1
|
Butenas ALE, Baranczuk AM, Carroll RJ, Parr SK, Ade CJ, Hageman KS, Musch TI, Copp SW. Novel role for purinergic 2× subtype 4 (P2X4) receptors in the exercise pressor reflex and mechanoreflex: Effect of heart failure. Auton Neurosci 2025; 260:103277. [PMID: 40233602 DOI: 10.1016/j.autneu.2025.103277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/06/2025] [Accepted: 04/01/2025] [Indexed: 04/17/2025]
Abstract
We investigated the role played by ATP-sensitive purinergic 2 × 4 (P2X4) receptors on the sensory endings of thin fibre muscle afferents in exercise pressor reflex and mechanoreflex activation in healthy/SHAM rats and rats with heart failure with reduced ejection fraction (HF-rEF). We hypothesized that infusion of the P2X4 receptor antagonist 5-BDBD (8 μg) into the hindlimb arterial supply would reduce the mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) responses to 30s of electrically-induced hindlimb skeletal muscle contraction (model of exercise pressor reflex activation) and 30s of hindlimb skeletal muscle stretch (model of mechanoreflex activation) in decerebrate, unanesthetized HF-rEF rats but not SHAM rats. Ejection fraction was significantly lower in HF-rEF (46 ± 3 %) compared to SHAM (83 ± 2 %; P < 0.001) rats. In SHAM rats, P2X4 receptor blockade had no effect on the pressor response to hindlimb muscle contraction (n = 8) or the pressor and RSNA response to muscle stretch (n = 4). However, in SHAM rats we found that P2X4 receptor blockade significantly reduced the RSNA response to muscle contraction. In HF-rEF rats, P2X4 receptor blockade reduced the pressor and RSNA response to hindlimb muscle contraction (n = 7) as well as the pressor, but not the RNSA, response to hindlimb muscle stretch (n = 8). Collectively, the data suggest that P2X4 receptors on thin fibre muscle afferent sensory endings play a role in the evoking the exercise pressor reflex in healthy subjects that is limited to RSNA, and that in HF-rEF this expands to a significant role in mechanoreflex and exercise pressor reflex-mediated blood pressure control.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Ashley M Baranczuk
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Raimi J Carroll
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Shannon K Parr
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - Carl J Ade
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America
| | - K Sue Hageman
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America; Department of Anatomy and Physiology, Kansas State University, Manhattan, KS, United States of America
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, KS, United States of America.
| |
Collapse
|
2
|
Santos SAAR, Damasceno MDBMV, Sessle BJ, Vieira-Neto AE, de Oliveira Leite G, Magalhães FEA, Tavares KCS, Benevides SC, Campos AR. Sex differences in the orofacial antinociceptive effect of metformin and the role of transient receptor potential channels. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:3775-3788. [PMID: 39356320 DOI: 10.1007/s00210-024-03475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Metformin is classified as a biguanide and is used in the treatment of type 2 diabetes. It is used worldwide and has been investigated in drug repositioning. The present study aims to investigate whether there is sexual dimorphism in the orofacial antinociceptive effect of metformin and the participation of TRP channels. Acute nociceptive behavior was induced by administering cinnamaldehyde or capsaicin to the upper lip. Nociceptive behavior was assessed through orofacial rubbing, and the effects of pre-treatment with metformin (125 or 250 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint. The chronic pain model involved infraorbital nerve transection (IONX) was evaluated using Von Frey electronic filaments. Trpv1 gene expression was analyzed in the nerve ganglion. Docking experiments were performed. Metformin, but not the vehicle, produced antinociception (p < 0.0001) in all acute nociceptive behaviors in both sexes, and these effects were attenuated by the TRPV1 antagonist capsazepine and the TRPA1 antagonist HC-030031. In IONX with better (**p < 0.01, ****p < 0.0001 vs. control) results in females. TRPV1 gene expression was observed in the metformin treated group (*p < 0.05 vs. control). Docking experiments revealed that metformin may interact with TRPV1 and TRPA1 channels. Metformin promotes orofacial antinociception in both sexes in acute pain and is more effective in chronic pain in females than in males, through the modulation of TRPV1 and TRPA1 channels. These preclinical findings suggest a potential repositioning of metformin as an analgesic agent in acute and chronic orofacial pain states.
Collapse
Affiliation(s)
| | | | - Barry John Sessle
- Department of Physiology and Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Department of Nutrition and Health, State University of Ceará, Fortaleza, Brazil
| | | | | | - Adriana Rolim Campos
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil.
- Universidade de Fortaleza Núcleo de Biologia Experimental, Av. Washington Soares, 1321 Edson Queiroz, Fortaleza, Ceará, Brazil.
| |
Collapse
|
3
|
Estrada JA, Hori A, Fukazawa A, Ishizawa R, Hotta N, Kim HK, Smith SA, Mizuno M. Abnormal cardiovascular control during exercise: Role of insulin resistance in the brain. Auton Neurosci 2025; 258:103239. [PMID: 39874739 DOI: 10.1016/j.autneu.2025.103239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
During exercise circulatory adjustments to meet oxygen demands are mediated by multiple autonomic mechanisms, the skeletal muscle exercise pressor reflex (EPR), the baroreflex (BR), and by feedforward signals from central command neurons in higher brain centers. Insulin resistance in peripheral tissues includes sensitization of skeletal muscle afferents by hyperinsulinemia which is in part responsible for the abnormally heightened EPR function observed in diabetic animal models and patients. However, the role of insulin signaling within the central nervous system (CNS) is receiving increased attention as a potential therapeutic intervention in diseases with underlying insulin resistance. This review will highlight recent advances in our understanding of how insulin resistance induces changes in central signaling. The alterations in central insulin signaling produce aberrant cardiovascular responses to exercise. In particular, we will discuss the role of insulin signaling within the medullary cardiovascular control nuclei. The nucleus tractus solitarius (NTS) and rostral ventrolateral medulla (RVLM) are key nuclei where insulin has been demonstrated to modulate cardiovascular reflexes. The first locus of integration for the EPR, BR and central command is the NTS which is high in neurons expressing insulin receptors (IRs). The IRs on these neurons are well positioned to modulate cardiovascular responses to exercise. Additionally, the differences in IR density and presence of receptor isoforms enable specificity and diversity of insulin actions within the CNS. Therefore, non-invasive delivery of insulin into the CNS may be an effective means of normalizing cardiovascular responses to exercise in patients with insulin resistance.
