1
|
Lower morning levels of cortisol and neuropeptides in blood samples from patients with bipolar disorder. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2022. [DOI: 10.1016/j.jadr.2022.100406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
2
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
3
|
Mazuski C, Chen SP, Herzog ED. Different Roles for VIP Neurons in the Neonatal and Adult Suprachiasmatic Nucleus. J Biol Rhythms 2020; 35:465-475. [PMID: 32536240 DOI: 10.1177/0748730420932073] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The suprachiasmatic nucleus (SCN) drives circadian rhythms in locomotion through coupled, single-cell oscillations. Global genetic deletion of the neuropeptide Vip or its receptor Vipr2 results in profound deficits in daily synchrony among SCN cells and daily rhythms in locomotor behavior and glucocorticoid secretion. To test whether this phenotype depends on vasoactive intestinal polypeptide (VIP) neurons in the SCN, we ablated VIP SCN neurons in vivo in adult male mice through Caspase3-mediated induction of the apoptotic pathway in cre-expressing VIP neurons. We found that ablation of VIP SCN neurons in adult mice caused a phenotype distinct from Vip- and Vipr2-null mice. Mice lacking VIP neurons retained rhythmic locomotor activity with a shortened circadian period, more variable onsets, and decreased duration of daily activity. Circadian hormonal outputs, specifically corticosterone rhythms, were severely dampened. In contrast, deletion of neonatal SCN VIP neurons dramatically reduced circadian gene expression in the cultured SCN, mimicking the effects of global deletion of Vip or Vipr2. These results suggest that SCN VIP neurons play a role in lengthening circadian period and stimulating the daily surge in glucocorticoids in adults and in synchronizing and sustaining daily rhythms among cells in the developing SCN.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University, St. Louis, Missouri
| | - Samantha P Chen
- Department of Biology, Washington University, St. Louis, Missouri
| | - Erik D Herzog
- Department of Biology, Washington University, St. Louis, Missouri
| |
Collapse
|
4
|
Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2019; 51:310-325. [DOI: 10.1111/ejn.14358] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/03/2019] [Accepted: 01/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Marilyn J. Duncan
- Department of NeuroscienceUniversity of Kentucky Medical School Lexington Kentucky
| |
Collapse
|
5
|
Mazuski C, Abel JH, Chen SP, Hermanstyne TO, Jones JR, Simon T, Doyle FJ, Herzog ED. Entrainment of Circadian Rhythms Depends on Firing Rates and Neuropeptide Release of VIP SCN Neurons. Neuron 2018; 99:555-563.e5. [PMID: 30017392 PMCID: PMC6085153 DOI: 10.1016/j.neuron.2018.06.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 05/13/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
The mammalian suprachiasmatic nucleus (SCN) functions as a master circadian pacemaker, integrating environmental input to align physiological and behavioral rhythms to local time cues. Approximately 10% of SCN neurons express vasoactive intestinal polypeptide (VIP); however, it is unknown how firing activity of VIP neurons releases VIP to entrain circadian rhythms. To identify physiologically relevant firing patterns, we optically tagged VIP neurons and characterized spontaneous firing over 3 days. VIP neurons had circadian rhythms in firing rate and exhibited two classes of instantaneous firing activity. We next tested whether physiologically relevant firing affected circadian rhythms through VIP release. We found that VIP neuron stimulation with high, but not low, frequencies shifted gene expression rhythms in vitro through VIP signaling. In vivo, high-frequency VIP neuron activation rapidly entrained circadian locomotor rhythms. Thus, increases in VIP neuronal firing frequency release VIP and entrain molecular and behavioral circadian rhythms. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Cristina Mazuski
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - John H Abel
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Samantha P Chen
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tracey O Hermanstyne
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeff R Jones
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tatiana Simon
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Erik D Herzog
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
6
|
