1
|
Qian Y, Qi Y, Lin J, Zhang T, Mo L, Xue Q, Zheng N, Niu Y, Dong X, Shi Y, Jiang Y. AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide mediated mtROS. Free Radic Biol Med 2025; 229:237-250. [PMID: 39805512 DOI: 10.1016/j.freeradbiomed.2025.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/30/2024] [Accepted: 01/11/2025] [Indexed: 01/16/2025]
Abstract
Chronic ethanol (EtOH) consumption has been widely recognized as a significant contributor to cardiotoxicity. However, no specific treatment is currently available to ameliorate chronic ethanol induced cardiotoxicity. Adiponectin receptor agonist AdipoRon exerts protective effects in multiple organs through alleviating lipotoxicity. Our previous study showed that chronic ethanol consumption increased de novo ceramide synthesis and necroptosis in myocardium. In this study, we investigated the role of AdipoRon on ceramide metabolism and necroptosis in chronic ethanol-treated myocardium. Eight-week-old C57/BL6J mice were fed with a Lieber-Decarli diet containing vehicle or AdipoRon for 12 weeks. Cardiac function, histology and oxidative stress were assessed. We found that chronic ethanol treatment decreased expression of AdipoR2 in myocardium and H9c2 cells, whereas AdipoRon improved cardiac function, reduced myocardium ceramide levels and suppressed necroptosis. By pharmacological interventions, RNA interference and point mutations in AdipoR2, we demonstrated that AdipoRon reduced ceramide levels through PPARα mediated lipid metabolism rather than AdipoR2's ceramidase activity. Using transmission electron microscope and reactive oxygen species (ROS) staining, we showed that chronic ethanol induced myocardium mitochondria damage and mitochondrial reactive oxygen species (mtROS) accumulation. Meanwhile, we found that AdipoRon ameliorated chronic ethanol induced cardiac necroptosis via the SIRT3-SOD2-mtROS pathway. Moreover, C6 ceramide treatment recapitulated chronic ethanol in inducing mtROS and necroptosis, whereas the ceramide synthesis inhibitors myriocin (MYR) and fumonisin B1 (FB1) attenuated chronic ethanol induced mtROS and necroptosis. Collectively, AdipoRon ameliorates chronic ethanol induced cardiac necroptosis by reducing ceramide de novo synthesis and mtROS, which highlights the therapeutic potential of targeting ceramide metabolism and oxidative stress pathways in treating ethanol induced cardiotoxicity.
Collapse
Affiliation(s)
- Yile Qian
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yanyu Qi
- School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Junyi Lin
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Tianyi Zhang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lingjie Mo
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qiupeng Xue
- Forensic Science and Information Technology Research Centre of Supreme People's Procuratorate, Beijing, 100726, China
| | - Nianchang Zheng
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yaqin Niu
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiaoru Dong
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yan Shi
- Academy of Forensic Science Shanghai Key Laboratory of Forensic Medicine, Shanghai, 200063, China.
| | - Yan Jiang
- Department of Forensic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Simon L, Lin HY, Poret J, Vande Stouwe C, Ferguson TF, Welsh DA, Molina PE. Association of circulating adipokines with metabolic measures among people with HIV: Moderating effects of alcohol use. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2024; 48:2281-2293. [PMID: 39424415 PMCID: PMC11631649 DOI: 10.1111/acer.15464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/27/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND People with HIV (PWH) are at increased risk for cardiometabolic comorbidities. We have reported that lifetime alcohol use among people with HIV (PWH) is associated with increased risk for metabolic syndrome. Dysfunctional adipose tissue and altered circulating adipokines mediate metabolic dysregulation. The objective of this study was to determine the associations of circulating adipokine concentration with metabolic measures, and the moderating effects of lifetime and recent alcohol use in PWH. METHODS This is a cross-sectional analysis of data from 357 PWH at their baseline visit of the longitudinal New Orleans Alcohol and HIV (NOAH) study. The concentrations of four circulating adipokines (adiponectin, leptin, resistin, and fatty acid-binding protein 4 [FABP4]) and their associations with five metabolic measures (triglycerides, cholesterol, Hemoglobin A1c, Homeostatic Model Assessment for Insulin Resistance, and metabolic syndrome) were examined. RESULTS Higher circulating adiponectin was associated with increased odds of normal triglyceride, cholesterol, and Hemoglobin A1c levels. Increased leptin and FABP4 concentrations were associated with decreased odds of normal triglyceride and cholesterol levels. Increased leptin and FABP4 concentrations were associated with increased odds of insulin resistance and meeting criteria for metabolic syndrome. Increased circulating resistin concentration was associated with decreased odds of normal triglyceride levels and increased odds of meeting criteria for metabolic syndrome. Additionally, among PWH with increased lifetime alcohol use, higher adiponectin concentration was associated with decreased odds of meeting criteria for metabolic syndrome. CONCLUSIONS These data suggest the interplay between adiponectin, leptin, FABP4, and resistin may contribute to metabolic stability among PWH. Moreover, lifetime, but not recent, alcohol use moderates the relationship between adipokines and metabolic measures. These data highlight the relevance of functional adipose tissue mass and associated circulating adipokine levels in maintaining metabolic homeostasis, and its moderation by lifetime alcohol consumption.
Collapse
Affiliation(s)
- Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Hui-Yi Lin
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Jonquil Poret
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Curtis Vande Stouwe
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tekeda F. Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Epidemiology Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - David A. Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Internal Medicine, Section of Pulmonary/Critical Care, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Patricia E. Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
3
|
Gallegos EM, Simon L, Molina PE. Chronic binge alcohol mediated hepatic metabolic adaptations in SIV-infected female rhesus macaques. Alcohol Alcohol 2024; 59:agae060. [PMID: 39233472 PMCID: PMC11374886 DOI: 10.1093/alcalc/agae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024] Open
Abstract
AIMS As the interactions of alcohol and HIV/SIV infection and their impact on liver metabolic homeostasis remain to be fully elucidated, this study aimed to determine alcohol-mediated hepatic adaptations of metabolic pathways in SIV/ART-treated female rhesus macaques fed a nutritionally balanced diet. METHODS Macaques were administered chronic binge alcohol (CBA; 13-14 g ethanol/kg/week for 14.5 months; n = 7) or vehicle (VEH; n = 8) for 14.5 months. Livers were excised following an overnight fast. Gene and protein expression, enzymatic activity, and lipid content were determined using frozen tissue and histological staining was performed using paraffin-embedded tissue. RESULTS CBA/SIV macaques showed increased hepatic protein expression of electron transport Complex III and increased gene expression of glycolytic (phosphofructokinase and aldolase) and gluconeogenic (pyruvate carboxylase) enzymes and of genes involved in lipid turnover homeostasis (perilipin 1, peroxisome proliferator-activated receptor gamma, carbohydrate responsive binding protein, and acetyl-CoA carboxylase B) as compared to that of livers from the VEH/SIV group. Plasma triglyceride concentration had a significant positive association with liver triglyceride content in the CBA/SIV group. CONCLUSIONS These results reflect CBA-associated alterations in expression of proteins and genes involved in glucose and lipid metabolism homeostasis without significant evidence of steatosis or dysglycemia. Whether these changes predispose to greater liver pathology upon consumption of a high fat/high sugar diet that is more aligned with dietary intake of PWH and/or exposure to additional environmental factors warrants further investigation.
