1
|
Heissenberger S, DuRant SE, Bauer CM. Chronic Water Restriction Leads to Body Mass Loss, Increased Urine Concentrations, and Reduced Evaporative Water Loss in Female Octodon degus, an Arid-Adapted Rodent. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2025; 98:28-40. [PMID: 40197217 DOI: 10.1086/734843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
AbstractRegions worldwide over the next few decades are projected to experience higher rates of drought, and animals will be faced with increasingly arid conditions. Understanding physiological effects of low water availability, such as impacts on metabolism and water loss, can further understanding of how animals will cope with aridification. Common degus (Octodon degus) are social rodents native to central Chile, an area that has been experiencing drought since 2010. Using a laboratory population of female degus, we subjected individuals to either (1) control conditions in which water was provided ad lib. or (2) a water-restriction regimen in which water allotments were decreased by 25% each week for 3 wk. Basal metabolic rate and evaporative water loss were estimated using flow-through respirometry before experimental manipulation and at the end of each week. We also collected urine samples, quantified daily food consumption, and weighed animals weekly. We found that body mass decreased significantly in water-restricted animals compared to in controls and that their capacity to concentrate urine increased significantly after 1 wk of water restriction. However, the rate of evaporative water loss did not decrease until the third week of water restriction. Thus, under conditions of low water availability in the absence of heat stress, female degus primarily limit urinary water loss and later decrease evaporative water loss, a strategy that may also be used by similar-sized mammals.
Collapse
|
2
|
Zhong QM, Zheng YH, Wang JL. Seasonal flexibility of the gut structure and physiology in Eremias multiocellata. J Comp Physiol B 2023; 193:281-291. [PMID: 36995414 DOI: 10.1007/s00360-023-01485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Although gut seasonal plasticity has been extensively reported, studies on physiological flexibility, such as water-salt transportation and motility in reptiles, are limited. Therefore, this study investigated the intestinal histology and gene expression involved in water-salt transport (AQP1, AQP3, NCC, and NKCC2) and motility regulation (nNOS, CHRM2, and ADRB2) in desert-dwelling Eremias multiocellata during winter (hibernating period) and summer (active period). The results showed that mucosal thickness, the villus width and height, the enterocyte height of the small intestine, and the mucosal and submucosal thicknesses of the large intestine were greater in winter than in summer. However, submucosal thickness of the small intestine and muscularis thickness of the large intestine were lower in winter than in summer. Furthermore, AQP1, AQP3, NCC, nNOS, CHRM2, and ADRB2 expressions in the small intestine were higher in winter than in summer; AQP1, AQP3, and nNOS expressions in the large intestine were lower in winter than in summer, with the upregulation of NCC and CHRM2 expressions; no significant seasonal differences were found in intestinal NKCC2 expression. These results suggest that (i) intestinal water-salt transport activity is flexible during seasonal changes where AQP1, AQP3 and NCC play a vital role, (ii) the intestinal motilities are attenuated through the concerted regulation of nNOS, CHRM2, and ADRB2, and (iii) the physiological flexibility of the small and large intestine may be discrepant due to their functional differences. This study reveals the intestinal regulation and adaptation mechanisms in E. multiocellata in response to the hibernation season.
Collapse
Affiliation(s)
- Qiu-Mei Zhong
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China
| | - Yang-Hui Zheng
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China
| | - Jian-Li Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China.
