1
|
Giles ED, Cook KL, Jenschke RM, Corleto KA, Landrock D, Mahmood TN, Sanchez KE, Levin A, Hursting SD, Kimler BF, Komm BS, Fabian CJ. Metabolic and transcriptional effects of bazedoxifene/conjugated estrogens in a model of obesity-associated breast cancer risk. JCI Insight 2025; 10:e182694. [PMID: 40048260 PMCID: PMC12016928 DOI: 10.1172/jci.insight.182694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/04/2025] [Indexed: 04/23/2025] Open
Abstract
Many risk-eligible women refuse tamoxifen for primary prevention of breast cancer due to concerns about common side effects such as vasomotor symptoms. Tamoxifen may also induce or worsen insulin resistance and hypertriglyceridemia, especially in women with obesity. The combination of bazedoxifene and conjugated estrogens (BZA/CE) reduces vasomotor symptoms and is currently undergoing evaluation for breast cancer risk reduction. However, the impact of BZA/CE on insulin resistance and metabolic health, particularly in those with excess adiposity, is understudied. Here, we examined the effects of obesity on response to BZA/CE in a rat model of breast cancer risk using older ovary-intact rats. Female Wistar rats received carcinogen to increase mammary cancer risk and were fed a high-fat diet to promote obesity. Lean and obese rats were selected based on adiposity, and then randomized to BZA/CE or vehicle for 8 weeks. BZA/CE reduced adiposity, enriched small (insulin-sensitive) mammary adipocytes, increased the abundance of beneficial metabolic gut microbes (Faecalbaculum rodentium and Odoribacter laneus), and reversed obesity-associated changes in lipids and adipokines. BZA/CE also reversed obesity-induced mammary enrichment of cell proliferation pathways, consistent with risk-reducing effects. Together, these data support the use of BZA/CE to improve metabolic health and reduce breast cancer risk in individuals with obesity.
Collapse
Affiliation(s)
- Erin D. Giles
- School of Kinesiology, and
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine L. Cook
- Departments of Surgery and Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | - Karen A. Corleto
- School of Kinesiology, and
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Danilo Landrock
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Tara N. Mahmood
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | | | | | - Stephen D. Hursting
- Department of Nutrition and Nutrition Research Institute, and
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Bruce F. Kimler
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Barry S. Komm
- Komm Pharma Consulting, LLC, Philadelphia, Pennsylvania, USA
| | - Carol J. Fabian
- Department of Internal Medicine, Divisions of Medical Oncology and Precision Prevention, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
2
|
Corleto KA, Schedin P, Kotta AS, Strandmo JL, Foster SM, Lammoglia N, Karmakar M, Carroll RJ, MacLean PS, Giles ED. Targeting the menopause transition with metformin improves breast cancer outcomes, but discontinuation has deleterious effects on metabolic health: Findings from a preclinical model of postmenopausal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625083. [PMID: 39651199 PMCID: PMC11623501 DOI: 10.1101/2024.11.25.625083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Women with obesity and/or type-II-diabetes have an increased breast cancer risk, increased metastasis, and poorer prognosis, especially after menopause. In a rat model of high-fat-diet and menopause-induced weight gain, we previously reported that treatment with the anti-diabetic drug metformin for 8-weeks after ovariectomy (OVX; modeling menopause) reduced growth of existing mammary tumors and inhibited new tumor formation. This identified the menopause transition as a potential window-of-opportunity for interventions to decrease obesity-associated breast cancer incidence and disease progression. Here, we extend these findings to determine if limiting metformin to the peak window of OVX-induced weight gain would have similar anti-cancer effects. Findings Metformin during the first four weeks following OVX is critical to reducing tumor burden, as rats treated with metformin early (weeks0-4-postOVX) had reduced tumor burden. Conversely, initiating metformin later in the postOVX period (weeks 4-8postOVX) did not reduce cancer burden. Despite improved tumor outcomes, metformin withdrawal after the early postOVX time had detrimental metabolic effects, including weight gain and increased adiposity, insulin, IGF1, and HOMA-IR, which correlate with increased cancer risk. Conclusions These data reveal early-postmenopause as a critical window when metformin decreases progression of existing disease and highlights the importance of maintaining treatment to prevent metabolic dysregulation, which could promote secondary tumors/metastasis. These findings also help explain the disconnect between epidemiological studies reporting anticancer benefits of metformin and more recent clinical trials that failed to see similar efficacy, potentially due to issues of timing and/or inclusion of women outside the early postmenopausal window and/or without underlying metabolic dysfunction.
Collapse
|
3
|
Hammer T, Kotolová H, Procházka J, Karpíšek M. Disruption of Lipid Profile, Glucose Metabolism, and Leptin Levels following Citalopram Administration and High-Carbohydrate and High-Cholesterol Diet in Mice. Pharmacology 2024; 110:87-97. [PMID: 39236683 PMCID: PMC11975319 DOI: 10.1159/000541229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
INTRODUCTION Depression therapy has been linked to negative effects on energy metabolism, which can be attributed to various factors, including an ongoing inflammatory process commonly seen in metabolic disorders. Unhealthy lifestyle choices of patients and the impact of antidepressants on body weight and lipid and glucose metabolism also contribute to these metabolic side effects. Although not as pronounced as other psychopharmaceuticals, the increasing use of antidepressants raises concerns about their potential impact on public health. The study aimed to evaluate the short- and long-term effects of the antidepressant citalopram and its long-term combination with a special diet on metabolic parameters in mice. METHODS Animals were randomly divided into 5 groups - control, control + special diet, citalopram (10 mg/kg for 35 days), citalopram + special diet (10 mg/kg for 35 days), and citalopram (10 mg/kg for 7 days). After a described time of administration, animals were anesthetized, blood and fat and liver tissues were collected. Biochemical parameters of lipid metabolism (total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides) and glucose were analyzed using spectrophotometry and relevant adipokines and cytokines were evaluated by ELISA. RESULTS After a week of application of citalopram, we observed dyslipidemia that persisted even at the end of the 5-week experiment. Furthermore, after 5 weeks of citalopram administration, we observed a significant decrease in body weight gain and decreased leptin levels. Changes in lipid metabolism, higher levels of adipokines leptin and PAI-1 were observed due to the special diet after 5 weeks. CONCLUSIONS Our research suggests that the effects of citalopram and a diet on the metabolism of mice can be significant, both in the short term (1 week) and in the long term (5 weeks).
Collapse
Affiliation(s)
- Tomáš Hammer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
| | - Hana Kotolová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
| | - Jiří Procházka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
| | - Michal Karpíšek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Brno, Czech Republic
- BioVendor-Laboratorní Medicína a.s., Research and Diagnostic Products Division, Brno, Czech Republic
| |
Collapse
|
4
|
Lee E, Nissinen TA, Ylä-Outinen L, Jalkanen A, Karppinen JE, Vieira-Potter VJ, Lipponen A, Karvinen S. Estrogen deficiency reduces maximal running capacity and affects serotonin levels differently in the hippocampus and nucleus accumbens in response to acute exercise. Front Neurosci 2024; 18:1399229. [PMID: 38983274 PMCID: PMC11231437 DOI: 10.3389/fnins.2024.1399229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Introduction Estrogen deficiency is associated with unfavorable changes in body composition and metabolic health. While physical activity ameliorates several of the negative effects, loss of ovarian function is associated with decreased physical activity levels. It has been proposed that the changes in brain neurochemical levels and /or impaired skeletal muscle function may underlie this phenomenon. Methods We studied the effect of estrogen deficiency induced via ovariectomy (OVX) in female Wistar rats (n = 64). Rats underwent either sham or OVX surgery and were allocated thereafter into four groups matched for body mass and maximal running capacity: sham/control, sham/max, OVX/control, and OVX/max, of which the max groups had maximal running test before euthanasia to induce acute response to exercise. Metabolism, spontaneous activity, and maximal running capacity were measured before (PRE) and after (POST) the surgeries. Three months following the surgery, rats were euthanized, and blood and tissue samples harvested. Proteins were analyzed from gastrocnemius muscle and retroperitoneal adipose tissue via Western blot. Brain neurochemical markers were measured from nucleus accumbens (NA) and hippocampus (HC) using ultra-high performance liquid chromatography. Results OVX had lower basal energy expenditure and higher body mass and retroperitoneal adipose tissue mass compared with sham group (p ≤ 0.005). OVX reduced maximal running capacity by 17% (p = 0.005) with no changes in muscle mass or phosphorylated form of regulatory light chain (pRLC) in gastrocnemius muscle. OVX was associated with lower serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) level in the NA compared with sham (p = 0.007). In response to acute exercise, OVX was associated with low serotonin level in the HC and high level in the NA (p ≤ 0.024). Discussion Our results highlight that OVX reduces maximal running capacity and affects the response of brain neurochemical levels to acute exercise in a brain region-specific manner. These results may offer mechanistic insight into why OVX reduces willingness to exercise.
Collapse
Affiliation(s)
- Earric Lee
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Montreal Heart Institute, Montréal, QC, Canada
- School of Kinesiology and Physical Activity Sciences, University of Montréal, Montréal, QC, Canada
| | - Tuuli A. Nissinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Laura Ylä-Outinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Aaro Jalkanen
- Faculty of Health Sciences, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jari E. Karppinen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Victoria Jeanne Vieira-Potter
- Division of Foods, Nutrition and Exercise Sciences, Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Arto Lipponen
- Department of Psychology, Faculty of Education and Psychology, University of Jyväskylä, Jyväskylä, Finland
| | - Sira Karvinen
- Gerontology Research Center and Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Libby AE, Solt CM, Jackman MR, Sherk VD, Foright RM, Johnson GC, Nguyen TT, Breit MJ, Hulett N, Rudolph MC, Roberson PA, Wellberg EA, Jambal P, Scalzo RL, Higgins J, Kumar TR, Wierman ME, Pan Z, Shankar K, Klemm DJ, Moreau KL, Kohrt WM, MacLean PS. Effects of follicle-stimulating hormone on energy balance and tissue metabolic health after loss of ovarian function. Am J Physiol Endocrinol Metab 2024; 326:E626-E639. [PMID: 38536037 PMCID: PMC11208003 DOI: 10.1152/ajpendo.00400.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.