Ardic FC, Kose S, Solmaz M, Kulacaoglu F, Balcioglu YH, Yıldız E, Elboğa G, Altındağ A, Arslan M, Metehan Çalışkan A, Göktaş D, İnanlı İ, Çalışır S, Eren İ, Unal G, Aricioglu F, Yulaf Y, Gümştaş F, Gökçe S, Yazgan Y, Memiş ÇÖ, Sevincok D, Doğan B, Kutlu A, Çakaloz B, Sevinçok L, Mutu T, Yazici E, Guzel D, Erol A, Aydın N, Aytaç HM, Yılmaz D, Çetinay Aydın P, Yüksel Yalçın G, Canbay C, Terzioğlu M, Özer A. Outstanding Awards Brief Reports. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1467612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Ferhat Can Ardic
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Samet Kose
- University of Texas Medical School of Houston, Houston, TX, USA
- Center for Neurobehavioral Research on Addictions, Houston, TX, USA
| | - Mustafa Solmaz
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Filiz Kulacaoglu
- Department of Psychiatry, Health Sciences University, Bagcilar Research and Training Hospital, Istanbul, Turkey
| | - Yasin Hasan Balcioglu
- Neurology and Neurosurgery, Forensic Psychiatry Unit, Bakirkoy Research and Training Hospital for Psychiatry, Istanbul, Turkey
| | - Emrah Yıldız
- Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | - Gülçin Elboğa
- Department of Psychiatry, Gaziantep University, Gaziantep, Turkey
| | | | - Mehmet Arslan
- Department of Psychiatry, Babaeski State Hospital, Kırklareli, Turkey
| | | | - Duygu Göktaş
- Department of Psychiatry, Yozgat City Hospital, Yozgat, Turkey
| | - İkbal İnanlı
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - Saliha Çalışır
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - İbrahim Eren
- Department of Psychiatry, Konya Training and Research Hospital, Konya, Turkey
| | - Gokhan Unal
- Department pf Pharmacology, Erciyes University School of Pharmacy, Kayseri, Turkey
| | - Feyza Aricioglu
- Department of Pharmacology and Psychopharmacology Research Unit, Marmara University School of Pharmacy, Istanbul, Turkey
| | - Yasemin Yulaf
- Department of Psychology, Istanbul Gelisim University, Istanbul, Turkey
| | - Funda Gümştaş
- Child and Adolescent Psychiatry Clinic, Marmara University Education Research Hospital, Istanbul, Turkey
| | - Sebla Gökçe
- Child and Adolescent Psychiatry Clinic, Maltepe University School of Medicine, Istanbul, Turkey
| | - Yankı Yazgan
- Child and Adolescent Psychiatry Clinic, Marmara University School of Medicine, Istanbul, Turkey
| | - Çağdaş Öykü Memiş
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Doğa Sevincok
- Department of Child and Adolescent Psychiatry, Adnan Menderes University School of Medicine, Aydın, Turkey
| | - Bilge Doğan
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Ayşe Kutlu
- Department of Child and Adolescent Psychiatry, Behcet Uz Child Diseases and Neurosurgery Research and Training Hospital, İzmir, Turkey
| | - Burcu Çakaloz
- Department of Child and Adolescent Psychiatry, Pamukkale University School of Medicine, Denizli, Turkey
| | - Levent Sevinçok
- Department of Psychiatry, School of Medicine, Adnan Menderes, Aydın, Turkey
| | - Tuğba Mutu
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Esra Yazici
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Derya Guzel
- Department of Physiology, Sakarya University School of Medicine, Sakarya, Turkey
| | - Atila Erol
- Department of Psychiatry, Sakarya University School of Medicine, Sakarya, Turkey
| | - Nazan Aydın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Hasan Mervan Aytaç
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Doğan Yılmaz
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Pınar Çetinay Aydın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Gökşen Yüksel Yalçın
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Cana Canbay
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Merve Terzioğlu
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| | - Aysel Özer
- Bakirkoy Prof. Dr. Mazhar Osman Research and Training Hospital for Psychiatry, Neurology, and Neurosurgery, Istanbul, Turkey
| |
Collapse
|
7
|
Fung C, Boesmans W, Cirillo C, Foong JPP, Bornstein JC, Vanden Berghe P. VPAC Receptor Subtypes Tune Purinergic Neuron-to-Glia Communication in the Murine Submucosal Plexus. Front Cell Neurosci 2017; 11:118. [PMID: 28487635 PMCID: PMC5403822 DOI: 10.3389/fncel.2017.00118] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