Collapse
Affiliation(s)
- Juan A Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan; College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Rie Ishizawa
- Faculty of Sports and Life Science, National Institute of Fitness and Sports in KANOYA, Kagoshima 891-2393, Japan
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-8501, Japan
| | - Han-Kyul Kim
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Anselmi L, Ducrocq GP, Kim JS, Herold PB, Ruiz-Velasco V, Kaufman MP. Paradoxical potentiation of the exercise pressor reflex by endomorphin 2 in the presence of naloxone. J Appl Physiol (1985) 2024; 136:1097-1104. [PMID: 38511209 PMCID: PMC11365545 DOI: 10.1152/japplphysiol.00092.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024] Open
Abstract
When contracting muscles are freely perfused, the acid-sensing ion channel 3 (ASIC3) on group IV afferents plays a minor role in evoking the exercise pressor reflex. We recently showed in isolated dorsal root ganglion neurons innervating the gastrocnemius muscles that two mu opioid receptor agonists, namely endomorphin 2 and oxycodone, potentiated the sustained inward ASIC3 current evoked by acidic solutions. This in vitro finding prompted us to determine whether endomorphin 2 and oxycodone, when infused into the arterial supply of freely perfused contracting hindlimb muscles, potentiated the exercise pressor reflex. We found that infusion of endomorphin 2 and naloxone in decerebrated rats potentiated the pressor responses to contraction of the triceps surae muscles. The endomorphin 2-induced potentiation of the pressor responses to contraction was prevented by infusion of APETx2, an ASIC3 antagonist. Specifically, the peak pressor response to contraction averaged 19.3 ± 5.6 mmHg for control (n = 10), 27.2 ± 8.1 mmHg after naloxone and endomorphin 2 infusion (n = 10), and 20 ± 8 mmHg after APETx2 and endomorphin 2 infusion (n = 10). Infusion of endomorphin 2 and naloxone did not potentiate the pressor responses to contraction in ASIC3 knockout rats (n = 6). Partly similar findings were observed when oxycodone was substituted for endomorphin 2. Oxycodone infusion significantly increased the exercise pressor reflex over its control level, but subsequent APETx2 infusion failed to restore the increase to its control level (n = 9). The peak pressor response averaged 23.1 ± 8.6 mmHg for control (n = 9), 33.2 ± 11 mmHg after naloxone and oxycodone were infused (n = 9), and 27 ± 8.6 mmHg after APETx2 and oxycodone were infused (n = 9). Our data suggest that after opioid receptor blockade, ASIC3 stimulation by the endogenous mu opioid, endomorphin 2, potentiated the exercise pressor reflex.NEW & NOTEWORTHY This paper provides the first in vivo evidence that endomorphin 2, an endogenous opioid peptide, can paradoxically increase the magnitude of the exercise pressor reflex by an ASIC3-dependent mechanism even when the contracting muscles are freely perfused.
Collapse
Affiliation(s)
- Laura Anselmi
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Guillaume P Ducrocq
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Joyce S Kim
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Paul B Herold
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Victor Ruiz-Velasco
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania, United States
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania, United States
| |
Collapse
|
5
|
Mannozzi J, Senador D, Kaur J, Gross M, McNitt M, Alvarez A, Lessanework B, O'Leary DS. Muscle metaboreflex stimulates the cardiac sympathetic afferent reflex causing positive feedback amplification of sympathetic activity: effect of heart failure. Am J Physiol Regul Integr Comp Physiol 2024; 326:R110-R120. [PMID: 38009212 PMCID: PMC11283898 DOI: 10.1152/ajpregu.00235.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/28/2023]
Abstract
Exercise intolerance is a hallmark symptom of heart failure and to a large extent stems from reductions in cardiac output that occur due to the inherent ventricular dysfunction coupled with enhanced muscle metaboreflex-induced functional coronary vasoconstriction, which limits increases in coronary blood flow. This creates a further mismatch between O2 delivery and O2 demand, which may activate the cardiac sympathetic afferent reflex (CSAR), causing amplification of the already increased sympathetic activity in a positive-feedback fashion. We used our chronically instrumented conscious canine model to evaluate if chronic ablation of afferents responsible for the CSAR would attenuate the gain of muscle metaboreflex before and after induction of heart failure. After afferent ablation, the gain of the muscle metaboreflex control of mean arterial pressure was significantly reduced before (-239.5 ± 16 to -95.2 ± 8 mmHg/L/min) and after the induction of heart failure (-185.6 ± 14 to -95.7 ± 12 mmHg/L/min). Similar results were observed for the strength (gain) of muscle metaboreflex control of heart rate, cardiac output, and ventricular contractility. Thus, we conclude that the CSAR contributes significantly to the strength of the muscle metaboreflex in normal animals with heart failure serving as an effective positive-feedback amplifier thereby further increasing sympathetic activity.NEW & NOTEWORTHY The powerful pressor responses from the CSAR arise via O2 delivery versus O2 demand imbalance. Muscle metaboreflex activation (MMA) simultaneously elicits coronary vasoconstriction (which is augmented in heart failure) and profound increases in cardiac work thereby upsetting oxygen balance. Whether MMA activates the CSAR thereby amplifying MMA responses is unknown. We observed that removal of the CSAR afferents attenuated the strength of the muscle metaboreflex in normal and subjects with heart failure.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Danielle Senador