Collapse
Affiliation(s)
- Andrew E Libby
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Claudia M Solt
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Vanessa D Sherk
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
- Center for Scientific Review, National Institutes of Health, Bethesda, Maryland, United States
| | - Rebecca M Foright
- Department of Anatomy and Cell Biology, University of Kansas Medical Campus, Kansas City, Kansas, United States
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Thi-Tina Nguyen
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Matthew J Breit
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Nicholas Hulett
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Michael C Rudolph
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Paul A Roberson
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Elizabeth A Wellberg
- Stephenson Cancer Center, University of Oklahoma Health Sciences Campus, Oklahoma City, Oklahoma, United States
| | - Purevsuren Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Rebecca L Scalzo
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Janine Higgins
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - T Rajendra Kumar
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Margaret E Wierman
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Zhaoxing Pan
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Dwight J Klemm
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Kerrie L Moreau
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Wendy M Kohrt
- Division of Geriatric Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| | - Paul S MacLean
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
6
|
Dakic T, Velickovic K, Lakic I, Ruzicic A, Milicevic A, Plackic N, Vujovic P, Jevdjovic T. Rat brown adipose tissue thermogenic markers are modulated by estrous cycle phases and short-term fasting. Biofactors 2024; 50:101-113. [PMID: 37482913 DOI: 10.1002/biof.1993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023]
Abstract
Brown adipose tissue (BAT) converts chemical energy into heat to maintain body temperature. Although fatty acids (FAs) represent a primary substrate for uncoupling protein 1 (UCP1)-dependent thermogenesis, BAT also utilizes glucose for the same purpose. Considering that estrous cycle effects on BAT are not greatly explored, we examined those of 6-h fasting on interscapular BAT (iBAT) thermogenic markers in proestrus and diestrus. We found that the percentage of multilocular adipocytes was lower in proestrus than in diestrus, although it was increased after fasting in both analyzed estrous cycle stages. Furthermore, the percentage of paucilocular adipocytes was increased by fasting, unlike the percentage of unilocular cells, which decreased in both analyzed stages of the estrous cycle. The UCP1 amount was lower in proestrus irrespectively of the examined dietary regimens. Regarding FA transporters, it was shown that iBAT CD36 content was increased in fasted rats in diestrus. In contrast to GLUT1, the level of GLUT4 was interactively modulated by selected estrous cycle phases and fasting. There was no change in insulin receptor and ERK1/2 activation, while AKT activation was interactively modulated by fasting and estrous cycle stages. Our study showed that iBAT exhibits morphological and functional changes in proestrus and diestrus. Moreover, iBAT undergoes additional dynamic functional and morphological changes during short-term fasting to modulate nutrient utilization and adjust energy expenditure.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Ksenija Velickovic
- Department of Cell and Tissue Biology, Institute for Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Iva Lakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Aleksandra Ruzicic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Andjela Milicevic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Nikola Plackic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry, University of Belgrade-Faculty for Biology, Belgrade, Serbia
| |
Collapse
|
7
|
Nemeth M, Meidlinger B, Barnreiter E, Wallner B, Millesi E. Metabolic rates in female guinea pigs during different reproductive stages. ZOOLOGY 2023; 161:126132. [PMID: 37931560 DOI: 10.1016/j.zool.2023.126132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/08/2023]
Abstract
Reproduction in female mammals is characterized by major changes in steroid hormone concentrations, which can be linked to fluctuations in energy expenditure (EE). Estradiol and cortisol can increase EE and metabolic rates (MRs), but knowledge on MR changes during the estrous cycle and gestation is scarce for many species. This also applies to the domestic guinea pig, a species exhibiting an exceptional estrous cycle among rodents. In this study, MRs were measured through oxygen (O2) consumption in female guinea pigs during different reproductive stages. Mean O2 consumption over 2.5 h, resting metabolic rate (RMR, lowest and most stable O2 consumption over 3 min), body mass, fecal estrogen and progesterone, and saliva cortisol concentrations were measured in twelve female guinea pigs in a repeated measurements design during diestrus, estrus, and the second trimester of gestation. In estrus, body mass was significantly lower and estrogen and cortisol concentrations were significantly higher compared to diestrus and gestation. Mean O2 consumption and RMR both were significantly increased in estrus compared to diestrus. Additionally, a positive effect of body mass on MRs detected during diestrus and gestation was not found during estrus. Mean O2 consumption was also higher during gestation compared to diestrus, and a significant increase in cortisol concentrations during the 2.5-h MR measurement was recorded. The results indicate that estrus in guinea pigs is energetically demanding, which probably reflects catabolic effects of estrogens and cortisol that uncoupled MRs from body mass. Knowledge on the energetic requirements associated with different reproductive stages is important for future physiological and behavioral studies on female guinea pigs.
Collapse
Affiliation(s)
- Matthias Nemeth
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Bettina Meidlinger
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Barnreiter
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Bernard Wallner
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| | - Eva Millesi
- Department of Behavioral and Cognitive Biology, Faculty of Life Sciences, University of Vienna, University of Vienna Biology Building, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
8
|
McFadden T, Farrell K, Martin K, Musaus M, Jarome TJ. Short-term exposure to an obesogenic diet causes dynamic dysregulation of proteasome-mediated protein degradation in the hypothalamus of female rats. Nutr Neurosci 2023; 26:290-302. [PMID: 35282800 PMCID: PMC9468187 DOI: 10.1080/1028415x.2022.2046965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Previous work has shown that exposure to a high fat diet dysregulates the protein degradation process in the hypothalamus of male rodents. However, whether this occurs in a sex-independent manner is unknown. The objective of this study was to determine the effects of a short-term obesogenic diet on the ubiquitin-proteasome mediated protein degradation process in the hypothalamus of female rats. METHODS We fed young adult female rats a high fat diet or standard rat chow for 7 weeks. At the end of the 7th week, animals were euthanized and hypothalamus nuclear and cytoplasmic fractions were collected. Proteasome activity and degradation-specific (K48) ubiquitin signaling were assessed. Additionally, we transfected female rats with CRISPR-dCas9-VP64 plasmids in the hypothalamus prior to exposure to the high fat diet in order to increase proteasome activity and determine the role of reduced proteasome function on weight gain from the obesogenic diet. RESULTS We found that across the diet period, females gained weight significantly faster on the high fat diet than controls and showed dynamic downregulation of proteasome activity, decreases in proteasome subunit expression and an accumulation of degradation-specific K48 polyubiquitinated proteins in the hypothalamus. Notably, while our CRISPR-dCas9 manipulation was able to selectively increase some forms of proteasome activity, it was unable to prevent diet-induced proteasome downregulation or abnormal weight gain. CONCLUSIONS Collectively, these results reveal that acute exposure to an obesogenic diet causes reductions in the protein degradation process in the hypothalamus of females.
Collapse
Affiliation(s)
- Taylor McFadden
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kayla Farrell
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Kiley Martin
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Madeline Musaus
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Timothy J. Jarome
- Department of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Thurstin AA, Egeli AN, Goldsmith EC, Spinale FG, LaVoie HA. Tissue inhibitor of metalloproteinase-4 deletion in mice impacts maternal cardiac function during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2023; 324:H85-H99. [PMID: 36459450 PMCID: PMC9799138 DOI: 10.1152/ajpheart.00408.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
Reversible physiological cardiac hypertrophy of the maternal heart occurs during pregnancy and involves extracellular matrix (ECM) remodeling. Previous mouse studies revealed that changes in ECM molecules accompany functional changes in the left ventricle (LV) during late pregnancy and postpartum. We evaluated the effect of global Timp4 deletion in female mice on LV functional parameters and ECM molecules during pregnancy and the postpartum period. Heart weights normalized to tibia lengths were increased in Timp4 knockout (Timp4 KO) virgin, pregnant, and postpartum day 2 mice compared with wild types. Serial echocardiography performed on pregnancy days 10, 12, and 18 and postpartum days (ppds) 2, 7, 14, 21, and 28 revealed that both wild-type and Timp4 KO mice increased end systolic and end diastolic volumes (ESV, EDV) by mid to late pregnancy compared with virgins, with EDV changes persisting through the postpartum period. When compared with wild types, Timp4 KO mice exhibited higher ejection fractions in virgins, at pregnancy days 10 and 18 and ppd2 and ppd14. High-molecular weight forms of COL1A1 and COL3A1 proteins in LV were greater in Timp4 KO virgins, and COL1A1 was higher in late pregnancy and on ppd2 compared with wild types. With exceptions, Timp4 KO mice during late pregnancy and the early postpartum period were able to maintain stroke volume similar to wild-type mice through increased ejection fraction. Although TIMP4 deletion in females exhibited altered ECM molecules, it did not adversely affect cardiac function during first pregnancies and lactation.NEW & NOTEWORTHY Pregnancy and lactation increase volume load on the heart. Defects in cardiac remodeling during pregnancy and postpartum can result in peripartum cardiomyopathy. TIMPs participate in cardiac remodeling. The present study reports the cardiac function in Timp4 knockout adult female mice during pregnancy and lactation. Timp4 knockout females at many time points have higher ejection fraction to maintain stroke volume. Global deletion of Timp4 was not detrimental to maternal heart function during first pregnancies and lactation.
Collapse
Affiliation(s)
- Ashley A Thurstin
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Allison N Egeli
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Edie C Goldsmith
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Francis G Spinale
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| | - Holly A LaVoie
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina
| |
Collapse
|
10
|
Estradiol-dependent hypocretinergic/orexinergic behaviors throughout the estrous cycle. Psychopharmacology (Berl) 2023; 240:15-25. [PMID: 36571628 PMCID: PMC9816302 DOI: 10.1007/s00213-022-06296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 12/27/2022]
Abstract
RATIONALE The female menstrual or estrous cycle and its associated fluctuations in circulating estradiol (E2), progesterone, and other gonadal hormones alter orexin or hypocretin peptide production and receptor activity. Depending on the estrous cycle phase, the transcription of prepro-orexin mRNA, post-translational modification of orexin peptide, and abundance of orexin receptors change in a brain region-specific manner. The most dramatic changes occur in the hypothalamus, which is considered the starting point of the hypothalamic-pituitary-gonadal axis as well as the hub of orexin-producing neurons. Thus, hypothalamus-regulated behaviors, including arousal, feeding, reward processing, and the stress response depend on coordinated efforts between E2, progesterone, and the orexin system. Given the rise of orexin therapeutics for various neuropsychiatric conditions including insomnia and affective disorders, it is important to delineate the behavioral outcomes of this drug class in both sexes, as well as within different time points of the female reproductive cycle. OBJECTIVES Summarize how the menstrual or estrous cycle affects orexin system functionality in animal models in order to predict how orexin pharmacotherapies exert varying degrees of behavioral effects across the dynamic hormonal milieu.
