1
|
Li J, He L, Wang W, Wang S, Zhang D, Liang L, Song G, Zhang Y, Yu S, Wang L, Han Q, Huang S, Li S, Tu H, Song Z, Hu H, Li H, Yang Y, Wu M. Comprehensive evaluation and application of tissue clearing techniques for 3-D visualization of splenic neural and immune architecture. Am J Physiol Cell Physiol 2025; 328:C1699-C1715. [PMID: 40249862 DOI: 10.1152/ajpcell.00084.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/12/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
As the largest secondary lymphoid organ, the spleen plays a crucial role in initiating and sustaining immune responses against blood-borne pathogens through antigen capture and delivery. It is innervated by both autonomic and sensory nerves, which allows for neural modulation of its immune responses. The intricate spatial structure and precise coordination between immune and neural components are essential for proper splenic function, necessitating three-dimensional (3-D) imaging to reveal its architecture. However, the dense fibrous capsule and exceptionally rich vasculature of the spleen pose significant challenges for achieving comprehensive 3-D visualization of the entire organ. Here, we systematically evaluated and compared five cutting-edge tissue clearing approaches-ImmuView, fast light-microscopic analysis of antibody-stained whole organs, small-micelle-mediated human organ efficient clearing and labeling (SHANEL), advanced clear, unobstructed brain imaging cocktails and computational analysis (advanced CUBIC), and clearing-enhanced 3-D microscopy-for their effectiveness in rendering the spleen transparent for multiplexed antibody staining and high-resolution 3-D imaging. Our results indicated that SHANEL provided the clearest visualization of essential splenic neural and immune components. Meanwhile, advanced CUBIC achieved the greatest labeling efficacy for immune cells, albeit with slightly reduced transparency. Importantly, our study marked the first application of these optimized protocols to human spleen tissue, successfully revealing the highly organized immune cell zones and neural networks with enhanced clarity. Notably, we identified the nociceptive sensory innervation within human spleen tissue for the first time. Collectively, these findings establish optimal imaging strategies for visualizing splenic immune cells and neural structure in both murine and human tissues, providing profound insights into the intricate neuroimmune interactions and their pivotal roles in the immune functions of the spleen.NEW & NOTEWORTHY This study systematically assessed five tissue-clearing techniques and optimized the conditions of each protocol to overcome the challenges of splenic 3-D imaging posed by its dense structure and high pigmentation. The results demonstrated SHANEL and advanced CUBIC as the optimal methods for 3-D visualization of diverse splenic immune and neural architecture, with which we successfully mapped splenic neuroimmune landscape and identified nociceptive nerves within the human spleen for the first time.
Collapse
Affiliation(s)
- Jianing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Letian He
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Wenling Wang
- Department of Ambulatory Medicine, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Siyu Wang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Dan Zhang
- School of Life Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Liyun Liang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
- School of Basic Medical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Guangping Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
- School of Basic Medical Sciences, Tsinghua University, Beijing, People's Republic of China
| | - Yijian Zhang
- Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Shaoqing Yu
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, People's Republic of China
| | - Lei Wang
- Senior Department of Urology, The Third Medical Centre of PLA General Hospital, Beijing, People's Republic of China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Shaoyi Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Sen Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Zengqing Song
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Huaibin Hu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| | - Yang Yang
- Senior Department of Hematology, The Fifth Medical Center of PLA General Hospital, Beijing, People's Republic of China
| | - Min Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, People's Republic of China
| |
Collapse
|
2
|
Hesampour F, Bernstein CN, Ghia JE. Investigating the effect of neuro-immune communication on immune responses in health and disease: Exploring immunological disorders. Cell Immunol 2025; 413:104963. [PMID: 40378510 DOI: 10.1016/j.cellimm.2025.104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 05/02/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
Recent recognition of the intricate nervous-immune system interplay has prompted research into the specific cellular components involved in these interactions. Emerging evidence suggests that immune and neural cells collaborate within distinct units and act in concert to regulate tissue function and provide protection. These specialized neuro-immune cell units have been identified in diverse body tissues, ranging from lymphoid organs to the bone marrow and mucosal barriers. Their significance has become increasingly apparent as they are recognized as pivotal regulators influencing a broad spectrum of physiological and pathological processes. This recognition extends to critical roles in hematopoiesis, organ function, inflammatory responses, and intricate tissue repair processes. This review explores the bidirectional communication between the nervous and immune systems. The focus is on understanding the profound impact of this communication on immune cells within key anatomical sites, such as the bone marrow, gastrointestinal tract, and lymphoid organs. By examining these interactions, this review aims to shed light on how this intricate network operates under normal and pathological conditions, offering insights into the mechanisms underlying health and disease.