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States
| | - Matthew Gross
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Megan McNitt
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
6
|
Anselmi L, Ducrocq GP, Ruiz-Velasco V, Stocker SD, Higgins SP, Kaufman MP. Functional knockout of the TRPV1 channel has no effect on the exercise pressor reflex in rats. J Physiol 2023; 601:5241-5256. [PMID: 37878364 DOI: 10.1113/jp285267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/11/2023] [Indexed: 10/26/2023] Open
Abstract
The role played by the transient receptor potential vanilloid 1 (TRPV1) channel on the thin fibre afferents evoking the exercise pressor reflex is controversial. To shed light on this controversy, we compared the exercise pressor reflex between newly developed TRPV1+/+ , TRPV1+/- and TRPV1-/- rats. Carotid arterial injection of capsaicin (0.5 μg), evoked significant pressor responses in TRPV1+/+ and TRPV1+/- rats, but not in TRPV1-/- rats. In acutely isolated dorsal root ganglion neurons innervating the gastrocnemius muscles, capsaicin evoked inward currents in neurons isolated from TRPV1+/+ and TRPV1+/- rats but not in neurons isolated from TRPV1-/- rats. The reflex was evoked by stimulating the tibial nerve in decerebrated rats whose femoral artery was either freely perfused or occluded. We found no difference between the reflex in the three groups of rats regardless of the patency of the femoral artery. For example, the peak pressor responses to contraction in TRPV1+/+ , TRPV1+/- and TRPV1-/- rats with patent femoral arteries averaged 17.1 ± 7.2, 18.9 ± 12.4 and 18.4 ± 8.6 mmHg, respectively. Stimulation of the tibial nerve after paralysis with pancuronium had no effect on arterial pressure, findings which indicated that the pressor responses to contraction were not caused by electrical stimulation of afferent tibial nerve axons. We also found that expression levels of acid-sensing ion channel 1 and endoperoxide 4 receptor in the L4 and 5 dorsal root ganglia were not upregulated in the TRPV1-/- rats. We conclude that TRPV1 is not needed to evoke the exercise pressor reflex in rats whose contracting muscles have either a patent or an occluded arterial blood supply. KEY POINTS: A reflex arising in contracting skeletal muscle contributes to the increases in arterial blood pressure, cardiac output and breathing evoked by exercise. The sensory arm of the reflex comprises both mechanoreceptors and metaboreceptors, of which the latter signals that blood flow to exercising muscle is not meeting its metabolic demand. The nature of the channel on the metaboreceptor sensing a mismatch between supply and demand is controversial; some believe that it is the transient receptor potential vanilloid 1 (TRPV1) channel. Using genetically engineered rats in which the TRPV1 channel is rendered non-functional, we have shown that it is not needed to evoke the metaboreflex.
Collapse
Affiliation(s)
- Laura Anselmi
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| | - Guillaume P Ducrocq
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
- Mitochondria, Oxidative Stress and Muscular Protection Laboratory (UR 3072), Faculty of Medicine, University of Strasbourg, Strasbourg, France
| | - Victor Ruiz-Velasco
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, USA
| | - Sean D Stocker
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shannon P Higgins
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| | - Marc P Kaufman
- Heart and Vascular Institute Penn State College of Medicine, Hershey, PA, USA
| |
Collapse
|
7
|
Hori A, Fukazawa A, Katanosaka K, Mizuno M, Hotta N. Mechanosensitive channels in the mechanical component of the exercise pressor reflex. Auton Neurosci 2023; 250:103128. [PMID: 37925831 DOI: 10.1016/j.autneu.2023.103128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
The cardiovascular response is appropriately regulated during exercise to meet the metabolic demands of the active muscles. The exercise pressor reflex is a neural feedback mechanism through thin-fiber muscle afferents activated by mechanical and metabolic stimuli in the active skeletal muscles. The mechanical component of this reflex is referred to as skeletal muscle mechanoreflex. Its initial step requires mechanotransduction mediated by mechanosensors, which convert mechanical stimuli into biological signals. Recently, various mechanosensors have been identified, and their contributions to muscle mechanoreflex have been actively investigated. Nevertheless, the mechanosensitive channels responsible for this muscular reflex remain largely unknown. This review discusses progress in our understanding of muscle mechanoreflex under healthy conditions, focusing on mechanosensitive channels.
Collapse
Affiliation(s)
- Amane Hori
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan; Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Ayumi Fukazawa
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo 102-8472, Japan; Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Kimiaki Katanosaka
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Masaki Mizuno
- Department of Applied Clinical Research, UT Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan.
