1
|
Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M. Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing. Dysphagia 2024:10.1007/s00455-024-10758-3. [PMID: 39387924 DOI: 10.1007/s00455-024-10758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Swallowing is considered a three-phase mechanism involving the oral, pharyngeal, and esophageal phases. The pharyngeal phase relies on highly coordinated movements in the pharynx and larynx to move food through the aerodigestive crossing. While the brainstem has been identified as the primary control center for the pharyngeal phase of swallowing, existing evidence suggests that the higher brain regions can contribute to controlling the pharyngeal phase of swallowing to match the motor response to the current context and task at hand. This suggests that the pharyngeal phase of swallowing cannot be exclusively reflexive or voluntary but can be regulated by the two neural controlling systems, goal-directed and non-goal-directed. This capability allows the pharyngeal phase of swallowing to adjust appropriately based on cognitive input, learned knowledge, and predictions. This paper reviews existing evidence and accordingly develops a novel perspective to explain these capabilities of the pharyngeal phase of swallowing. This paper aims (1) to integrate and comprehend the neurophysiological mechanisms involved in the pharyngeal phase of swallowing, (2) to explore the reflexive (non-goal-directed) and voluntary (goal-directed) neural systems of controlling the pharyngeal phase of swallowing, (3) to provide a clinical translation regarding the pathologies of these two systems, and (4) to highlight the existing gaps in this area that require attention in future research. This paper, in particular, aims to explore the complex neurophysiology of the pharyngeal phase of swallowing, as its breakdown can lead to serious consequences such as aspiration pneumonia or death.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA.
| | - Brent Archer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Ronald Scherer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Verner Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Mehran Ghasemi
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
2
|
Richardson J, Dezfuli G, Mangel AW, Gillis RA, Vicini S, Sahibzada N. CNS sites controlling the gastric pyloric sphincter: Neuroanatomical and functional study in the rat. J Comp Neurol 2023; 531:1562-1581. [PMID: 37507853 PMCID: PMC10430764 DOI: 10.1002/cne.25530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/25/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023]
Abstract
The pyloric sphincter receives parasympathetic vagal innervation from the dorsal motor nucleus of the vagus (DMV). However, little is known about its higher-order neurons and the nuclei that engage the DMV neurons controlling the pylorus. The purpose of the present study was twofold. First, to identify neuroanatomical connections between higher-order neurons and the DMV. This was carried out by using the transneuronal pseudorabies virus PRV-152 injected into rat pylorus torus and examining the brains of these animals for PRV labeling. Second, to identify the specific sites within the DMV that functionally control the motility and tone of the pyloric sphincter. For these studies, experiments were performed to assess the effect of DMV stimulation on pylorus activity in urethane-anesthetized male rats. A strain gauge force transducer was sutured onto the pyloric tonus to monitor tone and motility. L-glutamate (500 pmol/30 nL) was microinjected unilaterally into the rostral and caudal areas of the DMV. Data from the first study indicated that neurons labeled with PRV occurred in the DMV, hindbrain raphe nuclei, midbrain Edinger-Westphal nucleus, ventral tegmental area, lateral habenula, and arcuate nucleus. Data from the second study indicated that microinjected L-glutamate into the rostral DMV results in contraction of the pylorus blocked by intravenously administered atropine and ipsilateral vagotomy. L-glutamate injected into the caudal DMV relaxed the pylorus. This response was abolished by ipsilateral vagotomy but not by intravenously administered atropine or L-NG-nitroarginine methyl ester (L-NAME). These findings identify the anatomical and functional brain neurocircuitry involved in controlling the pyloric sphincter. Our results also show that site-specific stimulation of the DMV can differentially influence the activity of the pyloric sphincter by separate vagal nerve pathways.
Collapse
Affiliation(s)
- Janell Richardson
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | | | - Richard A. Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, D.C., USA
| |
Collapse
|
3
|
Keller BN, Randall PA, Arnold AC, Browning KN, Silberman Y. Ethanol inhibits pancreatic projecting neurons in the dorsal motor nucleus of the vagus. Brain Res Bull 2022; 189:121-129. [PMID: 35998791 PMCID: PMC11753193 DOI: 10.1016/j.brainresbull.2022.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/02/2022]
Abstract
Alcohol use disorder (AUD) is a rapidly growing concern in the United States. Current trending escalations of alcohol use are associated with a concurrent rise in alcohol-related end-organ damage, increasing risk for further diseases. Alcohol-related end-organ damage can be driven by autonomic nervous system dysfunction, however studies on alcohol effects on autonomic control of end-organ function are lacking. Alcohol intake has been shown to reduce insulin secretions from the pancreas. Pancreatic insulin release is controlled in part by preganglionic parasympathetic motor neurons residing in the dorsal motor nucleus of the vagus (DMV) that project to the pancreas. How these neurons are affected by alcohol exposure has not been directly examined. Here we investigated the effects of acute ethanol (EtOH) application on DMV pancreatic-projecting neurons with whole-cell patch-clamp electrophysiology. We found that bath application of EtOH (50 mM) for greater than 30 min significantly enhanced the frequency of spontaneous inhibitory post synaptic current (sIPSC) events of DMV pancreatic-projecting neurons suggesting a presynaptic mechanism of EtOH to increase GABAergic transmission. Thirty-minute EtOH application also decreased action potential firing of these neurons. Pretreatment of DMV slices with 20 μM fluoxetine, a selective serotonin reuptake inhibitor, also increased GABAergic transmission and decreased action potential firing of these DMV neurons while occluding any further effects of EtOH application, suggesting a critical role for serotonin in mediating EtOH effects in the DMV. Ultimately, decreased DMV motor output may lead to alterations in pancreatic secretions. Further studies are needed to fully understand EtOH's influence on DMV neurons as well as the consequences of changes in parasympathetic output to the pancreas.
Collapse
Affiliation(s)
- Bailey N Keller
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Patrick A Randall
- Department of Anesthesiology, Penn State College of Medicine, Hershey, PA, USA; Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Amy C Arnold
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Yuval Silberman
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA, USA.
| |
Collapse
|
4
|
Gillis RA, Dezfuli G, Bellusci L, Vicini S, Sahibzada N. Brainstem Neuronal Circuitries Controlling Gastric Tonic and Phasic Contractions: A Review. Cell Mol Neurobiol 2022; 42:333-360. [PMID: 33813668 PMCID: PMC9595174 DOI: 10.1007/s10571-021-01084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/18/2021] [Indexed: 11/30/2022]
Abstract
This review is on how current knowledge of brainstem control of gastric mechanical function unfolded over nearly four decades from the perspective of our research group. It describes data from a multitude of different types of studies involving retrograde neuronal tracing, microinjection of drugs, whole-cell recordings from rodent brain slices, receptive relaxation reflex, accommodation reflex, c-Fos experiments, immunohistochemical methods, electron microscopy, transgenic mice, optogenetics, and GABAergic signaling. Data obtained indicate the following: (1) nucleus tractus solitarius (NTS)-dorsal motor nucleus of the vagus (DMV) noradrenergic connection is required for reflex control of the fundus; (2) second-order nitrergic neurons in the NTS are also required for reflex control of the fundus; (3) a NTS GABAergic connection is required for reflex control of the antrum; (4) a single DMV efferent pathway is involved in brainstem control of gastric mechanical function under most experimental conditions excluding the accommodation reflex. Dual-vagal effectors controlling cholinergic and non-adrenergic and non-cholinergic (NANC) input to the stomach may be part of the circuitry of this reflex. (5) GABAergic signaling within the NTS via Sst-GABA interneurons determine the basal (resting) state of gastric tone and phasic contractions. (6) For the vagal-vagal reflex to become operational, an endogenous opioid in the NTS is released and the activity of Sst-GABA interneurons is suppressed. From the data, we suggest that the CNS has the capacity to provide region-specific control over the proximal (fundus) and distal (antrum) stomach through engaging phenotypically different efferent inputs to the DMV.
Collapse
Affiliation(s)
- Richard A Gillis
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Ghazaul Dezfuli
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Lorenza Bellusci
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA.
| | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, 20007, USA
| |
Collapse
|
5
|
Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 2022; 23:135-156. [PMID: 34983992 DOI: 10.1038/s41583-021-00544-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 12/29/2022]
Abstract
Eating and drinking generate sequential mechanosensory signals along the digestive tract. These signals are communicated to the brain for the timely initiation and regulation of diverse ingestive and digestive processes - ranging from appetite control and tactile perception to gut motility, digestive fluid secretion and defecation - that are vital for the proper intake, breakdown and absorption of nutrients and water. Gut mechanosensation has been investigated for over a century as a common pillar of energy, fluid and gastrointestinal homeostasis, and recent discoveries of specific mechanoreceptors, contributing ion channels and the well-defined circuits underlying gut mechanosensation signalling and function have further expanded our understanding of ingestive and digestive processes at the molecular and cellular levels. In this Review, we discuss our current understanding of the generation of mechanosensory signals from the digestive periphery, the neural afferent pathways that relay these signals to the brain and the neural circuit mechanisms that control ingestive and digestive processes, focusing on the four major digestive tract parts: the oral and pharyngeal cavities, oesophagus, stomach and intestines. We also discuss the clinical implications of gut mechanosensation in ingestive and digestive disorders.
Collapse
|
6
|
Abstract
Fluoroquinolones (FQs) are a broad class of antibiotics typically prescribed for bacterial infections, including infections for which their use is discouraged. The FDA has proposed the existence of a permanent disability (Fluoroquinolone Associated Disability; FQAD), which is yet to be formally recognized. Previous studies suggest that FQs act as selective GABAA receptor inhibitors, preventing the binding of GABA in the central nervous system. GABA is a key regulator of the vagus nerve, involved in the control of gastrointestinal (GI) function. Indeed, GABA is released from the Nucleus of the Tractus Solitarius (NTS) to the Dorsal Motor Nucleus of the vagus (DMV) to tonically regulate vagal activity. The purpose of this review is to summarize the current knowledge on FQs in the context of the vagus nerve and examine how these drugs could lead to dysregulated signaling to the GI tract. Since there is sufficient evidence to suggest that GABA transmission is hindered by FQs, it is reasonable to postulate that the vagal circuit could be compromised at the NTS-DMV synapse after FQ use, possibly leading to the development of permanent GI disorders in FQAD.