Collapse
Affiliation(s)
- Eden M Gallegos
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Liz Simon
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Patricia E Molina
- Department of Physiology, Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
4
|
Simon L, Primeaux SD, Levitt DE, Bourgeois B, Johannsen NM, Peters A, Ahmed J, Marshall RH, Fairchild AH, Ferguson TF, Molina PE. An aerobic exercise intervention to improve metabolic health among people living with HIV with at-risk alcohol use: the ALIVE-Ex research study protocol. AIDS Res Ther 2023; 20:35. [PMID: 37296413 PMCID: PMC10251573 DOI: 10.1186/s12981-023-00530-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Effective antiretroviral therapy (ART) in people living with HIV (PLWH) has improved life expectancy and increased risk of age-associated cardiometabolic comorbidities. At-risk alcohol use is more frequent among PLWH and increases the risk of health challenges. PLWH with at-risk alcohol use are more likely to meet criteria for prediabetes/diabetes and this is associated with impaired whole-body glucose-insulin dynamics. METHODS The Alcohol & Metabolic Comorbidities in PLWH: Evidence Driven Interventions Study (ALIVE-Ex Study, NCT03299205) is a longitudinal, prospective, interventional study to determine the effects of an aerobic exercise protocol on improving dysglycemia among PLWH with at-risk alcohol use. The intervention is a moderate intensity aerobic exercise protocol implemented 3 days per week for 10 weeks at the Louisiana State University Health Sciences Center-New Orleans. Participants who have a fasting blood glucose level between 94 and 125 mg/dl will be enrolled in the study. Oral glucose tolerance tests, fitness assessments, and skeletal muscle biopsies will be performed pre- and post-exercise intervention. The primary outcome is to determine whether the exercise protocol improves measures of whole-body glucose-insulin dynamics, cardiorespiratory fitness, and skeletal muscle metabolic and bioenergetic function. Secondary outcomes are to determine whether the exercise intervention improves cognitive function and overall quality of life. Results generated will demonstrate the effect of exercise on glycemic measures in PLWH with subclinical dysglycemia and at-risk alcohol use. CONCLUSIONS The proposed intervention will also have the potential to be scalable to promote lifestyle changes among PLWH, particularly in underserved communities.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA
- Comprehensive Alcohol HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Stefany D Primeaux
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | - Danielle E Levitt
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA
- Comprehensive Alcohol HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
- Department of Kinesiology & Sport Management, Texas Tech University, Lubbock, TX, 79409, USA
| | - Brianna Bourgeois
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA
- Comprehensive Alcohol HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Neil M Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Adrianna Peters
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA
- Comprehensive Alcohol HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Jameel Ahmed
- Department of Medicine, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Richard H Marshall
- Department of Radiology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | | | - Tekeda F Ferguson
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
- Department of Epidemiology, LSU Health Sciences Center, New Orleans, LA, 70112, USA
| | - Patricia E Molina
- Department of Physiology, LSU Health Sciences Center, 1901 Perdido Street, MEB/7205, New Orleans, LA, 70112, USA.
- Comprehensive Alcohol HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Bourgeois BL, Levitt DE, Molina PE, Simon L. Differential expression of adipocyte and myotube extracellular vesicle miRNA cargo in chronic binge alcohol-administered SIV-infected male macaques. Alcohol 2023; 108:1-9. [PMID: 36351490 PMCID: PMC10033305 DOI: 10.1016/j.alcohol.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
Our studies in chronic binge alcohol (CBA) -treated simian immunodeficiency virus (SIV)-infected macaques and in people living with HIV (PLWH) show significant alterations in metabolic homeostasis. CBA promotes a profibrotic phenotype in adipose tissue and skeletal muscle (SKM) and decreases adipose-derived stem cell and myoblast differentiation, making adipose and SKM potential drivers in metabolic dysregulation. Furthermore, we have shown that the differential expression of microRNAs (miRs) in SKM contributes to impaired myoblast differentiation potential. Beyond modulation of intracellular responses, miRs can be transported in extracellular vesicles (EVs) to mediate numerous cellular responses through intercellular and interorgan communication. This study tested the hypothesis that CBA alters concentration and miR cargo of EVs derived from adipocytes and myotubes isolated from SIV-infected male macaques. Fourteen male rhesus macaques received either CBA (2.5 g/kg/day) or sucrose (VEH) for 14.5 months. Three months following the initiation of CBA/VEH, all animals were infected with SIVmac251 and 2.5 months later were initiated on antiretroviral therapy. SKM and adipose tissue samples were collected at the study endpoint (blood alcohol concentration = 0 mM). EVs were isolated by ultracentrifugation of myotube and adipocyte cell culture supernatant. Nanoparticle tracking revealed no differences in concentration or size of particles between VEH and CBA groups. Adipocyte-derived EVs from CBA animals showed decreased miR-let-7a expression (p = 0.03). Myotube-derived EVs from CBA animals had decreased miR-16 (p = 0.04) and increased miR-133a and miR-133b (both p = 0.04) expression. These results indicate that CBA administration differentially regulates EV miR content but does not alter the number of EVs from adipocytes or myotubes. Future studies are warranted to determine the functional relevance of CBA-altered EV miR cargo and their role in intercellular and interorgan communication and metabolic dysregulation.
Collapse
Affiliation(s)
- Brianna L Bourgeois
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Danielle E Levitt
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA.
| |
Collapse
|
6
|
Simon L, Molina PE. Cellular Bioenergetics: Experimental Evidence for Alcohol-induced Adaptations. FUNCTION 2022; 3:zqac039. [PMID: 36120487 PMCID: PMC9469757 DOI: 10.1093/function/zqac039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 01/07/2023] Open
Abstract
At-risk alcohol use is associated with multisystemic effects and end-organ injury, and significantly contributes to global health burden. Several alcohol-mediated mechanisms have been identified, with bioenergetic maladaptation gaining credence as an underlying pathophysiological mechanism contributing to cellular injury. This evidence-based review focuses on the current knowledge of alcohol-induced bioenergetic adaptations in metabolically active tissues: liver, cardiac and skeletal muscle, pancreas, and brain. Alcohol metabolism itself significantly interferes with bioenergetic pathways in tissues, particularly the liver. Alcohol decreases states of respiration in the electron transport chain, and activity and expression of respiratory complexes, with a net effect to decrease ATP content. In addition, alcohol dysregulates major metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and fatty acid oxidation. These bioenergetic alterations are influenced by alcohol-mediated changes in mitochondrial morphology, biogenesis, and dynamics. The review highlights similarities and differences in bioenergetic adaptations according to tissue type, pattern of (acute vs. chronic) alcohol use, and energy substrate availability. The compromised bioenergetics synergizes with other critical pathophysiological mechanisms, including increased oxidative stress and accelerates cellular dysfunction, promoting senescence, programmed cell death, and end-organ injury.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Patricia E Molina
- Department of Physiology and Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
7
|
Patel D, Sharma D, Mandal P. Gut Microbiota: Target for Modulation of Gut-Liver-Adipose Tissue Axis in Ethanol-Induced Liver Disease. Mediators Inflamm 2022; 2022:4230599. [PMID: 35633655 PMCID: PMC9142314 DOI: 10.1155/2022/4230599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 02/06/2023] Open
Abstract
Consumption of alcohol (ethanol) in various forms has been an integral part of human civilization. Since ages, it also has been an important cause of death and health impairment across the globe. Ethanol-mediated liver injury, known as alcoholic liver disease (ALD), is caused by surplus intake of alcohol. Several studies have proposed the different pathways that may be lead to ALD. One of the factors that may affect the cytochrome P450 (CYP2E1) metabolic pathway is gut dysbiosis. The gut microbiota produces various compounds that play an important role in regulating healthy functions of distal organs such as the adipose tissue and liver. Dysbiosis causes bacteremia, hepatic encephalopathy, and increased intestinal permeability. Recent clinical studies have found better understanding of the gut and liver axis. Another factor that may affect the ALD pathway is dysfunction of adipose tissue metabolism. Moreover, dysfunction of adipose tissue leads to ectopic fat deposition within the liver and disturbs lipid metabolism by increasing lipolysis/decreasing lipogenesis and impaired glucose tolerance of adipose tissue which leads to ectopic fat deposition within the liver. Adipokine secretion of resistin, leptin, and adiponectin is adversely modified upon prolonged alcohol consumption. In the combination of these two factors, a proinflammatory state is developed within the patient leading to the progression of ALD. Thus, the therapeutic approach for treatments and prevention for liver cirrhosis patients must be focused on the gut-liver-adipose tissue network modification with the use of probiotics, synbiotics, and prebiotics. This review is aimed at the effect of ethanol on gut and adipose tissue in both rodent and human alcoholic models.