Collapse
Affiliation(s)
| | - Charles N Bernstein
- Internal Medicine, University of Manitoba, Winnipeg, Canada; Inflammatory Bowel Disease Clinical & Research Centre, University of Manitoba, Winnipeg, Canada
| | - Jean-Eric Ghia
- Immunology, University of Manitoba, Winnipeg, Canada; Internal Medicine, University of Manitoba, Winnipeg, Canada; Inflammatory Bowel Disease Clinical & Research Centre, University of Manitoba, Winnipeg, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
3
|
Han S, Wan J, Zhang X, Ding J, Li X, Cheng Y, Sun Y, Xu Z, Wu J, Chen R. Proteomic profiling of spleen in rat infected with clonorchis sinensis using liquid chromatography tandem mass spectrometry analysis. Acta Trop 2025; 265:107594. [PMID: 40127806 DOI: 10.1016/j.actatropica.2025.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Clonorchiasis, caused by Clonorchis sinensis, remains a significant neglected tropical disease with substantial global health implications. As the largest immune organ in mammals, the spleen plays a crucial role in defending against C. sinensis infection; however, the molecular mechanisms underlying spleen pathogenesis during such infections remain poorly understood. To address this gap, quantitative Tandem Mass Tags (TMT) liquid chromatography-tandem mass spectrometry was employed to profile protein changes in the spleens of rats infected with C. sinensis. This analysis identified 40,664 peptides from 6817 proteins, including 371 and 464 differentially expressed proteins at 4 and 8 weeks post-infection (wpi) compared to the control groups, respectively. Clustering analysis revealed distinct proteomic profiles among the groups, while gene ontology analysis associated the differentially expressed proteins with biological binding activities and metabolic processes. KEGG analysis revealed significant enrichment of immune-related and metabolic pathways, including AMPK, IL-17, and p53 signaling pathways. These findings reveal dynamic proteomic alterations in the spleen during C. sinensis infection, offering valuable insights into the biomarker candidates for early diagnosis. Further studies are warranted to validate these potential biomarkers and explore their utility for early diagnosis of clonorchiasis.
Collapse
Affiliation(s)
- Su Han
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Parasitology, Harbin Medical University, Harbin, China; Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jie Wan
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaoli Zhang
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Jian Ding
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Xiang Li
- Department of Parasitology, Harbin Medical University, Harbin, China
| | - Yang Cheng
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yifan Sun
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Zhenli Xu
- Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jianlin Wu
- Wuming Hospital of Guangxi medical university, Nanning, China.
| | - Rui Chen
- Affiliated Hospital of Jiangnan University, Wuxi, China.
| |
Collapse
|
4
|
Zhou Y. Focused Ultrasound Neuromodulation to Peripheral Nerve System. Eur J Neurosci 2025; 61:e70062. [PMID: 40170299 DOI: 10.1111/ejn.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 04/03/2025]
Abstract
Noninvasive focused ultrasound (FUS) has been applied in the treatment of various targets. Neuromodulation using FUS is emerging as a promising therapeutic modality for the central nerve system (CNS) with the advantages of deep penetration and precise targeting in the brain. This technique can also be applied to the peripheral nerve system (PNS). The principle of FUS and the mechanisms of neromodulation on PNS are summarized. Current experimental observations on the PNS targets are introduced to show their therapeutic effects. Discussion on the limitations and perspectives of this technology illustrates the pros and cons for future development. FUS provides a noninvasive, safe, and effective modality for neurotherapeutics. Although the relevant research on PNS is much less than that on CNS, the limited studies have already shown the satisfactory performance of FUS in comparison to the FDA-approved implanted device, especially the vagus nerve stimulation (VNS). Wide applications in clinics and fast development in technology are expected in the near future.