Collapse
|
7
|
Clyburn C, Travagli RA, Arnold AC, Browning KN. DMV extrasynaptic NMDA receptors regulate caloric intake in rats. JCI Insight 2021; 6:139785. [PMID: 33764905 PMCID: PMC8262316 DOI: 10.1172/jci.insight.139785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 03/24/2021] [Indexed: 11/17/2022] Open
Abstract
Acute high-fat diet (aHFD) exposure induces a brief period of hyperphagia before caloric balance is restored. Previous studies have demonstrated that this period of regulation is associated with activation of synaptic N-methyl-D-aspartate (NMDA) receptors on dorsal motor nucleus of the vagus (DMV) neurons, which increases vagal control of gastric functions. Our aim was to test the hypothesis that activation of DMV synaptic NMDA receptors occurs subsequent to activation of extrasynaptic NMDA receptors. Sprague-Dawley rats were fed a control or high-fat diet for 3-5 days prior to experimentation. Whole-cell patch-clamp recordings from gastric-projecting DMV neurons; in vivo recordings of gastric motility, tone, compliance, and emptying; and food intake studies were used to assess the effects of NMDA receptor antagonism on caloric regulation. After aHFD exposure, inhibition of extrasynaptic NMDA receptors prevented the synaptic NMDA receptor-mediated increase in glutamatergic transmission to DMV neurons, as well as the increase in gastric tone and motility, while chronic extrasynaptic NMDA receptor inhibition attenuated the regulation of caloric intake. After aHFD exposure, the regulation of food intake involved synaptic NMDA receptor-mediated currents, which occurred in response to extrasynaptic NMDA receptor activation. Understanding these events may provide a mechanistic basis for hyperphagia and may identify novel therapeutic targets for the treatment of obesity.
Collapse
|
8
|
Browning KN, Carson KE. Central Neurocircuits Regulating Food Intake in Response to Gut Inputs-Preclinical Evidence. Nutrients 2021; 13:nu13030908. [PMID: 33799575 PMCID: PMC7998662 DOI: 10.3390/nu13030908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
The regulation of energy balance requires the complex integration of homeostatic and hedonic pathways, but sensory inputs from the gastrointestinal (GI) tract are increasingly recognized as playing critical roles. The stomach and small intestine relay sensory information to the central nervous system (CNS) via the sensory afferent vagus nerve. This vast volume of complex sensory information is received by neurons of the nucleus of the tractus solitarius (NTS) and is integrated with responses to circulating factors as well as descending inputs from the brainstem, midbrain, and forebrain nuclei involved in autonomic regulation. The integrated signal is relayed to the adjacent dorsal motor nucleus of the vagus (DMV), which supplies the motor output response via the efferent vagus nerve to regulate and modulate gastric motility, tone, secretion, and emptying, as well as intestinal motility and transit; the precise coordination of these responses is essential for the control of meal size, meal termination, and nutrient absorption. The interconnectivity of the NTS implies that many other CNS areas are capable of modulating vagal efferent output, emphasized by the many CNS disorders associated with dysregulated GI functions including feeding. This review will summarize the role of major CNS centers to gut-related inputs in the regulation of gastric function with specific reference to the regulation of food intake.
Collapse
|
9
|
Yang NN, Yang JW, Ye Y, Huang J, Wang L, Wang Y, Su XT, Lin Y, Yu FT, Ma SM, Qi LY, Lin LL, Wang LQ, Shi GX, Li HP, Liu CZ. Electroacupuncture ameliorates intestinal inflammation by activating α7nAChR-mediated JAK2/STAT3 signaling pathway in postoperative ileus. Theranostics 2021; 11:4078-4089. [PMID: 33754049 PMCID: PMC7977469 DOI: 10.7150/thno.52574] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 01/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory cytokines produced by muscularis macrophages largely contribute to the pathological signs of postoperative ileus (POI). Electroacupuncture (EA) can suppress inflammation, mainly or partly via activation of vagal efferent. The goal of this study was to investigate the mechanisms by which EA stimulation at an hindlimb region ameliorates inflammation in POI. Methods: Intestinal motility and inflammation were examined after 24 h after intestinal manipulation (IM)-induced POI in mice. Local immune response in the intestinal muscularis, expression of macrophages, α7 nicotinic acetylcholine receptor (α7nAChR), Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) were determined by flow cytometry, Western Blot, qPCR and immunofluorescence. The effects of α7nAChR antagonists (methyllycaconitine and α-bungarotoxin) and JAK2/STAT3 inhibitors (AG490 and WP1066) were also administered in a subset of mice prior to EA. In the parasympathetic pathways, intestinal motility and inflammation were determined after cervical vagotomy and sub-diaphragmatic vagotomy. The expression of gamma absorptiometry aminobutyric acid (GABAA) receptor in dorsal motor nucleus of vagal (DMV) cholinergic neurons was assessed by immunofluorescence and the response to DMV microinjection of bicuculine (antagonist of GABAA receptor) or muscimol (agonist of GABAA receptor) were assessed. Results: EA suppressed intestinal inflammation and promoted gastrointestinal motility. Mechanistically, EA activated the α7nAChR-mediated JAK2/STAT3 signaling pathway in macrophages which reduced the production of inflammatory cytokines. Furthermore, we also demonstrated that hindlimb region stimulation drove vagal efferent output by inhibiting the expression of GABAA receptor in DMV to ameliorate inflammation. Conclusions: The present study revealed that EA of hindlimb regions inhibited the expression of GABAA receptor in DMV neurons, whose excited vagal nerve, in turn suppressed IM-induced inflammation via activation of α7nAChR-mediated JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Na-Na Yang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Yang Ye
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jin Huang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Lu Wang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Yu Wang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Xin-Tong Su
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Ying Lin
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Fang-Ting Yu
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Si-Ming Ma
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Ling-Yu Qi
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Lu-Lu Lin
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Li-Qiong Wang
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Guang-Xia Shi
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Hong-Ping Li
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, Beijing University of Chinese Medicine
| |
Collapse
|
10
|
Cruz MT, Dezfuli G, Murphy EC, Vicini S, Sahibzada N, Gillis RA. GABA B Receptor Signaling in the Dorsal Motor Nucleus of the Vagus Stimulates Gastric Motility via a Cholinergic Pathway. Front Neurosci 2019; 13:967. [PMID: 31572117 PMCID: PMC6751316 DOI: 10.3389/fnins.2019.00967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Central nervous system regulation of the gastric tone and motility is primarily mediated via preganglionic neurons of the dorsal motor nucleus of the vagus (DMV). This is thought to occur by simultaneous engagement of both independent excitatory and inhibitory pathways from the DMV and has been proposed to underlie the opposing effects seen on gastric tone and motility in a number of in vivo models. Contrary to this view, we have been unable to find any evidence for this "dual effector" pathway. Since this possibility is so fundamental to how the brain-gut axis may interact in light of both peripheral and central demands, we decided to explore it further in two separate animal models previously used in conjunction with GABAB signaling to report the existence of a "dual effector" pathway. Using anesthetized rats or ferrets, we microinjected baclofen (7.5 pmol; n = 6), a GABAB agonist into the DMV of rats or intravenously administered it (0.5 mg/kg; n = 4) in ferrets. In rats, unilateral microinjection of baclofen into the DMV caused a robust dose-dependent increase in gastric tone and motility that was abolished by ipsilateral vagotomy and counteracted by pretreatment with atropine (0.1 mg/kg; IV). Similarly, as microinjection in the rats, IV administration of baclofen (0.5 mg/kg) in the ferrets induced its characteristic excitatory effects on gastric tone and motility, which were blocked by either pre- or post-treatment with atropine (0.1 mg/kg; IV). Altogether, our data provide evidence that the gastric musculature (other than the gastric sphincters) is regulated by a "single effector" DMV pathway using acetylcholine.
Collapse
Affiliation(s)
| | | | | | | | - Niaz Sahibzada
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington, DC, United States
| | | |
Collapse
|
11
|
Rogers RC, Hermann GE. Hindbrain astrocytes and glucose counter-regulation. Physiol Behav 2019; 204:140-150. [PMID: 30797812 PMCID: PMC7145321 DOI: 10.1016/j.physbeh.2019.02.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/11/2019] [Accepted: 02/20/2019] [Indexed: 12/31/2022]
Abstract
Hindbrain astrocytes are emerging as critical components in the regulation of homeostatic functions by either modulating synaptic activity or serving as primary detectors of physiological parameters. Recent studies have suggested that the glucose counter-regulation response (CRR), a critical defense against hypoglycemic emergencies, is dependent on glucoprivation-sensitive astrocytes in the hindbrain. This subpopulation of astrocytes produces a robust calcium signal in response to glucopenic stimuli. Both ex vivo and in vivo evidence suggest that low-glucose sensitive astrocytes utilize purinergic gliotransmission to activate catecholamine neurons in the hindbrain that are critical to the generation of the integrated CRR. Lastly, reports in the clinical literature suggest that an uncontrolled activation of CRR may as part of the pathology of severe traumatic injury. Work in our laboratory also suggests that this pathological hyperglycemia resulting from traumatic injury may be caused by the action of thrombin (generated by tissue trauma or bleeding) on hindbrain astrocytes. Similar to their glucopenia-sensitive neighbors, these hindbrain astrocytes may trigger hyperglycemic responses by their interactions with catecholaminergic neurons.
Collapse
Affiliation(s)
- Richard C Rogers
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | - Gerlinda E Hermann
- Pennington Biomedical Research Center, 6400 Perkins Rd, Baton Rouge, LA 70808, USA.
| |
Collapse
|
12
|
Goyal RK, Guo Y, Mashimo H. Advances in the physiology of gastric emptying. Neurogastroenterol Motil 2019; 31:e13546. [PMID: 30740834 PMCID: PMC6850045 DOI: 10.1111/nmo.13546] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/29/2018] [Accepted: 12/16/2018] [Indexed: 12/16/2022]
Abstract
There have been many recent advances in the understanding of various aspects of the physiology of gastric motility and gastric emptying. Earlier studies had discovered the remarkable ability of the stomach to regulate the timing and rate of emptying of ingested food constituents and the underlying motor activity. Recent studies have shown that two parallel neural circuits, the gastric inhibitory vagal motor circuit (GIVMC) and the gastric excitatory vagal motor circuit (GEVMC), mediate gastric inhibition and excitation and therefore the rate of gastric emptying. The GIVMC includes preganglionic cholinergic neurons in the DMV and the postganglionic inhibitory neurons in the myenteric plexus that act by releasing nitric oxide, ATP, and peptide VIP. The GEVMC includes distinct gastric excitatory preganglionic cholinergic neurons in the DMV and postganglionic excitatory cholinergic neurons in the myenteric plexus. Smooth muscle is the final target of these circuits. The role of the intramuscular interstitial cells of Cajal in neuromuscular transmission remains debatable. The two motor circuits are differentially regulated by different sets of neurons in the NTS and vagal afferents. In the digestive period, many hormones including cholecystokinin and GLP-1 inhibit gastric emptying via the GIVMC, and in the inter-digestive period, hormones ghrelin and motilin hasten gastric emptying by stimulating the GEVMC. The GIVMC and GEVMC are also connected to anorexigenic and orexigenic neural pathways, respectively. Identification of the control circuits of gastric emptying may provide better delineation of the pathophysiology of abnormal gastric emptying and its relationship to satiety signals and food intake.
