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA;
- Department of Molecular Biology and Genetics, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
4
|
Liang Z, Diao W, Jiang Y, Zhang Y. G0S2 ameliorates oxidized low-density lipoprotein-induced vascular endothelial cell injury by regulating mitochondrial apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1383. [PMID: 36660674 PMCID: PMC9843419 DOI: 10.21037/atm-22-5618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 01/01/2023]
Abstract
Background Oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell damage is a major risk factor for atherosclerosis and its related cardiovascular diseases. The G0/G1 switch gene 2 (G0S2) is a multifunctional protein which has been poorly studied in atherosclerosis. Methods In this study, ox-LDL was utilized to construct a human aortic endothelial cell (HAEC) injury model. Results It was found that ox-LDL impaired cell viability, augmented lactate dehydrogenase (LDH) release, and reduced G0S2 levels in HAECs in a dose-dependent manner. Further, G0S2 overexpression improved the viability and restrained apoptosis of HAECs treated by ox-LDL. Conversely, G0S2 depletion decreased the viability and aggravated apoptosis of HAECs treated by ox-LDL. At the molecular level, G0S2 overexpression significantly increased the secretion of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPH-Px), promoted intracellular reactive oxygen species (ROS) production and malondialdehyde (MDA) content in HAECs under either normal or ox-LDL conditions. Meanwhile, the ox-LDL-induced mitochondrial dysfunction, as demonstrated by decreased mitochondrial membrane potential, translocation of mitochondrial cytochrome c (Cyt-c) to the cytoplasm, and activation of caspase-3 and caspase-9, was significantly reversed by G0S2 overexpression. In addition, G0S2 overexpression promoted the activation of AMP-activated protein kinase (AMPK) and increased the expression of nuclear factor erythroid-2-related factor-2 (Nrf2), sirtuin 1 (SIRT1) and heme oxygenase 1 (HO-1) under normal and ox-LDL conditions. Conclusions This study demonstrated that G0S2 protects against ox-LDL-induced vascular endothelial cell injury by regulating oxidative damage and mitochondrial homeostasis and may be a promising target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Zenghui Liang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wenjie Diao
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yiyao Jiang
- Department of Cardiac Surgery, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yanrong Zhang
- Department of Vascular Surgery, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
5
|
Al Saedi A, Debruin DA, Hayes A, Hamrick M. Lipid metabolism in sarcopenia. Bone 2022; 164:116539. [PMID: 36007811 DOI: 10.1016/j.bone.2022.116539] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022]
Abstract
Sarcopenia is an age-related disease associated with loss of muscle mass and strength. This geriatric syndrome predisposes elderly individuals to a disability, falls, fractures, and death. Fat infiltration in muscle is one of the hallmarks of sarcopenia and aging. Alterations in fatty acid (FA) metabolism are evident in aging, type 2 diabetes, and obesity, with the accumulation of lipids inside muscle cells contributing to muscle insulin resistance and ceramide accumulation. These lipids include diacylglycerol, lipid droplets, intramyocellular lipids, intramuscular triglycerides, and polyunsaturated fatty acids (PUFAs). In this review, we examine the regulation of lipid metabolism in skeletal muscle, including lipid metabolization and storage, intervention, and the types of lipases expressed in skeletal muscle responsible for the breakdown of adipose triglyceride fats. In addition, we address the role of FAs in sarcopenia and the potential benefits of PUFAs.
Collapse
Affiliation(s)
- Ahmed Al Saedi
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia.
| | - Danielle A Debruin
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Alan Hayes
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, VIC, Australia; Department of Medicine-Western Health, Melbourne Medical School, The University of Melbourne, St. Albans, VIC, Australia; Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC, Australia
| | - Mark Hamrick
- Department of Cellular Biology & Anatomy, Medical College of Georgia, Augusta University, Laney Walker Blvd. CB2915, Augusta, GA 30912, USA
| |
Collapse
|
6
|
Kimura K, Morisasa M, Mizushige T, Karasawa R, Kanamaru C, Kabuyama Y, Hayasaka T, Mori T, Goto-Inoue N. Lipid Dynamics due to Muscle Atrophy Induced by Immobilization. J Oleo Sci 2021; 70:937-946. [PMID: 34193670 DOI: 10.5650/jos.ess21045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle atrophy refers to skeletal muscle loss and dysfunction that affects glucose and lipid metabolism. Moreover, muscle atrophy is manifested in cancer, diabetes, and obesity. In this study, we focused on lipid metabolism during muscle atrophy. We observed that the gastrocnemius muscle was associated with significant atrophy with 8 days of immobilization of hind limb joints and that muscle atrophy occurred regardless of the muscle fiber type. Further, we performed lipid analyses using thin layer chromatography, liquid chromatography-mass spectrometry, and mass spectrometry imaging. Total amounts of triacylglycerol, phosphatidylserine, and sphingomyelin were found to be increased in the immobilized muscle. Additionally, we found that specific molecular species of phosphatidylserine, phosphatidylcholine, and sphingomyelin were increased by immobilization. Furthermore, the expression of adipose triglyceride lipase and the activity of cyclooxygenase-2 were significantly reduced by atrophy. From these results, it was revealed that lipid accumulation and metabolic changes in specific fatty acids occur during disuse muscle atrophy. The present study holds implications in validating preventive treatment strategies for muscle atrophy.