Collapse
Affiliation(s)
- Yufeng Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Biomedical Engineering, Chongqing Medical University, Chongqing, China
- National Medical Products Administration (NMPA) Key Laboratory for Quality Evaluation of Ultrasonic Surgical Equipment, Wuhan, Hubei, China
| |
Collapse
|
5
|
Dong W, Li Y, Fei Q, Li S, He X, Chai Y, Zhou J, Zong Y, Geng J, Li Z. Targeted spleen modulation: a novel strategy for next-generation disease immunotherapy. Theranostics 2025; 15:4416-4445. [PMID: 40225564 PMCID: PMC11984396 DOI: 10.7150/thno.111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/09/2025] [Indexed: 04/15/2025] Open
Abstract
The spleen, the largest lymphatic organ, comprises a diverse array of immunocytes in approximately one quarter of the body, including T cells, B cells, natural killer cells, and myeloid cells (such as dendritic cells, neutrophils, myeloid-derived suppressor cells, and macrophages). These immune cells undergo dynamic transitions and mobilization, enabling the spleen to execute a wide range of immunological functions. The spleen's structural organization and multicellular composition, along with its reservoir of lymphocytes, facilitate the capture and clearance of blood-borne antigens while also orchestrating both innate and adaptive immune responses. Additionally, the spleen plays critical roles in hematopoiesis and the removal of aged or damaged red blood cells. Despite being innervated by sympathetic (catecholaminergic) nerve fibers, the spleen lacks parasympathetic (vagal or cholinergic) innervation. The neuroimmune axis, particularly the interplay between sympathetic and parasympathetic nervous system immune circuits, significantly influences disease onset and progression. Extensive research employing physical, genetic, and pharmacological approaches has sought to directly modulate splenic immunocytes and activate neuroimmune interactions to restore immune homeostasis and counteract disease. Two primary mechanisms underlie these immunomodulatory interventions: (1) the cholinergic anti-inflammatory pathway, wherein norepinephrine released by splenic catecholaminergic fibers binds to β2-adrenergic receptors on CD4⁺ T cells, triggering acetylcholine secretion, which in turn suppresses inflammatory cytokine production in macrophages via α7 nicotinic acetylcholine receptor signaling, and (2) direct immunomodulation of splenic immunocytes, which regulates key genes and signaling pathways, alters cytokine secretion, and modulates ion flux to influence cellular functions. Among various therapeutic strategies, physical methods, particularly electrical stimulation and splenic ultrasound stimulation, have demonstrated the greatest promise for clinical applications in splenic immunomodulation and disease management.
Collapse
Affiliation(s)
- Wei Dong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yucheng Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiaoman Fei
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Senyang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xinrui He
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yichao Chai
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Junyi Zhou
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yujin Zong
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Department of Biomedical Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Geng
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zongfang Li
- National and Local Joint Engineering Research Center of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- Center for Tumor and Immunology, The Precision Medical Institute, Xi'an Jiaotong University, Xi'an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, CHESS-Shaanxi consortium, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
6
|
Heusch G, Kleinbongard P. The spleen in ischaemic heart disease. Nat Rev Cardiol 2025:10.1038/s41569-024-01114-x. [PMID: 39743566 DOI: 10.1038/s41569-024-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/27/2024] [Indexed: 01/04/2025]
Abstract
Ischaemic heart disease is a consequence of coronary atherosclerosis, and atherosclerosis is a systemic inflammatory disease. The spleen releases various immune cells in temporally distinct patterns. Neutrophils, monocytes, macrophages, B cells and T cells execute innate and adaptive immune processes in the coronary atherosclerotic plaque and in the ischaemic myocardium. Prolonged inflammation contributes to ischaemic heart failure. The spleen is also a target of neuromodulation through vagal, sympathetic and sensory nerve activation. Efferent vagal activation and subsequent activation of the noradrenergic splenic nerve activate β2-adrenergic receptors on splenic T cells, which release acetylcholine that ultimately results in attenuation of cytokine secretion from splenic macrophages. Coeliac vagal nerve activation increases splenic sympathetic nerve activity and drives the release of T cells, a process that depends on placental growth factor. Activation of the vagosplenic axis protects acutely from ischaemia-reperfusion injury during auricular tragus vagal stimulation and remote ischaemic conditioning. Splenectomy abrogates all these deleterious and beneficial actions on the cardiovascular system. The aggregate effect of splenectomy in humans is a long-term increase in mortality from ischaemic heart disease. The spleen has been appreciated as an important immune organ for inflammatory processes in atherosclerosis, myocardial infarction and heart failure, whereas its complex interaction with circulating blood factors and with the autonomic and somatic nervous systems, as well as its role in cardioprotection, have emerged only in the past decade. In this Review, we describe this newly identified cardioprotective function of the spleen and highlight the potential for translating the findings to patients with ischaemic heart disease.