Collapse
Affiliation(s)
- Raj K. Goyal
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Yanmei Guo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| | - Hiroshi Mashimo
- Department of Medicine, VA Boston Healthcare SystemHarvard Medical SchoolBostonMassachusetts
| |
Collapse
|
13
|
Abstract
Parkinson's disease (PD) is predominantly idiopathic in origin, and a large body of evidence indicates that gastrointestinal (GI) dysfunctions are a significant comorbid clinical feature; these dysfunctions include dysphagia, nausea, delayed gastric emptying, and severe constipation, all of which occur commonly before the onset of the well-known motor symptoms of PD. Based on a distinct distribution pattern of Lewy bodies (LB) in the enteric nervous system (ENS) and in the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), and together with the early onset of GI symptoms, it was suggested that idiopathic PD begins in the ENS and spreads to the central nervous system (CNS), reaching the DMV and the substantia nigra pars compacta (SNpc). These two areas are connected by a recently discovered monosynaptic nigro-vagal pathway, which is dysfunctional in rodent models of PD. An alternative hypothesis downplays the role of LB transport through the vagus nerve and proposes that PD pathology is governed by regional or cell-restricted factors as the leading cause of nigral neuronal degeneration. The purpose of this brief review is to summarize the neuronal electrophysiological findings in the SNpc and DMV in PD.
Collapse
Affiliation(s)
- Cecilia Bove
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
14
|
Page SJ, Zhu M, Appleyard SM. Effects of acute and chronic nicotine on catecholamine neurons of the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2018; 316:R38-R49. [PMID: 30354182 DOI: 10.1152/ajpregu.00344.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotine is an addictive drug that has broad effects throughout the brain. One site of action is the nucleus of the solitary tract (NTS), where nicotine initiates a stress response and modulates cardiovascular and gastric function through nicotinic acetylcholine receptors (nAChRs). Catecholamine (CA) neurons in the NTS influence stress and gastric and cardiovascular reflexes, making them potential mediators of nicotine's effects; however nicotine's effect on these neurons is unknown. Here, we determined nicotine's actions on NTS-CA neurons by use of patch-clamp techniques in brain slices from transgenic mice expressing enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). Picospritzing nicotine both induced a direct inward current and increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) in NTS-CA neurons, effects blocked by nonselective nAChR antagonists TMPH and MLA. The increase in sEPSC frequency was mimicked by nAChRα7 agonist AR-R17779 and blocked by nAChRα7 antagonist MG624. AR-R17779 also increased the firing of TH-EGFP neurons, an effect dependent on glutamate inputs, as it was blocked by the glutamate antagonist NBQX. In contrast, the nicotine-induced current was mimicked by nAChRα4β2 agonist RJR2403 and blocked by nAChRα4β2 antagonist DHβE. RJR2403 also increased the firing rate of TH-EGFP neurons independently of glutamate. Finally, both somatodendritic and sEPSC nicotine responses from NTS-CA neurons were larger in nicotine-dependent mice that had under gone spontaneous nicotine withdrawal. These results demonstrate that 1) nicotine activates NTS-CA neurons both directly, by inducing a direct current, and indirectly, by increasing glutamate inputs, and 2) NTS-CA nicotine responsiveness is altered during nicotine withdrawal.
Collapse
Affiliation(s)
- Stephen J Page
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Mingyan Zhu
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| | - Suzanne M Appleyard
- Program in Neuroscience, Department of Integrative Physiology and Neuroscience, Washington State University , Pullman, Washington
| |
Collapse
|
15
|
Rogers RC, McDougal DH, Ritter S, Qualls-Creekmore E, Hermann GE. Response of catecholaminergic neurons in the mouse hindbrain to glucoprivic stimuli is astrocyte dependent. Am J Physiol Regul Integr Comp Physiol 2018; 315:R153-R164. [PMID: 29590557 PMCID: PMC6087883 DOI: 10.1152/ajpregu.00368.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Hindbrain catecholaminergic (CA) neurons are required for critical autonomic, endocrine, and behavioral counterregulatory responses (CRRs) to hypoglycemia. Recent studies suggest that CRR initiation depends on hindbrain astrocyte glucose sensors (McDougal DH, Hermann GE, Rogers RC. Front Neurosci 7: 249, 2013; Rogers RC, Ritter S, Hermann GE. Am J Physiol Regul Integr Comp Physiol 310: R1102-R1108, 2016). To test the proposition that hindbrain CA responses to glucoprivation are astrocyte dependent, we utilized transgenic mice in which the calcium reporter construct (GCaMP5) was expressed selectively in tyrosine hydroxylase neurons (TH-GCaMP5). We conducted live cell calcium-imaging studies on tissue slices containing the nucleus of the solitary tract (NST) or the ventrolateral medulla, critical CRR initiation sites. Results show that TH-GCaMP5 neurons are robustly activated by a glucoprivic challenge and that this response is dependent on functional astrocytes. Pretreatment of hindbrain slices with fluorocitrate (an astrocytic metabolic suppressor) abolished TH-GCaMP5 neuronal responses to glucoprivation, but not to glutamate. Pharmacologic results suggest that the astrocytic connection with hindbrain CA neurons is purinergic via P2 receptors. Parallel imaging studies on hindbrain slices of NST from wild-type C57BL/6J mice, in which astrocytes and neurons were prelabeled with a calcium reporter dye and an astrocytic vital dye, show that both cell types are activated by glucoprivation but astrocytes responded significantly sooner than neurons. Pretreatment of these hindbrain slices with P2 antagonists abolished neuronal responses to glucoprivation without interruption of astrocyte responses; pretreatment with fluorocitrate eliminated both astrocytic and neuronal responses. These results support earlier work suggesting that the primary detection of glucoprivic signals by the hindbrain is mediated by astrocytes.
Collapse
Affiliation(s)
| | | | - Sue Ritter
- 2Department of Veterinary and Comparative Anatomy, Pharmacology and Physiology, Washington State University, Pullman, Washington
| | | | | |
Collapse
|
16
|
Clyburn C, Travagli RA, Browning KN. Acute high-fat diet upregulates glutamatergic signaling in the dorsal motor nucleus of the vagus. Am J Physiol Gastrointest Liver Physiol 2018; 314:G623-G634. [PMID: 29368945 PMCID: PMC6008060 DOI: 10.1152/ajpgi.00395.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity is associated with dysregulation of vagal neurocircuits controlling gastric functions, including food intake and energy balance. In the short term, however, caloric intake is regulated homeostatically although the precise mechanisms responsible are unknown. The present study examined the effects of acute high-fat diet (HFD) on glutamatergic neurotransmission within central vagal neurocircuits and its effects on gastric motility. Sprague-Dawley rats were fed a control or HFD diet (14% or 60% kcal from fat, respectively) for 3-5 days. Whole cell patch-clamp recordings and brainstem application of antagonists were used to assess the effects of acute HFD on glutamatergic transmission to dorsal motor nucleus of the vagus (DMV) neurons and subsequent alterations in gastric tone and motility. After becoming hyperphagic initially, caloric balance was restored after 3 days following HFD exposure. In control rats, the non- N-methyl-d-aspartate (NMDA) receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX), but not the NMDA receptor antagonist, amino-5-phosphonopentanoate (AP5), significantly decreased excitatory synaptic currents and action potential firing rate in gastric-projecting DMV neurons. In contrast, both AP5 and DNQX decreased excitatory synaptic transmission and action potential firing in acute HFD neurons. When microinjected into the brainstem, AP5, but not DNQX, decreased gastric motility and tone in acute HFD rats only. These results suggest that acute HFD upregulates NMDA receptor-mediated currents, increasing DMV neuronal excitability and activating the vagal efferent cholinergic pathway, thus increasing gastric tone and motility. Although such neuroplasticity may be a persistent adaptation to the initial exposure to HFD, it may also be an important mechanism in homeostatic regulation of energy balance. NEW & NOTEWORTHY Vagal neurocircuits are critical to the regulation of gastric functions, including satiation and food intake. Acute high-fat diet upregulates glutamatergic signaling within central vagal neurocircuits via activation of N-methyl-d-aspartate receptors, increasing vagal efferent drive to the stomach. Although it is possible that such neuroplasticity is a persistent adaptation to initial exposure to the high-fat diet, it may also play a role in the homeostatic control of feeding.
Collapse
Affiliation(s)
- Courtney Clyburn
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
Reis MEMD, Araújo LTFD, de Andrade WMG, Resende NDS, Lima RRMD, Nascimento ESD, Costa MSMDO, Cavalcante JC. Distribution of nitric oxide synthase in the rock cavy (Kerodon rupestris) brain I: The diencephalon. Brain Res 2018; 1685:60-78. [DOI: 10.1016/j.brainres.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 01/15/2018] [Accepted: 01/17/2018] [Indexed: 12/27/2022]
|
18
|
Jiang Y, Browning KN, Toti L, Travagli RA. Vagally mediated gastric effects of brain stem α 2-adrenoceptor activation in stressed rats. Am J Physiol Gastrointest Liver Physiol 2018; 314:G504-G516. [PMID: 29351390 PMCID: PMC5966751 DOI: 10.1152/ajpgi.00382.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
Chronic stress exerts vagally dependent effects to disrupt gastric motility; previous studies have shown that, among other nuclei, A2 neurons are involved in mediating these effects. Several studies have also shown robust in vitro and in vivo effects of α2-adrenoceptor agonists on vagal motoneurons. We have demonstrated previously that brainstem vagal neurocircuits undergo remodeling following acute stress; however, the effects following brief periods of chronic stress have not been investigated. Our aim, therefore, was to test the hypothesis that different types of chronic stress influence gastric tone and motility by inducing plasticity in the response of vagal neurocircuits to α2-adrenoreceptor agonists. In rats that underwent 5 days of either homotypic or heterotypic stress loading, we applied the α2-adrenoceptor agonist, UK14304, either by in vitro brainstem perfusion to examine its ability to modulate GABAergic synaptic inputs to vagal motoneurons or in vivo brainstem microinjection to observe actions to modulate antral tone and motility. In neurons from naïve rats, GABAergic currents were unresponsive to exogenous application of UK14304. In contrast, GABAergic currents were inhibited by UK14304 in all neurons from homotypic and, in a subpopulation of neurons, heterotypic stressed rats. In control rats, UK14304 microinjection inhibited gastric tone and motility via withdrawal of vagal cholinergic tone; in heterotypic stressed rats, the larger inhibition of antrum tone was due to a concomitant activation of peripheral nonadrenergic, noncholinergic pathways. These data suggest that stress induces plasticity in brainstem vagal neurocircuits, leading to an upregulation of α2-mediated responses. NEW & NOTEWORTHY Catecholaminergic neurons of the A2 area play a relevant role in stress-related dysfunction of the gastric antrum. Brief periods of chronic stress load induce plastic changes in the actions of adrenoceptors on vagal brainstem neurocircuits.