Collapse
Affiliation(s)
- Dhara Patel
- PD Patel Institute of Science and Technology, Charotar University of Science and Technology, 388421, Changa, Gujarat, India
| | - Dixa Sharma
- PD Patel Institute of Science and Technology, Charotar University of Science and Technology, 388421, Changa, Gujarat, India
| | - Palash Mandal
- PD Patel Institute of Science and Technology, Charotar University of Science and Technology, 388421, Changa, Gujarat, India
| |
Collapse
|
8
|
Osna NA, New-Aaron M, Dagur RS, Thomes P, Simon L, Levitt D, McTernan P, Molina PE, Choi HY, Machida K, Sherman KE, Riva A, Phillips S, Chokshi S, Kharbanda KK, Weinman S, Ganesan M. A review of alcohol-pathogen interactions: New insights into combined disease pathomechanisms. Alcohol Clin Exp Res 2022; 46:359-370. [PMID: 35076108 PMCID: PMC8920772 DOI: 10.1111/acer.14777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/05/2023]
Abstract
Progression of chronic infections to end-stage diseases and poor treatment results are frequently associated with alcohol abuse. Alcohol metabolism suppresses innate and adaptive immunity leading to increased viral load and its spread. In case of hepatotropic infections, viruses accelerate alcohol-induced hepatitis and liver fibrosis, thereby promoting end-stage outcomes, including cirrhosis and hepatocellular carcinoma (HCC). In this review, we concentrate on several unexplored aspects of these phenomena, which illustrate the combined effects of viral/bacterial infections and alcohol in disease development. We review alcohol-induced alterations implicated in immunometabolism as a central mechanism impacting metabolic homeostasis and viral pathogenesis in Simian immunodeficiency virus/human immunodeficiency virus infection. Furthermore, in hepatocytes, both HIV infection and alcohol activate oxidative stress to cause lysosomal dysfunction and leakage and apoptotic cell death, thereby increasing hepatotoxicity. In addition, we discuss the mechanisms of hepatocellular carcinoma and tumor signaling in hepatitis C virus infection. Finally, we analyze studies that review and describe the immune derangements in hepatotropic viral infections focusing on the development of novel targets and strategies to restore effective immunocompetency in alcohol-associated liver disease. In conclusion, alcohol exacerbates the pathogenesis of viral infections, contributing to a chronic course and poor outcomes, but the mechanisms behind these events are virus specific and depend on virus-alcohol interactions, which differ among the various infections.
Collapse
Affiliation(s)
- Natalia A. Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Moses New-Aaron
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, Department of Environmental Health, Occupational Health, and Toxicology, College of Public Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Raghubendra S. Dagur
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Paul Thomes
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Liz Simon
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Danielle Levitt
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patrick McTernan
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Patricia E. Molina
- Department of Physiology & Comprehensive Alcohol-HIV/AIDS Research Center, LSU Health Sciences Center, New Orleans, LA 70112, USA
| | - Hye Yeon Choi
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
| | - Keigo Machida
- Department of Molecular Microbiology and Immunology, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9020, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA 90089-9141, USA
| | - Kenneth E. Sherman
- Department of Internal Medicine, Division of Digestive Disease, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0595, USA
| | - Antonio Riva
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Sandra Phillips
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Shilpa Chokshi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London, UK
| | - Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
9
|
Simon L, Edwards S, Molina PE. Pathophysiological Consequences of At-Risk Alcohol Use; Implications for Comorbidity Risk in Persons Living With Human Immunodeficiency Virus. Front Physiol 2022; 12:758230. [PMID: 35115952 PMCID: PMC8804300 DOI: 10.3389/fphys.2021.758230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
At-risk alcohol use is a significant risk factor associated with multisystemic pathophysiological effects leading to multiorgan injury and contributing to 5.3% of all deaths worldwide. The alcohol-mediated cellular and molecular alterations are particularly salient in vulnerable populations, such as people living with HIV (PLWH), diminishing their physiological reserve, and accelerating the aging process. This review presents salient alcohol-associated mechanisms involved in exacerbation of cardiometabolic and neuropathological comorbidities and their implications in the context of HIV disease. The review integrates consideration of environmental factors, such as consumption of a Western diet and its interactions with alcohol-induced metabolic and neurocognitive dyshomeostasis. Major alcohol-mediated mechanisms that contribute to cardiometabolic comorbidity include impaired substrate utilization and storage, endothelial dysfunction, dysregulation of the renin-angiotensin-aldosterone system, and hypertension. Neuroinflammation and loss of neurotrophic support in vulnerable brain regions significantly contribute to alcohol-associated development of neurological deficits and alcohol use disorder risk. Collectively, evidence suggests that at-risk alcohol use exacerbates cardiometabolic and neurocognitive pathologies and accelerates biological aging leading to the development of geriatric comorbidities manifested as frailty in PLWH.
Collapse
|
10
|
Bourgeois BL, Lin HY, Yeh AY, Levitt DE, Primeaux SD, Ferguson TF, Molina PE, Simon L. Unique circulating microRNA associations with dysglycemia in people living with HIV and alcohol use. Physiol Genomics 2022; 54:36-44. [PMID: 34859690 PMCID: PMC8891241 DOI: 10.1152/physiolgenomics.00085.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
People living with HIV (PLWH) have increased prevalence of comorbid conditions including insulin resistance and at-risk alcohol use. Circulating microRNAs (miRs) may serve as minimally invasive indicators of pathophysiological states. We aimed to identify whether alcohol modulates circulating miR associations with measures of glucose/insulin dynamics in PLWH. PLWH (n = 96; 69.8% males) enrolled in the Alcohol & Metabolic Comorbidities in PLWH: Evidence-Driven Interventions (ALIVE-Ex) study were stratified into negative phosphatidylethanol (PEth < 8 ng/mL, n = 42) and positive PEth (PEth ≥ 8 ng/mL, n = 54) groups. An oral glucose tolerance test (OGTT) was administered, and total RNA was isolated from fasting plasma to determine absolute miR expression. Circulating miRs were selected based on their role in skeletal muscle (miR-133a and miR-206), pancreatic β-cell (miR-375), liver (miR-20a), and adipose tissue (miR-let-7b, miR-146a, and miR-221) function. Correlation and multiple regression analyses between miR expression and adiponectin, 2 h glucose, insulin, and C-peptide values were performed adjusting for body mass index (BMI) category, age, sex, and viral load. miR-133a was negatively associated with adiponectin (P = 0.002) in the negative PEth group, and miR-20a was positively associated with 2 h glucose (P = 0.013) in the positive PEth group. Regression analyses combining miRs demonstrated that miR-133a (P < 0.001) and miR-221 (P = 0.010) together predicted adiponectin in the negative PEth group. miR-20a (P < 0.001) and miR-375 (P = 0.002) together predicted 2 h glucose in the positive PEth group. Our results indicate that associations between miRs and measures of glucose/insulin dynamics differed between PEth groups, suggesting that the pathophysiological mechanisms contributing to altered glucose homeostasis in PLWH are potentially modulated by alcohol use.