| |
Collapse
|
8
|
Estrada JA, Hotta N, Kim HK, Ishizawa R, Fukazawa A, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Blockade of endogenous insulin receptor signaling in the nucleus tractus solitarius potentiates exercise pressor reflex function in healthy male rats. FASEB J 2023; 37:e23141. [PMID: 37566482 PMCID: PMC10430879 DOI: 10.1096/fj.202300879rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023]
Abstract
Insulin not only regulates glucose and/or lipid metabolism but also modulates brain neural activity. The nucleus tractus solitarius (NTS) is a key central integration site for sensory input from working skeletal muscle and arterial baroreceptors during exercise. Stimulation of the skeletal muscle exercise pressor reflex (EPR), the responses of which are buffered by the arterial baroreflex, leads to compensatory increases in arterial pressure to supply blood to working muscle. Evidence suggests that insulin signaling decreases neuronal excitability in the brain, thus antagonizing insulin receptors (IRs) may increase neuronal excitability. However, the impact of brain insulin signaling on the EPR remains fully undetermined. We hypothesized that antagonism of NTS IRs increases EPR function in normal healthy rodents. In decerebrate rats, stimulation of the EPR via electrically induced muscle contractions increased peak mean arterial pressure (MAP) responses 30 min following NTS microinjections of an IR antagonist (GSK1838705, 100 μM; Pre: Δ16 ± 10 mmHg vs. 30 min: Δ23 ± 13 mmHg, n = 11, p = .004), a finding absent in sino-aortic baroreceptor denervated rats. Intrathecal injections of GSK1838705 did not influence peak MAP responses to mechano- or chemoreflex stimulation of the hindlimb muscle. Immunofluorescence triple overlap analysis following repetitive EPR stimulation increased c-Fos overlap with EPR-sensitive nuclei and IR-positive cells relative to sham operation (p < .001). The results suggest that IR blockade in the NTS potentiates the MAP response to EPR stimulation. In addition, insulin signaling in the NTS may buffer EPR stimulated increases in blood pressure via baroreflex-mediated mechanisms during exercise.
Collapse
Affiliation(s)
- Juan A. Estrada
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Han-Kyul Kim
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rie Ishizawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ayumi Fukazawa
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Departments of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Butenas ALE, Ishizawa R, Rollins KS, Mizuno M, Copp SW. Sex-dependent attenuating effects of capsaicin administration on the mechanoreflex in healthy rats. Am J Physiol Heart Circ Physiol 2023; 325:H372-H384. [PMID: 37389947 PMCID: PMC10396229 DOI: 10.1152/ajpheart.00237.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Stimulation of mechanically sensitive channels on the sensory endings of group III and IV thin fiber muscle afferents activates the mechanoreflex, which contributes to reflex increases in sympathetic nerve activity (SNA) and blood pressure during exercise. Accumulating evidence suggests that activation of the nonselective cation channel transient receptor potential vanilloid-1 (TRPV1) on the sensory endings of thin fiber afferents with capsaicin may attenuate mechanosensation. However, no study has investigated the effect of capsaicin on the mechanoreflex. We tested the hypothesis that in male and female decerebrate, unanesthetized rats, the injection of capsaicin (0.05 µg) into the arterial supply of the hindlimb reduces the pressor and renal SNA (RSNA) response to 30 s of 1 Hz rhythmic hindlimb muscle stretch (a model of isolated mechanoreflex activation). In male rats (n = 8), capsaicin injection significantly reduced the integrated blood pressure (blood pressure index or BPI: pre, 363 ± 78; post, 211 ± 88 mmHg·s; P = 0.023) and RSNA [∫ΔRSNA; pre, 687 ± 206; post, 216 ± 80 arbitrary units (au), P = 0.049] response to hindlimb muscle stretch. In female rats (n = 8), capsaicin injection had no significant effect on the pressor (BPI; pre: 277 ± 67; post: 207 ± 77 mmHg·s; P = 0.343) or RSNA (∫ΔRSNA: pre, 697 ± 123; post, 440 ± 183 au; P = 0.307) response to hindlimb muscle stretch. The data suggest that the injection of capsaicin into the hindlimb arterial supply to stimulate TRPV1 on the sensory endings of thin fiber muscle afferents attenuates the mechanoreflex in healthy male, but not female, rats. The findings may carry important implications for chronic conditions in which an exaggerated mechanoreflex contributes to aberrant sympathoexcitation during exercise.NEW & NOTEWORTHY Recent evidence in isolated sensory neurons indicates that capsaicin-induced stimulation of TRPV1 attenuates mechanosensitivity. Here we demonstrate for the first time that capsaicin exposure/administration reduces the reflex pressor and renal sympathetic nerve response to mechanoreflex activation in male rats, but not female rats, in vivo. Our data may carry important clinical implications for chronic diseases which have been linked to an exaggerated mechanoreflex, at least in males.