Collapse
Affiliation(s)
- Yanyan Jiang
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - Luca Toti
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
19
|
Anselmi L, Toti L, Bove C, Travagli RA. Vagally mediated effects of brain stem dopamine on gastric tone and phasic contractions of the rat. Am J Physiol Gastrointest Liver Physiol 2017; 313:G434-G441. [PMID: 28729246 PMCID: PMC5792220 DOI: 10.1152/ajpgi.00180.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/17/2017] [Accepted: 07/17/2017] [Indexed: 01/31/2023]
Abstract
Dopamine (DA)-containing fibers and neurons are embedded within the brain stem dorsal vagal complex (DVC); we have shown previously that DA modulates the membrane properties of neurons of the dorsal motor nucleus of the vagus (DMV) via DA1 and DA2 receptors. The vagally dependent modulation of gastric tone and phasic contractions, i.e., motility, by DA, however, has not been characterized. With the use of microinjections of DA in the DVC while recording gastric tone and motility, the aims of the present study were 1) assess the gastric effects of brain stem DA application, 2) identify the DA receptor subtype, and, 3) identify the postganglionic pathway(s) activated. Dopamine microinjection in the DVC decreased gastric tone and motility in both corpus and antrum in 29 of 34 rats, and the effects were abolished by ipsilateral vagotomy and fourth ventricular treatment with the selective DA2 receptor antagonist L741,626 but not by application of the selective DA1 receptor antagonist SCH 23390. Systemic administration of the cholinergic antagonist atropine attenuated the inhibition of corpus and antrum tone in response to DA microinjection in the DVC. Conversely, systemic administration of the nitric oxide synthase inhibitor nitro-l-arginine methyl ester did not alter the DA-induced decrease in gastric tone and motility. Our data provide evidence of a dopaminergic modulation of a brain stem vagal neurocircuit that controls gastric tone and motility.NEW & NOTEWORTHY Dopamine administration in the brain stem decreases gastric tone and phasic contractions. The gastric effects of dopamine are mediated via dopamine 2 receptors on neurons of the dorsal motor nucleus of the vagus. The inhibitory effects of dopamine are mediated via inhibition of the postganglionic cholinergic pathway.
Collapse
Affiliation(s)
- L. Anselmi
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - L. Toti
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - C. Bove
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - R. A. Travagli
- Department of Neural and Behavioral Sciences, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
20
|
McMenamin CA, Travagli RA, Browning KN. Inhibitory neurotransmission regulates vagal efferent activity and gastric motility. Exp Biol Med (Maywood) 2017; 241:1343-50. [PMID: 27302177 DOI: 10.1177/1535370216654228] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The gastrointestinal tract receives extrinsic innervation from both the sympathetic and parasympathetic nervous systems, which regulate and modulate the function of the intrinsic (enteric) nervous system. The stomach and upper gastrointestinal tract in particular are heavily influenced by the parasympathetic nervous system, supplied by the vagus nerve, and disruption of vagal sensory or motor functions results in disorganized motility patterns, disrupted receptive relaxation and accommodation, and delayed gastric emptying, amongst others. Studies from several laboratories have shown that the activity of vagal efferent motoneurons innervating the upper GI tract is inhibited tonically by GABAergic synaptic inputs from the adjacent nucleus tractus solitarius. Disruption of this influential central GABA input impacts vagal efferent output, hence gastric functions, significantly. The purpose of this review is to describe the development, physiology, and pathophysiology of this functionally dominant inhibitory synapse and its role in regulating vagally determined gastric functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
21
|
McMenamin CA, Anselmi L, Travagli RA, Browning KN. Developmental regulation of inhibitory synaptic currents in the dorsal motor nucleus of the vagus in the rat. J Neurophysiol 2016; 116:1705-1714. [PMID: 27440241 DOI: 10.1152/jn.00249.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/14/2016] [Indexed: 01/14/2023] Open
Abstract
Prior immunohistochemical studies have demonstrated that at early postnatal time points, central vagal neurons receive both glycinergic and GABAergic inhibitory inputs. Functional studies have demonstrated, however, that adult vagal efferent motoneurons receive only inhibitory GABAergic synaptic inputs, suggesting loss of glycinergic inhibitory neurotransmission during postnatal development. The purpose of the present study was to test the hypothesis that the loss of glycinergic inhibitory synapses occurs in the immediate postnatal period. Whole cell patch-clamp recordings were made from dorsal motor nucleus of the vagus (DMV) neurons from postnatal days 1-30, and the effects of the GABAA receptor antagonist bicuculline (1-10 μM) and the glycine receptor antagonist strychnine (1 μM) on miniature inhibitory postsynaptic current (mIPSC) properties were examined. While the baseline frequency of mIPSCs was not altered by maturation, perfusion with bicuculline either abolished mIPSCs altogether or decreased mIPSC frequency and decay constant in the majority of neurons at all time points. In contrast, while strychnine had no effect on mIPSC frequency, its actions to increase current decay time declined during postnatal maturation. These data suggest that in early postnatal development, DMV neurons receive both GABAergic and glycinergic synaptic inputs. Glycinergic neurotransmission appears to decline by the second postnatal week, and adult neurons receive principally GABAergic inhibitory inputs. Disruption of this developmental switch from GABA-glycine to purely GABAergic transmission in response to early life events may, therefore, lead to adverse consequences in vagal efferent control of visceral functions.
Collapse
Affiliation(s)
- Caitlin A McMenamin
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Laura Anselmi
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
22
|
Browning KN, Travagli RA. Central nervous system control of gastrointestinal motility and secretion and modulation of gastrointestinal functions. Compr Physiol 2015; 4:1339-68. [PMID: 25428846 DOI: 10.1002/cphy.c130055] [Citation(s) in RCA: 354] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although the gastrointestinal (GI) tract possesses intrinsic neural plexuses that allow a significant degree of autonomy over GI functions, the central nervous system (CNS) provides extrinsic neural inputs that regulate, modulate, and control these functions. While the intestines are capable of functioning in the absence of extrinsic inputs, the stomach and esophagus are much more dependent upon extrinsic neural inputs, particularly from parasympathetic and sympathetic pathways. The sympathetic nervous system exerts a predominantly inhibitory effect upon GI muscle and provides a tonic inhibitory influence over mucosal secretion while, at the same time, regulates GI blood flow via neurally mediated vasoconstriction. The parasympathetic nervous system, in contrast, exerts both excitatory and inhibitory control over gastric and intestinal tone and motility. Although GI functions are controlled by the autonomic nervous system and occur, by and large, independently of conscious perception, it is clear that the higher CNS centers influence homeostatic control as well as cognitive and behavioral functions. This review will describe the basic neural circuitry of extrinsic inputs to the GI tract as well as the major CNS nuclei that innervate and modulate the activity of these pathways. The role of CNS-centered reflexes in the regulation of GI functions will be discussed as will modulation of these reflexes under both physiological and pathophysiological conditions. Finally, future directions within the field will be discussed in terms of important questions that remain to be resolved and advances in technology that may help provide these answers.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania
| | | |
Collapse
|
23
|
Boychuk CR, Gyarmati P, Xu H, Smith BN. Glucose sensing by GABAergic neurons in the mouse nucleus tractus solitarii. J Neurophysiol 2015; 114:999-1007. [PMID: 26084907 DOI: 10.1152/jn.00310.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 06/15/2015] [Indexed: 12/23/2022] Open
Abstract
Changes in blood glucose concentration alter autonomic function in a manner consistent with altered neural activity in brain regions controlling digestive processes, including neurons in the brain stem nucleus tractus solitarii (NTS), which process viscerosensory information. With whole cell or on-cell patch-clamp recordings, responses to elevating glucose concentration from 2.5 to 15 mM were assessed in identified GABAergic NTS neurons in slices from transgenic mice that express EGFP in a subset of GABA neurons. Single-cell real-time RT-PCR was also performed to detect glutamic acid decarboxylase (GAD67) in recorded neurons. In most identified GABA neurons (73%), elevating glucose concentration from 2.5 to 15 mM resulted in either increased (40%) or decreased (33%) neuronal excitability, reflected by altered membrane potential and/or action potential firing. Effects on membrane potential were maintained when action potentials or fast synaptic inputs were blocked, suggesting direct glucose sensing by GABA neurons. Glucose-inhibited GABA neurons were found predominantly in the lateral NTS, whereas glucose-excited cells were mainly in the medial NTS, suggesting regional segregation of responses. Responses were prevented in the presence of glucosamine, a glucokinase (GCK) inhibitor. Depolarizing responses were prevented when KATP channel activity was blocked with tolbutamide. Whereas effects on synaptic input to identified GABAergic neurons were variable in GABA neurons, elevating glucose increased glutamate release subsequent to stimulation of tractus solitarius in unlabeled, unidentified neurons. These results indicate that GABAergic NTS neurons act as GCK-dependent glucose sensors in the vagal complex, providing a means of modulating central autonomic signals when glucose is elevated.
Collapse
Affiliation(s)
- Carie R Boychuk
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Peter Gyarmati
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Hong Xu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Bret N Smith
- Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky
| |
Collapse
|
24
|
Nasse JS. A novel slice preparation to study medullary oromotor and autonomic circuits in vitro. J Neurosci Methods 2014; 237:41-53. [PMID: 25196216 DOI: 10.1016/j.jneumeth.2014.08.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/22/2014] [Accepted: 08/24/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND The medulla is capable of controlling and modulating ingestive behavior and gastrointestinal function. These two functions, which are critical to maintaining homeostasis, are governed by an interconnected group of nuclei dispersed throughout the medulla. As such, in vitro experiments to study the neurophysiologic details of these connections have been limited by spatial constraints of conventional slice preparations. NEW METHOD This study demonstrates a novel method of sectioning the medulla so that sensory, integrative, and motor nuclei that innervate the gastrointestinal tract and the oral cavity remain intact. RESULTS Immunohistochemical staining against choline-acetyl-transferase and dopamine-β-hydroxylase demonstrated that within a 450 μm block of tissue we are able to capture sensory, integrative and motor nuclei that are critical to oromotor and gastrointestinal function. Within slice tracing shows that axonal projections from the NST to the reticular formation and from the reticular formation to the hypoglossal motor nucleus (mXII) persist. Live-cell calcium imaging of the slice demonstrates that stimulation of either the rostral or caudal NST activates neurons throughout the NST, as well as the reticular formation and mXII. COMPARISON WITH EXISTING METHODS This new method of sectioning captures a majority of the nuclei that are active when ingesting a meal. Tradition planes of section, i.e. coronal, horizontal or sagittal, contain only a limited portion of the substrate. CONCLUSIONS Our results demonstrate that both anatomical and physiologic connections of oral and visceral sensory nuclei that project to integrative and motor nuclei remain intact with this new plane of section.