Collapse
Affiliation(s)
- Brianna L. Bourgeois
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Hui-Yi Lin
- 2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,3School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Alice Y. Yeh
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E. Levitt
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D. Primeaux
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,4Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana
| | - Tekeda F. Ferguson
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana,5Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- 1Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana,2Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
11
|
Simon L, Torres D, Saravia A, Levitt DE, Vande Stouwe C, McGarrah H, Coleman L, Dufour JP, Amedee AM, Molina PE. Chronic binge alcohol and ovariectomy-mediated impaired insulin responsiveness in SIV-infected female rhesus macaques. Am J Physiol Regul Integr Comp Physiol 2021; 321:R699-R711. [PMID: 34524906 PMCID: PMC8616623 DOI: 10.1152/ajpregu.00159.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Aging people living with HIV (PLWH), especially postmenopausal women may be at higher risk of comorbidities associated with HIV, antiretroviral therapy (ART), hypogonadism, and at-risk alcohol use. Our studies in simian immunodeficiency virus (SIV)-infected male macaques demonstrated that chronic binge alcohol (CBA) reduced acute insulin response to glucose (AIRG), and at-risk alcohol use decreased HOMA-β in PLWH. The objective of this study was to examine the impact of ovariectomy (OVX) on glucose-insulin dynamics and integrity of pancreatic endocrine function in CBA/SIV-infected female macaques. Female macaques were administered CBA (12-15 g/kg/wk) or isovolumetric water (VEH) intragastrically. Three months after initiation of CBA/VEH administration, all macaques were infected with SIVmac251, and initiated on antiretroviral therapy (ART) 2.5 mo postinfection. After 1 mo of ART, macaques were randomized to OVX or sham surgeries (n = 7 or 8/group), and euthanized 8 mo post-OVX (study endpoint). Frequently sampled intravenous glucose tolerance tests (FSIVGTT) were performed at selected time points. Pancreatic gene expression and islet morphology were determined at study endpoint. There was a main effect of CBA to decrease AIRG at Pre-SIV and study endpoint. There were no statistically significant OVX effects on AIRG (P = 0.06). CBA and OVX decreased the expression of pancreatic markers of insulin docking and release. OVX increased endoplasmic stress markers. CBA but not OVX impaired glucose-insulin expression dynamics in SIV-infected female macaques. Both CBA and OVX altered integrity of pancreatic endocrine function. These findings suggest increased vulnerability of PLWH to overt metabolic dysfunction that may be exacerbated by alcohol use and ovarian hormone loss.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Diego Torres
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Ari Saravia
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Danielle E Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Heather McGarrah
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Larry Coleman
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jason P Dufour
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana
| | - Angela M Amedee
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
12
|
Levitt DE, Ferguson TF, Primeaux SD, Zavala JA, Ahmed J, Marshall RH, Simon L, Molina PE. Skeletal muscle bioenergetic health and function in people living with HIV: association with glucose tolerance and alcohol use. Am J Physiol Regul Integr Comp Physiol 2021; 321:R781-R790. [PMID: 34585616 PMCID: PMC8616628 DOI: 10.1152/ajpregu.00197.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/22/2022]
Abstract
At-risk alcohol use is prevalent and increases dysglycemia among people living with human immunodeficiency virus (PLWH). Skeletal muscle (SKM) bioenergetic dysregulation is implicated in dysglycemia and type 2 diabetes. The objective of this study was to determine the relationship between at-risk alcohol, glucose tolerance, and SKM bioenergetic function in PLWH. Thirty-five PLWH (11 females, 24 males, age: 53 ± 9 yr, body mass index: 29.0 ± 6.6 kg/m2) with elevated fasting glucose enrolled in the ALIVE-Ex study provided medical history and alcohol use information [Alcohol Use Disorders Identification Test (AUDIT)], then underwent an oral glucose tolerance test (OGTT) and SKM biopsy. Bioenergetic health and function and mitochondrial volume were measured in isolated myoblasts. Mitochondrial gene expression was measured in SKM. Linear regression adjusting for age, sex, and smoking was performed to examine the relationship between glucose tolerance (2-h glucose post-OGTT), AUDIT, and their interaction with each outcome measure. Negative indicators of bioenergetic health were significantly (P < 0.05) greater with higher 2-h glucose (proton leak) and AUDIT (proton leak, nonmitochondrial oxygen consumption, and bioenergetic health index). Mitochondrial volume was increased with the interaction of higher 2-h glucose and AUDIT. Mitochondrial gene expression decreased with higher 2-h glucose (TFAM, PGC1B, PPARG, MFN1), AUDIT (MFN1, DRP1, MFF), and their interaction (PPARG, PPARD, MFF). Decreased expression of mitochondrial genes were coupled with increased mitochondrial volume and decreased bioenergetic health in SKM of PLWH with higher AUDIT and 2-h glucose. We hypothesize these mechanisms reflect poorer mitochondrial health and may precede overt SKM bioenergetic dysregulation observed in type 2 diabetes.
Collapse
Affiliation(s)
- Danielle E Levitt
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Stefany D Primeaux
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Joint Diabetes, Endocrinology & Metabolism Center, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jeanette A Zavala
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jameel Ahmed
- Section of Cardiology, Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Richard H Marshall
- Department of Radiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
13
|
Primeaux SD, Simon L, Ferguson TF, Levitt DE, Brashear MM, Yeh A, Molina PE. Alcohol use and dysglycemia among people living with human immunodeficiency virus (HIV) in the Alcohol & Metabolic Comorbidities in PLWH: Evidence Driven Interventions (ALIVE-Ex) study. Alcohol Clin Exp Res 2021; 45:1735-1746. [PMID: 34342022 PMCID: PMC8547613 DOI: 10.1111/acer.14667] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND At-risk alcohol use is a common and costly form of substance misuse that is highly prevalent among people living with HIV (PLWH). The goal of the current analysis was to test the hypothesis that PLWH with at-risk alcohol use are more likely to meet the clinical criteria for prediabetes/diabetes than PLWH with low-risk alcohol use. METHODS A cross-sectional analysis was performed on measures of alcohol and glycemic control in adult PLWH (n = 105) enrolled in a prospective, interventional study (the ALIVE-Ex Study (NCT03299205)) that investigated the effects of aerobic exercise on metabolic dysregulation in PLWH with at-risk alcohol use. The Alcohol Use Disorders Identification Test (AUDIT), Timeline Followback, and phosphatidylethanol (PEth) level were used to measure alcohol use. Participants were stratified into low-risk (AUDIT score < 5) and at-risk alcohol use (AUDIT score ≥ 5). All participants underwent an oral glucose tolerance test and measures of glycemic control- the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) and Matsuda Index - were correlated with alcohol measures and compared by AUDIT score group using mixed-effects linear and logistic regression models, adjusting for age, sex, race, body mass index (BMI), and viral load. RESULTS In response to the glucose challenge, participants with at-risk alcohol use (n = 46) had higher glucose levels and were five times more likely to meet criteria for prediabetes/diabetes (OR: 5.3 (1.8, 15.9)) than participants with an AUDIT score < 5. Two-hour glucose values were positively associated with AUDIT score and PEth level and a higher percentage of PLWH with at-risk alcohol use had glucose values ≥140 mg/dl than those with low-risk alcohol use (34.8% vs. 10.2%, respectively). CONCLUSION In this cohort of PLWH, at-risk alcohol use increased the likelihood of meeting the clinical criteria for prediabetes/diabetes (2-h glucose level ≥140 mg/dl). Established determinants of metabolic dysfunction (e.g., BMI, waist-hip ratio) were not associated with greater alcohol use and dysglycemia, suggesting that other mechanisms may contribute to the impaired glycemic control observed in this cohort.
Collapse
Affiliation(s)
- Stefany D. Primeaux
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Joint Diabetes, Endocrinology & Metabolism Program, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Tekeda F. Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
- Department of Epidemiology, Louisiana State University Health Sciences Center, New Orleans, 70112
| | - Danielle E. Levitt
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Meghan M. Brashear
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| | - Alice Yeh
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, LA 70112
| |
Collapse
|
14
|
Possible mechanisms of HIV neuro-infection in alcohol use: Interplay of oxidative stress, inflammation, and energy interruption. Alcohol 2021; 94:25-41. [PMID: 33864851 DOI: 10.1016/j.alcohol.2021.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/05/2021] [Accepted: 04/01/2021] [Indexed: 11/21/2022]
Abstract
Alcohol use and HIV-1 infection have a pervasive impact on brain function, which extends to the requirement, distribution, and utilization of energy within the central nervous system. This effect on neuroenergetics may explain, in part, the exacerbation of HIV-1 disease under the influence of alcohol, particularly the persistence of HIV-associated neurological complications. The objective of this review article is to highlight the possible mechanisms of HIV/AIDS progression in alcohol users from the perspective of oxidative stress, neuroinflammation, and interruption of energy metabolism. These include the hallmark of sustained immune cell activation and high metabolic energy demand by HIV-1-infected cells in the central nervous system, with at-risk alcohol use. Here, we discussed the point that the increase in energy supply requirement by HIV-1-infected neuroimmune cells as well as the deterrence of nutrient uptake across the blood-brain barrier significantly depletes the energy source and neuro-environment homeostasis in the CNS. We also described the mechanistic idea that comorbidity of HIV-1 infection and alcohol use can cause a metabolic shift and redistribution of energy usage toward HIV-1-infected neuroimmune cells, as shown in neuropathological evidence. Under such an imbalanced neuro-environment, meaningless energy waste is expected in infected cells, along with unnecessary malnutrition in non-infected neuronal cells, which is likely to accelerate HIV neuro-infection progression in alcohol use. Thus, it will be important to consider the factor of nutrients/energy imbalance in formulating treatment strategies to help impede the progression of HIV-1 disease and associated neurological disorders in alcohol use.