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China.
| |
Collapse
|
3
|
Zhang J, Li S, Deng F, Baikeli B, Yu W, Liu G. Distribution of aquaporins and sodium transporters in the gastrointestinal tract of a desert hare, Lepus yarkandensis. Sci Rep 2019; 9:16639. [PMID: 31719660 PMCID: PMC6851143 DOI: 10.1038/s41598-019-53291-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Lepus yarkandensis is a desert hare of the Tarim Basin in western China, and it has strong adaptability to arid environments. Aquaporins (AQPs) are a family of water channel proteins that facilitate transmembrane water transport. Gastrointestinal tract AQPs are involved in fluid absorption in the small intestine and colon. This study aimed to determine the distribution of AQPs and sodium transporters in the gastrointestinal tract of L. yarkandensis and to compare the expression of these proteins with that in Oryctolagus cuniculus. Immunohistochemistry was performed to analyse the cellular distribution of these proteins, and the acquired images were analysed with IpWin32 software. Our results revealed that AQP1 was located in the colonic epithelium, central lacteal cells, fundic gland parietal cells, and capillary endothelial cells; AQP3 was located in the colonic epithelium, small intestinal villus epithelium, gastric pit and fundic gland; AQP4 was located in the fundic gland, small intestinal gland and colonic epithelium; and epithelial sodium channel (ENaC) and Na+-K+-ATPase were located in the epithelial cells, respectively. The higher expression levels of AQP1, AQP3, ENaC and Na+-K+-ATPase in the colon of L. yarkandensis compared to those in O. cuniculus suggested that L. yarkandensis has a higher capacity for faecal dehydration.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
| | - Shuwei Li
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Fang Deng
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Buheliqihan Baikeli
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Weijiang Yu
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
- Department of Basic Veterinary Medicine, and Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine Huazhong Agricultural University Wuhan, Hubei Province, 430070, People's Republic of China.
| |
Collapse
|
4
|
Hu TG, Wen P, Fu HZ, Lin GY, Liao ST, Zou YX. Protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota. Food Funct 2019; 10:1513-1528. [DOI: 10.1039/c9fo00132h] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
- School of Food Science and Engineering
| | - Peng Wen
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
- School of Food Science and Engineering
| | - Hui-Zhan Fu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
| | - Guang-Yue Lin
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
| | - Sen-Tai Liao
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
| | - Yu-Xiao Zou
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- China
| |
Collapse
|
5
|
Zhai X, Lin D, Zhao Y, Yang X. Bacterial Cellulose Relieves Diphenoxylate-Induced Constipation in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4106-4117. [PMID: 29627986 DOI: 10.1021/acs.jafc.8b00385] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study was to probe the effects of bacterial cellulose (BC) on diphenoxylate-induced constipation in rats. Administration with BC at 500 mg/kg of body weight in diphenoxylate-induced constipation rats distinctly improved the carmine propulsion rate (83.5 ± 5.2%), shortened the defecating time of the first red feces (249.0 ± 23.3 min), and increased the weight of carmine red feces within 5 h (2.7 ± 1.3 g). The levels of aquaporins (AQP-2, AQP-3, and AQP-4) and inhibitory neurotransmitters (nitric oxide, nitric oxide synthetase, vasoactive intestinal peptide, and arginine vasopressin) in the BC-treated groups reduced by 31.9-40.0% ( p < 0.01) and 21.1-67.7% ( p < 0.01) compared to those in the constipation group, respectively. However, the secretion of excitability neurotransmitters (substance P and motilin) in the BC-treated groups was increased by 20.0-39.9% ( p < 0.01). The activities of ATPases in the colon of constipation rats were significantly weakened by BC administration ( p < 0.01). Histological morphology of the colon showed that BC supplementation could effectively increase the length of villus cells and the thickness of colonic mucosa and muscle ( p < 0.01). Moreover, BC supplementation could protect colonic smooth muscle cells against apoptosis. All of the findings suggest that BC supplementation effectively relieves constipation in rats and BC would be used as a great promising dietary fiber for alleviating constipation.
Collapse
|
6
|
Abstract
Desert rodents face a sizeable challenge in maintaining salt and water homeostasis due to their life in an arid environment. A number of their organ systems exhibit functional characteristics that limit water loss above that which occurs in non-desert species under similar conditions. These systems include renal, pulmonary, gastrointestinal, nasal, and skin epithelia. The desert rodent kidney preserves body water by producing a highly concentrated urine that reaches a maximum osmolality nearly three times that of the common laboratory rat. The precise mechanism by which urine is concentrated in any mammal is unknown. Insights into the process may be more apparent in species that produce highly concentrated urine. Aquaporin water channels play a fundamental role in water transport in several desert rodent organ systems. The role of aquaporins in facilitating highly effective water preservation in desert rodents is only beginning to be explored. The organ systems of desert rodents and their associated AQPs are described.