Collapse
Affiliation(s)
- Jason S Nasse
- Division of Biosciences, College of Dentistry, 305 West 12th Avenue, 4154 Postle Hall, The Ohio State University, Columbus, OH 43210, United States.
| |
Collapse
|
25
|
Toti L, Travagli RA. Gastric dysregulation induced by microinjection of 6-OHDA in the substantia nigra pars compacta of rats is determined by alterations in the brain-gut axis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G1013-23. [PMID: 25277799 PMCID: PMC4865236 DOI: 10.1152/ajpgi.00258.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Idiopathic Parkinson's disease (PD) is a late-onset, chronic, and progressive motor dysfunction attributable to loss of nigrostriatal dopamine neurons. Patients with PD experience significant gastrointestinal (GI) issues, including gastroparesis. We aimed to evaluate whether 6-hydroxy-dopamine (6-OHDA)-induced degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc) induces gastric dysmotility via dysfunctions of the brain-gut axis. 6-OHDA microinjection into the SNpc induced a >90% decrease in tyrosine hydroxylase-immunoreactivity (IR) on the injection site. The [13C]-octanoic acid breath test showed a delayed gastric emptying 4 wk after the 6-OHDA treatment. In control rats, microinjection of the indirect sympathomimetic, tyramine, in the dorsal vagal complex (DVC) decreased gastric tone and motility; this inhibition was prevented by the fourth ventricular application of either a combination of α1- and α2- or a combination of D1 and D2 receptor antagonists. Conversely, in 6-OHDA-treated rats, whereas DVC microinjection of tyramine had reduced effects on gastric tone or motility, DVC microinjection of thyrotropin-releasing hormone induced a similar increase in motility as in control rats. In 6-OHDA-treated rats, there was a decreased expression of choline acetyl transferase (ChAT)-IR and neuronal nitric oxide synthase (NOS)-IR in DVC neurons but an increase in dopamine-β-hydroxylase-IR in the A2 area. Within the myenteric plexus of the esophagus, stomach, and duodenum, there were no changes in the total number of neurons; however, the percentage of NOS-IR neurons increased, whereas that of ChAT-IR decreased. Our data suggest that the delayed gastric emptying in a 6-OHDA rat model of PD may be caused by neurochemical and neurophysiological alterations in the brain-gut axis.
Collapse
Affiliation(s)
- Luca Toti
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State, College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
26
|
Nasse JS, Travers JB. Adrenoreceptor modulation of oromotor pathways in the rat medulla. J Neurophysiol 2014; 112:580-93. [PMID: 24805080 DOI: 10.1152/jn.00091.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Regulation of feeding behavior involves the integration of multiple physiological and neurological pathways that control both nutrient-seeking and consummatory behaviors. The consummatory phase of ingestion includes stereotyped oromotor movements of the tongue and jaw that are controlled through brain stem pathways. These pathways encompass not only cranial nerve sensory and motor nuclei for processing feeding-related afferent signals and supplying the oromotor musculature but also reticular neurons for orchestrating ingestion and coordinating it with other behaviors that utilize the same musculature. Based on decerebrate studies, this circuit should be sensitive to satiety mechanisms mediated centrally by A2 noradrenergic neurons in the caudal nucleus of the solitary tract (cNST) that are potently activated during satiety. Because the first observable phase of satiety is inhibition of oromotor movements, we hypothesized that norepinephrine (NE) would act to inhibit prehypoglossal neurons in the medullary reticular formation. Using patch-clamp electrophysiology of retrogradely labeled prehypoglossal neurons and calcium imaging to test this hypothesis, we demonstrate that norepinephrine can influence both pre- and postsynaptic properties of reticular neurons through both α1- and α2-adrenoreceptors. The α1-adrenoreceptor agonist phenylephrine (PE) activated an inward current in the presence of TTX and increased the frequency of both inhibitory and excitatory miniature postsynaptic currents. The α2-adrenoreceptor agonist dexmedetomidine (DMT) inhibited cNST-evoked excitatory currents as well as spontaneous and miniature excitatory currents through presynaptic mechanisms. The diversity of adrenoreceptor modulation of these prehypoglossal neurons may reflect their role in a multifunctional circuit coordinating both ingestive and respiratory lingual function.
Collapse
Affiliation(s)
- Jason S Nasse
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| | - Joseph B Travers
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, Ohio
| |
Collapse
|
27
|
Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals. Physiol Behav 2014; 136:47-54. [PMID: 24508750 DOI: 10.1016/j.physbeh.2014.01.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 12/11/2013] [Accepted: 01/20/2014] [Indexed: 12/13/2022]
Abstract
Satiety signals arising from the gastrointestinal (GI) tract and related digestive organs during food ingestion and digestion are conveyed by vagal sensory afferents to the hindbrain nucleus of the solitary tract (NST). Two intermingled but chemically distinct NST neuronal populations have been implicated in meal size control: noradrenergic (NA) neurons that comprise the A2 cell group, and glucagon-like peptide-1 (GLP-1)-positive neurons. Previous results indicate that A2 neurons are activated in a meal size-dependent manner in rats that have been acclimated/entrained to a feeding schedule in order to increase meal size, whereas feeding under the same conditions does not activate GLP-1 neurons. The present study was designed to test the hypothesis that both A2 and GLP-1 neuronal populations are recruited in non-entrained rats after voluntary first-time intake of an unrestricted, satiating volume of liquid Ensure. DBH-positive A2 neurons within the caudal visceral NST were progressively recruited to express cFos in rats that consumed progressively larger volumes of Ensure. Among these DBH-positive neurons, the prolactin-releasing peptide (PrRP)-positive subset was more sensitive to feeding-induced activation than the PrRP-negative subset. Notably, significant activation of GLP-1-positive neurons occurred only in rats that consumed the largest volumes of Ensure, corresponding to nearly 5% of their BW. We interpret these results as evidence that progressive recruitment of NA neurons within the caudal NST, especially the most caudally-situated PrRP-positive subset, effectively "tracks" the magnitude of GI satiety signals and other meal-related sensory feedback. Conversely, GLP-1 neurons may only be recruited in response to the homeostatic challenge of consuming a very large, unanticipated meal.
Collapse
|
28
|
Swartz EM, Browning KN, Travagli RA, Holmes GM. Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterol Motil 2014; 26:272-82. [PMID: 24261332 PMCID: PMC3907172 DOI: 10.1111/nmo.12261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vagally dependent gastric reflexes are mediated through vagal afferent fibers synapsing upon neurons of the nucleus tractus solitarius (NTS) which, in turn modulate the preganglionic parasympathetic dorsal motor nucleus of the vagus (DMV) neurons within the medullary dorsal vagal complex (DVC). The expression and transport of ghrelin receptors has been documented for the afferent vagus nerve, and functional studies have confirmed that vagal pathways are integral to ghrelin-induced stimulation of gastric motility. However, the central actions of ghrelin within the DVC have not been explored fully. METHODS We assessed the responses to ghrelin in fasted rats using: (i) in vivo measurements of gastric tone and motility following IVth ventricle application or unilateral microinjection of ghrelin into the DVC and (ii) whole cell recordings from gastric-projecting neurons of the DMV. KEY RESULTS (i) IVth ventricle application or unilateral microinjection of ghrelin into the DVC-elicited contractions of the gastric corpus via excitation of a vagal cholinergic efferent pathway and (ii) ghrelin facilitates excitatory, but not inhibitory, presynaptic transmission to DMV neurons. CONCLUSIONS & INFERENCES Our data indicate that ghrelin acts centrally by activating excitatory synaptic inputs onto DMV neurons, resulting in increased cholinergic drive by way of vagal motor innervation to the stomach.
Collapse
Affiliation(s)
| | | | | | - Gregory M. Holmes
- Corresponding Author: Dr. Gregory M. Holmes, Penn State University College of Medicine, 500 University Dr., H181, Hershey, PA 17033, Tel: +1 717 531-6413, fax; +1 717 531-5184,
| |
Collapse
|
29
|
Bonnet MS, Ouelaa W, Tillement V, Trouslard J, Jean A, Gonzalez BJ, Gourcerol G, Dallaporta M, Troadec JD, Mounien L. Gastric distension activates NUCB2/nesfatin-1-expressing neurons in the nucleus of the solitary tract. ACTA ACUST UNITED AC 2013; 187:17-23. [PMID: 24120633 DOI: 10.1016/j.regpep.2013.10.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 09/09/2013] [Accepted: 10/02/2013] [Indexed: 12/30/2022]
Abstract
Brainstem structures such as the nucleus of the solitary tract (NTS) and the dorsal motor nucleus of the vagus nerve (DMNX) are essential for the digestive function of the stomach. A large number of neurotransmitters including glutamate and gamma-aminobutyric acid (GABA) are involved in the central control of gastric functions. However, the neuropeptidergic systems implicated in this process remain undetermined. Nesfatin-1 was recently identified as a neuropeptide cleaved from the N-terminal part of NEFA/nucleobindin 2 precursor (NUCB2). Central administration of this neuropeptide inhibits food consumption and gastroduodenal motility in rodents. Interestingly, the NTS and the DMNX contain a dense population of NUCB2/nesfatin-1 cell bodies. These observations led us to investigate the possible involvement of NUCB2/nesfatin-1 neurons in the brainstem neuronal pathways that modulate gastric functions. We observed an activation of NTS NUCB2/nesfatinergic neurons after gastric distention in rats. In addition, we found that several NTS NUCB2/nesfatinergic neurons were GABAergic. Finally, when fluorogold was injected at the stomach level, many retrogradely labeled neurons were observed in the DMNX which were also positive for NUCB2/nesfatin-1. Taken together, these observations suggest for the first time that NUCB2/nesfatin-1 neurons of the NTS are sensitive to gastric distension and then may contribute to the satiety signal.
Collapse
Affiliation(s)
- Marion S Bonnet
- Physiology and Physiopathology of Motor and Autonomic Nervous Systems (PPSN, EA4667), University of Aix-Marseille, Marseille, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Richardson J, Cruz MT, Majumdar U, Lewin A, Kingsbury KA, Dezfuli G, Vicini S, Verbalis JG, Dretchen KL, Gillis RA, Sahibzada N. Melanocortin signaling in the brainstem influences vagal outflow to the stomach. J Neurosci 2013; 33:13286-99. [PMID: 23946387 PMCID: PMC3742919 DOI: 10.1523/jneurosci.0780-13.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 06/11/2013] [Accepted: 06/13/2013] [Indexed: 01/23/2023] Open
Abstract
Activation of melanocortin 4 receptors (MC4-Rs) in brain nuclei associated with food intake profoundly influences consummatory behavior. Of these nuclei, the dorsal motor vagal nucleus (DMV), which has a dense concentration of MC4-Rs, is an important regulator of gastric tone and motility. Hence, the present study sought to examine the role of MC4-Rs in this nucleus on these activities. Using an in vivo approach, MC4-R agonists, melanotan-II (MT-II) or α-melanocyte stimulating hormone (α-MSH), were unilaterally microinjected into the DMV of rats, and their effects were noted on gastric activity. MT-II decreased phasic contractions, whereas α-MSH increased their amplitude. Both effects were blocked by the MC4-R antagonist SHU9119 or by ipsilateral vagotomy. Microinjection of the agonists (MT-II and α-MSH) into the overlying nucleus of the solitary tract (NTS), an important component of "vago-vagal" gastric circuitry, decreased phasic contractions. In addition, α-MSH reduced gastric tone and mean arterial blood pressure. To study the underlying mechanisms of the effect of MC4-R stimulation on gastric activity, electrophysiological recordings were made from labeled DMV antrum neurons in rat pups and MC4-R(-/-) mice. Bath application of MT-II or α-MSH significantly reduced spontaneous action potentials (but not in MC4-R(-/-) mice). However, in low-calcium ACSF, MT-II decreased neuronal firing, whereas α-MSH increased it. These effects mirror those of our in vivo DMV studies. Altogether, our novel findings show that activation of MC4-Rs in the brainstem, particularly in the medial NTS by the endogenous peptide α-MSH, modulates gastric activity, which may have physiological relevance for food intake and gastric function.