Collapse
Affiliation(s)
- Alec L E Butenas
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Korynne S Rollins
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Steven W Copp
- Department of Kinesiology, Kansas State University, Manhattan, Kansas, United States
| |
Collapse
|
10
|
Szallasi A. The Vanilloid (Capsaicin) Receptor TRPV1 in Blood Pressure Regulation: A Novel Therapeutic Target in Hypertension? Int J Mol Sci 2023; 24:8769. [PMID: 37240118 PMCID: PMC10217837 DOI: 10.3390/ijms24108769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Today's sedentary lifestyle with excess food and little exercise increases the number of people with hypertension, a major risk factor for stroke. New knowledge of treatments in this field is of utmost importance. In animal experiments, the activation by capsaicin of TRPV1-expressing sensory afferents evokes a drop in blood pressure by triggering the Bezold-Jarisch reflex. In hypertensive rats, capsaicin reduces blood pressure. Conversely, genetic ablation of the TRPV1 receptor results in elevated nocturnal (but not diurnal) blood pressure. These observations imply a therapeutic potential for TRPV1 activation in hypertensive patients. Indeed, in a major epidemiological study involving 9273 volunteers, dietary capsaicin was found to lower the risk for hypertension. New research indicates that the mechanism of action of capsaicin on blood pressure regulation is far more complex than previously thought. In addition to the well-recognized role of capsaicin-sensitive afferents in blood pressure regulation, TRPV1 seems to be expressed both in endothelial cells and vascular smooth muscle. This review aims to evaluate the therapeutic potential of TRPV1-targeting drugs in hypertensive patients.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
11
|
Fukazawa A, Hori A, Hotta N, Katanosaka K, Estrada JA, Ishizawa R, Kim HK, Iwamoto GA, Smith SA, Vongpatanasin W, Mizuno M. Antagonism of TRPV4 channels partially reduces mechanotransduction in rat skeletal muscle afferents. J Physiol 2023; 601:1407-1424. [PMID: 36869605 PMCID: PMC10106437 DOI: 10.1113/jp284026] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/02/2023] [Indexed: 03/05/2023] Open
Abstract
Mechanical distortion of working skeletal muscle induces sympathoexcitation via thin fibre afferents, a reflex response known as the skeletal muscle mechanoreflex. However, to date, the receptor ion channels responsible for mechanotransduction in skeletal muscle remain largely undetermined. Transient receptor potential vanilloid 4 (TRPV4) is known to sense mechanical stimuli such as shear stress or osmotic pressure in various organs. It is hypothesized that TRPV4 in thin-fibre primary afferents innervating skeletal muscle is involved in mechanotransduction. Fluorescence immunostaining revealed that 20.1 ± 10.1% of TRPV4 positive neurons were small dorsal root ganglion (DRG) neurons that were DiI-labelled, and among them 9.5 ± 6.1% of TRPV4 co-localized with the C-fibre marker peripherin. In vitro whole-cell patch clamp recordings from cultured rat DRG neurons demonstrated that mechanically activated current amplitude was significantly attenuated after the application of the TRPV4 antagonist HC067047 compared to control (P = 0.004). Such reductions were also observed in single-fibre recordings from a muscle-nerve ex vivo preparation where HC067047 significantly decreased afferent discharge to mechanical stimulation (P = 0.007). Likewise, in an in vivo decerebrate rat preparation, the renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) responses to passive stretch of hindlimb muscle were significantly reduced by intra-arterial injection of HC067047 (ΔRSNA: P = 0.019, ΔMAP: P = 0.002). The findings suggest that TRPV4 plays an important role in mechanotransduction contributing to the cardiovascular responses evoked by the skeletal muscle mechanoreflex during exercise. KEY POINTS: Although a mechanical stimulus to skeletal muscle reflexively activates the sympathetic nervous system, the receptors responsible for mechanotransduction in skeletal muscle thin fibre afferents have not been fully identified. Evidence suggests that TRPV4 is a mechanosensitive channel that plays an important role in mechanotransduction within various organs. Immunocytochemical staining demonstrates that TRPV4 is expressed in group IV skeletal muscle afferents. In addition, we show that the TRPV4 antagonist HC067047 decreases the responsiveness of thin fibre afferents to mechanical stimulation at the muscle tissue level as well as at the level of dorsal root ganglion neurons. Moreover, we demonstrate that intra-arterial HC067047 injection attenuates the sympathetic and pressor responses to passive muscle stretch in decerebrate rats. These data suggest that antagonism of TRPV4 attenuates mechanotransduction in skeletal muscle afferents. The present study demonstrates a probable physiological role for TRPV4 in the regulation of mechanical sensation in somatosensory thin fibre muscle afferents.
Collapse
Affiliation(s)
- Ayumi Fukazawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- Japan Society for the Promotion of Science, Tokyo 102-8472, Japan
| | - Norio Hotta
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Kimiaki Katanosaka
- Graduate School of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Juan A. Estrada
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gary A. Iwamoto
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Alves Rodrigues Santos SA, de Barros Mamede Vidal Damasceno M, Alves Magalhães FE, Sessle BJ, Amaro de Oliveira B, Alves Batista FL, Vieira-Neto AE, Rolim Campos A. Transient receptor potential channel involvement in antinociceptive effect of citral in orofacial acute and chronic pain models. EXCLI JOURNAL 2022; 21:869-887. [PMID: 36172071 PMCID: PMC9489894 DOI: 10.17179/excli2022-5042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022]
Abstract
This study aimed to test for the possible antinociceptive effect of the naturally occurring terpene citral in rodent models of acute and chronic orofacial pain and to test for the possible involvement of transient receptor potential (TRP) channels in this effect. Acute nociceptive behavior was induced in one series of experiments by administering formalin, cinnamaldehyde, menthol or capsaicin to the upper lip. Nociceptive behavior was assessed by orofacial rubbing, and the effects of pre-treatment with citral (0.1, 0.3 or 1.0 mg/Kg) or vehicle (control) were tested on the behavior. Nociceptive behavior was also induced by formalin injected into the temporomandibular joint or mustard oil injected into the masseter muscle, preceded by citral or vehicle (control) treatment. The chronic pain model involved infraorbital nerve transection (IONX) that induced mechanical hypersensitivity which was assessed by von Frey hair stimulation of the upper lip. Motor activity was also evaluated. Docking experiments were performed using TRPV1 and TRPM8 channels. Citral but not vehicle produced significant (p<0.01, ANOVA) antinociception on all the acute nociceptive behaviors, and these effects were attenuated by TRPV1 antagonist capsazepine, TRPM3 antagonist mefenamic acid and by TRPM8 desensitization, but not by ruthenium red and TRPA1 antagonist HC-030031. The IONX animals developed facial mechanical hypersensitivity that was significantly reduced by citral but not by vehicle. The docking experiments revealed that citral may interact with TRPV1 and TRPM8 channels. These results indicate the potential use of citral as an inhibitor of orofacial nociception in both acute and chronic pain states through TRPV1, TRPM3 and TRPM8 channels. See also Figure 1(Fig. 1).