Collapse
Affiliation(s)
- Keisuke Kimura
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Mizuki Morisasa
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | | | | | | | | | | | - Tsukasa Mori
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| | - Naoko Goto-Inoue
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University
| |
Collapse
|
7
|
Hargreaves M, Spriet LL. Exercise Metabolism: Fuels for the Fire. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a029744. [PMID: 28533314 DOI: 10.1101/cshperspect.a029744] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During exercise, the supply of adenosine triphosphate (ATP) is essential for the energy-dependent processes that underpin ongoing contractile activity. These pathways involve both substrate-level phosphorylation, without any need for oxygen, and oxidative phosphorylation that is critically dependent on oxygen delivery to contracting skeletal muscle by the respiratory and cardiovascular systems and on the supply of reducing equivalents from the degradation of carbohydrate, fat, and, to a limited extent, protein fuel stores. The relative contribution of these pathways is primarily determined by exercise intensity, but also modulated by training status, preceding diet, age, gender, and environmental conditions. Optimal substrate availability and utilization before, during, and after exercise is critical for maintaining exercise performance. This review provides a brief overview of exercise metabolism, with expanded discussion of the regulation of muscle glucose uptake and fatty acid uptake and oxidation.
Collapse
Affiliation(s)
- Mark Hargreaves
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Lawrence L Spriet
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
8
|
Zhang X, Heckmann BL, Campbell LE, Liu J. G0S2: A small giant controller of lipolysis and adipose-liver fatty acid flux. Biochim Biophys Acta Mol Cell Biol Lipids 2017. [PMID: 28645852 DOI: 10.1016/j.bbalip.2017.06.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The discovery of adipose triglyceride lipase (ATGL) and its coactivator comparative gene identification-58 (CGI-58) provided a major paradigm shift in the understanding of intracellular lipolysis in both adipocytes and nonadipocyte cells. The subsequent discovery of G0/G1 switch gene 2 (G0S2) as a potent endogenous inhibitor of ATGL revealed a unique mechanism governing lipolysis and fatty acid (FA) availability. G0S2 is highly conserved in vertebrates, and exhibits cyclical expression pattern between adipose tissue and liver that is critical to lipid flux and energy homeostasis in these two tissues. Biochemical and cell biological studies have demonstrated that a direct interaction with ATGL mediates G0S2's inhibitory effects on lipolysis and lipid droplet degradation. In this review we examine evidence obtained from recent in vitro and in vivo studies that lends support to the proof-of-principle concept that G0S2 functions as a master regulator of tissue-specific balance of TG storage vs. mobilization, partitioning of metabolic fuels between adipose and liver, and the whole-body adaptive energy response. This article is part of a Special Issue entitled: Recent Advances in Lipid Droplet Biology edited by Rosalind Coleman and Matthijs Hesselink.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ, United States; HEAL(th) Program, Mayo Clinic, Scottsdale, AZ, United States
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Latoya E Campbell
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Jun Liu
- Department of Biochemistry & Molecular Biology, Mayo Clinic College of Medicine, Scottsdale, AZ, United States; HEAL(th) Program, Mayo Clinic, Scottsdale, AZ, United States; Division of Endocrinology, Mayo Clinic, Scottsdale, AZ, United States.
| |
Collapse
|
9
|
Morales PE, Bucarey JL, Espinosa A. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins. J Diabetes Res 2017; 2017:1789395. [PMID: 28676863 PMCID: PMC5476901 DOI: 10.1155/2017/1789395] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 04/19/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA) availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR). In this scenario, the "isolation" of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN) family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.
