1
|
Casas-Alvarado A, Mora-Medina P, Hernández-Avalos I, Martínez-Burnes J, Miranda-Cortes A, Domínguez-Oliva A, Mota-Rojas D. Assessing Facial Thermal Nociceptive Response in Female Dogs After Elective Ovariohysterectomy Anesthetized with Isoflurane and Treated with Cannabidiol and Meloxicam Analgesia. Animals (Basel) 2025; 15:227. [PMID: 39858227 PMCID: PMC11758305 DOI: 10.3390/ani15020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Pain management requires the identification of certain indicators to recognize pain. Various tools have been suggested to achieve an objective evaluation, including infrared thermography (IRT). The objective of this study was to assess the facial thermal nociceptive response produced by the use of cannabidiol (CBD) alone and in combination with meloxicam in female dogs undergoing elective ovariohysterectomy anesthetized with isoflurane. Sixty-four female dogs of different breeds were randomly distributed into four study groups according to the treatment received. G1: Placebo group (n = 16); G2: Group receiving intravenous meloxicam as premedication (0.2 mg Kg-1) and every 24 h postoperatively 0.1 mg Kg-1 (n = 16); G3: Group treated with CBD (n = 16) at a dose of 2 mg kg-1 orally every 12 h; and G4: Group medicated with the combination of both treatments (n = 16). All treatments were administered for 48 h postoperatively. After the anesthetic surgical procedure, radiometric images were captured using IRT and physiological parameters during the events EBasal, E30min, E1h, E2h, E3h, E4h, E8h, E12h, E24h and E48h. Overall, it was found that the high, medium and low temperatures of the thermal windows of the eye, upper eyelid and lower eyelid, as well as the average temperature of the lacrimal gland in G1 between events, were significantly lower at E30min, E1h and E2h compared to EBasal (p = 0.01). Among treatments, a significantly higher temperature was observed in groups G2, G3 and G4 compared to G1 (p = 0.001) in the thermal windows of the upper eyelid, lower eyelid, lacrimal gland and ocular areas. Regarding physiological parameters, heart rate (HR) was higher in G1 compared to the animals in G2, G3 and G4 (p = 0.03). The respiratory rate (RR) was significantly lower in all four study groups during the postoperative events compared to their respective EBasal (p < 0.05), while among treatments, G2, G3 and G4 had a lower RR compared to G1 (p = 0.03). Mild hypothermia was observed in all study groups at E30min and E1h compared to EBasal (p = 0.001). No significant correlation was found between the temperatures of the assessed thermal regions and the physiological traits. In conclusion, CBD, whether administered alone or in combination with meloxicam, demonstrated comparable analgesic efficacy, which could control nociceptive cardiorespiratory and hemodynamic autonomic responses, as there were no significant changes in the facial thermal response between treatments G2, G3 and G4.