Collapse
|
15
|
Maxi JK, Foret BL, Amedee AM, McDaniel LS, Nelson S, Simon L, Edwards S, Molina PE. Antiretroviral therapy administration reduces neuroinflammation without restoring brain-derived neurotrophic factor signaling in alcohol-administered simian immunodeficiency virus-infected macaques. AIDS 2021; 35:1343-1353. [PMID: 33813553 PMCID: PMC8243820 DOI: 10.1097/qad.0000000000002896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
OBJECTIVE The present study examined interactions between simian immunodeficiency virus (SIV), chronic binge alcohol (CBA), and antiretroviral therapy (ART) on growth factor signaling, neuroinflammatory markers, viral loads (VL), and CD4+ cell counts. DESIGN Adult male rhesus macaques were administered CBA (13-14 g ethanol (EtOH)/kg per week) or sucrose (SUC) 3 months prior to SIVmac251 infection until the study endpoint. At viral setpoint, a subset of CBA/SIV+ and SUC/SIV+ macaques were randomized to receive daily ART (9-[2-Phosphonyl-methoxypropyly]adenine [PMPA] 20 mg/kg, 2',3'-dideoxy-5-fluoro-3'-thiacytidine (FTC), 30 mg/kg). Frontal cortex (FC) and basal ganglia (BG) were collected for gene and protein expression. METHODS Relationships between brain and plasma VL or CD4+ cell counts were determined using linear regression. Effects of SIV, CBA, and ART on markers of neuroinflammation and brain-derived neurotrophic factor (BDNF) signaling were determined by ANOVA and linear regression. RESULTS SIV increased FC and BG neuroinflammatory and glial cell gene expression (CX3CR1, B2M), and reduced FC protein kinase B phosphorylation. CBA decreased FC and BG tropomyosin receptor kinase B (TrkB) phosphorylation, and increased full-length TrkB (TrkB-FL) and SLC1A3 expression in FC and BG, respectively. ART suppressed plasma and brain VL, reduced neuroinflammatory gene expression in FC (IBA1, CX3CR1, and GFAP), and BG (CD74 and CD11ß), and did not restore FC or BG BDNF signaling deficits. CONCLUSIONS Results show ART-mediated reduction in VL and neuroinflammatory gene expression, irrespective of CBA administration. ART did not attenuate SIV- and CBA-mediated BDNF signaling deficits, suggesting these deficits, despite effective neuroinflammation suppression, may explain CBA- and SIV-associated neurocognitive deficits. Therapeutics targeting growth factor signaling may be important adjuvants in treating HIV-associated neurocognitive decline.
Collapse
Affiliation(s)
- John K Maxi
- Department of Physiology, School of Medicine
- Comprehensive Alcohol-HIV/AIDS Research Center
| | - Brittany L Foret
- Department of Physiology, School of Medicine
- Comprehensive Alcohol-HIV/AIDS Research Center
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center
- Department of Microbiology, Immunology, and Parasitology, School of Medicine
| | - Lee S McDaniel
- Comprehensive Alcohol-HIV/AIDS Research Center
- Biostatistics, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Liz Simon
- Department of Physiology, School of Medicine
- Comprehensive Alcohol-HIV/AIDS Research Center
| | - Scott Edwards
- Department of Physiology, School of Medicine
- Comprehensive Alcohol-HIV/AIDS Research Center
| | - Patricia E Molina
- Department of Physiology, School of Medicine
- Comprehensive Alcohol-HIV/AIDS Research Center
| |
Collapse
|
16
|
Poret JM, Guidry JJ, Simon L, Molina PE. Chronic binge alcohol and ovariectomy dysregulate omental adipose tissue metaboproteome in simian immunodeficiency virus-infected female macaques. Physiol Genomics 2021; 53:358-371. [PMID: 34252326 DOI: 10.1152/physiolgenomics.00001.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Effective antiretroviral therapy (ART) has significantly reduced mortality of people living with HIV (PLWH), and the prevalence of at-risk alcohol use is higher among PLWH. Increased survival and aging of PLWH is associated with increased prevalence of metabolic comorbidities especially among menopausal women, and adipose tissue metabolic dysregulation may be a significant contributing factor. We examined the differential effects of chronic binge alcohol (CBA) administration and ovariectomy (OVX) on the omental adipose tissue (OmAT) proteome in a subset of simian immunodeficiency virus (SIV)-infected macaques of a longitudinal parent study. Quantitative discovery-based proteomics identified 1,429 differentially expressed proteins. Ingenuity Pathway Analysis (IPA) was used to calculate z-scores, or activation predictions, for functional pathways and diseases. Results revealed that protein changes associated with functional pathways centered around the "OmAT metaboproteome profile." Based on z-scores, CBA did not affect functional pathways of metabolic disease but dysregulated proteins involved in adenosine monophosphate-activated protein kinase (AMPK) signaling and lipid metabolism. OVX-mediated proteome changes were predicted to promote pathways involved in glucose- and lipid-associated metabolic disease. Proteins involved in apoptosis, necrosis, and reactive oxygen species (ROS) pathways were also predicted to be activated by OVX and these were predicted to be inhibited by CBA. These results provide evidence for the role of ovarian hormone loss in mediating OmAT metaboproteome dysregulation in SIV and suggest that CBA modifies OVX-associated changes. In the context of OVX, CBA administration produced larger metabolic and cellular effects, which we speculate may reflect a protective role of estrogen against CBA-mediated adipose tissue injury in female SIV-infected macaques.
Collapse
Affiliation(s)
- Jonquil M Poret
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Jessie J Guidry
- Department of Biochemistry and The Proteomic Core Facility, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
17
|
Klockars A, Levine AS, Head MA, Perez-Leighton CE, Kotz CM, Olszewski PK. Impact of Gut and Metabolic Hormones on Feeding Reward. Compr Physiol 2021; 11:1425-1447. [PMID: 33577129 DOI: 10.1002/cphy.c190042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ingestion of food activates a cascade of endocrine responses (thereby reflecting a contemporaneous feeding status) that include the release of hormones from the gastrointestinal (GI) tract, such as cholecystokinin (CCK), glucagonlike peptide YY (PYY), peptide PP, and oleoylethanolamide, as well as suppression of ghrelin secretion. The pancreas and adipose tissue, on the other hand, release hormones that serve as a measure of the current metabolic state or the long-term energy stores, that is, insulin, leptin, and adiponectin. It is well known and intuitively understandable that these hormones target either directly (by crossing the blood-brain barrier) or indirectly (e.g., via vagal input) the "homeostatic" brainstem-hypothalamic pathways involved in the regulation of appetite. The current article focuses on yet another target of the metabolic and GI hormones that is critical in inducing changes in food intake, namely, the reward system. We discuss the physiological basis of this functional interaction, its importance in the control of appetite, and the impact that disruption of this crosstalk has on energy intake in select physiological and pathophysiological states. We conclude that metabolic and GI hormones have a capacity to strengthen or weaken a response of the reward system to a given food, and thus, they are fundamental in ensuring that feeding reward is plastic and dependent on the energy status of the organism. © 2021 American Physiological Society. Compr Physiol 11:1425-1447, 2021.