Collapse
Affiliation(s)
| | - Maureen T. Cruz
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | | | | | | | - Ghazaul Dezfuli
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057
| | | | | | | | | | | |
Collapse
|
31
|
Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs. J Neurosci 2013; 32:16530-8. [PMID: 23152635 DOI: 10.1523/jneurosci.1372-12.2012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function.
Collapse
|
32
|
Maniscalco JW, Kreisler AD, Rinaman L. Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 2013; 6:199. [PMID: 23346044 PMCID: PMC3549516 DOI: 10.3389/fnins.2012.00199] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 12/31/2012] [Indexed: 12/20/2022] Open
Abstract
Neural circuits distributed within the brainstem, hypothalamus, and limbic forebrain interact to control food intake and energy balance under normal day-to-day conditions, and in response to stressful conditions under which homeostasis is threatened. Experimental studies using rats and mice have generated a voluminous literature regarding the functional organization of circuits that inhibit food intake in response to satiety signals, and in response to stress. Although the central neural bases of satiation and stress-induced hypophagia often are studied and discussed as if they were distinct, we propose that both behavioral states are generated, at least in part, by recruitment of two separate but intermingled groups of caudal hindbrain neurons. One group comprises a subpopulation of noradrenergic (NA) neurons within the caudal nucleus of the solitary tract (cNST; A2 cell group) that is immunopositive for prolactin-releasing peptide (PrRP). The second group comprises non-adrenergic neurons within the cNST and nearby reticular formation that synthesize glucagon-like peptide 1 (GLP-1). Axonal projections from PrRP and GLP-1 neurons target distributed brainstem and forebrain regions that shape behavioral, autonomic, and endocrine responses to actual or anticipated homeostatic challenge, including the challenge of food intake. Evidence reviewed in this article supports the view that hindbrain PrRP and GLP-1 neurons contribute importantly to satiation and stress-induced hypophagia by modulating the activity of caudal brainstem circuits that control food intake. Hindbrain PrRP and GLP-1 neurons also engage hypothalamic and limbic forebrain networks that drive parallel behavioral and endocrine functions related to food intake and homeostatic challenge, and modulate conditioned and motivational aspects of food intake.
Collapse
Affiliation(s)
- James W Maniscalco
- Department of Neuroscience, University of Pittsburgh Pittsburgh, PA, USA
| | | | | |
Collapse
|
33
|
Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 2012; 3:277. [PMID: 22934031 PMCID: PMC3429051 DOI: 10.3389/fphys.2012.00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Despite the widely recognized prevalence of gastric, colonic, and anorectal dysfunction after spinal cord injury (SCI), significant knowledge gaps persist regarding the mechanisms leading to post-SCI gastrointestinal (GI) impairments. Briefly, the regulation of GI function is governed by a mix of parasympathetic, sympathetic, and enteric neurocircuitry. Unlike the intestines, the stomach is dominated by parasympathetic (vagal) control whereby gastric sensory information is transmitted via the afferent vagus nerve to neurons of the nucleus tractus solitarius (NTS). The NTS integrates this sensory information with signals from throughout the central nervous system. Glutamatergic and GABAergic NTS neurons project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus (DMV). Finally, axons from the DMV project to gastric myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This review presents evidence that unlike the post-SCI loss of supraspinal control which leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or secondary pathology following SCI. Specifically, emerging data points toward diminished sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly, macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly plastic and can be altered by injury or energy balance. A reduction of vagal afferent signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal may be one mechanism leading to upper GI dysmotility following SCI.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Penn State University College of MedicineHershey, PA, USA
| |
Collapse
|
34
|
Cui RJ, Roberts BL, Zhao H, Andresen MC, Appleyard SM. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience 2012; 222:181-90. [PMID: 22796075 DOI: 10.1016/j.neuroscience.2012.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids could control autonomic functions and modulate reward and opioid withdrawal symptoms at the level of the NTS.
Collapse
Affiliation(s)
- R J Cui
- Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
35
|
Viard E, Rogers RC, Hermann GE. Systemic cholecystokinin amplifies vago-vagal reflex responses recorded in vagal motor neurones. J Physiol 2011; 590:631-46. [PMID: 22155934 DOI: 10.1113/jphysiol.2011.224477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cholecystokinin (CCK) is a potent regulator of visceral functions as a consequence of its actions on vago-vagal reflex circuit elements. This paper addresses three current controversies regarding the role of CCK to control gastric function via vago-vagal reflexes. Specifically: (a) whether CNS vs. peripheral (vagal afferent) receptors are dominant, (b) whether the long (58) vs. short (8) isoform is more potent and (c) whether nutritional status impacts the gain or even the direction of vago-vagal reflexes. Our in vivo recordings of physiologically identified gastric vagal motor neurones (gastric-DMN) involved in the gastric accommodation reflex (GAR) show unequivocally that: (a) receptors in the coeliac-portal circulation are more sensitive in amplifying gastric vagal reflexes; (b) in the periphery, CCK8 is more potent than CCK58; and (c) the nutritional status has a marginal effect on gastric reflex control. While the GAR reflex is more sensitive in the fasted rat, CCK amplifies this sensitivity. Thus, our results are in stark contrast to recent reports which have suggested that vago-vagal reflexes are inverted by the metabolic status of the animal and that this inversion could be mediated by CCK within the CNS.
Collapse
Affiliation(s)
- Edouard Viard
- Pennington Biomedical Research Centre, 6400 Perkins Rd, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
36
|
Rinaman L, Banihashemi L, Koehnle TJ. Early life experience shapes the functional organization of stress-responsive visceral circuits. Physiol Behav 2011; 104:632-40. [PMID: 21497616 PMCID: PMC3139736 DOI: 10.1016/j.physbeh.2011.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 01/07/2023]
Abstract
Emotions are closely tied to changes in autonomic (i.e., visceral motor) function, and interoceptive sensory feedback from body to brain exerts powerful modulatory control over motivation, affect, and stress responsiveness. This manuscript reviews evidence that early life experience can shape the structure and function of central visceral circuits that underlie behavioral and physiological responses to emotive and stressful events. The review begins with a general discussion of descending autonomic and ascending visceral sensory pathways within the brain, and then summarizes what is known about the postnatal development of these central visceral circuits in rats. Evidence is then presented to support the view that early life experience, particularly maternal care, can modify the developmental assembly and structure of these circuits in a way that impacts later stress responsiveness and emotional behavior. The review concludes by presenting a working hypothesis that endogenous cholecystokinin signaling and subsequent recruitment of gastric vagal sensory inputs to the caudal brainstem may be an important mechanism by which maternal care influences visceral circuit development in rat pups. Early life experience may contribute to meaningful individual differences in emotionality and stress responsiveness by shaping the postnatal developmental trajectory of central visceral circuits.
Collapse
Affiliation(s)
- Linda Rinaman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
37
|
Banihashemi L, O'Neill EJ, Rinaman L. Central neural responses to restraint stress are altered in rats with an early life history of repeated brief maternal separation. Neuroscience 2011; 192:413-28. [PMID: 21736922 DOI: 10.1016/j.neuroscience.2011.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/26/2011] [Accepted: 06/17/2011] [Indexed: 12/19/2022]
Abstract
Repeated brief maternal separation (i.e. 15 min daily, MS15) of rat pups during the first one to two postnatal weeks enhances active maternal care received by the pups and attenuates their later behavioral and neuroendocrine responses to stress. In previous work, we found that MS15 also alters the developmental assembly and later structure of central neural circuits that control autonomic outflow to the viscera, suggesting that MS15 may alter central visceral circuit responses to stress. To examine this, juvenile rats with a developmental history of either MS15 or no separation (NS) received microinjection of retrograde neural tracer, FluoroGold (FG), into the hindbrain dorsal vagal complex (DVC). After 1 week, FG-injected rats and surgically intact littermates were exposed to either a 15-min restraint stress or an unrestrained control condition, and then perfused 1 h later. Brain tissue sections from surgically intact littermates were processed for Fos alone or in combination with phenotypic markers to examine stress-induced activation of neurons within the paraventricular nucleus of the hypothalamus (PVN), bed nucleus of the stria terminalis (BNST), and hindbrain DVC. Compared to NS controls, MS15 rats displayed less restraint-induced Fos activation within the dorsolateral BNST (dBNST), the caudal PVN, and noradrenergic neurons within the caudal DVC. To examine whether these differences corresponded with altered neural inputs to the DVC, sections from tracer-injected rats were double-labeled for FG and Fos to quantify retrogradely labeled neurons within hypothalamic and limbic forebrain regions of interest, and the proportion of these neurons activated after restraint. Only the dBNST displayed a significant effect of postnatal experience on restraint-induced Fos activation of DVC-projecting neurons. The distinct regional effects of MS15 on stress-induced recruitment of neurons within hypothalamic, limbic forebrain, and hindbrain regions has interesting implications for understanding how early life experience shapes the functional organization of stress-responsive circuits.
Collapse
Affiliation(s)
- L Banihashemi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | |
Collapse
|
38
|
Ghrelin inhibits visceral afferent activation of catecholamine neurons in the solitary tract nucleus. J Neurosci 2011; 31:3484-92. [PMID: 21368060 DOI: 10.1523/jneurosci.3187-10.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Brainstem A2/C2 catecholamine (CA) neurons in the solitary tract nucleus (NTS) are thought to play an important role in the control of food intake and other homeostatic functions. We have previously demonstrated that these neurons, which send extensive projections to brain regions involved in the regulation of appetite, are strongly and directly activated by solitary tract (ST) visceral afferents. Ghrelin, a potent orexigenic peptide released from the stomach, is proposed to act in part through modulating NTS CA neurons but the underlying cellular mechanisms are unknown. Here, we identified CA neurons using transgenic mice that express enhanced green fluorescent protein driven by the tyrosine hydroxylase promoter (TH-EGFP). We then determined how ghrelin modulates TH-EGFP neurons using patch-clamp techniques in a horizontal brain slice preparation. Ghrelin inhibited the frequency of spontaneous glutamate inputs (spontaneous EPSCs) onto TH-EGFP neurons, including cholecystokinin-sensitive neurons, an effect blocked by the GHSR1 antagonist, d-Lys-3-GHRP-6. This resulted in a decrease in the basal firing rate of NTS TH-EGFP neurons, an effect blocked by the glutamate antagonist NBQX. Ghrelin also dose-dependently inhibited the amplitude of ST afferent evoked EPSCs (ST-EPSCs) in TH-EGFP NTS neurons, decreasing the success rate for ST-evoked action potentials. In addition, ghrelin decreased the frequency of mini-EPSCs suggesting its actions are presynaptic to reduce glutamate release. Last, inhibition by ghrelin of the ST-EPSCs was significantly increased by an 18 h fast. These results demonstrate a potential mechanism by which ghrelin inhibits NTS TH neurons through a pathway whose responsiveness is increased during fasting.