Collapse
Affiliation(s)
- Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Cáceres E, Olivella JC, Di Napoli M, Raihane AS, Divani AA. Immune Response in Traumatic Brain Injury. Curr Neurol Neurosci Rep 2024; 24:593-609. [PMID: 39467990 PMCID: PMC11538248 DOI: 10.1007/s11910-024-01382-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
PURPOSE OF REVIEW This review aims to comprehensively examine the immune response following traumatic brain injury (TBI) and how its disruption can impact healing and recovery. RECENT FINDINGS The immune response is now considered a key element in the pathophysiology of TBI, with consequences far beyond the acute phase after injury. A delicate equilibrium is crucial for a healthy recovery. When this equilibrium is disrupted, chronic inflammation and immune imbalance can lead to detrimental effects on survival and disability. Globally, traumatic brain injury (TBI) imposes a substantial burden in terms of both years of life lost and years lived with disability. Although its epidemiology exhibits dynamic trends over time and across regions, TBI disproportionally affects the younger populations, posing psychosocial and financial challenge for communities and families. Following the initial trauma, the primary injury is succeeded by an inflammatory response, primarily orchestrated by the innate immune system. The inflammasome plays a pivotal role during this stage, catalyzing both programmed cell death pathways and the up-regulation of inflammatory cytokines and transcription factors. These events trigger the activation and differentiation of microglia, thereby intensifying the inflammatory response to a systemic level and facilitating the migration of immune cells and edema. This inflammatory response, initially originated in the brain, is monitored by our autonomic nervous system. Through the vagus nerve and adrenergic and cholinergic receptors in various peripheral lymphoid organs and immune cells, bidirectional communication and regulation between the immune and nervous systems is established.
Collapse
Affiliation(s)
- Eder Cáceres
- Unisabana Center for Translational Science, Universidad de La Sabana, Chía, Colombia.
- School of Medicine, Universidad de La Sabana, Chía, Colombia.
- Bioscience PhD. School of Engineering, Universidad de La Sabana, Chía, Colombia.
| | | | - Mario Di Napoli
- Neurological Service, SS Annunziata Hospital, Sulmona, L'Aquila, Italy
| | - Ahmed S Raihane
- School of Medicine, University of New Mexico, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| | - Afshin A Divani
- Department of Neurology, University of New Mexico Health Science Center, Albuquerque, NM, USA
| |
Collapse
|
8
|
Lv Y, Yang L, Mao Z, Zhou M, Zhu B, Chen Y, Ding Z, Zhou F, Ye Y. Tetrastigma hemsleyanum polysaccharides alleviate imiquimod-induced psoriasis-like skin lesions in mice by modulating the JAK/STAT3 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 133:155917. [PMID: 39153275 DOI: 10.1016/j.phymed.2024.155917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 06/12/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND The pathogenesis of psoriasis involves the interaction between keratinocytes and immune cells, leading to immune imbalance. While most current clinical treatment regimens offer rapid symptom relief, they often come with significant side effects. Tetrastigma hemsleyanum polysaccharides (THP), which are naturally nontoxic, possess remarkable immunomodulatory and anti-inflammatory properties. METHODS In this study, we utilized an imiquimod (IMQ)-induced psoriasis mouse model and a LPS/IL-6-stimulated HaCaT model. The potential and mechanism of action of THP in psoriasis treatment were assessed through methods including Psoriasis Area Severity Index (PASI) scoring, histopathology, flow cytometry, immunoblotting, and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Percutaneous administration of THP significantly alleviated symptoms and manifestations in IMQ-induced psoriatic mice, including improvements in psoriatic skin appearance (erythema, folds, scales), histopathological changes, decreased PASI scores, and spleen index. Additionally, THP suppressed abnormal proliferation of Th17 cells and excessive proliferation and inflammation of keratinocytes. Furthermore, THP exhibited the ability to regulate the JAK/STAT3 signaling pathway. CONCLUSION Findings from in vivo and in vitro studies suggest that THP can inhibit abnormal cell proliferation and excessive inflammation in lesional skin, balance Th17 immune cells, and disrupt the interaction between keratinocytes and Th17 cells. This mechanism of action may involve the modulation of the JAK/STAT3 signaling pathway, offering potential implications for psoriasis treatment.