Collapse
|
11
|
Fuller KNZ, McCoin CS, Stierwalt H, Allen J, Gandhi S, Perry CGR, Jambal P, Shankar K, Thyfault JP. Oral combined contraceptives induce liver mitochondrial reactive oxygen species and whole-body metabolic adaptations in female mice. J Physiol 2022; 600:5215-5245. [PMID: 36326014 DOI: 10.1113/jp283733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Compared to age-matched men, pre-menopausal women show greater resilience against cardiovascular disease (CVD), hepatic steatosis, diabetes and obesity - findings that are widely attributed to oestrogen. However, meta-analysis data suggest that current use of oral combined contraceptives (OC) is a risk factor for myocardial infarction, and OC use further compounds with metabolic disease risk factors to increase CVD susceptibility. While mitochondrial function in tissues such as the liver and skeletal muscle is an emerging mechanism by which oestrogen may confer its protection, effects of OC use on mitochondria and metabolism in the context of disease risk remain unexplored. To answer this question, female C57Bl/6J mice were fed a high fat diet and treated with vehicle or OCs for 3, 12 or 20 weeks (n = 6 to 12 per group) at a dose and ratio that mimic the human condition of cycle cessation in the low oestrogen, high progesterone stage. Liver and skeletal muscle mitochondrial function (respiratory capacity, H2 O2 , coupling) was measured along with clinical outcomes of cardiometabolic disease such as obesity, glucose tolerance, hepatic steatosis and aortic atherosclerosis. The main findings indicate that regardless of treatment duration, OCs robustly increase hepatic mitochondrial H2 O2 levels, likely due to diminished antioxidant capacity, but have no impact on muscle mitochondrial H2 O2 . Furthermore, OC-treated mice had lower adiposity and hepatic triglyceride content compared to control mice despite reduced wheel running, spontaneous physical activity and total energy expenditure. Together, these studies describe tissue-specific effects of OC use on mitochondria as well as variable impacts on markers of metabolic disease susceptibility. KEY POINTS: Oestrogen loss in women increases risk for cardiometabolic diseases, a link that has been partially attributed to negative impacts on mitochondria and energy metabolism. To study the effect of oral combined contraceptives (OCs) on hepatic and skeletal muscle mitochondria and whole-body energy metabolism, we used an animal model of OCs which mimics the human condition of cessation of hormonal cycling in the low oestrogen, high progesterone state. OC-treated mice have increased hepatic mitochondrial oxidative stress and decreased physical activity and energy expenditure, despite displaying lower adiposity and liver fat at this time point. These pre-clinical data reveal tissue-specific effects of OCs that likely underlie the clinical findings of increased cardiometabolic disease in women who use OCs compared to non-users, when matched for obesity.
Collapse
Affiliation(s)
- Kelly N Z Fuller
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Colin S McCoin
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA
| | - Harrison Stierwalt
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Julie Allen
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA
| | - Shivam Gandhi
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Christopher G R Perry
- School of Kinesiology and Health Science, Muscle Health Research Center, York University, Toronto, Canada
| | - Purevsuren Jambal
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - Kartik Shankar
- Department of Pediatrics, Section of Nutrition, University of Colorado School of Medicine Anschutz Medical Campus, Aurora, CO, USA
| | - John P Thyfault
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA.,Research Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, USA.,Center for Children's Healthy Lifestyles and Nutrition, Kansas City, MO, USA.,University of Kansas Diabetes Institute, Kansas City, KS, USA.,Kansas Center for Metabolism and Obesity Research, Kansas City, KS, USA.,Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
12
|
Gavin KM, Sullivan TM, Maltzahn JK, Jackman MR, Libby AE, MacLean PS, Kohrt WM, Majka SM, Klemm DJ. Hematopoietic Stem Cell-Derived Adipocytes Modulate Adipose Tissue Cellularity, Leptin Production and Insulin Responsiveness in Female Mice. Front Endocrinol (Lausanne) 2022; 13:844877. [PMID: 35721743 PMCID: PMC9203959 DOI: 10.3389/fendo.2022.844877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
A subpopulation of adipocytes in the major adipose depots of mice is produced from hematopoietic stem cells rather than mesenchymal progenitors that are the source of conventional white and brown/beige adipocytes. To analyze the impact of hematopoietic stem cell-derived adipocytes (HSCDAs) in the adipose niche we transplanted HSCs in which expression of a diphtheria toxin gene was under the control of the adipocyte-specific adiponectin gene promoter into irradiated wild type recipients. Thus, only adipocytes produced from HSC would be ablated while conventional white and brown adipocytes produced from mesenchymal progenitor cells would be spared. Wild type mice transplanted with HSCs from mice containing a reporter gene, but not the diphtheria toxin gene, regulated by the adiponectin gene promoter served as controls. In mice in which HSCDA production was suppressed, adipocyte size declined while adipose depot weights were unchanged and the number of conventional adipocyte progenitors significantly increased. We also measured a paradoxical increase in circulating leptin levels while physical activity was significantly decreased in the HSCDA depleted mice. Finally, insulin sensitivity was significantly reduced in HSCDA depleted mice. In contrast, loss of HSCDA production had no effect on body weight, components of energy balance, or levels of several circulating adipokines and tissue-resident inflammatory cells. These data indicate that ablation of this low-abundance subpopulation of adipocytes is associated with changes in circulating leptin levels and leptin-regulated endpoints associated with adipose tissue function. How they do so remains a mystery, but our results highlight the need for additional studies to explore the role of HSCDAs in other physiologic contexts such as obesity, metabolic dysfunction or loss of sex hormone production.
Collapse
Affiliation(s)
- Kathleen M. Gavin
- Geriatric Research, Education and Clinical Center, Rocky Mountain Regional Veterans Administration (VA) Medical Center, Aurora, CO, United States
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Timothy M. Sullivan
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joanne K. Maltzahn
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Matthew R. Jackman
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Andrew E. Libby
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Paul S. MacLean
- Division of Endocrinology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Wendy M. Kohrt
- Geriatric Research, Education and Clinical Center, Rocky Mountain Regional Veterans Administration (VA) Medical Center, Aurora, CO, United States
- Division of Geriatric Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Susan M. Majka
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Biomedical Research, National Jewish Health, Denver, CO, United States
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dwight J. Klemm
- Geriatric Research, Education and Clinical Center, Rocky Mountain Regional Veterans Administration (VA) Medical Center, Aurora, CO, United States
- Cardiovascular Pulmonary Research Laboratory, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Alshamrani AA, Ibrahim MM, Briski KP. Effects of Short-Term Food Deprivation on Catecholamine and Metabolic-Sensory Biomarker Gene Expression in Hindbrain A2 Noradrenergic Neurons Projecting to the Forebrain Rostral Preoptic Area: Impact of Negative versus Positive Estradiol Feedback. IBRO Neurosci Rep 2022; 13:38-46. [PMID: 35711244 PMCID: PMC9193863 DOI: 10.1016/j.ibneur.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Hindbrain A2 noradrenergic neurons assimilate estrogenic and metabolic cues. In female mammals, negative- versus positive-feedback patterns of estradiol (E) secretion impose divergent regulation of the gonadotropin-releasing hormone (GnRH)-pituitary-gonadal (HPG) neuroendocrine axis. Current research used retrograde tracing, dual-label immunocytochemistry, single-cell laser-microdissection, and multiplex qPCR methods to address the premise that E feedback modes uniquely affect metabolic regulation of A2 neurons involved in HPG control. Ovariectomized female rats were given E replacement to replicate plasma hormone levels characteristic of positive (high-E dose) or negative (low-E dose) feedback. Animals were either full-fed (FF) or subjected to short-term, e.g., 18-h food deprivation (FD). After FF or FD, rostral preoptic area (rPO)-projecting A2 neurons were characterized by the presence or absence of nuclear glucokinase regulatory protein (nGKRP) immunostaining. FD augmented or suppressed mRNAs encoding the catecholamine enzyme dopamine-beta-hydroxylase (DβH) and the metabolic-sensory biomarker glucokinase (GCK), relative to FF controls, in nGKRP-immunoreactive (ir)-positive A2 neurons from low-E or high-E animals, respectively. Yet, these transcript profiles were unaffected by FD in nGKRP-ir-negative A2 neurons at either E dosage level. FD altered estrogen receptor (ER)-alpha and ATP-sensitive potassium channel subunit sulfonylurea receptor-1 gene expression in nGKRP-ir-positive neurons from low-E, but not high-E animals. Results provide novel evidence that distinct hindbrain A2 neuron populations exhibit altered versus unaffected transmission to the rPO during FD-associated metabolic imbalance, and that the direction of change in this noradrenergic input is controlled by E feedback mode. These A2 cell types are correspondingly distinguished by FD-sensitive or -insensitive GCK, which correlates with the presence versus absence of nGKRP-ir. Further studies are needed to determine how E signal volume regulates neurotransmitter and metabolic sensor responses to FD in GKRP-expressing A2 neurons.