The enteric nervous system (ENS) situated within the gastrointestinal tract comprises an intricate network of neurons and glia which together regulate intestinal function. The exact neuro-glial circuitry and the signaling molecules involved are yet to be fully elucidated. Vasoactive intestinal peptide (VIP) is one of the main neurotransmitters in the gut, and is important for regulating intestinal secretion and motility. However, the role of VIP and its VPAC receptors within the enteric circuitry is not well understood. We investigated this in the submucosal plexus of mouse jejunum using calcium (Ca2+)-imaging. Local VIP application induced Ca2+-transients primarily in neurons and these were inhibited by VPAC1- and VPAC2-antagonists (PG 99-269 and PG 99-465 respectively). These VIP-evoked neural Ca2+-transients were also inhibited by tetrodotoxin (TTX), indicating that they were secondary to action potential generation. Surprisingly, VIP induced Ca2+-transients in glia in the presence of the VPAC2 antagonist. Further, selective VPAC1 receptor activation with the agonist ([K15, R16, L27]VIP(1-7)/GRF(8-27)) predominantly evoked glial responses. However, VPAC1-immunoreactivity did not colocalize with the glial marker glial fibrillary acidic protein (GFAP). Rather, VPAC1 expression was found on cholinergic submucosal neurons and nerve fibers. This suggests that glial responses observed were secondary to neuronal activation. Trains of electrical stimuli were applied to fiber tracts to induce endogenous VIP release. Delayed glial responses were evoked when the VPAC2 antagonist was present. These findings support the presence of an intrinsic VIP/VPAC-initiated neuron-to-glia signaling pathway. VPAC1 agonist-evoked glial responses were inhibited by purinergic antagonists (PPADS and MRS2179), thus demonstrating the involvement of P2Y1 receptors. Collectively, we showed that neurally-released VIP can activate neurons expressing VPAC1 and/or VPAC2 receptors to modulate purine-release onto glia. Selective VPAC1 activation evokes a glial response, whereas VPAC2 receptors may act to inhibit this response. Thus, we identified a component of an enteric neuron-glia circuit that is fine-tuned by endogenous VIP acting through VPAC1- and VPAC2-mediated pathways.
Collapse
Affiliation(s)
- Candice Fung
- Department of Physiology, The University of MelbourneParkville, VIC, Australia.,Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Werend Boesmans
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Carla Cirillo
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| | - Jaime P P Foong
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, The University of MelbourneParkville, VIC, Australia
| | - Pieter Vanden Berghe
- Laboratory for Enteric Neuroscience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), KU LeuvenLeuven, Belgium
| |
Collapse
|
8
|
Wreschnig D, Dolatshad H, Davis FC. Embryonic development of circadian oscillations in the mouse hypothalamus. J Biol Rhythms 2015; 29:299-310. [PMID: 25238858 DOI: 10.1177/0748730414545086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Circadian rhythms in mammals are regulated by the hypothalamic suprachiasmatic nucleus (SCN). The generation of circadian oscillations is a cell-autonomous property, and coupling among cells is essential for the SCN to function as a pacemaker. The development of SCN anatomy and cytology has been extensively studied, but the point in development when the SCN first has the capacity to generate circadian oscillations has not been established. We therefore examined the development of circadian oscillations using per2::luc mice in which bioluminescence tracks the expression of the circadian clock protein, PER2. In vitro, hypothalamic explants first expressed consistent oscillations when isolated between 15 and 16 days postfertilization (e15). Oscillations were more robust at later ages. Explants from other brain areas did not express oscillations, indicating that the development of oscillations is not a general property of embryonic tissue. SCN explants obtained on e14 did not initially express oscillations but developed them in vitro over 4 to 6 d. Although coupling among cells is required for the long-term expression of tissue-level oscillations, explants from mice lacking the coupling peptide vasoactive intestinal peptide still developed oscillations. In the mouse, the capacity to generate molecular oscillations on e15 coincides with the completion of neurogenesis and SCN-specific transcription factor expression. Thus, within a day of its genesis at an age approximately equivalent to the end of the first trimester in humans, the SCN develops the capacity to express circadian oscillations and autonomously develops mechanisms sufficient to couple and synchronize its cells.