Collapse
Affiliation(s)
- Yishan Lv
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Liu Yang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zian Mao
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mingyuan Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yuchi Chen
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China.
| | - Yujian Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China; Department of Dermatology, The Third People's Hospital of Hangzhou, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
9
|
Machado Kayser J, Petry F, Alijar Souza M, Santin Zanatta Schindler M, Vidor Morgan L, Zimmermann Prado Rodrigues G, Mazon SC, Silva Aguiar GP, Galdino da Rocha Pitta M, da Rocha Pitta I, Leal Xavier L, Girardi Müller L, Gehlen G, Heemann Betti A. Antidepressant effect of PT-31, an α₂-adrenoceptor agonist, on lipopolysaccharide-induced depressive-like behavior in mice. Behav Pharmacol 2024; 35:338-350. [PMID: 39051900 DOI: 10.1097/fbp.0000000000000785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Increasing evidence indicates that neuroinflammation, oxidative stress, and neurotrophic factors play a key role in the pathophysiology of major depressive disorder (MDD). In addition, the attenuation of inflammatory response has been considered a putative mechanism for MDD treatment. PT-31 is an imidazolidine derivative and a putative α₂-adrenoceptor agonist that has previously demonstrated antinociceptive activity. The present study aimed to investigate the effect of PT-31 on depressive-like behavior and lipopolysaccharide-induced neurochemical changes. To this end, mice received intraperitoneally saline or lipopolysaccharide (600 µg/kg), and 5 h postinjection animals were orally treated with saline, PT-31 (3, 10, and 30 mg/kg), or fluoxetine (30 mg/kg). Mice were subjected to the open field test (OFT) 6 and 24 h after lipopolysaccharide administration and to the tail suspension test (TST) 24 h postlipopolysaccharide. Subsequently, animals were euthanized, and brains were dissected for neurochemical analyses. The administration of lipopolysaccharide-induced sickness- and depressive-like behaviors, besides promoting an increase in myeloperoxidase activity and a reduction in brain-derived neurotrophic factor (BDNF) levels. Noteworthy, PT-31 3 mg/kg attenuated lipopolysaccharide-induced decreased locomotor activity 6 h after lipopolysaccharide in the OFT. All tested doses of PT-31 significantly reduced the immobility time of animals in the TST and attenuated lipopolysaccharide-induced increased myeloperoxidase activity in the cortex of mice. Our results demonstrate that PT-31 ameliorates behavioral changes promoted by lipopolysaccharide in OFT and TST, which is possibly mediated by attenuation of the inflammatory response.
Collapse
Affiliation(s)
- Juliana Machado Kayser
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
| | - Fernanda Petry
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Maryelen Alijar Souza
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Monica Santin Zanatta Schindler
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Letícia Vidor Morgan
- Pharmacy Course, Health Sciences Area, Community University of Chapecó Region (Unochapecó), Chapecó
| | | | - Samara Cristina Mazon
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Gean Pablo Silva Aguiar
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Marina Galdino da Rocha Pitta
- Nucleus of Research in Therapeutic Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife
| | - Ivan da Rocha Pitta
- Nucleus of Research in Therapeutic Innovation Suely Galdino (NUPIT SG), Biosciences Center, Federal University of Pernambuco, Recife
| | - Léder Leal Xavier
- Postgraduate Program in Cellular and Molecular Biology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Liz Girardi Müller
- Molecular Genetics and Ecotoxicology Laboratory, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
- Postgraduate Program in Environmental Sciences, Sciences and Environmental Area, Community University of Chapecó Region (Unochapecó)
| | - Günther Gehlen
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
- Postgraduate Program in Environmental Quality, Health Sciences Institute, Feevale University, Novo Hamburgo
| | - Andresa Heemann Betti
- Postgraduate Program in Toxicology and Analytical Toxicology, Health Sciences Institute, Feevale University, Novo Hamburgo
| |
Collapse
|
10
|
Ahidjo N, Maidawa Yaya F, Njamnshi WY, Rissia-Ngo Pambe JC, Ndianteng EW, Nwasike CNC, Kemmo C, Choupo AC, Meka’a Zang LY, Pieme AC, Vecchio L, Ngadjui BT, Njamnshi AK, Seke Etet PF. Therapeutic potential of Garcinia kola against experimental toxoplasmosis in rats. Brain Commun 2024; 6:fcae255. [PMID: 39130514 PMCID: PMC11316209 DOI: 10.1093/braincomms/fcae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/13/2024] Open
Abstract