Collapse
Affiliation(s)
| | | | - Karen P. Briski
- Correspondence to: School of Basic Pharmaceutical and Toxicological Sciences College of Pharmacy, University of Louisiana at Monroe, Rm 356 Bienville Building 1800 Bienville Drive, Monroe, LA 71201, USA.
| |
Collapse
|
14
|
Opioid and Sucrose Craving Are Accompanied by Unique Behavioral and Affective Profiles after Extended Abstinence in Male and Female Rats. eNeuro 2022; 9:ENEURO.0515-21.2022. [PMID: 35241453 PMCID: PMC9007407 DOI: 10.1523/eneuro.0515-21.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/17/2022] [Accepted: 02/24/2022] [Indexed: 11/21/2022] Open
Abstract
Incubation of craving refers to the intensification of drug-seeking behavior in response to reward-paired cues over the course of abstinence. In rodents, craving and drug-seeking behaviors have been measured by an increase in lever pressing in the absence of reinforcer availability in response to cue presentations. However, craving in rodents is difficult to define and little is known about the behavioral signatures that accompany increased drug-seeking behavior measured by lever pressing. The affective components of relapse are also important, but understudied in rodents. Hormonal fluctuations influence craving for psychostimulants, but little is known about the impact of the estrous cycle on opioid-seeking behavior. This study sought to delineate the behavioral and affective signatures associated with craving, and to examine the influence of the female estrous cycle on craving. Male and female rats underwent 10 d of intravenous opioid self-administration. Separate cohorts of control rats self-administered oral sucrose, a natural nondrug reward. Cue-induced seeking tests were conducted after 1 or 30d of forced abstinence. These sessions were recorded and scored for overall locomotion, instances of sniffing, grooming, or hyperactivity. Ultrasonic vocalizations (USVs) were also recorded to determine affective profiles that accompany opioid seeking. Although active lever presses and overall locomotion increased unanimously over extended abstinence from heroin and sucrose, a sex- and reinforcer-specific behavioral and affective signature of craving emerged. Furthermore, although the female estrous cycle did not affect taking or seeking, it appears to influence more granular behaviors.
Collapse
|
15
|
Smith A, Woodside B, Abizaid A. Ghrelin and the Control of Energy Balance in Females. Front Endocrinol (Lausanne) 2022; 13:904754. [PMID: 35909536 PMCID: PMC9334675 DOI: 10.3389/fendo.2022.904754] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Ghrelin is considered one of the most potent orexigenic peptide hormones and one that promotes homeostatic and hedonic food intake. Research on ghrelin, however, has been conducted predominantly in males and particularly in male rodents. In female mammals the control of energy metabolism is complex and it involves the interaction between ovarian hormones like estrogen and progesterone, and metabolic hormones. In females, the role that ghrelin plays in promoting feeding and how this is impacted by ovarian hormones is not well understood. Basal ghrelin levels are higher in females than in males, and ghrelin sensitivity changes across the estrus cycle. Yet, responses to ghrelin are lower in female and seem dependent on circulating levels of ovarian hormones. In this review we discuss the role that ghrelin plays in regulating homeostatic and hedonic food intake in females, and how the effects of ghrelin interact with those of ovarian hormones to regulate feeding and energy balance.
Collapse
Affiliation(s)
- Andrea Smith
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Barbara Woodside
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
| | - Alfonso Abizaid
- Department of Neuroscience, Carleton Unversity, Ottawa, ON, Canada
- Stress, Trauma and Relience (STAR) Work Group Carleton University, Ottawa, ON, Canada
- *Correspondence: Alfonso Abizaid,
| |
Collapse
|
16
|
Wellberg EA, Corleto KA, Checkley LA, Jindal S, Johnson G, Higgins JA, Obeid S, Anderson SM, Thor AD, Schedin PJ, MacLean PS, Giles ED. Preventing ovariectomy-induced weight gain decreases tumor burden in rodent models of obesity and postmenopausal breast cancer. Breast Cancer Res 2022; 24:42. [PMID: 35725493 PMCID: PMC9208221 DOI: 10.1186/s13058-022-01535-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 06/01/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Obesity and adult weight gain are linked to increased breast cancer risk and poorer clinical outcomes in postmenopausal women, particularly for hormone-dependent tumors. Menopause is a time when significant weight gain occurs in many women, and clinical and preclinical studies have identified menopause (or ovariectomy) as a period of vulnerability for breast cancer development and promotion. METHODS We hypothesized that preventing weight gain after ovariectomy (OVX) may be sufficient to prevent the formation of new tumors and decrease growth of existing mammary tumors. We tested this hypothesis in a rat model of obesity and carcinogen-induced postmenopausal mammary cancer and validated our findings in a murine xenograft model with implanted human tumors. RESULTS In both models, preventing weight gain after OVX significantly decreased obesity-associated tumor development and growth. Importantly, we did not induce weight loss in these animals, but simply prevented weight gain. In both lean and obese rats, preventing weight gain reduced visceral fat accumulation and associated insulin resistance. Similarly, the intervention decreased circulating tumor-promoting growth factors and inflammatory cytokines (i.e., BDNF, TNFα, FGF-2), with greater effects in obese compared to lean rats. In obese rats, preventing weight gain decreased adipocyte size, adipose tissue macrophage infiltration, reduced expression of the tumor-promoting growth factor FGF-1 in mammary adipose, and reduced phosphorylated FGFR indicating reduced FGF signaling in tumors. CONCLUSIONS Together, these findings suggest that the underlying mechanisms associated with the anti-tumor effects of weight maintenance are multi-factorial, and that weight maintenance during the peri-/postmenopausal period may be a viable strategy for reducing obesity-associated breast cancer risk and progression in women.
Collapse
Affiliation(s)
- Elizabeth A. Wellberg
- grid.266902.90000 0001 2179 3618Department of Pathology, Harold Hamm Diabetes Center, and Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK USA
| | - Karen A. Corleto
- grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - L. Allyson Checkley
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sonali Jindal
- grid.5288.70000 0000 9758 5690Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Ginger Johnson
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XAnschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Janine A. Higgins
- grid.430503.10000 0001 0703 675XDepartment of Pediatrics, Endocrinology Section, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Sarina Obeid
- grid.264756.40000 0004 4687 2082Department of Nutrition, Texas A&M University, College Station, TX USA
| | - Steven M. Anderson
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Ann D. Thor
- grid.430503.10000 0001 0703 675XDepartment of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Pepper J. Schedin
- grid.5288.70000 0000 9758 5690Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR USA ,grid.5288.70000 0000 9758 5690Knight Cancer Institute, Oregon Health & Science University, Portland, OR USA
| | - Paul S. MacLean
- grid.430503.10000 0001 0703 675XDivisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.430503.10000 0001 0703 675XAnschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.499234.10000 0004 0433 9255University of Colorado Cancer Center, Aurora, CO USA
| | - Erin D. Giles
- grid.214458.e0000000086837370School of Kinesiology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
17
|
Baine RE, Johnston DT, Strain MM, Henwood MK, Davis JA, Reynolds JA, Giles ED, Grau JW. Noxious Stimulation Induces Acute Hemorrhage and Impairs Long-Term Recovery after Spinal Cord Injury (SCI) in Female Rats: Evidence Estrous Cycle May Have a Modulatory Effect. Neurotrauma Rep 2022; 3:70-86. [PMID: 35112109 PMCID: PMC8804264 DOI: 10.1089/neur.2021.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spinal cord injuries (SCIs) are often the result of traumatic accidents, which also produce multiple other injuries (polytrauma). Nociceptive input from associated injuries has been shown to significantly impair recovery post-SCI. Historically, work in our laboratory has focused exclusively on male animals; however, increasing incidence of SCI in females requires research to determine whether pain (nociceptive) input poses the same risk to their recovery. Some animal studies have shown that females demonstrate greater tissue preservation and better locomotor recovery post-SCI. Given this, we examined the effect of sex on SCI recovery in two pain models—intermittent electrical stimulation (shock) to the tail or capsaicin injection to the hindpaw. Female rats received a lower thoracic contusion injury and were exposed to noxious stimulation the next day. The acute effect of noxious input on cardiovascular function, locomotor performance, and hemorrhage were assessed. Treatment with capsaicin or noxious electrical stimulation disrupted locomotor performance, increased blood pressure, and disrupted stepping. Additional experiments examined the long-term consequences of noxious input, demonstrating that both noxious electrical stimulation and capsaicin impair long-term recovery in female rats. Interestingly, injury had a greater effect on behavioral performance when progesterone and estrogen were low (metestrus). Conversely, nociceptive input led to a greater disruption in locomotor performance and produced a greater rise in blood pressure in animals injured during estrus.
Collapse
Affiliation(s)
- Rachel E. Baine
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - David T. Johnston
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Misty M. Strain
- Department of Cellular and Integrative Physiology, University of Texas Health Science, San Antonio, Texas, USA
| | - Melissa K. Henwood
- Department of Neuroscience, Cell Biology, Anatomy, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jacob A. Davis
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Joshua A. Reynolds
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Erin D. Giles
- Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - James W. Grau
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
18
|
Giles ED, Wellberg EA. Preclinical Models to Study Obesity and Breast Cancer in Females: Considerations, Caveats, and Tools. J Mammary Gland Biol Neoplasia 2020; 25:237-253. [PMID: 33146844 PMCID: PMC8197449 DOI: 10.1007/s10911-020-09463-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/09/2020] [Indexed: 12/28/2022] Open
Abstract
Obesity increases the risk for breast cancer and is associated with poor outcomes for cancer patients. A variety of rodent models have been used to investigate these relationships; however, key differences in experimental approaches, as well as unique aspects of rodent physiology lead to variability in how these valuable models are implemented. We combine expertise in the development and implementation of preclinical models of obesity and breast cancer to disseminate effective practices for studies that integrate these fields. In this review, we share, based on our experience, key considerations for model selection, highlighting important technical nuances and tips for use of preclinical models in studies that integrate obesity with breast cancer risk and progression. We describe relevant mouse and rat paradigms, specifically highlighting differences in breast tumor subtypes, estrogen production, and strategies to manipulate hormone levels. We also outline options for diet composition and housing environments to promote obesity in female rodents. While we have applied our experience to understanding obesity-associated breast cancer, the experimental variables we incorporate have relevance to multiple fields that investigate women's health.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition, Texas A&M University, College Station, TX, USA.
| | - Elizabeth A Wellberg
- Department of Pathology, University of Oklahoma Health Science Center, Stephenson Cancer Center, Harold Hamm Diabetes Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
Foright RM, Johnson GC, Kahn D, Charleston CA, Presby DM, Bouchet CA, Wellberg EA, Sherk VD, Jackman MR, Greenwood BN, MacLean PS. Compensatory eating behaviors in male and female rats in response to exercise training. Am J Physiol Regul Integr Comp Physiol 2020; 319:R171-R183. [PMID: 32551825 PMCID: PMC7473893 DOI: 10.1152/ajpregu.00259.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/29/2020] [Accepted: 06/09/2020] [Indexed: 12/22/2022]
Abstract
Exercise is often used as a strategy for weight loss maintenance. In preclinical models, we have shown that exercise may be beneficial because it counters the biological drive to regain weight. However, our studies have demonstrated sex differences in the response to exercise in this context. In the present study, we sought to better understand why females and males exhibit different compensatory food eating behaviors in response to regular exercise. Using a forced treadmill exercise paradigm, we measured weight gain, energy expenditure, food intake in real time, and the anorectic effects of leptin. The 4-wk exercise training resulted in reduced weight gain in males and sustained weight gain in females. In male rats, exercise decreased intake, whereas it increased food intake in females. Our results suggest that the anorectic effects of leptin were not responsible for these sex differences in appetite in response to exercise. If these results translate to the human condition, they may reveal important information for the use and application of regular exercise programs.