Collapse
Affiliation(s)
- Thomas L Pannabecker
- Department of Physiology, AHSC 4128, University of Arizona Health Sciences Center, 1501 N. Campbell Avenue, Tucson, Arizona 85724-5051
| |
Collapse
|
7
|
Madsen SS, Olesen JH, Bedal K, Engelund MB, Velasco-Santamaría YM, Tipsmark CK. Functional characterization of water transport and cellular localization of three aquaporin paralogs in the salmonid intestine. Front Physiol 2011; 2:56. [PMID: 21941512 PMCID: PMC3171111 DOI: 10.3389/fphys.2011.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 08/17/2011] [Indexed: 01/05/2023] Open
Abstract
Intestinal water absorption is greatly enhanced in salmonids upon acclimation from freshwater (FW) to seawater (SW); however, the molecular mechanism for water transport is unknown. We conducted a pharmacological characterization of water absorption in the rainbow trout intestine along with an investigation of the distribution and cellular localization of three aquaporins (Aqp1aa, -1ab, and -8ab) in pyloric caeca, middle (M), and posterior (P) intestine of the Atlantic salmon. In vitro iso-osmotic water absorption (J(v)) was higher in SW than FW-trout and was inhibited by (mmol L(-1)): 0.1 KCN (41%), 0.1 ouabain (72%), and 0.1 bumetanide (82%) suggesting that active transport, Na(+), K(+)-ATPase and Na(+), K(+), 2Cl(-)-co-transport are involved in establishing the driving gradient for water transport. J(v) was also inhibited by 1 mmol L(-1) HgCl(2), serosally (23% in M and 44% in P), mucosally (27% in M), or both (61% in M and 58% in P), suggesting involvement of both apical and basolateral aquaporins in water transport. The inhibition was antagonized by 5 mmol L(-1) mercaptoethanol. By comparison, 10 mmol L(-1) mucosal tetraethylammonium, an inhibitor of certain aquaporins, inhibited J(v) by 20%. In the presence of glucose, mucosal addition of phloridzin inhibited water transport by 20%, suggesting that water transport is partially linked to the Na(+)-glucose co-transporter. Using polyclonal antibodies against salmon Aqp1aa, -1ab, and -8ab, we detected Aqp1aa, and -1ab immunoreactivity in the brush border and sub-apical region of enterocytes in all intestinal segments. The Aqp8ab antibody showed a particularly strong immunoreaction in the brush border and sub-apical region of enterocytes throughout the intestine and also stained lateral membranes and peri-nuclear regions though at lower intensity. The present localization of three aquaporins in both apical and lateral membranes of salmonid enterocytes facilitates a model for transcellular water transport in the intestine of SW-acclimated salmonids.
Collapse
Affiliation(s)
- Steffen S Madsen
- Institute of Biology, University of Southern Denmark Odense, Denmark
| | | | | | | | | | | |
Collapse
|
8
|
Suzuki M. Expression and localization of aquaporin-1 on the apical membrane of enterocytes in the small intestine of bottlenose dolphins. J Comp Physiol B 2009; 180:229-38. [PMID: 19705128 DOI: 10.1007/s00360-009-0397-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 07/10/2009] [Accepted: 07/27/2009] [Indexed: 01/18/2023]
Abstract
The small and large intestines are primary sites for water intake in mammals. To reveal how water is absorbed in the intestines of cetaceans, histological and molecular-biological studies were performed on the small intestine of the bottlenose dolphin, Tursiops truncatus. In histological studies using fresh specimens, obvious villi and deep crypts of Lieberkühn, lined by abundant enterocytes with microvilli and goblet cells, were observed in the mucosa. Expressions and immunolocalizations of aquaporin-1 (AQP1), a member of the water-selective channel termed AQP, were also investigated in the intestine. By reverse transcriptional polymerase chain reaction and rapid amplification of cDNA ends using RNA extracted from the dolphins' small intestines, the full length of mRNA for AQP1 was sequenced. The deductive amino acid sequence for an open reading frame showed high homologies with other mammals' AQP1, and water permeability of the protein was certified by cRNA injection to Xenopus oocytes. Immunohistochemistry showed AQP1 distribution on the apical membrane of the enterocytes, especially in the crypts. These data suggest that AQP1 is a channel protein responsible for water absorption in the small intestine of dolphins.