Collapse
Affiliation(s)
| | | | - Francisco Ernani Alves Magalhães
- Experimental Biology Center, University of Fortaleza, Fortaleza, Brazil
- Department of Nutrition and Health, State University of Ceará, Fortaleza, Brazil
| | - Barry John Sessle
- Department of Physiology and Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
13
|
Teixeira AL, Vianna LC. The exercise pressor reflex: An update. Clin Auton Res 2022; 32:271-290. [PMID: 35727398 DOI: 10.1007/s10286-022-00872-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023]
Abstract
The exercise pressor reflex is a feedback mechanism engaged upon stimulation of mechano- and metabosensitive skeletal muscle afferents. Activation of these afferents elicits a reflex increase in heart rate, blood pressure, and ventilation in an intensity-dependent manner. Consequently, the exercise pressor reflex has been postulated to be one of the principal mediators of the cardiorespiratory responses to exercise. In this updated review, we will discuss classical and recent advancements in our understating of the exercise pressor reflex function in both human and animal models. Particular attention will be paid to the afferent mechanisms and pathways involved during its activation, its effects on different target organs, its potential role in the abnormal cardiovascular response to exercise in diseased states, and the impact of age and biological sex on these responses. Finally, we will highlight some unanswered questions in the literature that may inspire future investigations in the field.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Lauro C Vianna
- NeuroV̇ASQ̇, Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, DF, Brasília, Brazil.
| |
Collapse
|
14
|
Mannozzi J, Al-Hassan MH, Lessanework B, Alvarez A, Senador D, O'Leary DS. Chronic ablation of TRPV1-sensitive skeletal muscle afferents attenuates the muscle metaboreflex. Am J Physiol Regul Integr Comp Physiol 2021; 321:R385-R395. [PMID: 34259041 DOI: 10.1152/ajpregu.00129.2021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Exercise intolerance is a hallmark symptom of cardiovascular disease and likely occurs via enhanced activation of muscle metaboreflex-induced vasoconstriction of the heart and active skeletal muscle which, thereby limits cardiac output and peripheral blood flow. Muscle metaboreflex vasoconstrictor responses occur via activation of metabolite-sensitive afferent fibers located in ischemic active skeletal muscle, some of which express transient receptor potential vanilloid 1 (TRPV1) cation channels. Local cardiac and intrathecal administration of an ultrapotent noncompetitive, dominant negative agonist resiniferatoxin (RTX) can ablate these TRPV1-sensitive afferents. This technique has been used to attenuate cardiac sympathetic afferents and nociceptive pain. We investigated whether intrathecal administration (L4-L6) of RTX (2 µg/kg) could chronically attenuate subsequent muscle metaboreflex responses elicited by reductions in hindlimb blood flow during mild exercise (3.2 km/h) in chronically instrumented conscious canines. RTX significantly attenuated metaboreflex-induced increases in mean arterial pressure (27 ± 5.0 mmHg vs. 6 ± 8.2 mmHg), cardiac output (1.40 ± 0.2 L/min vs. 0.28 ± 0.1 L/min), and stroke work (2.27 ± 0.2 L·mmHg vs. 1.01 ± 0.2 L·mmHg). Effects were maintained until 78 ± 14 days post-RTX at which point the efficacy of RTX injection was tested by intra-arterial administration of capsaicin (20 µg/kg). A significant reduction in the mean arterial pressure response (+45.7 ± 6.5 mmHg pre-RTX vs. +19.7 ± 3.1 mmHg post-RTX) was observed. We conclude that intrathecal administration of RTX can chronically attenuate the muscle metaboreflex and could potentially alleviate enhanced sympatho-activation observed in cardiovascular disease states.
Collapse
Affiliation(s)
- Joseph Mannozzi
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | | | - Beruk Lessanework
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alberto Alvarez
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Danielle Senador
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
15
|
Yan X, Zhang S, Zhao H, Liu P, Huang H, Niu W, Wang W, Zhang C. ASIC2 Synergizes with TRPV1 in the Mechano-Electrical Transduction of Arterial Baroreceptors. Neurosci Bull 2021; 37:1381-1396. [PMID: 34215968 DOI: 10.1007/s12264-021-00737-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Mechanosensitive ion channels (MSCs) are key molecules in the mechano-electrical transduction of arterial baroreceptors. Among them, acid-sensing ion channel 2 (ASIC2) and transient receptor potential vanilloid subfamily member 1 (TRPV1) have been studied extensively and documented to play important roles. In this study, experiments using aortic arch-aortic nerve preparations isolated from rats revealed that both ASIC2 and TRPV1 are functionally necessary, as blocking either abrogated nearly all pressure-dependent neural discharge. However, whether ASIC2 and TRPV1 work in coordination remained unclear. So we carried out cell-attached patch-clamp recordings in HEK293T cells co-expressing ASIC2 and TRPV1 and found that inhibition of ASIC2 completely blocked stretch-activated currents while inhibition of TRPV1 only partially blocked these currents. Immunofluorescence staining of aortic arch-aortic adventitia from rats showed that ASIC2 and TRPV1 are co-localized in the aortic nerve endings, and co-immunoprecipitation assays confirmed that the two proteins form a compact complex in HEK293T cells and in baroreceptors. Moreover, protein modeling analysis, exogenous co-immunoprecipitation assays, and biotin pull-down assays indicated that ASIC2 and TRPV1 interact directly. In summary, our research suggests that ASIC2 and TRPV1 form a compact complex and function synergistically in the mechano-electrical transduction of arterial baroreceptors. The model of synergism between MSCs may have important biological significance beyond ASIC2 and TRPV1.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Sitao Zhang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Haiyan Zhao
- Yanjing Medical College, Capital Medical University, Beijing, 101300, China
| | - Ping Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Haixia Huang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Weizhen Niu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Wei Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China. .,Beijing Laboratory for Cardiovascular Precision Medicine, Capital Medical University, Beijing, 100069, China.
| | - Chen Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
16
|
Mizuno M, Hotta N, Ishizawa R, Kim HK, Iwamoto G, Vongpatanasin W, Mitchell JH, Smith SA. The Impact of Insulin Resistance on Cardiovascular Control During Exercise in Diabetes. Exerc Sport Sci Rev 2021; 49:157-167. [PMID: 33965976 PMCID: PMC8195845 DOI: 10.1249/jes.0000000000000259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Patients with diabetes display heightened blood pressure response to exercise, but the underlying mechanism remains to be elucidated. There is no direct evidence that insulin resistance (hyperinsulinemia or hyperglycemia) impacts neural cardiovascular control during exercise. We propose a novel paradigm in which hyperinsulinemia or hyperglycemia significantly influences neural regulatory pathways controlling the circulation during exercise in diabetes.