Cerebral toxoplasmosis, the most common opportunistic infection in immunocompromised individuals, is increasingly reported in immunocompetent individuals due to mutant strains of Toxoplasma gondii, which, furthermore, are reported to be resistant to available treatments. We assessed the therapeutic potential of Garcinia kola, a medicinal plant reported to have antiplasmodial and neuroprotective properties, against experimental toxoplasmosis in rats. Severe toxoplasmosis was induced in male Wistar rats (156.7 ± 4.1 g) by injecting them with 10 million tachyzoites in suspension in 500 µl of saline (intraperitoneal), and exclusive feeding with a low-protein diet [7% protein (weight by weight)]. Then, animals were treated with hexane, dichloromethane, and ethyl acetate fractions of Garcinia kola. Footprints were analysed and open-field and elevated plus maze ethological tests were performed when symptoms of severe disease were observed in the infected controls. After sacrifice, blood samples were processed for Giemsa staining, organs were processed for haematoxylin and eosin staining, and brains were processed for Nissl staining and cell counting. Compared with non-infected animals, the infected control animals had significantly lower body weights (30.27%↓, P = 0.001), higher body temperatures (P = 0.033) during the sacrifice, together with signs of cognitive impairment and neurologic deficits such as lower open-field arena centre entries (P < 0.001), elevated plus maze open-arm time (P = 0.029) and decreased stride lengths and step widths (P < 0.001), as well as neuronal loss in various brain areas. The ethyl acetate fraction of Garcinia kola prevented or mitigated most of these signs. Our data suggest that the ethyl acetate fraction of Garcinia kola has therapeutic potential against cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Nene Ahidjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Frederic Maidawa Yaya
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | - Wepnyu Y Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Judith C Rissia-Ngo Pambe
- Department of Morphological Sciences and Pathological Anatomy, Faculty of Medicine and Biomedical Sciences, University of Garoua, Garoua, Cameroon
| | - Ethel W Ndianteng
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Caroline N C Nwasike
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Christelle Kemmo
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Arnaud C Choupo
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Luc Yvan Meka’a Zang
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Anatole C Pieme
- Faculty of Medicine and Biomedical Sciences, Laboratory of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Lorella Vecchio
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| | | | - Alfred K Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
| | - Paul F Seke Etet
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, Neuroscience Laboratory, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Physiological Sciences and Biochemistry, Faculty of Medicine and Biomedical Sciences, Center for Sustainable Health and Development, University of Garoua, Garoua, Cameroon
| |
Collapse
|
11
|
Yang P, Bian ZQ, Song ZB, Yang CY, Wang L, Yao ZX. Dominant mechanism in spinal cord injury-induced immunodeficiency syndrome (SCI-IDS): sympathetic hyperreflexia. Rev Neurosci 2024; 35:259-269. [PMID: 37889575 DOI: 10.1515/revneuro-2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Clinical studies have shown that individuals with spinal cord injury (SCI) are particularly susceptible to infectious diseases, resulting in a syndrome called SCI-induced immunodeficiency syndrome (SCI-IDS), which is the leading cause of death after SCI. It is believed that SCI-IDS is associated with exaggerated activation of sympathetic preganglionic neurons (SPNs). After SCI, disruption of bulbospinal projections from the medulla oblongata C1 neurons to the SPNs results in the loss of sympathetic inhibitory modulation from the brain and brainstem and the occurrence of abnormally high levels of spinal sympathetic reflexes (SSR), named sympathetic hyperreflexia. As the post-injury survival time lengthens, mass recruitment and anomalous sprouting of excitatory interneurons within the spinal cord result in increased SSR excitability, resulting in an excess sympathetic output that disrupts the immune response. Therefore, we first analyze the structural underpinnings of the spinal cord-sympathetic nervous system-immune system after SCI, then demonstrate the progress in highlighting mechanisms of SCI-IDS focusing on norepinephrine (NE)/Beta 2-adrenergic receptor (β2-AR) signal pathways, and summarize recent preclinical studies examining potential means such as regulating SSR and inhibiting β2-AR signal pathways to improve immune function after SCI. Finally, we present research perspectives such as to promote the effective regeneration of C1 neurons to rebuild the connection of C1 neurons with SPNs, to regulate excitable or inhibitory interneurons, and specifically to target β2-AR signal pathways to re-establish neuroimmune balance. These will help us design effective strategies to reverse post-SCI sympathetic hyperreflexia and improve the overall quality of life for individuals with SCI.