Collapse
Affiliation(s)
- Daniel Wreschnig
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Hamid Dolatshad
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Fred C Davis
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Manoogian ENC, Leise TL, Bittman EL. Phase resetting in duper hamsters: specificity to photic zeitgebers and circadian phase. J Biol Rhythms 2015; 30:129-43. [PMID: 25633984 DOI: 10.1177/0748730414568297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The duper mutation in Syrian hamsters shortens the free-running period of locomotor activity (τDD) to about 23 h and results in a type 0 phase-response curve (PRC) to 15-min light pulses. To determine whether exaggerated phase shifts are specific to photic cues and/or restricted to subjective night, we subjected hamsters to novel wheel confinements and dark pulses during subjective day. Small phase shifts elicited by the nonphotic cue were comparable in mutant and wild-type (WT) hamsters, but dark pulses triggered larger shifts in dupers. To assess further the effects of the duper mutation on light-dark transitions, we transferred hamsters between constant light (LL) and constant dark (DD) or between DD and LL at various circadian phases. Duper hamsters displayed significantly larger phase shifts than WT hamsters when transferred from LL to DD during subjective day and from DD to LL during subjective night. The variability of phase shifts in response to all light/dark transitions was significantly greater in duper hamsters at all time points. In addition, most duper hamsters, but none of the WTs, displayed transient ultradian wheel-running patterns for 5 to 12 days when transferred from light to dark at CT 18. The χ(2) periodogram and autocorrelation analyses indicate that these ultradian patterns differ from the disruption of rhythmicity by SCN lesions or exposure to constant bright light. We conclude that the duper mutation specifically amplifies phase shifts to photic cues and may destabilize coupling of circadian organization upon photic challenge due to weakened coupling among components of the circadian pacemaker. Mathematical modeling of the circadian pacemaker supports this hypothesis.
Collapse
Affiliation(s)
- Emily N C Manoogian
- Department of Biology and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| | - Tanya L Leise
- Department of Mathematics & Statistics, Amherst College, Amherst, Massachusetts
| | - Eric L Bittman
- Department of Biology and Program in Neuroscience and Behavior, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
10
|
Yulyaningsih E, Loh K, Lin S, Lau J, Zhang L, Shi Y, Berning BA, Enriquez R, Driessler F, Macia L, Khor EC, Qi Y, Baldock P, Sainsbury A, Herzog H. Pancreatic polypeptide controls energy homeostasis via Npy6r signaling in the suprachiasmatic nucleus in mice. Cell Metab 2014; 19:58-72. [PMID: 24411939 DOI: 10.1016/j.cmet.2013.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 12/29/2022]
Abstract
Y-receptors control energy homeostasis, but the role of Npy6 receptors (Npy6r) is largely unknown. Young Npy6r-deficient (Npy6r(-/-)) mice have reduced body weight, lean mass, and adiposity, while older and high-fat-fed Npy6r(-/-) mice have low lean mass with increased adiposity. Npy6r(-/-) mice showed reduced hypothalamic growth hormone releasing hormone (Ghrh) expression and serum insulin-like growth factor-1 (IGF-1) levels relative to WT. This is likely due to impaired vasoactive intestinal peptide (VIP) signaling in the suprachiasmatic nucleus (SCN), where we found Npy6r coexpressed in VIP neurons. Peripheral administration of pancreatic polypeptide (PP) increased Fos expression in the SCN, increased energy expenditure, and reduced food intake in WT, but not Npy6r(-/-), mice. Moreover, intraperitoneal (i.p.) PP injection increased hypothalamic Ghrh mRNA expression and serum IGF-1 levels in WT, but not Npy6r(-/-), mice, an effect blocked by intracerebroventricular (i.c.v.) Vasoactive Intestinal Peptide (VPAC) receptors antagonism. Thus, PP-initiated signaling through Npy6r in VIP neurons regulates the growth hormone axis and body composition.