Collapse
Affiliation(s)
- Miwa Suzuki
- Department of Marine Science and Resources, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, 252-8510, Japan.
| |
Collapse
|
9
|
Abstract
Octodon degus are herbivorous rodents that are adapted anatomically and behaviorally to utilize a fibrous diet with moderate-to-low levels of nonstructural carbohydrate. Captive degus should consume foods containing nutrients comparable to those consumed by free-ranging animals. The species is highly social, demonstrating a broad array of communication methods that make them appealing as a companion animal species. Controlled research studies with degus have produced a wealth of information that facilitates the care of this species in captivity.
Collapse
Affiliation(s)
- Mark S Edwards
- Comparative Animal Nutrition, Animal Science Department, California Polytechnic State University, 1 Grand Avenue, 010-0147, San Luis Obispo, CA 93407-0255, USA.
| |
Collapse
|
10
|
Floyd RV, Mason SL, Proudman CJ, German AJ, Marples D, Mobasheri A. Expression and nephron segment-specific distribution of major renal aquaporins (AQP1-4) in Equus caballus, the domestic horse. Am J Physiol Regul Integr Comp Physiol 2007; 293:R492-503. [PMID: 17442782 DOI: 10.1152/ajpregu.00689.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.
Collapse
Affiliation(s)
- R V Floyd
- Department of Physiology, Faculty of Veterinary Science, University of Liverpool, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
11
|
Endeward V, Gros G. Low carbon dioxide permeability of the apical epithelial membrane of guinea-pig colon. J Physiol 2005; 567:253-65. [PMID: 15932894 PMCID: PMC1474176 DOI: 10.1113/jphysiol.2005.085761] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have investigated the apical membrane permeability for CO2 of intact epithelia of proximal and distal colon of the guinea pig. The method used was the mass spectrometric 18O-exchange technique previously described. In a first step, we determined the intraepithelial carbonic anhydrase (CA) activity by studying vital isolated colonocytes before and after lysis with Triton X-100. Intraepithelial CA activity was found to be 41,000 and 900 for proximal and distal colon, respectively. Then 18O-exchange measurements were done with stripped intact epithelial layers, which on their apical side were exposed to the reaction solution containing 18O-labelled CO2 and HCO3-. The mass spectrometric signals in these measurements are determined by the intracellular epithelial CA activity, and by the apical membrane permeabilities for CO2 and HCO3-, P(CO2) and P(HCO3). From the signals, we calculated the two permeabilities while inserting the CA activities obtained from isolated colonocytes. From layers of intact colon epithelium, the apical P(CO2) was determined to be 1.5 x 10(-3) cm s(-1) for proximal and 0.77 x 10(-3) cm s(-1) for distal colon. These values are > or =200 times lower than the P(CO2) of the human red cell membrane as studied with the same technique (0.3 cm s(-1)). We conclude that the apical membrane offers a significant resistance towards CO2 diffusion, which implies that a major drop in CO2 partial pressure (pCO2) will occur across the apical membrane when luminal pCO2 is higher than basolateral or capillary pCO2. In view of the very high pCO2 that can occur in the colonic lumen, this property of the apical membrane constitutes a significant protection of the cell against the high acid load associated with high pCO2.