Collapse
Affiliation(s)
- Anica Klockars
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Allen S Levine
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA
| | - Mitchell A Head
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | | | - Catherine M Kotz
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pawel K Olszewski
- Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand.,Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota, USA.,Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Levitt DE, Chalapati N, Prendergast MJ, Simon L, Molina PE. Ethanol-Impaired Myogenic Differentiation is Associated With Decreased Myoblast Glycolytic Function. Alcohol Clin Exp Res 2020; 44:2166-2176. [PMID: 32945016 PMCID: PMC7680427 DOI: 10.1111/acer.14453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Myopathy affects nearly half of individuals with alcohol use disorder (AUD), and impaired skeletal muscle regenerative potential is a probable contributing factor. Previous findings from our laboratory indicate that chronic in vivo and in vitro ethanol (EtOH) treatment decreases myogenic potential of skeletal muscle myoblasts. Myogenesis, a highly coordinated process, requires shifts in cellular metabolic state allowing for myoblasts to proliferate and differentiate into mature myotubes. The objective of this study was to determine whether alcohol interferes with myoblast mitochondrial and glycolytic metabolism and impairs myogenic differentiation. METHODS Myoblasts were isolated from vastus lateralis muscle excised from alcohol-naïve adult male (n = 5) and female (n = 5) rhesus macaques. Myoblasts were proliferated for 3 days (day 0 differentiation; D0) and differentiated for 5 days (D5) with or without 50 mM EtOH. Metabolism was assessed using a mitochondrial stress test to measure oxygen consumption (OCR) and extracellular acidification (ECAR) rates at D0. Differentiation was examined at D5. Expression of mitochondrial and glycolytic genes and mitochondrial DNA (mtDNA) was measured at D0 and D5. RESULTS Ethanol significantly (p < 0.05) increased myoblast maximal OCR and decreased ECAR at D0, and decreased fusion index, myotubes per field, and total nuclei at D5. The EtOH-induced decrease in ECAR was associated with the EtOH-mediated decreases in fusion index and myotubes per field. EtOH did not alter the decrease in glycolytic gene expression and increase in mtDNA from D0 to D5. CONCLUSION During myoblast proliferation, EtOH decreased glycolytic metabolism and increased maximal OCR, suggesting that myoblast metabolic phenotype was dysregulated with EtOH. The EtOH-induced decrease in ECAR was associated with decreased differentiation. These findings suggest that EtOH-mediated shifts in metabolic phenotype may underlie impaired differentiation, which has important clinical implications for myogenesis in those affected by alcoholic myopathy.
Collapse
Affiliation(s)
- Danielle E. Levitt
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Naveena Chalapati
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Matthew J. Prendergast
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| | - Patricia E. Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA
- Comprehensive Alcohol-HIV/AIDS Research Center, Louisiana State University Health Sciences Center, New Orleans, LA
| |
Collapse
|
19
|
Simon L, Ferguson TF, Vande Stouwe C, Brashear MM, Primeaux SD, Theall KP, Welsh DA, Molina PE. Prevalence of Insulin Resistance in Adults Living with HIV: Implications of Alcohol Use. AIDS Res Hum Retroviruses 2020; 36:742-752. [PMID: 32449647 DOI: 10.1089/aid.2020.0029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unhealthy alcohol use is prevalent among persons living with HIV (PLWH). Aging and increased survival of PLWH on antiretroviral therapy (ART) are complicated by metabolic dysregulation and increased risk of insulin resistance (IR) and diabetes mellitus. The objective of this study was to determine the prevalence and association of IR with unhealthy alcohol use in adult in-care PLWH. A cross-sectional analysis of metabolic parameters and alcohol use characteristics was conducted in adult PLWH enrolled in the New Orleans Alcohol Use in HIV (NOAH) Study. IR was estimated using homeostatic model assessment (HOMA-IR), triglyceride index, and McAuley index and beta cell function (HOMA-β). Alcohol use was assessed using Alcohol Use Disorders Identification Test (AUDIT)-C, 30-day timeline followback (TLFB), lifetime drinking history, and phosphatidylethanol (PEth) measures. A total of 351 participants, with a mean age [±standard deviation (SD)] of 48.1 ± 10.4 years, were included (69.6% male). Of these, 57% had an AUDIT-C score of 4 or greater, indicating unhealthy alcohol use. Mean body mass index (BMI) was 27.2 ± 7.0 kg/m2, 36.4% met criteria for metabolic syndrome, and 14% were diagnosed with diabetes. After adjusting for education, race, BMI, smoking status, viral load, CD4 count, use of protease inhibitors, statins, or metformin; physical activity and diabetes diagnosis, HOMA-IR, and McAuley index were negatively associated with AUDIT-C, and HOMA-β cell function was negatively associated with AUDIT-C, PEth, and TLFB. Cross-sectional analysis of NOAH participants indicates that alcohol use is associated with decreased HOMA-β cell function, suggesting dysregulation of endocrine pancreatic function.
Collapse
Affiliation(s)
- Liz Simon
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Tekeda F. Ferguson
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Curtis Vande Stouwe
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Meghan M. Brashear
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Stefany D. Primeaux
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Katherine P. Theall
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - David A. Welsh
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Pulmonary/Critical Care and Allergy/Immunology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Patricia E. Molina
- Louisiana State University Health Sciences Center, Comprehensive Alcohol-HIV/AIDS Research Center, New Orleans, Louisiana, USA
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| |
Collapse
|
20
|
Osna NA, Bhatia R, Thompson C, Batra SK, Kumar S, Cho Y, Szabo G, Molina PE, Weinman SA, Ganesan M, Kharbanda KK. Role of non-Genetic Risk Factors in Exacerbating Alcohol-related organ damage. Alcohol 2020; 87:63-72. [PMID: 32497558 PMCID: PMC7483997 DOI: 10.1016/j.alcohol.2020.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
Abstract
This review provides a summary of the symposium titled "Role of Non-Genetic Risk Factors in Exacerbating Alcohol-Related Organ Damage", which was held at the 42nd Annual Meeting of the Research Society on Alcoholism. The goals of the symposium were to provide newer insights into the role of non-genetic factors, including specific external factors, notably infectious agents or lifestyle factors, that synergistically act to exacerbate alcohol pathogenicity to generate more dramatic downstream biological defects. This summary of the symposium will benefit junior/senior basic scientists and clinicians currently investigating/treating alcohol-induced organ pathology, as well as undergraduate, graduate, and post-graduate students and fellows.
Collapse
Affiliation(s)
- Natalia A Osna
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Rakesh Bhatia
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Christopher Thompson
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Surinder K Batra
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Sushil Kumar
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yeonhee Cho
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States; Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Gyongyi Szabo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Patricia E Molina
- Department of Physiology, LSUHSC-New Orleans, New Orleans, LA, United States
| | - Steven A Weinman
- Department of Internal Medicine and the Liver Center, University of Kansas Medical Center, Kansas City, KS, United States
| | - Murali Ganesan
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, United States; Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States; Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States.
| |
Collapse
|
21
|
Rasineni K, Srinivasan MP, Balamurugan AN, Kaphalia BS, Wang S, Ding WX, Pandol SJ, Lugea A, Simon L, Molina PE, Gao P, Casey CA, Osna NA, Kharbanda KK. Recent Advances in Understanding the Complexity of Alcohol-Induced Pancreatic Dysfunction and Pancreatitis Development. Biomolecules 2020; 10:669. [PMID: 32349207 PMCID: PMC7277520 DOI: 10.3390/biom10050669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/05/2023] Open
Abstract
Chronic excessive alcohol use is a well-recognized risk factor for pancreatic dysfunction and pancreatitis development. Evidence from in vivo and in vitro studies indicates that the detrimental effects of alcohol on the pancreas are from the direct toxic effects of metabolites and byproducts of ethanol metabolism such as reactive oxygen species. Pancreatic dysfunction and pancreatitis development are now increasingly thought to be multifactorial conditions, where alcohol, genetics, lifestyle, and infectious agents may determine the initiation and course of the disease. In this review, we first highlight the role of nonoxidative ethanol metabolism in the generation and accumulation of fatty acid ethyl esters (FAEEs) that cause multi-organellar dysfunction in the pancreas which ultimately leads to pancreatitis development. Further, we discuss how alcohol-mediated altered autophagy leads to the development of pancreatitis. We also provide insights into how alcohol interactions with other co-morbidities such as smoking or viral infections may negatively affect exocrine and endocrine pancreatic function. Finally, we present potential strategies to ameliorate organellar dysfunction which could attenuate pancreatic dysfunction and pancreatitis severity.