Collapse
Affiliation(s)
- Alejandro Casas-Alvarado
- PhD Program in Biological and Health Sciences [Doctorado en Ciencias Biológicas y de la Salud], Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Patricia Mora-Medina
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Ismael Hernández-Avalos
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Instituto de Ecología Aplicada, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Agatha Miranda-Cortes
- Clinical Pharmacology and Veterinary Anesthesia, Biological Sciences Department, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Cuautitlán 54714, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| | - Daniel Mota-Rojas
- Neurophysiology of Pain, Behavior and Assessment of Welfare in Domestic Animals, Department of Animal Production and Agriculture, Universidad Autónoma Metropolitana (UAM), Mexico City 04960, Mexico
| |
Collapse
|
2
|
Zahner MR, Hillard KJ, Chandley MC. The role of the dorsomedial hypothalamus in the cardiogenic sympathetic reflex in the Sprague Dawley rat. Front Physiol 2024; 15:1479892. [PMID: 39777361 PMCID: PMC11703967 DOI: 10.3389/fphys.2024.1479892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Myocardial ischemia causes the production and release of metabolites such as bradykinin, which stimulates cardiac spinal sensory afferents, causing chest pain and an increase in sympathetic activity referred to as the cardiogenic sympathetic afferent reflex. While the brain stem nuclei, such as the nucleus tractus solitarius and rostral ventrolateral medulla, are essential in the cardiogenic sympathetic afferent reflex, the role of other supramedullary nuclei in the cardiogenic sympathetic afferent reflex are not clear. The dorsomedial hypothalamic nucleus (DMH) is involved in cardiovascular sympathetic regulation and plays an important role in the sympathetic response to stressful stimuli. In this study, we determined the role of DMH in the cardiogenic sympathetic afferent reflex. To do this we measured arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) responses to epicardial bradykinin (10 μg/mL) in anesthetized Sprague Dawley rats before and after bilateral DMH microinjection (50 nL) of either the GABAA agonist muscimol (0.5 nmol) to inhibit or the antagonist bicuculline (40 pmol) to disinhibit activity. Muscimol inhibition elicited a modest, albeit significant, reduction in basal arterial pressure and heart rate and attenuated the arterial pressure and heart rate reflex response to epicardial bradykinin. However, it did not change the magnitude of the reflex. Bicuculline disinhibition of the DMH increased basal arterial pressure, heart rate, and RSNA but did not augment the response to epicardial bradykinin. These results suggest that sympathetic activity derived from the DMH does not play an important role in the cardiogenic sympathetic afferent reflex in Sprague Dawley rats.
Collapse
Affiliation(s)
- Matthew R. Zahner
- Health Sciences Department, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Kynlee J. Hillard
- Health Sciences Department, College of Public Health, East Tennessee State University, Johnson City, TN, United States
| | - Michelle C. Chandley
- Biomedical Science Department, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Fontes MAP, Dos Santos Machado LR, Viana ACR, Cruz MH, Nogueira ÍS, Oliveira MGL, Neves CB, Godoy ACV, Henderson LA, Macefield VG. The insular cortex, autonomic asymmetry and cardiovascular control: looking at the right side of stroke. Clin Auton Res 2024; 34:549-560. [PMID: 39316247 DOI: 10.1007/s10286-024-01066-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Evidence from animal and human studies demonstrates that cortical regions play a key role in autonomic modulation with a differential role for some brain regions located in the left and right brain hemispheres. Known as autonomic asymmetry, this phenomenon has been demonstrated by clinical observations, by experimental models, and currently by combined neuroimaging and direct recordings of sympathetic nerve activity. Previous studies report peculiar autonomic-mediated cardiovascular alterations following unilateral damage to the left or right insula, a multifunctional key cortical region involved in emotional processing linked to autonomic cardiovascular control and featuring asymmetric characteristics. METHODS Based on clinical studies reporting specific damage to the insular cortex, this review aims to provide an overview of the prognostic significance of unilateral (left or right hemisphere) post-insular stroke cardiac alterations. In addition, we review experimental data aiming to unravel the central mechanisms involved in post-insular stroke cardiovascular complications. RESULTS AND CONCLUSION Current clinical and experimental data suggest that stroke of the right insula can present a worse cardiovascular prognosis.
Collapse
Affiliation(s)
- Marco Antônio Peliky Fontes
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil.