Collapse
Affiliation(s)
- Ernie Yulyaningsih
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Kim Loh
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Shu Lin
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Jackie Lau
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Lei Zhang
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yanchuan Shi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Britt A Berning
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ronaldo Enriquez
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Frank Driessler
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Laurence Macia
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Ee Cheng Khor
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Yue Qi
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Paul Baldock
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | - Amanda Sainsbury
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; School of Medical Sciences, Wallace Wurth Building, University of NSW, Botany Street, Sydney 2052, Australia; The Boden Institute of Obesity, Nutrition, Exercise, and Eating Disorders, Sydney Medical School, The University of Sydney, Medical Foundation Building, 92-94 Parramatta Road, Camperdown NSW 2006, Australia
| | - Herbert Herzog
- Neuroscience Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia; UNSW Medicine, ASGM Building, University of NSW, Botany Street, Sydney 2052, Australia.
| |
Collapse
|
11
|
Schroeder AM, Colwell CS. How to fix a broken clock. Trends Pharmacol Sci 2013; 34:605-19. [PMID: 24120229 PMCID: PMC3856231 DOI: 10.1016/j.tips.2013.09.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/10/2013] [Accepted: 09/11/2013] [Indexed: 12/29/2022]
Abstract
Fortunate are those who rise out of bed to greet the morning light well rested with the energy and enthusiasm to drive a productive day. Others, however, depend on hypnotics for sleep and require stimulants to awaken lethargic bodies. Sleep/wake disruption is a common occurrence in healthy individuals throughout their lifespan and is also a comorbid condition to many diseases (neurodegenerative) and psychiatric disorders (depression and bipolar). There is growing concern that chronic disruption of the sleep/wake cycle contributes to more serious conditions including diabetes (type 2), cardiovascular disease, and cancer. A poorly functioning circadian system resulting in misalignments in the timing of clocks throughout the body may be at the root of the problem for many people. In this article we discuss environmental (light therapy) and lifestyle changes (scheduled meals, exercise, and sleep) as interventions to help fix a broken clock. We also discuss the challenges and potential for future development of pharmacological treatments to manipulate this key biological system.
Collapse
Affiliation(s)
- Analyne M Schroeder
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA 90024, USA
| | | |
Collapse
|
12
|
Kovacic P, Somanathan R. Cell signaling, receptors, electrical effects and therapy in circadian rhythm. J Recept Signal Transduct Res 2013; 33:267-75. [PMID: 23914781 DOI: 10.3109/10799893.2013.822890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Circadian rhythm has been the object of much attention. This review addresses the aspects of cell signaling, receptors, therapy and electrical effects in a multifaceted fashion. The pineal gland, which produces the important hormones melatonin and serotonin, exerts a prominent influence, in addition to the supraschiasmatic nucleus. Many aspects involve free radicals which have played a widespread role in biochemistry.
Collapse
Affiliation(s)
- Peter Kovacic
- Department of Chemistry and Biochemistry, San Diego State University, San Diego , CA , USA and
| | | |
Collapse
|
13
|
Hughes ATL, Guilding C, Piggins HD. Neuropeptide signaling differentially affects phase maintenance and rhythm generation in SCN and extra-SCN circadian oscillators. PLoS One 2011; 6:e18926. [PMID: 21559484 PMCID: PMC3084722 DOI: 10.1371/journal.pone.0018926] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 03/11/2011] [Indexed: 02/02/2023] Open
Abstract
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.