Collapse
Affiliation(s)
- Rebecca M Foright
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ginger C Johnson
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Darcy Kahn
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Catherine A Charleston
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David M Presby
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Courtney A Bouchet
- Department of Psychology, University of Colorado Denver, Denver, Colorado
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Vanessa D Sherk
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R Jackman
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Paul S MacLean
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
20
|
Sherk VD, Jackman MR, Higgins JA, Giles ED, Foright RM, Presby DM, Carpenter RD, Johnson GC, Oljira R, Houck JA, Maclean PS. Impact of Exercise and Activity on Weight Regain and Musculoskeletal Health Post-Ovariectomy. Med Sci Sports Exerc 2020; 51:2465-2473. [PMID: 31274683 DOI: 10.1249/mss.0000000000002082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine whether obesity and/or exercise training alters weight regain and musculoskeletal health after ovariectomy (OVX). Female rats were fed high-fat diet (HFD) to reveal obesity-prone (OP) and obesity-resistant (OR) phenotypes. The OP and OR exercising (EX) and sedentary (SED) rats were calorically restricted to lose 15% of body weight using medium-fat diet. Rats were then maintained in energy balance for 8 wk before OVX. After OVX and a brief calorically limited phase, rats were allowed to eat ad libitum until body weight plateaued. Starting at weight loss, EX ran 1 h·d, 6 d·wk, 15 m·min. Energy intake, spontaneous physical activity (SPA), and total energy expenditure were evaluated at the end of weight maintenance pre-OVX, and at three time points post-OVX: before weight regain, during early regain, and after regain. Data are presented as mean ± SE. Exercise attenuated weight regain after OVX in OP only (OP-EX, 123 ± 10 g; OP-SED, 165 ± 12 g; OR-EX, 121 ± 6 g; OR-SED, 116 ± 6 g), which was primarily an attenuation of fat gain. The early post-OVX increase in energy intake explained much of the weight regain, and was similar across groups. Exercising improved bone strength, as did maintaining SPA. Group differences in muscle mitochondrial respiration were not significant. The large decrease in SPA due to OVX was persistent, but early weight regain was dependent on decreased SPA. In conclusion, leanness and exercise do not necessarily protect from OVX-induced weight gain. Exercise prevented weight gain in obese rats, but loss of SPA was the greatest contributor to post-OVX weight gain. Thus, understanding the mechanisms resulting in reduction in SPA after ovarian hormone loss is critical in the prevention of menopause-associated metabolic dysfunction.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Janine A Higgins
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Erin D Giles
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO.,Department of Nutrition and Food Science, Texas A&M University, College Station, TX
| | - Rebecca M Foright
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - David M Presby
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - R Dana Carpenter
- Department of Mechanical Engineering, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Robera Oljira
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Julie A Houck
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Paul S Maclean
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
21
|
Fillion M, Tiidus PM, Vandenboom R. Lack of influence of estrogen on myosin phosphorylation and post-tetanic potentiation in muscles from young adult C57BL mice. Can J Physiol Pharmacol 2019; 97:729-737. [PMID: 30889364 DOI: 10.1139/cjpp-2018-0575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogen influences myosin phosphorylation and post-tetanic potentiation in murine fast muscle. We tested the hypothesis that this influence is mediated by estrogen effects on skeletal myosin light chain kinase (skMLCK) activity. To this end, extensor digitorum longus muscles from female wildtype and skMLCK-absent (skMLCK-/-) mice were grouped as follows: ovariectomized with estrogen (E+), ovariectomized without estrogen (E-), sham surgery, and intact baseline. At 8 weeks of age, the ovariectomized groups were ovariectomized followed by implantation of either a 0.1 mg 17β-estradiol (E+) or placebo pellet (E-). Two weeks later, muscles were isolated and suspended in vitro (25° C) for determination of regulatory light chain phosphorylation and post-tetanic potentiation. Regulatory light chain phosphorylation was not different across conditions within either genotype although wildtype values were significantly greater than skMLCK-/- values. Consistent with this, the potentiation of concentric twitch force was similar between E+ and E- groups within each genotype but wildtype values were greater than skMLCK-/- values. However, unaltered estradiol levels following ovariectomy, likely due to previously underappreciated confounds of mouse age, development, and growth during estrogen supplementation, prevented direct testing of the hypothesis. Future studies should note the importance of estrous cycles and continuing physiological developments of young adult mice when working with ovarian hormones.
Collapse
Affiliation(s)
- Melissa Fillion
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Peter M Tiidus
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Rene Vandenboom
- Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada.,Department of Kinesiology, Brock University, St. Catharines, ON L2S 3A1, Canada
| |
Collapse
|
22
|
Noise-induced sleep disruption increases weight gain and decreases energy metabolism in female rats. Int J Obes (Lond) 2018; 43:1759-1768. [PMID: 30568267 PMCID: PMC6584067 DOI: 10.1038/s41366-018-0293-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/28/2023]
Abstract
Background/objectives: Inadequate sleep increases obesity and environmental noise contributes to poor sleep. However, women may be more vulnerable to noise and hence more susceptible to sleep disruption-induced weight gain than men. In male rats, exposure to environmental (i.e. ambient) noise disrupts sleep and increases feeding and weight gain. However, the effects of environmental noise on sleep and weight gain in female rats are unknown. Thus, this study was designed to determine whether noise exposure would disturb sleep, increase feeding and weight gain and alter the length of the estrous cycle in female rats. Subjects/methods: Female rats (12-weeks old) were exposed to noise for 17d (8h/d during the light period) to determine the effects of noise on weight gain and food intake. In a separate set of females, estrous cycle phase and length, EEG, EMG, spontaneous physical activity and energy expenditure were recorded continuously for 27d during baseline (control, 9d), noise exposure (8h/d, 9d) and recovery (9d) from sleep disruption. Results: Noise exposure significantly increased weight gain and food intake compared to females that slept undisturbed. Noise also significantly increased wakefulness, reduced sleep and resulted in rebound sleep during the recovery period. Total energy expenditure was significantly lower during both noise exposure and recovery due to lower energy expenditure during spontaneous physical activity and sleep. Notably, noise did not alter the estrous cycle length. Conclusions: As previously observed in male rats, noise exposure disrupted sleep and increased weight gain in females but did not alter the length of the estrous cycle. This is the first demonstration of weight gain in female rats during sleep disruption. We conclude that the sleep disruption caused by exposure to environmental noise is a significant tool for determining how sleep loss contributes to obesity in females.
Collapse
|
23
|
Giles ED, Jindal S, Wellberg EA, Schedin T, Anderson SM, Thor AD, Edwards DP, MacLean PS, Schedin P. Metformin inhibits stromal aromatase expression and tumor progression in a rodent model of postmenopausal breast cancer. Breast Cancer Res 2018; 20:50. [PMID: 29898754 PMCID: PMC6000949 DOI: 10.1186/s13058-018-0974-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 04/30/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity and type II diabetes are linked to increased breast cancer risk in postmenopausal women. Patients treated with the antidiabetic drug metformin for diabetes or metabolic syndrome have reduced breast cancer risk, a greater pathologic complete response to neoadjuvant therapy, and improved breast cancer survival. We hypothesized that metformin may be especially effective when targeted to the menopausal transition, as this is a lifecycle window when weight gain and metabolic syndrome increase, and is also when the risk for obesity-related breast cancer increases. METHODS Here, we used an 1-methyl-1-nitrosourea (MNU)-induced mammary tumor rat model of estrogen receptor (ER)-positive postmenopausal breast cancer to evaluate the long-term effects of metformin administration on metabolic and tumor endpoints. In this model, ovariectomy (OVX) induces rapid weight gain, and an impaired whole-body response to excess calories contributes to increased tumor glucose uptake and increased tumor proliferation. Metformin treatment was initiated in tumor-bearing animals immediately prior to OVX and maintained for the duration of the study. RESULTS Metformin decreased the size of existing mammary tumors and inhibited new tumor formation without changing body weight or adiposity. Decreased lipid accumulation in the livers of metformin-treated animals supports the ability of metformin to improve overall metabolic health. We also found a decrease in the number of aromatase-positive, CD68-positive macrophages within the tumor microenvironment, suggesting that metformin targets the immune microenvironment in addition to improving whole-body metabolism. CONCLUSIONS These findings suggest that peri-menopause/menopause represents a unique window of time during which metformin may be highly effective in women with established, or at high risk for developing, breast cancer.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition & Food Science, Texas A&M University, 373 Olsen Blvd; 2253 TAMU, College Station, TX, 77843, USA.