Collapse
Affiliation(s)
- Karuna Rasineni
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Mukund P. Srinivasan
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Department of Surgery, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Bhupendra S. Kaphalia
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0419, USA; (M.P.S.); (B.S.K.)
| | - Shaogui Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, MO 66160, USA; (S.W.); (W.-X.D.)
| | - Stephen J. Pandol
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Aurelia Lugea
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (S.J.P.); (A.L.)
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center-New Orleans, New Orleans, LA 70112, USA; (L.S.); (P.E.M.)
| | - Peter Gao
- Program Director, Division of Metabolism and Health Effects, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-6902, USA;
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Natalia A. Osna
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Kusum K. Kharbanda
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.A.C.); (N.A.O.); (K.K.K.)
- Research Service, Veterans’ Affairs Nebraska-Western Iowa Health Care System, Omaha, NE 68105, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
22
|
Adler K, Molina PE, Simon L. Epigenomic mechanisms of alcohol-induced impaired differentiation of skeletal muscle stem cells; role of Class IIA histone deacetylases. Physiol Genomics 2019; 51:471-479. [PMID: 31398085 DOI: 10.1152/physiolgenomics.00043.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Loss of functional metabolic muscle mass remains a strong and consistent predictor of mortality among people living with human immunodeficiency virus (PLWH). PLWH have a higher incidence of alcohol use disorder (AUD), and myopathy is a significant clinical comorbidity due to AUD. One mechanism of skeletal muscle (SKM) mass maintenance and repair is by differentiation and fusion of satellite cells (SCs) to existing myofibers. Previous studies demonstrated that chronic binge alcohol (CBA) administration decreases SC differentiation potential, myogenic gene expression, and miR-206 expression in simian immunodeficiency virus (SIV)-infected male rhesus macaques and that miR-206 targets the Class IIA histone deacetylase, HDAC4. The aim of this study was to determine whether alcohol-induced increases in Class IIA HDACs mediate the observed decrease in differentiation potential of SCs. Data show that CBA dysregulated HDAC gene expression in SKM and myoblasts of SIV-infected macaques. CBA and antiretroviral therapy increased HDAC activity in SKM and this was positively correlated with HDAC4 gene expression. In vitro ethanol (ETOH) treatment increased HDAC expression during differentiation and decreased differentiation potential of myoblasts. HDAC expression was negatively correlated with fusion index and myotube formation, indicators of differentiation potential. Treatment with a Class II HDAC inhibitor, TMP195, restored differentiation in ETOH-treated myoblasts. MEF2C expression at day 3 of differentiation was positively correlated with fusion index and myotube formation. These findings suggest that an alcohol-mediated increase in Class IIA HDAC expression contributes to decreased myoblast differentiation by downregulating MEF2C, a transcription factor critical for myogenesis.
Collapse
Affiliation(s)
- Katherine Adler
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana.,Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
23
|
Ford SM, Simon Peter L, Berner P, Cook G, Vande Stouwe C, Dufour J, Bagby G, Nelson S, Molina PE. Differential contribution of chronic binge alcohol and antiretroviral therapy to metabolic dysregulation in SIV-infected male macaques. Am J Physiol Endocrinol Metab 2018; 315:E892-E903. [PMID: 30040479 PMCID: PMC6293168 DOI: 10.1152/ajpendo.00175.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 02/08/2023]
Abstract
The incidence of alcohol use disorder (AUD) is higher among people living with HIV (PLWH). The advent and continued development of antiretroviral therapy (ART) has significantly reduced mortality, shifting the course of HIV infection to a chronic illness. However, this is associated with an increased incidence of comorbid conditions, including type 2 diabetes mellitus, insulin resistance, and cardiovascular complications. Using a nonhuman primate model of simian immunodeficiency virus (SIV) infection, previous studies have demonstrated that chronic binge alcohol (CBA) administration decreases whole body insulin responsiveness, irrespective of ART administration. The objective of the current study was to determine the effects of CBA and ART on insulin-sensitive peripheral tissues before the development of overt clinical symptoms of SIV disease. Our results show that CBA reduced omental adipocyte cell size, increased collagen expression, and decreased the in vitro differentiation potential of adipose-derived stem cells. In contrast, it did not alter skeletal muscle or omental or hepatic expression of insulin signaling proteins. However, ART significantly decreased skeletal muscle expression of phosphatase and tensin homolog, total mechanistic target of rapamycin, and ribosomal protein S6. In addition, ART increased hepatic phosphorylation of AMP-activated protein kinase α and increased gene expression of key enzymes required for gluconeogenesis and fatty acid synthesis. These findings suggest that CBA and ART differentially promote adverse metabolic effects in an organ-specific manner that may underlie insulin resistance associated with alcohol, SIV, and ART. Whether this is translated in PLWH with AUD remains to be determined.
Collapse
Affiliation(s)
- Stephen M Ford
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Liz Simon Peter
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Paul Berner
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Garth Cook
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Jason Dufour
- Divison of Veterinary Medicine, Tulane National Primate Research Center , Covington, Louisiana
| | - Gregory Bagby
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Steve Nelson
- School of Medicine, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| | - Patricia E Molina
- Department of Physiology, Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center , New Orleans, Louisiana
| |
Collapse
|
24
|
Molina PE, Simon L, Amedee AM, Welsh DA, Ferguson TF. Impact of Alcohol on HIV Disease Pathogenesis, Comorbidities and Aging: Integrating Preclinical and Clinical Findings. Alcohol Alcohol 2018; 53:439-447. [PMID: 29546271 DOI: 10.1093/alcalc/agy016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Short Summary : Effective combined antiretroviral therapy regimens have extended survival of persons living with HIV (PLWH). Heavy alcohol consumption is common in PLWH. This overview integrates evidence from clinical and preclinical research to identify salient alcohol-related mechanisms and comorbidities contributing to disease pathogenesis and accelerated aging and senescence in PLWH.
Collapse
Affiliation(s)
- Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| |
Collapse
|
25
|
Duplanty AA, Siggins RW, Allerton T, Simon L, Molina PE. Myoblast mitochondrial respiration is decreased in chronic binge alcohol administered simian immunodeficiency virus-infected antiretroviral-treated rhesus macaques. Physiol Rep 2018; 6:e13625. [PMID: 29504290 PMCID: PMC5835494 DOI: 10.14814/phy2.13625] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/29/2022] Open
Abstract
Work from our group demonstrated that chronic binge alcohol (CBA)-induces mitochondrial gene dysregulation at end-stage disease of simian immunodeficiency virus (SIV) infection in antiretroviral therapy (ART) naïve rhesus macaques. Alterations in gene expression can disrupt mitochondrial homeostasis and in turn contribute to the risk of metabolic comorbidities characterized by loss of skeletal muscle (SKM) functional mass that are associated with CBA, human immunodeficiency virus (HIV) infection, and prolonged ART. The aim of this study was to examine the interaction of CBA and ART on SKM fiber oxidative capacity and myoblast mitochondrial respiration in asymptomatic SIV-infected macaques. SKM biopsies were obtained and myoblasts isolated at baseline and 11 months post-SIV infection from CBA/SIV/ART+ and from sucrose (SUC)-treated SIV-infected (SUC/SIV/ART+) macaques. CBA and ART decreased succinate dehydrogenase (SDH) activity in type 1 and type 2b fibers as determined by immunohistochemistry. Myoblasts isolated from CBA/SIV/ART+ macaques showed decreased maximal oxygen consumption rate (OCR) compared to myoblasts from control macaques. Maximal OCR was significantly increased in control myoblasts following incubation with formoterol, a beta adrenergic agonist, and this was associated with increased PGC-1α expression and mtDNA quantity. Additionally, formoterol treatment of myoblasts isolated from CBA/SIV/ART+ macaques partially restored maximal OCR to levels not significantly different from control. These results show that CBA in combination with ART impairs myoblast mitochondrial homeostasis in SIV-infected macaques. Moreover, our findings suggest that adrenergic agonists can potentially ameliorate mitochondrial dysfunction. Future studies will elucidate whether physical exercise in HIV patients with alcohol use disorder can improve mitochondrial health.