Collapse
Affiliation(s)
- Ping Yang
- Department of Neurobiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhi-Qun Bian
- Department of Orthopedics, The Second Affiliated Hospital of Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhen-Bo Song
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Cheng-Ying Yang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Li Wang
- Department of Immunology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zhong-Xiang Yao
- Department of Physiology, Army Medical University (Third Military Medical University), Chongqing 400038, China
| |
Collapse
|
12
|
Zhu X, Huang JY, Dong WY, Tang HD, Xu S, Wu Q, Zhang H, Cheng PK, Jin Y, Zhu MY, Zhao W, Mao Y, Wang H, Zhang Y, Wang H, Tao W, Tian Y, Bai L, Zhang Z. Somatosensory cortex and central amygdala regulate neuropathic pain-mediated peripheral immune response via vagal projections to the spleen. Nat Neurosci 2024; 27:471-483. [PMID: 38291284 DOI: 10.1038/s41593-023-01561-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/13/2023] [Indexed: 02/01/2024]
Abstract
Pain involves neuroimmune crosstalk, but the mechanisms of this remain unclear. Here we showed that the splenic T helper 2 (TH2) immune cell response is differentially regulated in male mice with acute versus chronic neuropathic pain and that acetylcholinergic neurons in the dorsal motor nucleus of the vagus (AChDMV) directly innervate the spleen. Combined in vivo recording and immune cell profiling revealed the following two distinct circuits involved in pain-mediated peripheral TH2 immune response: glutamatergic neurons in the primary somatosensory cortex (GluS1HL)→AChDMV→spleen circuit and GABAergic neurons in the central nucleus of the amygdala (GABACeA)→AChDMV→spleen circuit. The acute pain condition elicits increased excitation from GluS1HL neurons to spleen-projecting AChDMV neurons and increased the proportion of splenic TH2 immune cells. The chronic pain condition increased inhibition from GABACeA neurons to spleen-projecting AChDMV neurons and decreased splenic TH2 immune cells. Our study thus demonstrates how the brain encodes pain-state-specific immune responses in the spleen.
Collapse
Affiliation(s)
- Xia Zhu
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ji-Ye Huang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Wan-Ying Dong
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao-Di Tang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Qielan Wu
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Huimin Zhang
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Ping-Kai Cheng
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Yuxin Jin
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Meng-Yu Zhu
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China
| | - Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technique of China, Hefei, P. R. China
| | - Yu Mao
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
- Department of Anesthesiology and Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Haitao Wang
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, P. R. China
| | - Yan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China
| | - Hao Wang
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, P. R. China
| | - Wenjuan Tao
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Hefei, P. R. China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P. R. China.
| | - Yanghua Tian
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, P. R. China.
| | - Li Bai
- Department of Oncology, The First Affiliated Hospital of USTC, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| | - Zhi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
- Department of Biophysics and Neurobiology, CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, P. R. China.
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
13
|
Wang Y, van Beurden AW, Tersteeg MMH, Michel S, Kastelein A, Neefjes J, Rohling JHT, Meijer JH, Deboer T. Internal circadian misallignment in a mouse model of chemotherapy induced fatigue. Brain Behav Immun 2024; 115:588-599. [PMID: 37984623 DOI: 10.1016/j.bbi.2023.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Cancer survivors can experience long lasting fatigue resulting in a lower quality of life. How chemotherapy treatment contributes to this fatigue is poorly understood. Previously we have shown in a mouse model of cancer related fatigue that doxorubicin treatment induces fatigue-like symptoms related to disturbed circadian rhythms. However, the specific components of the circadian regulatory circuitry affected by doxorubicin treatment remained unclear. Therefore we investigated the role of the central circadian clock, the suprachiasmatic nucleus (SCN), in chemotherapy-induced fatigue. METHODS We measured circadian controlled behavior and multiunit neuronal activity in the SCN in freely moving mice exhibiting fatigue-like behavior after doxorubicin treatment under both light-dark (LD) and constant dark (DD) conditions. Additionally, we assessed the expression of inflammation related genes in spleen and kidney as potential inducers of CRF. RESULTS Doxorubicin treatment significantly reduced both the running wheel activity and time spent using the running wheel for over five weeks after treatment. In contrast to the pronounced effects on behavior and neuronal activity of doxorubicin on circadian rhythms, peripheral inflammation markers only showed minor differences, five weeks after the last treatment. Surprisingly, the circadian SCN neuronal activity under both LD and DD conditions was not affected. However, the circadian timing of neuronal activity in peri-SCN areas (the brain areas surrounding SCN) and circadian rest-activity behavior was strongly affected by doxorubicin, suggesting that the output of the SCN was altered. The reduced correlation between the SCN neuronal activity and behavioral activity after doxorubicin treatment, suggests that the information flow from the SCN to the periphery was disturbed. CONCLUSION Our preclinical study suggests that chemotherapy-induced fatigue disrupts the circadian rhythms in peripheral brain areas and behavior downstream from the SCN, potentially leading to fatigue like symptoms. Our data suggest that peripheral inflammation responses are less important for the maintenance of fatigue. Chronotherapy that realigns circadian rhythms could represent a non-invasive way to improve patient outcomes following chemotherapy.