| | - Liliane Ramos Dos Santos Machado
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Clara Rocha Viana
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Matheus Henrique Cruz
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ícaro Santos Nogueira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Marcela Gondim Lima Oliveira
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Christiane Braga Neves
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | - Ana Caroline Ventris Godoy
- Hypertension Laboratory, Department of Physiology and Biophysics - Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, 31270 901, Brazil
| | | | - Vaughan G Macefield
- Department of Neuroscience, Monash University, Melbourne, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Australia
| |
Collapse
|
4
|
Carrillo-Franco L, González-García M, Morales-Luque C, Dawid-Milner MS, López-González MV. Hypothalamic Regulation of Cardiorespiratory Functions: Insights into the Dorsomedial and Perifornical Pathways. BIOLOGY 2024; 13:933. [PMID: 39596888 PMCID: PMC11592276 DOI: 10.3390/biology13110933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
The dorsomedial hypothalamus nucleus (DMH) plays a pivotal role in the orchestration of sympathetic nervous system activities. Through its projections to the brainstem and pontomedullary nuclei, it controls heart rate, contractility, blood pressure, and respiratory activity, such as timing and volumes. The DMH integrates inputs from higher brain centers and processes these signals in order to modulate autonomic outflow accordingly. It has been demonstrated to be of particular significance in the context of stress responses, where it orchestrates the physiological adaptations that are necessary for all adaptative responses. The perifornical region (PeF), which is closely associated with the DMH, also makes a contribution to autonomic regulation. The involvement of the PeF region in autonomic control is evidenced by its function in coordinating the autonomic and endocrine responses to stress, frequently in conjunction with the DMH. The DMH and the PeF do not function in an isolated manner; rather, they are components of a comprehensive hypothalamic network that integrates several autonomic responses. This neural network could serve as a target for developing therapeutic strategies in cardiovascular diseases.
Collapse
Affiliation(s)
- Laura Carrillo-Franco
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Marta González-García
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Carmen Morales-Luque
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
| | - Marc Stefan Dawid-Milner
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| | - Manuel Víctor López-González
- Department of Human Physiology, Faculty of Medicine, University of Málaga, 29010 Malaga, Spain; (C.M.-L.); (M.S.D.-M.); (M.V.L.-G.)
- Unit of Neurophysiology of the Autonomic Nervous System (CIMES), University of Málaga, 29010 Malaga, Spain
- Biomedical Research Institute of Málaga (IBIMA Plataforma BIONAND), 29010 Malaga, Spain
| |
Collapse
|
5
|
Hasebe Y, Yokota S, Fukushi I, Takeda K, Yoshizawa M, Onimaru H, Kono Y, Sugama S, Uchiyama M, Koizumi K, Horiuchi J, Kakinuma Y, Pokorski M, Toda T, Izumizaki M, Mori Y, Sugita K, Okada Y. Persistence of post-stress blood pressure elevation requires activation of astrocytes. Sci Rep 2024; 14:22984. [PMID: 39363030 PMCID: PMC11450218 DOI: 10.1038/s41598-024-73345-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
The reflexive excitation of the sympathetic nervous system in response to psychological stress leads to elevated blood pressure, a condition that persists even after the stress has been alleviated. This sustained increase in blood pressure, which may contribute to the pathophysiology of hypertension, could be linked to neural plasticity in sympathetic nervous activity. Given the critical role of astrocytes in various forms of neural plasticity, we investigated their involvement in maintaining elevated blood pressure during the post-stress phase. Specifically, we examined the effects of arundic acid, an astrocytic inhibitor, on blood pressure and heart rate responses to air-jet stress. First, we confirmed that the inhibitory effect of arundic acid is specific to astrocytes. Using c-Fos immunohistology, we then observed that psychological stress activates neurons in cardiovascular brain regions, and that this stress-induced neuronal activation was suppressed by arundic acid pre-treatment in rats. By evaluating astrocytic process thickness, we also confirmed that astrocytes in the cardiovascular brain regions were activated by stress, and this activation was blocked by arundic acid pre-treatment. Next, we conducted blood pressure measurements on unanesthetized, unrestrained rats. Air-jet stress elevated blood pressure, which remained high for a significant period during the post-stress phase. However, pre-treatment with arundic acid, which inhibited astrocytic activation, suppressed stress-induced blood pressure elevation both during and after stress. In contrast, arundic acid had no significant impact on heart rate. These findings suggest that both neurons and astrocytes play integral roles in stress-induced blood pressure elevation and its persistence after stress, offering new insights into the pathophysiological mechanisms underlying hypertension.