| | - Sonali Jindal
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Mailing Code: L215, Portland, OR, 97239, USA
| | - Elizabeth A Wellberg
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Troy Schedin
- Department of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Steven M Anderson
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Ann D Thor
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Dean P Edwards
- Departments of Molecular & Cellular Biology and Pathology Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Paul S MacLean
- Anschutz Health & Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Medicine, Divisions of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.,Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Pepper Schedin
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Mailing Code: L215, Portland, OR, 97239, USA.,Knight Cancer Institute, Oregon Health & Science University, 1130 NW 22nd Ave #100, Portland, OR, 97239, USA
| |
Collapse
|
24
|
Shakya M, Shrestha PK, Briski KP. Hindbrain 5'-Adenosine Monophosphate-activated Protein Kinase Mediates Short-term Food Deprivation Inhibition of the Gonadotropin-releasing Hormone-Luteinizing Hormone Axis: Role of Nitric Oxide. Neuroscience 2018; 383:46-59. [PMID: 29746990 DOI: 10.1016/j.neuroscience.2018.04.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 10/17/2022]
Abstract
Hindbrain-derived stimuli restrain the gonadotropin-releasing hormone (GnRH)-pituitary luteinizing hormone (LH) reproductive neuroendocrine axis during energy insufficiency. Interruption of food intake, planned or unplanned, is emblematic of modern life. This study investigated the premise that the hindbrain energy sensor 5'-adenosine monophosphate-activated protein kinase (AMPK) inhibits reproductive neuroendocrine function in short term, e.g. 18-h food-deprived (FD) estradiol (E)-implanted ovariectomized female rats. Intra-caudal fourth ventricular administration of the AMPK inhibitor Compound C (Cc) reversed FD-induced inhibition of rostral preoptic (rPO) GnRH protein expression and LH release in animals given E to replicate proestrus (high-E dose-, but not metestrus (low-E dose)-stage plasma steroid levels. FD caused Cc-reversible augmentation or diminution of preoptic norepinephrine (NE) activity in high- versus low-E rats, respectively, and AMPK-independent reductions in hypothalamic NE accumulation in the latter. Nitric oxide (NO) and kisspeptin are key stimulatory signals for the preovulatory LH surge. Here, FD inhibited rPO neuronal nitric oxide synthase protein expression in high-, but not low-E-dosed animals. Lateral ventricular delivery of the NO donor 3-morpholinosydnonimine (SIN-1) reversed inhibitory GnRH and LH responses to FD in high-E rats, and normalized rPO Vglut2, anteroventral periventricular KiSS1, and dorsomedial hypothalamic RFRP-3 mRNA and/or protein profiles. Data show that FD curtails reproductive neuroendocrine outflow by hindbrain AMPK-dependent mechanisms in the presence of peak estrous cycle E levels. Results indicate that neural networks linking this sensor to GnRH neurons likely involve NO signaling, which may function upstream of one or more neurotransmitters identified here by SIN-1-reversible inhibitory responses to FD.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Prem K Shrestha
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana at Monroe, Monroe, LA 71201, United States.
| |
Collapse
|
25
|
Sherk VD, Jackman MR, Giles ED, Higgins JA, Foright RM, Presby DM, Johnson GC, Houck JA, Houser JL, Oljira R, MacLean PS. Prior weight loss exacerbates the biological drive to gain weight after the loss of ovarian function. Physiol Rep 2018; 5:e13272. [PMID: 28533263 PMCID: PMC5449558 DOI: 10.14814/phy2.13272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 02/01/2023] Open
Abstract
Both the history of obesity and weight loss may change how menopause affects metabolic health. The purpose was to determine whether obesity and/or weight loss status alters energy balance (EB) and subsequent weight gain after the loss of ovarian function. Female lean and obese Wistar rats were randomized to 15% weight loss (WL) or ad libitum fed controls (CON). After the weight loss period, WL rats were kept in EB at the reduced weight for 8 weeks prior to ovariectomy (OVX). After OVX, all rats were allowed to eat ad libitum until weight plateaued. Energy intake (EI), spontaneous physical activity, and total energy expenditure (TEE) were measured with indirect calorimetry before OVX, immediately after OVX, and after weight plateau. Changes in energy intake (EI), TEE, and weight gain immediately after OVX were similar between lean and obese rats. However, obese rats gained more total weight and fat mass than lean rats over the full regain period. Post-OVX, EI increased more (P ≤ 0.03) in WL rats (58.9 ± 3.5 kcal/d) than CON rats (8.5 ± 5.2 kcal/d), and EI partially normalized (change from preOVX: 20.5 ± 4.2 vs. 1.5 ± 4.9 kcal/day) by the end of the study. As a result, WL rats gained weight (week 1:44 ± 20 vs. 7 ± 25 g) more rapidly (mean = 44 ± 20 vs. 7 ± 25 g/week; P < 0.001) than CON Prior obesity did not affect changes in EB or weight regain following OVX, whereas a history of weight loss prior to OVX augmented disruptions in EB after OVX, resulting in more rapid weight regain.
Collapse
Affiliation(s)
- Vanessa D Sherk
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Matthew R Jackman
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Erin D Giles
- Department of Nutrition & Food Science, Texas A&M University, College Station, Texas
| | - Janine A Higgins
- Section of Endocrinology, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rebecca M Foright
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - David M Presby
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Ginger C Johnson
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Julie A Houck
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jordan L Houser
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Robera Oljira
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Paul S MacLean
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
26
|
Rosenfeld CS, Shay DA, Vieira-Potter VJ. Cognitive Effects of Aromatase and Possible Role in Memory Disorders. Front Endocrinol (Lausanne) 2018; 9:610. [PMID: 30386297 PMCID: PMC6199361 DOI: 10.3389/fendo.2018.00610] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
Diverse cognitive functions in many vertebrate species are influenced by local conversion of androgens to 17β-estradiol (E2) by aromatase. This enzyme is highly expressed in various brain regions across species, with some inter-species variation in terms of regional brain expression. Since women with breast cancer and men and women with other disorders are often treated with aromatase inhibitors (AI), these populations might be especially vulnerable to cognitive deficits due to low neuroE2 synthesis, i.e., synthesis of E2 directly within the brain. Animal models have been useful in deciphering aromatase effects on cognitive functions. Consequences of AI administration at various life cycle stages have been assessed on auditory, song processing, and spatial memory in birds and various aspects of cognition in rodent models. Additionally, cognitive deficits have been described in aromatase knockout (ArKO) mice that systemically lack this gene throughout their lifespan. This review will consider evidence to date that AI treatment in male and female rodent models, birds, and humans results in cognitive impairments. How brain aromatase regulates cognitive function throughout the lifespan, and gaps in current knowledge will be considered, along with future directions to better define how aromatase might guide learning and memory from early development through the geriatric period. Better understanding the importance of E2 synthesis on neurobehavioral responses at various ages will likely aid in the discovery of therapeutic strategies to prevent potential cognitive deficits, including Alzheimer's Disease, in individuals treated with AI or those possessing CYP19 gene polymorphisms, as well as cognitive effects of normal aging that may be related to changes in brain aromatase activity.
Collapse
Affiliation(s)
- Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, United States
- Biomedical Sciences, University of Missouri, Columbia, MO, United States
- *Correspondence: Cheryl S. Rosenfeld
| | - Dusti A. Shay
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Victoria J. Vieira-Potter
- Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Victoria J. Vieira-Potter
| |
Collapse
|
27
|
Shakya M, Briski KP. Rebound Feeding in the Wake of Short-Term Suspension of Food Intake Differs in the Presence of Estrous Cycle Peak versus Nadir Levels of Estradiol. Endocrinol Metab (Seoul) 2017; 32:475-484. [PMID: 29271620 PMCID: PMC5744734 DOI: 10.3803/enm.2017.32.4.475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Short-term interruption of feeding is ordinary in modern life but negatively impacts appetite control and body weight. Estradiol (E) imposes long-term inhibitory tonus on food consumption; however, E influence on energy repletion secondary to food deprivation (FD) is unclear. This study investigated the hypothesis that E signal strength regulates hyperphagic responses to FD of varying duration. METHODS Ovariectomized female rats were implanted with E-containing silastic capsules (30 [E-30] or 300 μg [E-300]/mL) to replicate plasma concentrations at cycle nadir versus peak levels. RESULTS Data show that food intake was increased equally in E-30 and E-300 rats after 12 hours of food deprivation (FD-12); yet, FD of 18 hours (FD-18) amplified refeeding by E-300 versus E-30. Caudal fourth ventricular administration of the 5'-monophosphate-activated protein kinase (AMPK) inhibitor compound C (Cc) did not modify FD-induced hyperphagia in E-30 (regardless of FD interval) or E-300 animals exposed to FD-12, but diminished refeeding after FD-18 in E-300 rats. Cc-reversible hyperglycemia occurred in refed FD-18 groups. Serum insulin was resistant to FD-12 plus refeeding, but was elevated by AMPK-dependent mechanisms in refed E-300 FD-18 rats; equivalent Cc-insensitive decrements in circulating leptin occurred in all FD groups. CONCLUSION Current results show that estrous cycle peak, but not baseline, E levels engage hindbrain AMPK signaling to intensify hyperphagia in response to prolongation of FD. Observations of hindbrain AMPK-dependent hyperglycemia, alongside elevated insulin secretion, in refed rats exposed to FD-18 implicate this sensor in insulin resistance mechanisms of glucose partitioning in response to this metabolic imbalance.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana Monroe, Monroe, LA, USA
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, College of Health and Pharmaceutical Sciences, The University of Louisiana Monroe, Monroe, LA, USA.
| |
Collapse
|
28
|
Sample CH, Davidson TL. Considering sex differences in the cognitive controls of feeding. Physiol Behav 2017; 187:97-107. [PMID: 29174819 DOI: 10.1016/j.physbeh.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
Abstract
Women are disproportionately affected by obesity, and obesity increases women's risk of developing dementia more so than men. Remarkably little is known about how females make decisions about when and how much to eat. Research in animal models with males supports a framework in which previous experiences with external food cues and internal physiological energy states, and the ability to retrieve memories of the consequences of eating, determines subsequent food intake. Additional evidence indicates that consumption of a high-fat, high-sugar diet interferes with hippocampal-dependent mnemonic processes that operate to suppress eating, such as in situations of satiety. Recent findings also indicate that weakening this form of hippocampal-dependent inhibitory control may also extend to other forms of learning and memory, perpetuating a vicious cycle of increased Western diet intake, hippocampal dysfunction, and further impairments in the suppression of appetitive behavior that may ultimately disrupt other types of memorial interference resolution. How these basic learning and memory processes operate in females to guide food intake has received little attention. Ovarian hormones appear to protect females from obesity and metabolic impairments, as well as modulate learning and memory processes, but little is known about how these hormones modulate learned appetitive behavior. Even less is known about how a sex-specific environmental factor - widespread hormonal contraceptive use - affects associative learning and the regulation of food intake. Extending learned models of food intake to females will require considerably investigation at many levels (e.g., reproductive status, hormonal compound, parity). This work could yield critical insights into the etiology of obesity, and its concomitant cognitive impairment, for both sexes.