Collapse
Affiliation(s)
- Yumeng Wang
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Anouk W van Beurden
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Mayke M H Tersteeg
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Stephan Michel
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Anneke Kastelein
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands; Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Jos H T Rohling
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands
| | - Tom Deboer
- Department of Cell and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, 2333 ZC Leiden, the Netherlands.
| |
Collapse
|
14
|
Zeng Z, Huang Z, Yue W, Nawaz S, Chen X, Liu J. Lactobacillus plantarum modulate gut microbiota and intestinal immunity in cyclophosphamide-treated mice model. Biomed Pharmacother 2023; 169:115812. [PMID: 37979376 DOI: 10.1016/j.biopha.2023.115812] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/20/2023] Open
Abstract
Gut microbiota (GM) contributes to the production of immune-regulatory molecules and cytokines. However, our understanding regarding intricate relationship between Lactobacillus plantarum and GM on regulation of immune function remained limited. To investigate the effect of Lactobacillus plantarum on an immunosuppressed mouse model, we employed cyclophosphamide treatment and conducted various analysis including H&E (hematoxylin-eosin staining), immunohistochemistry, 16S rRNA gene sequencing, and RT-PCR. Our results demonstrated that the administration of Lactobacillus plantarum had significant immunoenhancing effects in the immune-suppressed mice, as evidenced by the restoration of functional expression of specific immune markers in the spleen and an increase in the number of goblet cells in intestine (P < 0.05). Microbial taxonomic analysis revealed alterations in the gut microbiota composition, characterized by a decrease in the richness of Firmicutes and an increase in the proportion of Verrucomicrobia and Actinobacteria following cyclophosphamide treatment. Furthermore, cyclophosphamide treatment significantly suppressed the mRNA expression of inflammatory cytokines (P < 0.05), which were subsequently restored after administration of Lactobacillus plantarum. These observations provide valuable insights into the complex interplay between probiotics, gut microbiota, and immune system functioning.
Collapse
Affiliation(s)
- Zhibo Zeng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China; Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Zonghao Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Wen Yue
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China
| | - Shah Nawaz
- Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092 Zurich, Switzerland
| | - Xinzhu Chen
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| | - Jing Liu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Animal Genetics and Breeding, Fuzhou 350013, China.
| |
Collapse
|
15
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
16
|
Ghaffar A, Nyholt DR. Integrating eQTL and GWAS data characterises established and identifies novel migraine risk loci. Hum Genet 2023; 142:1113-1137. [PMID: 37245199 PMCID: PMC10449685 DOI: 10.1007/s00439-023-02568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Migraine-a painful, throbbing headache disorder-is the most common complex brain disorder, yet its molecular mechanisms remain unclear. Genome-wide association studies (GWAS) have proven successful in identifying migraine risk loci; however, much work remains to identify the causal variants and genes. In this paper, we compared three transcriptome-wide association study (TWAS) imputation models-MASHR, elastic net, and SMultiXcan-to characterise established genome-wide significant (GWS) migraine GWAS risk loci, and to identify putative novel migraine risk gene loci. We compared the standard TWAS approach of analysing 49 GTEx tissues with Bonferroni correction for testing all genes present across all tissues (Bonferroni), to TWAS in five tissues estimated to be relevant to migraine, and TWAS with Bonferroni correction that took into account the correlation between eQTLs within each tissue (Bonferroni-matSpD). Elastic net models performed in all 49 GTEx tissues using Bonferroni-matSpD characterised the highest number of established migraine GWAS risk loci (n = 20) with GWS TWAS genes having colocalisation (PP4 > 0.5) with an eQTL. SMultiXcan in all 49 GTEx tissues identified the highest number of putative novel migraine risk genes (n = 28) with GWS differential expression at 20 non-GWS GWAS loci. Nine of these putative novel migraine risk genes were later found to be at and in linkage disequilibrium with true (GWS) migraine risk loci in a recent, more powerful migraine GWAS. Across all TWAS approaches, a total of 62 putative novel migraine risk genes were identified at 32 independent genomic loci. Of these 32 loci, 21 were true risk loci in the recent, more powerful migraine GWAS. Our results provide important guidance on the selection, use, and utility of imputation-based TWAS approaches to characterise established GWAS risk loci and identify novel risk gene loci.
Collapse
Affiliation(s)
- Ammarah Ghaffar
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| | - Dale R Nyholt
- Statistical and Genomic Epidemiology Laboratory, School of Biomedical Sciences, Faculty of Health, Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4059, Australia.
| |
Collapse
|