Collapse
Affiliation(s)
- Alun T L Hughes
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | | | | |
Collapse
|
14
|
An S, Irwin RP, Allen CN, Tsai C, Herzog ED. Vasoactive intestinal polypeptide requires parallel changes in adenylate cyclase and phospholipase C to entrain circadian rhythms to a predictable phase. J Neurophysiol 2011; 105:2289-96. [PMID: 21389307 DOI: 10.1152/jn.00966.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian oscillations in the suprachiasmatic nucleus (SCN) depend on transcriptional repression by Period (PER)1 and PER2 proteins within single cells and on vasoactive intestinal polypeptide (VIP) signaling between cells. Because VIP is released by SCN neurons in a circadian pattern, and, after photic stimulation, it has been suggested to play a role in the synchronization to environmental light cycles. It is not known, however, if or how VIP entrains circadian gene expression or behavior. Here, we tested candidate signaling pathways required for VIP-mediated entrainment of SCN rhythms. We found that single applications of VIP reset PER2 rhythms in a time- and dose-dependent manner that differed from light. Unlike VIP-mediated signaling in other cell types, simultaneous antagonism of adenylate cyclase and phospholipase C activities was required to block the VIP-induced phase shifts of SCN rhythms. Consistent with this, VIP rapidly increased intracellular cAMP in most SCN neurons. Critically, daily VIP treatment entrained PER2 rhythms to a predicted phase angle within several days, depending on the concentration of VIP and the interval between VIP applications. We conclude that VIP entrains circadian timing among SCN neurons through rapid and parallel changes in adenylate cyclase and phospholipase C activities.
Collapse
Affiliation(s)
- Sungwon An
- Department of Biology, Washington University, St. Louis, MO 63130-4899, USA
| | | | | | | | | |
Collapse
|
15
|
Hannibal J, Hsiung HM, Fahrenkrug J. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice. Am J Physiol Regul Integr Comp Physiol 2011; 300:R519-30. [DOI: 10.1152/ajpregu.00599.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4–6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen; and
| | - Hansen M. Hsiung
- Division of Endocrine Research, Eli Lilly and Co., Indianapolis, Indiana
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Bispebjerg Hospital, University of Copenhagen; and
| |
Collapse
|
16
|
Schroeder A, Loh DH, Jordan MC, Roos KP, Colwell CS. Circadian regulation of cardiovascular function: a role for vasoactive intestinal peptide. Am J Physiol Heart Circ Physiol 2010; 300:H241-50. [PMID: 20952671 DOI: 10.1152/ajpheart.00190.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The circadian system, driven by the suprachiasmatic nucleus (SCN), regulates properties of cardiovascular function. The dysfunction of this timing system can result in cardiac pathology. The neuropeptide vasoactive intestinal peptide (VIP) is crucial for circadian rhythms in a number of biological processes including SCN electrical activity and wheel running behavior. Anatomic evidence indicates that SCN neurons expressing VIP are well positioned to drive circadian regulation of cardiac function through interactions with the autonomic centers. In this study, we tested the hypothesis that loss of VIP would result in circadian deficits in heart rate (HR) and clock gene expression in cardiac tissue. We implanted radiotelemetry devices into VIP-deficient mice and wild-type (WT) controls and continuously recorded HR, body temperature, and cage activity in freely moving mice. Under light-dark conditions, VIP-deficient mice displayed weak rhythms in HR, body temperature, and cage activity, with onsets that were advanced in phase compared with WT mice. Similarly, clock gene expression in cardiac tissue was rhythmic but phase advanced in mutant mice. In constant darkness, the normal circadian rhythms in HR were lost in VIP-deficient mice; however, most mutant mice continued to exhibit circadian rhythms of body temperature with shortened free-running period. The loss of VIP altered, but did not abolish, autonomic regulation of HR. Analysis of the echocardiograms did not find any evidence for a loss of cardiac function in VIP-deficient mice, and the size of the hearts did not differ between genotypes. These results demonstrate that VIP is an important regulator of physiological circadian rhythmicity in the heart.
Collapse
Affiliation(s)
- Analyne Schroeder
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90024, USA
| | | | | | | | | |
Collapse
|