Collapse
Affiliation(s)
- Anthony A. Duplanty
- Department of PhysiologyComprehensive Alcohol Research Center, Alcohol and Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisiana
| | - Robert W. Siggins
- Department of PhysiologyComprehensive Alcohol Research Center, Alcohol and Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisiana
| | - Timothy Allerton
- Department of PhysiologyComprehensive Alcohol Research Center, Alcohol and Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisiana
| | - Liz Simon
- Department of PhysiologyComprehensive Alcohol Research Center, Alcohol and Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisiana
| | - Patricia E. Molina
- Department of PhysiologyComprehensive Alcohol Research Center, Alcohol and Drug Abuse Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLouisiana
| |
Collapse
|
26
|
Simon L, Siggins R, Winsauer P, Brashear M, Ferguson T, Mercante D, Song K, Vande Stouwe C, Nelson S, Bagby G, Amedee A, Molina PE. Simian Immunodeficiency Virus Infection Increases Blood Ethanol Concentration Duration After Both Acute and Chronic Administration. AIDS Res Hum Retroviruses 2018; 34:178-184. [PMID: 29037050 DOI: 10.1089/aid.2017.0195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alcohol use disorder (AUD) is a frequent comorbidity among people living with HIV/AIDS (PLWHA). Alcohol consumption is a significant predictor of nonadherence to antiretroviral therapy (ART), as well as worsening immunological and virological indicators among PLWHA. Clinical studies indicate that higher viral loads increase sensitivity to alcohol in PLWHA. The factors that influence alcohol kinetics after HIV infection and initiation of ART are not well understood, limiting the information upon which interventions can be designed to ameliorate the impact of alcohol misuse on this vulnerable patient population. To better understand the relationship between viral load and alcohol kinetics, we measured changes in doses of intragastric ethanol administration to achieve target blood ethanol concentration (BEC) in a rhesus macaque model of chronic binge alcohol (CBA) administration and acute changes following a single acute binge dose of alcohol (ABA) pre- and post-simian immunodeficiency virus (SIV) infection, and following ART initiation. Our results from CBA (14 months)-administered SIV-infected male macaques showed that, following ART initiation, macaques required higher doses of alcohol to achieve a target peak BEC compared with non-ART-treated SIV-infected macaques. In animals given ABA, we found prolonged duration of elevated BEC and decreased elimination rate of alcohol that was not corrected following 7 weeks of ART. These findings suggest that binge drinking associated with AUD could negatively interact with HIV infection and enhance disease progression. These findings further support the need for implementation of behavioral or therapeutic interventions to decrease alcohol consumption to improve the quality of life in PLWHA.
Collapse
Affiliation(s)
- Liz Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Robert Siggins
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Peter Winsauer
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Meghan Brashear
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Tekeda Ferguson
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Don Mercante
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- School of Public Health, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Kejing Song
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Curtis Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Steve Nelson
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory Bagby
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Angela Amedee
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Patricia E. Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| |
Collapse
|
27
|
Simon L, Ford SM, Song K, Berner P, Vande Stouwe C, Nelson S, Bagby GJ, Molina PE. Decreased myoblast differentiation in chronic binge alcohol-administered simian immunodeficiency virus-infected male macaques: role of decreased miR-206. Am J Physiol Regul Integr Comp Physiol 2017; 313:R240-R250. [PMID: 28637658 PMCID: PMC5625276 DOI: 10.1152/ajpregu.00146.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/07/2017] [Accepted: 06/21/2017] [Indexed: 01/05/2023]
Abstract
Skeletal muscle stem cells play a critical role in regeneration of myofibers. We previously demonstrated that chronic binge alcohol (CBA) markedly attenuates myoblast differentiation potential and myogenic gene expression. Muscle-specific microRNAs (miRs) are implicated in regulation of myogenic genes. The aim of this study was to determine whether myoblasts isolated from asymptomatic CBA-administered simian immunodeficiency virus (SIV)-infected macaques treated with antiretroviral therapy (ART) showed similar impairments and, if so, to elucidate potential underlying mechanisms. Myoblasts were isolated from muscle at 11 mo after SIV infection from CBA/SIV macaques and from time-matched sucrose (SUC)-treated SIV-infected (SUC/SIV) animals and age-matched controls. Myoblast differentiation and myogenic gene expression were significantly decreased in myoblasts from SUC/SIV and CBA/SIV animals compared with controls. SIV and CBA decreased muscle-specific miR-206 in plasma and muscle and SIV decreased miR-206 expression in myoblasts, with no statistically significant changes in other muscle-specific miRs. These findings were associated with a significant increase in histone deacetylase 4 (HDAC4) and decrease in myogenic enhancer factor 2C (MEF2C) expression in CBA/SIV muscle. Transfection with miR-206 inhibitor decreased myotube differentiation, increased expression of HDAC4, and decreased MEF2C, suggesting a critical role of miR-206 in myogenesis. Moreover, HDAC4 was confirmed to be a direct miR-206 target. These results support a mechanistic role for decreased miR-206 in suppression of myoblast differentiation resulting from chronic alcohol and SIV infection. The parallel changes in skeletal muscle and circulating levels of miR-206 warrant studies to establish the possible use of plasma miR-206 as an indicator of impaired muscle function.
Collapse
Affiliation(s)
- L Simon
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| | - S M Ford
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - K Song
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - P Berner
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - C Vande Stouwe
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - S Nelson
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - G J Bagby
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
- School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - P E Molina
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
- Comprehensive Alcohol Research Center, Louisiana State University Health Sciences Center, New Orleans, Louisiana; and
| |
Collapse
|
28
|
Steiner JL, Lang CH. Alcohol, Adipose Tissue and Lipid Dysregulation. Biomolecules 2017; 7:biom7010016. [PMID: 28212318 PMCID: PMC5372728 DOI: 10.3390/biom7010016] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/10/2017] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol consumption perturbs lipid metabolism as it increases adipose tissue lipolysis and leads to ectopic fat deposition within the liver and the development of alcoholic fatty liver disease. In addition to the recognition of the role of adipose tissue derived fatty acids in liver steatosis, alcohol also impacts other functions of adipose tissue and lipid metabolism. Lipid balance in response to long-term alcohol intake favors adipose tissue loss and fatty acid efflux as lipolysis is upregulated and lipogenesis is either slightly decreased or unchanged. Study of the lipolytic and lipogenic pathways has identified several regulatory proteins modulated by alcohol that contribute to these effects. Glucose tolerance of adipose tissue is also impaired by chronic alcohol due to decreased glucose transporter-4 availability at the membrane. As an endocrine organ, white adipose tissue (WAT) releases several adipokines that are negatively modulated following chronic alcohol consumption including adiponectin, leptin, and resistin. When these effects are combined with the enhanced expression of inflammatory mediators that are induced by chronic alcohol, a proinflammatory state develops within WAT, contributing to the observed lipodystrophy. Lastly, while chronic alcohol intake may enhance thermogenesis of brown adipose tissue (BAT), definitive mechanistic evidence is currently lacking. Overall, both WAT and BAT depots are impacted by chronic alcohol intake and the resulting lipodystrophy contributes to fat accumulation in peripheral organs, thereby enhancing the pathological state accompanying chronic alcohol use disorder.
Collapse
Affiliation(s)
- Jennifer L Steiner
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Charles H Lang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|