Collapse
|
39
|
Browning KN, Travagli RA. Plasticity of vagal brainstem circuits in the control of gastrointestinal function. Auton Neurosci 2011; 161:6-13. [PMID: 21147043 PMCID: PMC3061976 DOI: 10.1016/j.autneu.2010.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022]
Abstract
The afferent vagus transmits sensory information from the gastrointestinal (GI) tract and other viscera to the brainstem via a glutamatergic synapse at the level of the nucleus of the solitary tract (NTS). Second order NTS neurons integrate this sensory information with inputs from other CNS regions that regulate autonomic functions and homeostasis. Glutamatergic and GABAergic neurons are responsible for conveying the integrated response to other nuclei, including the adjacent dorsal motor nucleus of the vagus (DMV). The preganglionic neurons in the DMV are the source of the parasympathetic motor response back to the GI tract. The glutamatergic synapse between the NTS and DMV is unlikely to be tonically active in regulating gastric motility and tone although almost all neurotransmitters tested so far modulate transmission at this synapse. In contrast, the tonic inhibitory GABAergic input from the NTS to the DMV appears to be critical in setting the tone of gastric motility and, under basal conditions, is unaffected by many neurotransmitters or neurohormones. This review is based, in part, on a presentation by Dr Browning at the 2009 ISAN meeting in Sydney, Australia and discusses how neurohormones and macronutrients modulate glutamatergic transmission to NTS neurons and GABAergic transmission to DMV neurons in relation to sensory information that is received from the GI tract. These neurohormones and macronutrients appear to exert efficient "on-demand" control of the motor output from the DMV in response to ever-changing demands required to maintain homeostasis.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, 500 University Drive, MC H109, Hershey, PA 17033, USA.
| | | |
Collapse
|
40
|
Babic T, Browning KN, Travagli RA. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am J Physiol Gastrointest Liver Physiol 2011; 300:G21-32. [PMID: 20947702 PMCID: PMC3025513 DOI: 10.1152/ajpgi.00363.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dorsal motor nucleus of the vagus (DMV) is pivotal in the regulation of upper gastrointestinal functions, including motility and both gastric and pancreatic secretion. DMV neurons receive robust GABA- and glutamatergic inputs. Microinjection of the GABA(A) antagonist bicuculline (BIC) into the DMV increases pancreatic secretion and gastric motility, whereas the glutamatergic antagonist kynurenic acid (KYN) is ineffective unless preceded by microinjection of BIC. We used whole cell patch-clamp recordings with the aim of unveiling the brain stem neurocircuitry that uses tonic GABA- and glutamatergic synapses to control the activity of DMV neurons in a brain stem slice preparation. Perfusion with BIC altered the firing frequency of 71% of DMV neurons, increasing firing frequency in 80% of the responsive neurons and decreasing firing frequency in 20%. Addition of KYN to the perfusate either decreased (52%) or increased (25%) the firing frequency of BIC-sensitive neurons. When KYN was applied first, the firing rate was decreased in 43% and increased in 21% of the neurons; further perfusion with BIC had no additional effect in the majority of neurons. Our results indicate that there are several permutations in the arrangements of GABA- and glutamatergic inputs controlling the activity of DMV neurons. Our data support the concept of brain stem neuronal circuitry that may be wired in a finely tuned organ- or function-specific manner that permits precise and discrete modulation of the vagal motor output to the gastrointestinal tract.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
41
|
Abstract
BACKGROUND Sensory information from the viscera, including the gastrointestinal (GI) tract, is transmitted through the afferent vagus via a glutamatergic synapse to neurons of the nucleus tractus solitarius (NTS), which integrate this sensory information to regulate autonomic functions and homeostasis. The integrated response is conveyed to, amongst other nuclei, the preganglionic neurons of the dorsal motor nucleus of the vagus (DMV) using mainly GABA, glutamate and catecholamines as neurotransmitters. Despite being modulated by almost all the neurotransmitters tested so far, the glutamatergic synapse between NTS and DMV does not appear to be tonically active in the control of gastric motility and tone. Conversely, tonic inhibitory GABAergic neurotransmission from the NTS to the DMV appears critical in setting gastric tone and motility, yet, under basal conditions, this synapse appears resistant to modulation. PURPOSE Here, we review the available evidence suggesting that vagal efferent output to the GI tract is regulated, perhaps even controlled, in an 'on-demand' and efficient manner in response to ever-changing homeostatic conditions. The focus of this review is on the plasticity induced by variations in the levels of second messengers in the brainstem neurons that form vago-vagal reflex circuits. Emphasis is placed upon the modulation of GABAergic transmission to DMV neurons and the modulation of afferent input from the GI tract by neurohormones/neurotransmitters and macronutrients. Derangement of this 'on-demand' organization of brainstem vagal circuits may be one of the factors underlying the pathophysiological changes observed in functional dyspepsia or hyperglycemic gastroparesis.
Collapse
Affiliation(s)
- K N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| | | |
Collapse
|
42
|
Rinaman L. Hindbrain noradrenergic A2 neurons: diverse roles in autonomic, endocrine, cognitive, and behavioral functions. Am J Physiol Regul Integr Comp Physiol 2010; 300:R222-35. [PMID: 20962208 DOI: 10.1152/ajpregu.00556.2010] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Central noradrenergic (NA) signaling is broadly implicated in behavioral and physiological processes related to attention, arousal, motivation, learning and memory, and homeostasis. This review focuses on the A2 cell group of NA neurons, located within the hindbrain dorsal vagal complex (DVC). The intra-DVC location of A2 neurons supports their role in vagal sensory-motor reflex arcs and visceral motor outflow. A2 neurons also are reciprocally connected with multiple brain stem, hypothalamic, and limbic forebrain regions. The extra-DVC connections of A2 neurons provide a route through which emotional and cognitive events can modulate visceral motor outflow and also a route through which interoceptive feedback from the body can impact hypothalamic functions as well as emotional and cognitive processing. This review considers some of the hallmark anatomical and chemical features of A2 neurons, followed by presentation of evidence supporting a role for A2 neurons in modulating food intake, affective behavior, behavioral and physiological stress responses, emotional learning, and drug dependence. Increased knowledge about the organization and function of the A2 cell group and the neural circuits in which A2 neurons participate should contribute to a better understanding of how the brain orchestrates adaptive responses to the various threats and opportunities of life and should further reveal the central underpinnings of stress-related physiological and emotional dysregulation.
Collapse
Affiliation(s)
- Linda Rinaman
- Dept. of Neuroscience, University of Pittsburgh, A210 Langley Hall, Pittsburgh, PA 15260, USA.
| |
Collapse
|
43
|
Herman MA, Alayan A, Sahibzada N, Bayer B, Verbalis J, Dretchen KL, Gillis RA. micro-Opioid receptor stimulation in the medial subnucleus of the tractus solitarius inhibits gastric tone and motility by reducing local GABA activity. Am J Physiol Gastrointest Liver Physiol 2010; 299:G494-506. [PMID: 20489046 PMCID: PMC2928531 DOI: 10.1152/ajpgi.00038.2010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We examined the effects of altering mu-opioid receptor (MOR) activity in the medial subnucleus of the tractus solitarius (mNTS) on several gastric end points including intragastric pressure (IGP), fundus tone, and the receptive relaxation reflex (RRR). Microinjection of the MOR agonist [d-Ala(2),MePhe(4),Gly(ol)(5)]enkephalin (DAMGO; 1-10 fmol) into the mNTS produced dose-dependent decreases in IGP. Microinjection of the endogenous MOR agonists endomorphin-1 and endomorphin-2 (20 fmol) into the mNTS mimicked the effects of 10 fmol DAMGO. Microinjection of 1 and 100 pmol DAMGO into the mNTS produced a triphasic response consisting of an initial decrease, a transient increase, and a persistent decrease in IGP. The increase in IGP appeared to be due to diffusion to the dorsal motor nucleus of the vagus. The effects of 10 fmol DAMGO in the mNTS were blocked by vagotomy and by blockade of MORs, GABA(A) receptors, and ionotropic glutamate receptors in the mNTS. The RRR response was abolished by bilateral microinjection of the opioid receptor antagonist naltrexone into the mNTS and reduced by intravenous administration of naltrexone. Our data demonstrate that 1) activation of MORs in the mNTS with femtomole doses of agonist inhibits gastric motility, 2) the mechanism of MOR effects in the mNTS is through suppression of local GABA activity, and 3) blockade of MORs in the mNTS prevents the RRR response. These data suggest that opioids play an important role in mediating a vagovagal reflex through release of an endogenous opioid in the mNTS, which, in turn, inhibits ongoing local GABA activity and allows vagal sensory input to excite second-order mNTS neurons.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Verbalis
- 4Department of Medicine, Georgetown University, Washington, DC
| | | | | |
Collapse
|
44
|
Yamanishi T, Takao K, Koizumi H, Ishihama K, Nohara K, Komaki M, Enomoto A, Yokota Y, Kogo M. Alpha2-adrenoceptors coordinate swallowing and respiration. J Dent Res 2010; 89:258-63. [PMID: 20139342 DOI: 10.1177/0022034509360312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Because the discoordination between swallowing and respiration may cause severe respiratory disorders such as aspiration pneumonia, understanding the neuronal mechanisms underlying such coordination is important. Recently, it was reported that medullary noradrenergic neurons are involved in evoking esophageal-gastric relaxation reflex, leading to a hypothesis that such neurons are also involved in swallowing-respiration coordination. We tested this hypothesis using an in vitro brain-stem preparation obtained from neonatal rats. A temporal inhibition of respiratory rhythm was consistently observed when swallowing activity was induced by electrical stimulations to the supralaryngeal nerve. We found that a broad adrenergic receptor agonist, norepinephrine, markedly blocked the swallowing-induced temporal inhibition of respiration. Further studies revealed that swallowing-induced respiratory inhibition is blocked by an alpha2-adrenergic receptor agonist and enhanced by an alpha2-adrenergic receptor antagonist, indicating an important role of alpha2-adrenergic receptors in regulation of the coordination between swallowing and respiration in vitro.