Collapse
Affiliation(s)
- Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States.
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| |
Collapse
|
29
|
The Androgen Receptor Supports Tumor Progression After the Loss of Ovarian Function in a Preclinical Model of Obesity and Breast Cancer. Discov Oncol 2017; 8:269-285. [PMID: 28741260 DOI: 10.1007/s12672-017-0302-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/26/2017] [Accepted: 07/06/2017] [Indexed: 12/13/2022] Open
Abstract
The androgen receptor (AR) has context-dependent roles in breast cancer growth and progression. Overall, high tumor AR levels predict a favorable patient outcome, but several studies have established a tumor promotional role for AR, particularly in supporting the growth of estrogen receptor positive (ER-positive) breast cancers after endocrine therapy. Our previous studies have demonstrated that obesity promotes mammary tumor progression after ovariectomy (OVX) in a rat model of postmenopausal breast cancer. Here, we investigated a potential role for AR in obesity-associated post-OVX mammary tumor progression following ovarian estrogen loss. In this model, we found that obese but not lean rats had nuclear localized AR in tumors that progressed 3 weeks after OVX, compared to those that regressed. AR nuclear localization is consistent with activation of AR-dependent transcription. Longer-term studies (8 weeks post-OVX) showed that AR nuclear localization and expression were maintained in tumors that had progressed, but AR expression was nearly lost in tumors that were regressing. The anti-androgen enzalutamide effectively blocked tumor progression in obese rats by promoting tumor necrosis and also prevented the formation of new tumors after OVX. Neither circulating nor mammary adipose tissue levels of the AR ligand testosterone were elevated in obese compared to lean rats; however, IL-6, which we previously reported to be higher in plasma from obese versus lean rats, sensitized breast cancer cells to low levels of testosterone. Our study demonstrates that, in the context of obesity, AR plays a role in driving ER-positive mammary tumor progression in an environment of low estrogen availability, and that circulating factors unique to the obese host, including IL-6, may influence how cancer cells respond to steroid hormones.
Collapse
|
30
|
Briski KP, Alhamami HN, Alshamrani A, Mandal SK, Shakya M, Ibrahim MHH. Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:359-383. [PMID: 29224103 DOI: 10.1007/978-3-319-70178-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body's far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Collapse
Affiliation(s)
- Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA.
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Ayed Alshamrani
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Santosh K Mandal
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Manita Shakya
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Mostafa H H Ibrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
31
|
Jonscher KR, Stewart MS, Alfonso-Garcia A, DeFelice BC, Wang XX, Luo Y, Levi M, Heerwagen MJR, Janssen RC, de la Houssaye BA, Wiitala E, Florey G, Jonscher RL, Potma EO, Fiehn O, Friedman JE. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice. FASEB J 2016; 31:1434-1448. [PMID: 28007783 DOI: 10.1096/fj.201600906r] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/12/2016] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.
Collapse
Affiliation(s)
- Karen R Jonscher
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA;
| | - Michael S Stewart
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | | | - Brian C DeFelice
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA
| | - Xiaoxin X Wang
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yuhuan Luo
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Moshe Levi
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Margaret J R Heerwagen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Rachel C Janssen
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Becky A de la Houssaye
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Ellen Wiitala
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| | - Garrett Florey
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Raleigh L Jonscher
- Department of Integrative Biology, University of Colorado, Denver, Denver, Colorado, USA; and
| | - Eric O Potma
- Beckman Laser Institute, and.,Department of Biomedical Engineering,University of California, Irvine, Irvine, California, USA
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA USA.,Biochemistry Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jacob E Friedman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado USA
| |
Collapse
|
32
|
Giles ED, Jackman MR, MacLean PS. Modeling Diet-Induced Obesity with Obesity-Prone Rats: Implications for Studies in Females. Front Nutr 2016; 3:50. [PMID: 27933296 PMCID: PMC5121240 DOI: 10.3389/fnut.2016.00050] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/28/2016] [Indexed: 12/03/2022] Open
Abstract
Obesity is a worldwide epidemic, and the comorbidities associated with obesity are numerous. Over the last two decades, we and others have employed an outbred rat model to study the development and persistence of obesity, as well as the metabolic complications that accompany excess weight. In this review, we summarize the strengths and limitations of this model and how it has been applied to further our understanding of human physiology in the context of weight loss and weight regain. We also discuss how the approach has been adapted over time for studies in females and female-specific physiological conditions, such as menopause and breast cancer. As excess weight and the accompanying metabolic complications have become common place in our society, we expect that this model will continue to provide a valuable translational tool to establish physiologically relevant connections to the basic science studies of obesity and body weight regulation.
Collapse
Affiliation(s)
- Erin D Giles
- Department of Nutrition and Food Science, Texas A&M University , College Station, TX , USA
| | - Matthew R Jackman
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul S MacLean
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
33
|
Giles ED, Hagman J, Pan Z, MacLean PS, Higgins JA. Weight restoration on a high carbohydrate refeeding diet promotes rapid weight regain and hepatic lipid accumulation in female anorexic rats. Nutr Metab (Lond) 2016; 13:18. [PMID: 26937246 PMCID: PMC4773993 DOI: 10.1186/s12986-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/19/2016] [Indexed: 01/08/2023] Open
Abstract
Background There is currently no standard clinical refeeding diet for the treatment of anorexia nervosa (AN). To provide the most efficacious AN clinical care, it is necessary to define the metabolic effects of current refeeding diets. Methods An activity-based model of anorexia nervosa (AN) was used in female rats. AN was induced over 7d by timed access to low fat (LF) diet with free access to a running wheel. Plasma hormones/metabolites and body composition were assessed at baseline, AN diagnosis (day 0), and following 28d of refeeding on LF diet. Energy balance and expenditure were measured via continuous indirect calorimetry on days −3 to +3. Results AN induction caused stress as indicated by higher levels of corticosterone versus controls (p < 0.0001). The rate of weight gain during refeeding was higher in AN rats than controls (p = 0.0188), despite lower overall energy intake (p < 0.0001). This was possible due to lower total energy expenditure (TEE) at the time of AN diagnosis which remained significantly lower during the entire refeeding period, driven by markedly lower resting energy expenditure (REE). AN rats exhibited lower lipid accumulation in visceral adipose tissues (VAT) but much higher liver accumulation (62 % higher in AN than control; p < 0.05) while maintaining the same total body weight as controls. It is possible that liver lipid accumulation was caused by overfeeding of carbohydrate suggesting that a lower carbohydrate, higher fat diet may be beneficial during AN treatment. To test whether such a diet would be accepted clinically, we conducted a study in adolescent female AN patients which showed equivalent palatability and acceptability for LF and moderate fat diets. In addition, this diet was feasible to provide clinically during inpatient treatment in this population. Conclusion Refeeding a LF diet to restore body weight in female AN rats caused depressed TEE and REE which facilitated rapid regain. However, this weight gain was metabolically unhealthy as it resulted in elevated lipid accumulation in the liver. It is necessary to investigate the use of other diets, such as lower carbohydrate, moderate fat diets, in pre-clinical models to develop the optimal clinical refeeding diets for AN.
Collapse
Affiliation(s)
- Erin D Giles
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Jennifer Hagman
- Department of Psychiatry, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Zhaoxing Pan
- Biostatistics Core, Children's Hospital Colorado Research Institute, Aurora, CO USA
| | - Paul S MacLean
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Division of Endocrinology, Diabetes and Metabolism, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Janine A Higgins
- Center for Human Nutrition, University of Colorado Anschutz Medical Campus, Aurora, CO USA ; Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
34
|
Giles ED, Steig AJ, Jackman MR, Higgins JA, Johnson GC, Lindstrom RC, MacLean PS. Exercise Decreases Lipogenic Gene Expression in Adipose Tissue and Alters Adipocyte Cellularity during Weight Regain After Weight Loss. Front Physiol 2016; 7:32. [PMID: 26903882 PMCID: PMC4748045 DOI: 10.3389/fphys.2016.00032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/25/2016] [Indexed: 12/15/2022] Open
Abstract
Exercise is a potent strategy to facilitate long-term weight maintenance. In addition to increasing energy expenditure and reducing appetite, exercise also favors the oxidation of dietary fat, which likely helps prevent weight re-gain. It is unclear whether this exercise-induced metabolic shift is due to changes in energy balance, or whether exercise imparts additional adaptations in the periphery that limit the storage and favor the oxidation of dietary fat. To answer this question, adipose tissue lipid metabolism and related gene expression were studied in obese rats following weight loss and during the first day of relapse to obesity. Mature, obese rats were weight-reduced for 2 weeks with or without daily treadmill exercise (EX). Rats were weight maintained for 6 weeks, followed by relapse on: (a) ad libitum low fat diet (LFD), (b) ad libitum LFD plus EX, or (c) a provision of LFD to match the positive energy imbalance of exercised, relapsing animals. 24 h retention of dietary- and de novo-derived fat were assessed directly using 14C palmitate/oleate and 3H20, respectively. Exercise decreased the size, but increased the number of adipocytes in both retroperitoneal (RP) and subcutaneous (SC) adipose depots, and prevented the relapse-induced increase in adipocyte size. Further, exercise decreased the expression of genes involved in lipid uptake (CD36 and LPL), de novo lipogenesis (FAS, ACC1), and triacylglycerol synthesis (MGAT and DGAT) in RP adipose during relapse following weight loss. This was consistent with the metabolic data, whereby exercise reduced retention of de novo-derived fat even when controlling for the positive energy imbalance. The decreased trafficking of dietary fat to adipose tissue with exercise was explained by reduced energy intake which attenuated energy imbalance during refeeding. Despite having decreased expression of lipogenic genes, the net retention of de novo-derived lipid was higher in both the RP and SC adipose of exercising animals compared to their energy gap-matched controls. Our interpretation of this data is that much of this lipid is being made by the liver and subsequently trafficked to adipose tissue storage. Together, these concerted effects may explain the beneficial effects of exercise on preventing weight regain following weight loss.