Collapse
Affiliation(s)
- Masaki Mizuno
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Norio Hotta
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- College of Life and Health Sciences, Chubu University, Kasugai 487-850, Japan
| | - Rie Ishizawa
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Han-Kyul Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Gary Iwamoto
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Wanpen Vongpatanasin
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Jere H. Mitchell
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| | - Scott A. Smith
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-9174, USA
| |
Collapse
|
17
|
Satpute Janve V, Anderson LL, Bahceci D, Hawkins NA, Kearney JA, Arnold JC. The Heat Sensing Trpv1 Receptor Is Not a Viable Anticonvulsant Drug Target in the Scn1a +/- Mouse Model of Dravet Syndrome. Front Pharmacol 2021; 12:675128. [PMID: 34079465 PMCID: PMC8165383 DOI: 10.3389/fphar.2021.675128] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabidiol has been approved for the treatment of drug-resistant childhood epilepsies including Dravet syndrome (DS). Although the mechanism of anticonvulsant action of cannabidiol is unknown, emerging data suggests involvement of the transient receptor potential cation channel subfamily V member 1 (Trpv1). Pharmacological and genetic studies in conventional seizure models suggest Trpv1 is a novel anticonvulsant target. However, whether targeting Trpv1 is anticonvulsant in animal models of drug-resistant epilepsies is not known. Thus, we examined whether Trpv1 affects the epilepsy phenotype of the F1.Scn1a +/- mouse model of DS. We found that cortical Trpv1 mRNA expression was increased in seizure susceptible F1.Scn1a +/- mice with a hybrid genetic background compared to seizure resistant 129.Scn1a +/- mice isogenic on 129S6/SvEvTac background, suggesting Trpv1 could be a genetic modifier. Previous studies show functional loss of Trpv1 is anticonvulsant. However, Trpv1 selective antagonist SB-705498 did not affect hyperthermia-induced seizure threshold, frequency of spontaneous seizures or survival of F1.Scn1a +/- mice. Surprisingly, Trpv1 deletion had both pro- and anti-seizure effects. Trpv1 deletion did not affect hyperthermia-induced seizure temperature thresholds of F1.Scn1a +/- ; Trpv1 +/- at P14-16 but was proconvulsant at P18 as it reduced seizure temperature thresholds. Conversely, Trpv1 deletion did not alter the frequency of spontaneous seizures but reduced their severity. These results suggest that Trpv1 is a modest genetic modifier of spontaneous seizure severity in the F1.Scn1a +/- model of DS. However, the opposing pro- and anti-seizure effects of Trpv1 deletion and the lack of effects of Trpv1 inhibition suggest that Trpv1 is unlikely a viable anticonvulsant drug target in DS.
Collapse
Affiliation(s)
- Vaishali Satpute Janve
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Lyndsey L Anderson
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Dilara Bahceci
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Nicole A Hawkins
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jonathon C Arnold
- Lambert Initiative for Cannabinoid Therapeutics, Brain and Mind Centre, Sydney, NSW, Australia.,Discipline of Pharmacology, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
18
|
Ishizawa R, Kim HK, Hotta N, Iwamoto GA, Mitchell JH, Smith SA, Vongpatanasin W, Mizuno M. TRPV1 (Transient Receptor Potential Vanilloid 1) Sensitization of Skeletal Muscle Afferents in Type 2 Diabetic Rats With Hyperglycemia. Hypertension 2021; 77:1360-1371. [PMID: 33641357 DOI: 10.1161/hypertensionaha.120.15672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Rie Ishizawa
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Han-Kyul Kim
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Norio Hotta
- College of Life and Health Sciences, Chubu University, Kasugai, Japan (N.H.)
| | - Gary A Iwamoto
- Cell Biology (G.A.I.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Masaki Mizuno
- From the Departments of Applied Clinical Research (R.I., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Internal Medicine (H.-K.K., J.H.M., S.A.S., W.V., M.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
19
|
Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021; 16:694-699. [PMID: 33063730 PMCID: PMC8067946 DOI: 10.4103/1673-5374.293132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In peripheral artery disease patients, the blood supply directed to the lower limbs is reduced. This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs. The painful perception is induced and exaggerate during walking, and is relieved by rest. This symptom is termed by intermittent claudication. The limb ischemia also amplifies autonomic responses during exercise. In the process of pain and autonomic responses originating exercising muscle, a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses. This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle. For the sensory nerve receptors, we emphasize the role played by transient receptor potential vanilloid type 1, purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.
Collapse
Affiliation(s)
- Lu Qin
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| | - Jianhua Li
- Heart & Vascular Institute, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
20
|
Teixeira AL, Fernandes IA, Vianna LC. Cardiovascular Control During Exercise: The Connectivity of Skeletal Muscle Afferents to the Brain. Exerc Sport Sci Rev 2020; 48:83-91. [PMID: 32000180 DOI: 10.1249/jes.0000000000000218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exercise pressor reflex (EPR) is engaged upon the activation of group III/IV skeletal muscle afferents and is one of the principal mediators of cardiovascular responses to exercise. This review explores the hypothesis that afferent signals from EPR communicate via GABAergic contacts within the brain stem to evoke parasympathetic withdrawal and sympathoexcitation to increase cardiac output, peripheral resistance, and blood pressure during exercise.