Collapse
Affiliation(s)
- T Yamanishi
- First Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Qualls-Creekmore E, Tong M, Holmes GM. Gastric emptying of enterally administered liquid meal in conscious rats and during sustained anaesthesia. Neurogastroenterol Motil 2010; 22:181-5. [PMID: 19735361 PMCID: PMC2806511 DOI: 10.1111/j.1365-2982.2009.01393.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastric motility studies are frequently conducted with anaesthetized animal models. Some studies on the same animal species have reported differences in vagal control of the stomach that could not be explained solely by slightly different experimental conditions. A possible limitation in the comparison between similar studies relates to the use of different anaesthetic agents. Furthermore, anaesthetic effects may also limit generalizations between mechanistic studies of gastric function and the gastric function of conscious animals. In the present study, we used the [(13)C]-breath test following a liquid mixed-nutrient test meal (Ensure), 1 ml) with the aim to investigate the rate of gastric emptying in animals that were either conscious or anaesthetized with either Inactin or urethane. METHODS One week after determining the maximum (13)CO(2) concentration, time to peak [(13)C] recovery and gastric half emptying time in control, conscious rats, we repeated the experiment in the same rats anaesthetized with Inactin or urethane. KEY RESULTS Our data show that Inactin anaesthesia prolonged the time to peak [(13)C] recovery but did not significantly reduce the maximum (13)CO(2) concentration nor delay gastric half emptying time. Conversely, urethane anaesthesia resulted in a significant slowing of all parameters of gastric emptying as measured by the maximum (13)CO(2) concentration, time to peak [(13)C] recovery and half emptying time. CONCLUSIONS & INFERENCES Our data indicate that Inactin(R) anaesthesia does not significantly affect gastric emptying while urethane anaesthesia profoundly impairs gastric emptying. We suggest that Inactin(R), not urethane, is the more suitable anaesthetic for gastrointestinal research.
Collapse
Affiliation(s)
- E Qualls-Creekmore
- Neurotrauma and Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
46
|
Holmes GM, Browning KN, Tong M, Qualls-Creekmore E, Travagli RA. Vagally mediated effects of glucagon-like peptide 1: in vitro and in vivo gastric actions. J Physiol 2009; 587:4749-59. [PMID: 19675064 DOI: 10.1113/jphysiol.2009.175067] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Glucagon-like peptide-1 (GLP-1) is a neuropeptide released following meal ingestion that, among other effects, decreases gastric tone and motility. The central targets and mechanism of action of GLP-1 on gastric neurocircuits have not, however, been fully investigated. A high density of GLP-1 containing neurones and receptors are present in brainstem vagal circuits, suggesting that the gastroinhibition may be vagally mediated. We aimed to investigate: (1) the response of identified gastric-projecting neurones of the dorsal motor nucleus of the vagus (DMV) to GLP-1 and its analogues; (2) the effects of brainstem application of GLP-1 on gastric tone; and (3) the vagal pathway utilized by GLP-1 to induce gastroinhibition. We conducted our experiments using whole-cell recordings from identified gastric-projecting DMV neurones and microinjection in the dorsal vagal complex (DVC) of anaesthetized rats while monitoring gastric tone. Perfusion with GLP-1 induced a concentration-dependent excitation of a subpopulation of gastric-projecting DMV neurones. The GLP-1 effects were mimicked by exendin-4 and antagonized by exendin-9-39. In an anaesthetized rat preparation, application of exendin-4 to the DVC decreased gastric tone in a concentration-dependent manner. The gastroinhibitory effects of exendin-4 were unaffected by systemic pretreatment with the pro-motility muscarinic agonist bethanechol, but were abolished by systemic administration of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), or by bilateral vagotomy. Our data indicate that GLP-1 activates selective receptors to excite DMV neurones mainly and that the gastroinhibition observed following application of GLP-1 in the DVC is due to the activation of an inhibitory non-adrenergic, non-cholinergic input to the stomach.
Collapse
Affiliation(s)
- Gregory M Holmes
- Neuroscience, PBRC-Louisiana State University, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
47
|
Hermann GE, Rogers RC. TNF activates astrocytes and catecholaminergic neurons in the solitary nucleus: implications for autonomic control. Brain Res 2009; 1273:72-82. [PMID: 19348788 PMCID: PMC2693276 DOI: 10.1016/j.brainres.2009.03.059] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/27/2009] [Accepted: 03/27/2009] [Indexed: 01/07/2023]
Abstract
Tumor necrosis factor [TNF] produces a profound anorexia associated with gastrointestinal stasis. Our work suggests that the principal site of action of TNF to cause this change in gastric function is via vagal afferents within the nucleus of the solitary tract [NST]. Excitation of these afferents presumably causes gastric stasis by activating downstream NST neurons that, in turn, suppress gastric motility via action on neurons in the dorsal motor nucleus of the vagus that project to the stomach. Results from our parallel studies on gastric vago-vagal reflexes suggest that noradrenergic neurons in the NST are particularly important to the generation of reflex gastroinhibition. Convergence of these observations led us to hypothesize that TNF action in the NST may preferentially affect putative noradrenergic neurons. The current study confirms our observations of a dose-dependent TNF activation of cells [as indicated by cFOS production] in the NST. The phenotypic identity of these TNF-activated neurons in the NST was approximately 29% tyrosine hydroxylase [TH]-positive [i.e., presumably noradrenergic neurons]. In contrast, less than 10% of the nitrergic neurons were activated after TNF exposure. Surprisingly, another 54% of the cFOS-activated cells in the NST were phenotypically identified to be astrocytes. Taken together with previous observations, the present results suggest that intense or prolonged vagal afferent activity [induced by visceral pathway activity, action of gut hormones or cytokines such as TNF] can alter local astrocyte immediate early gene expression that, in turn, can provoke long-term, perhaps permanent changes in the sensitivity of vagal-reflex circuitry.
Collapse
Affiliation(s)
- Gerlinda E Hermann
- Laboratory of Autonomic Nervous System, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
48
|
Mard SA, Gharib Naseri MK, Badavi M. Gastric secretions affected by esophageal distention in the rat. J Gastroenterol 2009; 44:132-8. [PMID: 19214675 DOI: 10.1007/s00535-008-2288-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 08/25/2008] [Indexed: 02/04/2023]
Abstract
BACKGROUND The effect of esophageal distention (ED) on gastric motility has been well documented, but only a few investigations have been carried out about the effect of ED on gastric secretions. The aim of this study was to investigate the effect of ED on gastric acid and pepsin secretions and the mechanisms involved. METHODS Male adult Wistar rats (200-240 g) were anesthetized by urethane [1.2 g/kg, intraperitoneally (i.p.)] and underwent tracheostomy and laparotomy. A catheter was inserted in the stomach through the duodenum for gastric washout and distention followed by the esophageal distention by a balloon (0.3 ml, 10 min). Gastric acid secretion was stimulated by gastric distension (1.5 ml/100 g body weight), pentagastrin (20 microg/kg, i.p.), or insulin (0.6 IU/kg, i.p.). Pepsin secretion was stimulated by carbachol (20 microg/kg, i.p.). Effects of cervical vagotomy and reserpine (1 mg/kg, i.p.) were also investigated. RESULTS Gastric distention-, pentagastrin-, and insulin-stimulated gastric acid secretion was reduced by esophageal distention (P < 0.001, P < 0.05, and P < 0.05, respectively). Carbachol-induced pepsin secretion was also attenuated by esophageal distention (P < 0.05). Cervical vagotomy abolished the inhibitory effect of ED on pentagastrin-induced gastric acid secretion. In reserpinized rats, ED reduced the basal gastric acid secretion (P < 0.05). CONCLUSIONS These results indicate that the vagus nerves are involved in the inhibitory effect of esophageal distension on gastric secretory function.
Collapse
Affiliation(s)
- Seyyed Ali Mard
- Department of Physiology and Physiology Research Center, School of Medicine, Ahwaz Jundishapour University of Medical Sciences, Ahwaz 61335-189, Iran
| | | | | |
Collapse
|
49
|
DeBoer MD, Scarlett JM, Levasseur PR, Grant WF, Marks DL. Administration of IL-1beta to the 4th ventricle causes anorexia that is blocked by agouti-related peptide and that coincides with activation of tyrosine-hydroxylase neurons in the nucleus of the solitary tract. Peptides 2009; 30:210-8. [PMID: 19028534 PMCID: PMC2853249 DOI: 10.1016/j.peptides.2008.10.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2008] [Revised: 10/28/2008] [Accepted: 10/28/2008] [Indexed: 12/19/2022]
Abstract
Inflammation-associated cachexia is associated with multiple chronic diseases and involves activation of appetite regulating centers in the arcuate nucleus of the hypothalamus (ARH). The nucleus of the solitary tract (NTS) in the brainstem has also been implicated as an important nucleus involved in appetite regulation. We set out to determine whether the NTS may be involved in inflammation-associated anorexia by injecting IL-1 beta into the 4th ventricle and assessing food intake and NTS neuronal activation. Injection of IL-1 beta produced a decrease in food intake at 3 and 12h after injection which was ameliorated at the 12h time point by a sub-threshold dose of agouti-related peptide (AgRP). Investigation into neuron types in the NTS revealed that IL-1 beta injection was associated with an increase in c-Fos activity in NTS neurons expressing tyrosine hydroxylase (TH). Additionally, injection of IL-1 beta into the 4th ventricle did not produce c-Fos activation of neurons expressing pro-opiomelanocortin (POMC) in the ARH, cells known to be involved in producing anorexia in response to systemic inflammation. Double-label in situ hybridization revealed that TH neurons did not express IL-1 receptor I (IL1-RI) transcript, demonstrating that c-Fos activation of TH neurons in this setting was not via direct stimulation of IL-1 beta on TH neurons themselves. We conclude that IL-1 beta injection into the 4th ventricle produces anorexia and is accompanied by an increase in activation in TH neurons in the NTS. This provides evidence that the brainstem may be an important mediator of anorexia in the setting of inflammation.
Collapse
Affiliation(s)
- Mark D. DeBoer
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Jarrad M. Scarlett
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Peter R. Levasseur
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Wilmon F. Grant
- Department of Pediatrics, Oregon Health & Science University, United States
| | - Daniel L. Marks
- Department of Pediatrics, Oregon Health & Science University, United States
| |
Collapse
|
50
|
Abstract
Gastric reflexes are mediated mainly by vago-vagal reflex circuits in the caudal medulla. Despite the fact that brainstem vago-vagal circuitry remains intact after spinal cord injury (SCI), patients with SCI at the cervical level most often present gastric stasis with an increased risk of reflux and aspiration of gastric contents. Using a miniature strain gauge sutured to the gastric surface; we tested gastric motility and reflexive gastric relaxation following oesophageal distension (oesophageal-gastric relaxation reflex) in animals 3 days after a severe spinal contusion at either the third or ninth thoracic spinal segment (acute T3- or T9 SCI, respectively). Both basal gastric motility and the oesophageal-gastric relaxation reflex were significantly diminished in animals with T3 SCI. Conversely, both basal gastric motility and the oesophageal-gastric relaxation reflex were not significantly reduced in T9 SCI animals compared to controls. The reduced gastric motility and oesophageal-gastric reflex in T3 SCI rats was not ameliorated by celiac sympathectomy. Our results show that gastric stasis following acute SCI is independent of altered spinal sympathetic input to the stomach caudal to the lesion. Our data suggest that SCI may alter the sensitivity of vagal reflex function, perhaps by interrupting ascending spinosolitary input to brainstem vagal nuclei.
Collapse
Affiliation(s)
- M Tong
- Neurotrauma and Nutrition Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | | |
Collapse
|