Collapse
Affiliation(s)
- Yohei Hasebe
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo, Shimane, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
- Graduate School of Health Sciences, Aomori University of Health and Welfare, Aomori, Japan
| | - Kotaro Takeda
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Masashi Yoshizawa
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University, School of Medicine, Tokyo, Japan
| | - Yosuke Kono
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Shuei Sugama
- Center for Medical Sciences, International University of Health and Welfare, Otawara, Tochigi, Japan
| | - Makoto Uchiyama
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Jouji Horiuchi
- Department of Biomedical Engineering, Graduate School of Science and Engineering, Toyo University, Saitama, Japan
| | | | | | - Takako Toda
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University, School of Medicine, Tokyo, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| |
Collapse
|
6
|
Matsuyama M, Horiuchi J. A descending pathway from the lateral/ventrolateral PAG to the rostroventral medulla mediating the vasomotor response evoked by social defeat stress in rats. Am J Physiol Regul Integr Comp Physiol 2024; 327:R66-R78. [PMID: 38708545 DOI: 10.1152/ajpregu.00295.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
The stress-induced cardiovascular response is based on the defensive reaction in mammals. It has been shown that the sympathetic vasomotor pathway of acute psychological stress is indirectly mediated via neurons in the rostroventral medulla (RVM) from the hypothalamic stress center. In this study, direct projections to the RVM and distribution of neuroexcitatory marker c-Fos-expressed neurons were investigated during social defeat stress (SDS) in conscious rats. The experimental rat that was injected with a neural tracer, FluoroGold (FG) into the unilateral RVM, was exposed to the SDS. Double-positive neurons of both c-Fos and FG were locally distributed in the lateral/ventrolateral periaqueductal gray matter (l/vl PAG) in the midbrain. These results suggest that the neurons in the l/vl PAG contribute to the defensive reaction evoked by acute psychological stress, such as the SDS. During the SDS period, arterial pressure (AP) and heart rate (HR) showed sustained increases in the rat. Therefore, we performed chemical stimulation by excitatory amino acid microinjection within the l/vl PAG and measured cardiovascular response and sympathetic nerve activity in some anesthetized rats. The chemical stimulation of neurons in the l/vl PAG caused significant increases in arterial pressure and renal sympathetic nerve activity. Taken together, our results suggest that neurons in the l/vl PAG are a possible candidate for the cardiovascular descending pathway that modulates sympathetic vascular resistance evoked by acute psychological stress, like the SDS.NEW & NOTEWORTHY The sympathetic vasomotor pathway of an acute psychological stress-induced cardiovascular response is mediated via neurons in the RVM indirectly from the hypothalamus. In this study, we showed the relaying area of the efferent sympathetic vasomotor pathway from the hypothalamus to the RVM. The results suggested that the pressor response during psychological stress is mediated via neurons in the lateral/ventrolateral PAG to the RVM.
Collapse
Affiliation(s)
- Mio Matsuyama
- Department of Biomedical EngineeringToyo UniversityKawagoeJapan
| | - Jouji Horiuchi
- Department of Biomedical EngineeringToyo UniversityKawagoeJapan
| |
Collapse
|
7
|
Nakamura K. Central Mechanisms of Thermoregulation and Fever in Mammals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1461:141-159. [PMID: 39289279 DOI: 10.1007/978-981-97-4584-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Thermoregulation is a fundamental homeostatic function in mammals mediated by the central nervous system. The framework of the central circuitry for thermoregulation lies in the hypothalamus and brainstem. The preoptic area (POA) of the hypothalamus integrates cutaneous and central thermosensory information into efferent control signals that regulate excitatory descending pathways through the dorsomedial hypothalamus (DMH) and rostral medullary raphe region (rMR). The cutaneous thermosensory feedforward signals are delivered to the POA by afferent pathways through the lateral parabrachial nucleus, while the central monitoring of body core temperature is primarily mediated by warm-sensitive neurons in the POA for negative feedback regulation. Prostaglandin E2, a pyrogenic mediator produced in response to infection, acts on the POA to trigger fever. Recent studies have revealed that this circuitry also functions for physiological responses to psychological stress and starvation. Master psychological stress signaling from the medial prefrontal cortex to the DMH has been discovered to drive a variety of physiological responses for stress coping, including hyperthermia. During starvation, hunger signaling from the hypothalamus was found to activate medullary reticular neurons, which then suppress thermogenic sympathetic outflows from the rMR for energy saving. This thermoregulatory circuit represents a fundamental mechanism of the central regulation for homeostasis.