Collapse
Affiliation(s)
- Pablo Esteban Morales
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jose Luis Bucarey
- CIDIS-AC, Escuela de Medicina, Universidad de Valparaiso, Valparaiso, Chile
| | - Alejandra Espinosa
- Departamento de Tecnología Médica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Center for Molecular Studies of the Cell, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Alejandra Espinosa:
| |
Collapse
|
10
|
Bott KN, Sacco SM, Turnbull PC, Longo AB, Ward WE, Peters SJ. Skeletal site-specific effects of endurance running on structure and strength of tibia, lumbar vertebrae, and mandible in male Sprague–Dawley rats. Appl Physiol Nutr Metab 2016; 41:597-604. [DOI: 10.1139/apnm-2015-0404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bone microarchitecture, bone mineral density (BMD), and bone strength are affected positively by impact activities such as running; however, there are discrepancies in the magnitude of these effects. These inconsistencies are mainly a result of varying training protocols, analysis techniques, and whether or not the skeletal sites measured are weight bearing. This study’s purpose was to determine the effects of endurance running on sites that experience different weight bearing and load. Eight-week-old male Sprague–Dawley rats (n = 20) were randomly assigned to either a group with a progressive treadmill running protocol (25 m/min for 1 h, incline of 10%) or a nontrained control group for 8 weeks. The trabecular structure of the tibia, lumbar vertebra (L3), and mandible and the cortical structure at the tibia midpoint were measured using microcomputed tomography to quantify bone volume fraction (i.e., bone volume divided by total volume (BV/TV)), trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and cortical thickness. BMD at the proximal tibia, lumbar vertebrae (L1–L3), and mandible was measured using dual energy X-ray absorptiometry. The tibia midpoint strength was measured by 3-point bending using a materials testing system. Endurance running resulted in superior bone structure at the proximal tibia (12% greater BV/TV (p = 0.03), 14% greater Tb.N (p = 0.01), and 19% lower Tb.Sp (p = 0.05)) but not at other sites. Contrary to our hypothesis, mandible bone structure was altered after endurance training (8% lower BV/TV (p < 0.01) and 15% lower Tb.Th (p < 0.01)), which may be explained by a lower food intake, resulting in less mechanical loading from chewing. These results highlight the site-specific effects of loading on the skeleton.
Collapse
Affiliation(s)
- Kirsten N. Bott
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Sandra M. Sacco
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Patrick C. Turnbull
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Amanda B. Longo
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Wendy E. Ward
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| | - Sandra J. Peters
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
- Department of Kinesiology, Centre for Bone and Muscle Health, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
11
|
Laurens C, Badin PM, Louche K, Mairal A, Tavernier G, Marette A, Tremblay A, Weisnagel SJ, Joanisse DR, Langin D, Bourlier V, Moro C. G0/G1 Switch Gene 2 controls adipose triglyceride lipase activity and lipid metabolism in skeletal muscle. Mol Metab 2016; 5:527-537. [PMID: 27408777 PMCID: PMC4921782 DOI: 10.1016/j.molmet.2016.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/12/2016] [Accepted: 04/13/2016] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Recent data suggest that adipose triglyceride lipase (ATGL) plays a key role in providing energy substrate from triglyceride pools and that alterations of its expression/activity relate to metabolic disturbances in skeletal muscle. Yet little is known about its regulation. We here investigated the role of the protein G0/G1 Switch Gene 2 (G0S2), recently described as an inhibitor of ATGL in white adipose tissue, in the regulation of lipolysis and oxidative metabolism in skeletal muscle. METHODS We first examined G0S2 protein expression in relation to metabolic status and muscle characteristics in humans. We next overexpressed and knocked down G0S2 in human primary myotubes to assess its impact on ATGL activity, lipid turnover and oxidative metabolism, and further knocked down G0S2 in vivo in mouse skeletal muscle. RESULTS G0S2 protein is increased in skeletal muscle of endurance-trained individuals and correlates with markers of oxidative capacity and lipid content. Recombinant G0S2 protein inhibits ATGL activity by about 40% in lysates of mouse and human skeletal muscle. G0S2 overexpression augments (+49%, p < 0.05) while G0S2 knockdown strongly reduces (-68%, p < 0.001) triglyceride content in human primary myotubes and mouse skeletal muscle. We further show that G0S2 controls lipolysis and fatty acid oxidation in a strictly ATGL-dependent manner. These metabolic adaptations mediated by G0S2 are paralleled by concomitant changes in glucose metabolism through the modulation of Pyruvate Dehydrogenase Kinase 4 (PDK4) expression (5.4 fold, p < 0.001). Importantly, downregulation of G0S2 in vivo in mouse skeletal muscle recapitulates changes in lipid metabolism observed in vitro. CONCLUSION Collectively, these data indicate that G0S2 plays a key role in the regulation of skeletal muscle ATGL activity, lipid content and oxidative metabolism.
Collapse
Affiliation(s)
- Claire Laurens
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Pierre-Marie Badin
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Katie Louche
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Aline Mairal
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Geneviève Tavernier
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - André Marette
- Department of Medicine, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | - Angelo Tremblay
- Department of Kinesiology, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | | | - Denis R Joanisse
- Department of Kinesiology, Canada; Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada
| | - Dominique Langin
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France; Toulouse University Hospitals, Department of Clinical Biochemistry, Toulouse, France
| | - Virginie Bourlier
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France
| | - Cedric Moro
- INSERM, UMR1048, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, Paul Sabatier University, France.
| |
Collapse
|