Collapse
Affiliation(s)
- André L Teixeira
- NeuroV̇ASQ̇-Integrative Physiology Laboratory, Faculty of Physical Education, University of Brasília, Brasília, DF, Brazil
| | | | | |
Collapse
|
21
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
22
|
Ishizawa R, Kim HK, Hotta N, Iwamoto GA, Vongpatanasin W, Mitchell JH, Smith SA, Mizuno M. Skeletal Muscle Reflex-Induced Sympathetic Dysregulation and Sensitization of Muscle Afferents in Type 1 Diabetic Rats. Hypertension 2020; 75:1072-1081. [PMID: 32063060 DOI: 10.1161/hypertensionaha.119.14118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The blood pressure response to exercise is exaggerated in the type 1 diabetes mellitus (T1DM). An overactive exercise pressor reflex (EPR) contributes to the potentiated pressor response. However, the mechanism(s) underlying this abnormal EPR activity remains unclear. This study tested the hypothesis that the heightened blood pressure response to exercise in T1DM is mediated by EPR-induced sympathetic overactivity. Additionally, the study examined whether the single muscle afferents are sensitized by PKC (protein kinase C) activation in this disease. Sprague-Dawley rats were intraperitoneally administered either 50 mg/kg streptozotocin (T1DM) or saline (control). At 1 to 3 weeks after administration, renal sympathetic nerve activity and mean arterial pressure responses to activation of the EPR, mechanoreflex, and metaboreflex were measured in decerebrate animals. Action potential responses to mechanical and chemical stimulation were determined in group IV afferents with pPKCα (phosphorylated-PKCα) levels assessed in dorsal root ganglia. Compared with control, EPR (58±18 versus 96±33%; P<0.05), mechanoreflex (21±13 versus 51±20%; P<0.05), and metaboreflex (40±20 versus 88±39%; P<0.01) activation in T1DM rats evoked significant increases in renal sympathetic nerve activity as well as mean arterial pressure. The response of group IV afferents to mechanical (18±24 versus 61±45 spikes; P<0.01) and chemical (0.3±0.4 versus 1.6±0.8 Hz; P<0.01) stimuli were significantly greater in T1DM than control. T1DM rats showed markedly increased pPKCα levels in dorsal root ganglia compared with control. These data suggest that in T1DM, abnormally muscle reflex-evoked increases in sympathetic activity mediate exaggerations in blood pressure. Further, sensitization of muscle afferents, potentially via PKC activation, may contribute to this abnormal circulatory responsiveness.
Collapse
Affiliation(s)
- Rie Ishizawa
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Han-Kyul Kim
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Norio Hotta
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,College of Life and Health Sciences, Chubu University, Kasugai, Japan (N.H.)
| | - Gary A Iwamoto
- Department of Cell Biology (G.A.I.), University of Texas Southwestern Medical Center, Dallas
| | - Wanpen Vongpatanasin
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Jere H Mitchell
- Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Scott A Smith
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| | - Masaki Mizuno
- From the Department of Applied Clinical Research (R.I., N.H., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas.,Department of Internal Medicine (H.-K.K., W.V., J.H.M., S.A.S., M.M.), University of Texas Southwestern Medical Center, Dallas
| |
Collapse
|
23
|
Ducrocq GP, Kim JS, Estrada JA, Kaufman MP. ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex in rats. Am J Physiol Heart Circ Physiol 2020; 318:H78-H89. [PMID: 31675256 PMCID: PMC6985806 DOI: 10.1152/ajpheart.00565.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/22/2022]
Abstract
The role of the acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex is unknown, despite the fact that ASIC1a is opened by decreases in pH in the physiological range. This fact prompted us to test the hypothesis that ASIC1a plays an important role in evoking the exercise pressor reflex in decerebrated rats with freely perfused hindlimb muscles. To test this hypothesis, we measured the effect of injecting two ASIC1a blockers into the arterial supply of the triceps surae muscles on the reflex pressor responses to four maneuvers, namely 1) static contraction of the triceps surae muscles (i.e., the exercise pressor reflex), 2) calcaneal tendon stretch, 3) intra-arterial injection of lactic acid, and 4) intra-arterial injection of diprotonated phosphate. We found that the 2 ASIC1a blockers, psalmotoxin-1 (200 ng/kg) and mambalgin-1 (6.5 μg/kg), decreased the pressor responses to static contraction as well as the peak pressor responses to injection of lactic acid and diprotonated phosphate. In contrast, neither ASIC1a blocker had any effect on the pressor responses to tendon stretch. Importantly, we found that ASIC1a blockade significantly decreased the pressor response to static contraction after a latency of at least 8 s. Our results support the hypothesis that ASIC1a plays a key role in evoking the metabolic component of the exercise pressor reflex.NEW & NOTEWORTHY The role played by acid-sensing ion channel 1a (ASIC1a) in evoking the exercise pressor reflex remains unknown. In decerebrated rats with freely perfused femoral arteries, blocking ASIC1a with psalmotoxin-1 or mambalgin-1 significantly attenuated the pressor response to static contraction, lactic acid, and diprotonated phosphate injection but had no effect on the pressor response to stretch. We conclude that ASIC1a plays a key role in evoking the exercise pressor reflex by responding to contraction-induced metabolites, such as protons.
Collapse
Affiliation(s)
- Guillaume P Ducrocq
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Joyce S Kim
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Juan A Estrada
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| | - Marc P Kaufman
- Heart and Vascular Institute, Penn State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|