Collapse
Affiliation(s)
- Volker Endeward
- Zentrum Physiologie 4220, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30623 Hannover, Germany.
| | | |
Collapse
|
12
|
Brañes MC, Morales B, Ríos M, Villalón MJ. Regulation of the immunoexpression of aquaporin 9 by ovarian hormones in the rat oviductal epithelium. Am J Physiol Cell Physiol 2005; 288:C1048-57. [PMID: 15647391 DOI: 10.1152/ajpcell.00420.2003] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The volume of oviductal fluid fluctuates during the estrous cycle, suggesting that water availability is under hormonal control. It has been postulated that sex-steroid hormones may regulate aquaporin (AQP) channels involved in water movement across cell membranes. Using a functional assay (oocytes of Xenopus laevis), we demonstrated that the rat oviductal epithelium contains mRNAs coding for water channels, and we identified by RT-PCR the mRNAs for AQP5, -8, and -9, but not for AQP2 and -3. The immunoreactivity for AQP5, -8, and -9 was localized only in epithelial cells of the oviduct. The distribution of AQP5 and -8 was mainly cytoplasmic, whereas we confirmed, by confocal microscopy, that AQP9 localized to the apical plasma membrane. Staining of AQP5, -8, and -9 was lost after ovariectomy, and only AQP9 immunoreactivity was restored after estradiol and/or progesterone treatments. The recovery of AQP9 reactivity after ovariectomy correlated with increased mRNA and protein levels after treatment with estradiol alone or progesterone administration after estradiol priming. Interestingly, progesterone administration after progesterone priming also induced AQP9 expression but without a change in mRNA levels. Levels of AQP9 varied along the estrous cycle with their highest levels during proestrus and estrus. These results indicate that steroid hormones regulate AQP9 expression at the mRNA and protein level and that other ovarian signals are involved in the expression of AQP5 and -8. Thus hormonal regulation of the type and quantity of water channels in this epithelium might control water transport in the oviductal lumen.
Collapse
|
13
|
Bozinovic F, Gallardo PA, Visser GH, Cortés A. Seasonal acclimatization in water flux rate, urine osmolality and kidney water channels in free-living degus: molecular mechanisms, physiological processes and ecological implications. J Exp Biol 2003; 206:2959-66. [PMID: 12878664 DOI: 10.1242/jeb.00509] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The environmental modification of an organism's physiology in the field is often hypothesized to be responsible for allowing an organism to adjust to changing biotic and abiotic environmental conditions through increases in biological performance. Here, we examine the phenotypic flexibility of water flux rate, urine osmolality and the expression of kidney aquaporins (AQP; or water channels) in free-ranging Octodon degus, a South American desert-dwelling rodent, through an integrative study at cellular, systemic and organismal levels. Water flux rates varied seasonally and were significantly lower in austral summer than in winter, while urine osmolality was higher in summer than during winter. The observed water influx rate during summer was 10.3+/-2.3 ml day(-1) and during winter was 40.4+/-9.1 ml day(-1). Mean urine osmolality was 3137+/-472 mosmol kg(-1) during summer and 1123+/-472 mosmol kg(-1) during winter. AQP-2 medullary immunolabeling was more abundant in the kidneys of degus captured during summer than those captured during winter. This immunoreactivity was higher in apical cell membranes of medullary collecting ducts of degus in summer. AQP-1 immunostaining did not differ between seasons. Consistently, AQP-2 protein levels were increased in medulla from the summer individuals, as judged by the size of the 29 kDa band in the immunoblot. Here, we reveal how the integration of flexible mechanisms acting at cellular, systemic and organismal levels allows a small desert-dwelling mammal to cope with seasonal water scarcity in its semi-arid habitat.
Collapse
Affiliation(s)
- Francisco Bozinovic
- Center for Advanced Studies in Ecology & Biodiversity and Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile, 6513677.
| | | | | | | |
Collapse
|