Collapse
Affiliation(s)
- Erin D Giles
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Amy J Steig
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Matthew R Jackman
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Janine A Higgins
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Department of Pediatrics, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Ginger C Johnson
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Rachel C Lindstrom
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| | - Paul S MacLean
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical CampusAurora, CO, USA; Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Colorado Anschutz Medical CampusAurora, CO, USA
| |
Collapse
|
35
|
Sladek CD, Stevens W, Song Z, Johnson GC, MacLean PS. The "metabolic sensor" function of rat supraoptic oxytocin and vasopressin neurons is attenuated during lactation but not in diet-induced obesity. Am J Physiol Regul Integr Comp Physiol 2015; 310:R337-45. [PMID: 26661099 DOI: 10.1152/ajpregu.00422.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022]
Abstract
The oxytocin (OT) and vasopressin (VP) neurons of the supraoptic nucleus (SON) demonstrate characteristics of "metabolic sensors". They express insulin receptors and glucokinase (GK). They respond to an increase in glucose and insulin with an increase in intracellular [Ca(2+)] and increased OT and VP release that is GK dependent. Although this is consistent with the established role of OT as an anorectic agent, how these molecules function relative to the important role of OT during lactation and whether deficits in this metabolic sensor function contribute to obesity remain to be examined. Thus, we evaluated whether insulin and glucose-induced OT and VP secretion from perifused explants of the hypothalamo-neurohypophyseal system are altered during lactation and by diet-induced obesity (DIO). In explants from female day 8 lactating rats, increasing glucose (Glu, 5 mM) did not alter OT or VP release. However, insulin (Ins; 3 ng/ml) increased OT release, and increasing the glucose concentration in the presence of insulin (Ins+Glu) resulted in a sustained elevation in both OT and VP release that was not prevented by alloxan, a GK inhibitor. Explants from male DIO rats also responded to Ins+Glu with an increase in OT and VP regardless of whether obesity had been induced by feeding a high-fat diet (HFD). The HFD-DIO rats had elevated body weight, plasma Ins, Glu, leptin, and triglycerides. These findings suggest that the role of SON neurons as metabolic sensors is diminished during lactation, but not in this animal model of obesity.
Collapse
Affiliation(s)
- Celia D Sladek
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Wanida Stevens
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Zhilin Song
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Ginger C Johnson
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Paul S MacLean
- Department of Physiology and Biophysics and Medicine, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
36
|
Shukla C, Koch LG, Britton SL, Cai M, Hruby VJ, Bednarek M, Novak CM. Contribution of regional brain melanocortin receptor subtypes to elevated activity energy expenditure in lean, active rats. Neuroscience 2015; 310:252-67. [PMID: 26404873 DOI: 10.1016/j.neuroscience.2015.09.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/13/2022]
Abstract
Physical activity and non-exercise activity thermogenesis (NEAT) are crucial factors accounting for individual differences in body weight, interacting with genetic predisposition. In the brain, a number of neuroendocrine intermediates regulate food intake and energy expenditure (EE); this includes the brain melanocortin (MC) system, consisting of MC peptides as well as their receptors (MCR). MC3R and MC4R have emerged as critical modulators of EE and food intake. To determine how variance in MC signaling may underlie individual differences in physical activity levels, we examined behavioral response to MC receptor agonists and antagonists in rats that show high and low levels of physical activity and NEAT, that is, high- and low-capacity runners (HCR, LCR), developed by artificial selection for differential intrinsic aerobic running capacity. Focusing on the hypothalamus, we identified brain region-specific elevations in expression of MCR 3, 4, and also MC5R, in the highly active, lean HCR relative to the less active and obesity-prone LCR. Further, the differences in activity and associated EE as a result of MCR activation or suppression using specific agonists and antagonists were similarly region-specific and directly corresponded to the differential MCR expression patterns. The agonists and antagonists investigated here did not significantly impact food intake at the doses used, suggesting that the differential pattern of receptor expression may by more meaningful to physical activity than to other aspects of energy balance regulation. Thus, MCR-mediated physical activity may be a key neural mechanism in distinguishing the lean phenotype and a target for enhancing physical activity and NEAT.
Collapse
Affiliation(s)
- C Shukla
- Department of Biological Sciences, Kent State University, Kent, OH, United States; Harvard Medical School - VA Boston Healthcare System, Boston, MA, United States.
| | - L G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - S L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - M Cai
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - V J Hruby
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - M Bednarek
- MedImmune Limited, Cambridge, United Kingdom
| | - C M Novak
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
37
|
Gavini CK, Mukherjee S, Shukla C, Britton SL, Koch LG, Shi H, Novak CM. Leanness and heightened nonresting energy expenditure: role of skeletal muscle activity thermogenesis. Am J Physiol Endocrinol Metab 2014; 306:E635-47. [PMID: 24398400 PMCID: PMC3948980 DOI: 10.1152/ajpendo.00555.2013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A high-calorie diet accompanied by low levels of physical activity (PA) accounts for the widespread prevalence of obesity today, and yet some people remain lean even in this obesogenic environment. Here, we investigate the cause for this exception. A key trait that predicts high PA in both humans and laboratory rodents is intrinsic aerobic capacity. Rats artificially selected as high-capacity runners (HCR) are lean and consistently more physically active than their low-capacity runner (LCR) counterparts; this applies to both males and females. Here, we demonstrate that HCR show heightened total energy expenditure (TEE) and hypothesize that this is due to higher nonresting energy expenditure (NREE; includes activity EE). After matching for body weight and lean mass, female HCR consistently had heightened nonresting EE, but not resting EE, compared with female LCR. Because of the dominant role of skeletal muscle in nonresting EE, we examined muscle energy use. We found that lean female HCR had higher muscle heat dissipation during activity, explaining their low economy of activity and high activity EE. This may be due to the amplified skeletal muscle expression levels of proteins involved in EE and reduced expression levels of proteins involved in energy conservation in HCR relative to LCR. This is also associated with an increased sympathetic drive to skeletal muscle in HCR compared with LCR. We find little support for the hypothesis that resting metabolic rate is correlated with maximal aerobic capacity if body size and composition are fully considered; rather, the critical factor appears to be activity thermogenesis.
Collapse
|
38
|
Prunus mume and Lithospermum erythrorhizon Extracts Synergistically Prevent Visceral Adiposity by Improving Energy Metabolism through Potentiating Hypothalamic Leptin and Insulin Signalling in Ovariectomized Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:750986. [PMID: 24319483 PMCID: PMC3844196 DOI: 10.1155/2013/750986] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 09/23/2013] [Accepted: 09/23/2013] [Indexed: 01/03/2023]
Abstract
We investigated the antiobesity and hypoglycemic properties of Prunus mume Sieb. et Zucc (PMA; Japanese apricot) and Lithospermum erythrorhizon Sieb. et Zucc (LES; gromwell) extracts in ovariectomized (OVX) rats that impaired energy and glucose homeostasis. OVX rats consumed either 5% dextrose, 5% PMA extract, 5% LES extract, or 2.5% PMA+2.5% LES extract in the high fat diet. After 8 weeks of treatment, PMA+LES prevented weight gain and visceral fat accumulation in OVX rats by lowering daily food intake and increasing energy expenditure and fat oxidation. PMA+LES prevented the attenuation of leptin and insulin signaling by increasing the expression of leptin receptor in the hypothalamus in OVX rats. PMA+LES significantly reversed the decrease of energy expenditure in OVX rats by increasing expression of UCP-1 in the brown adipose tissues and UCP-2 and UCP-3 in the quadriceps muscles. PMA+LES also increased CPT-1 expression and decreased FAS, ACC, and SREBP-1c in the liver and quadriceps muscles to result in reducing triglyceride accumulation. PMA+LES improved insulin sensitivity in OVX rats. In conclusion, PMA+LES synergistically prevented the impairment of energy, lipid, and glucose metabolism by OVX through potentiating hypothalamic leptin and insulin signaling. PMA+LES may be a useful intervention for alleviating the symptoms of menopause in women.
Collapse
|
39
|
Giles ED, Wellberg EA, Astling DP, Anderson SM, Thor AD, Jindal S, Tan AC, Schedin PS, Maclean PS. Obesity and overfeeding affecting both tumor and systemic metabolism activates the progesterone receptor to contribute to postmenopausal breast cancer. Cancer Res 2012; 72:6490-501. [PMID: 23222299 DOI: 10.1158/0008-5472.can-12-1653] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obese postmenopausal women have increased risk of breast cancers with poorer clinical outcomes than their lean counterparts. However, the mechanisms underlying these associations are poorly understood. Rodent model studies have recently identified a period of vulnerability for mammary cancer promotion, which emerges during weight gain after the loss of ovarian function (surgical ovariectomy; OVX). Thus, a period of transient weight gain may provide a life cycle-specific opportunity to prevent or treat postmenopausal breast cancer. We hypothesized that a combination of impaired metabolic regulation in obese animals prior to OVX plus an OVX-induced positive energy imbalance might cooperate to drive tumor growth and progression. To determine if lean and obese rodents differ in their metabolic response to OVX-induced weight gain, and whether this difference affects later mammary tumor metabolism, we performed a nutrient tracer study during the menopausal window of vulnerability. Lean animals preferentially deposited excess nutrients to mammary and peripheral tissues rather than to the adjacent tumors. Conversely, obese animals deposited excess nutrients into the tumors themselves. Notably, tumors from obese animals also displayed increased expression of the progesterone receptor (PR). Elevated PR expression positively correlated with tumor expression of glycolytic and lipogenic enzymes, glucose uptake, and proliferation markers. Treatment with the antidiabetic drug metformin during ovariectomy-induced weight gain caused tumor regression and downregulation of PR expression in tumors. Clinically, expression array analysis of breast tumors from postmenopausal women revealed that PR expression correlated with a similar pattern of metabolic upregulation, supporting the notion that PR+ tumors have enhanced metabolic capacity after menopause. Our findings have potential explanative power in understanding why obese, postmenopausal women display an increased risk of breast cancer.
Collapse
Affiliation(s)
- Erin D Giles
- Anschutz Health and Wellness Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | |
Collapse
|