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
8
|
Jun S, Ou X, Shi L, Yu H, Deng T, Chen J, Nie X, Hao Y, Shi Y, Liu W, Tian Y, Wang S, Yuan F. Circuit-Specific Control of Blood Pressure by PNMT-Expressing Nucleus Tractus Solitarii Neurons. Neurosci Bull 2023; 39:1193-1209. [PMID: 36588135 PMCID: PMC10387028 DOI: 10.1007/s12264-022-01008-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/18/2022] [Indexed: 01/03/2023] Open
Abstract
The nucleus tractus solitarii (NTS) is one of the morphologically and functionally defined centers that engage in the autonomic regulation of cardiovascular activity. Phenotypically-characterized NTS neurons have been implicated in the differential regulation of blood pressure (BP). Here, we investigated whether phenylethanolamine N-methyltransferase (PNMT)-expressing NTS (NTSPNMT) neurons contribute to the control of BP. We demonstrate that photostimulation of NTSPNMT neurons has variable effects on BP. A depressor response was produced during optogenetic stimulation of NTSPNMT neurons projecting to the paraventricular nucleus of the hypothalamus, lateral parabrachial nucleus, and caudal ventrolateral medulla. Conversely, photostimulation of NTSPNMT neurons projecting to the rostral ventrolateral medulla produced a robust pressor response and bradycardia. In addition, genetic ablation of both NTSPNMT neurons and those projecting to the rostral ventrolateral medulla impaired the arterial baroreflex. Overall, we revealed the neuronal phenotype- and circuit-specific mechanisms underlying the contribution of NTSPNMT neurons to the regulation of BP.
Collapse
Affiliation(s)
- Shirui Jun
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xianhong Ou
- Institute of Cardiovascular Research, Southwest Medical University, Luzhou, 646000, China
| | - Luo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jinting Chen
- Core Facilities and Centers, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Xiaojun Nie
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yinchao Hao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yishuo Shi
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Wei Liu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yanming Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, 050017, China.
| |
Collapse
|
9
|
Madirazza K, Pecotic R, Pavlinac Dodig I, Valic M, Dogas Z. Blockade of alpha2-adrenergic receptors in the caudal raphe region enhances the renal sympathetic nerve activity response to acute intermittent hypercapnia in rats. Physiol Res 2022; 71:159-169. [PMID: 35043650 DOI: 10.33549/physiolres.934717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The study investigated the role of alpha2-adrenergic receptors of the caudal raphe region in the sympathetic and cardiovascular responses to the acute intermittent hypercapnia (AIHc). Urethane-anesthetized, vagotomized, mechanically ventilated Sprague-Dawley rats (n=38) were exposed to the AIHc protocol (5×3 min, 15 % CO2+50 % O2) in hyperoxic background (50 % O2). alpha2-adrenergic receptor antagonist-yohimbine was applied intravenously (1 mg/kg, n=9) or microinjected into the caudal raphe region (2 mM, n=12) prior to exposure to AIHc. Control groups of animals received saline intravenously (n=7) or into the caudal raphe region (n=10) prior to exposure to AIHc. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP) and heart rate (HR) were monitored before exposure to the AIHc protocol (T0), during five hypercapnic episodes (THc1-5) and at 15 min following the end of the last hypercapnic episode (T15). Following intravenous administration of yohimbine, RSNA was significantly greater during THc1-5 and at T15 than in the control group (P<0.05). When yohimbine was microinjected into the caudal raphe region, AIHc elicited greater increases in RSNA during THc1-5 when compared to the controls (THc1: 138.0+/-4.0 % vs. 123.7+/-4.8 %, P=0.032; THc2: 137.1+/-5.0 % vs. 124.1+/-4.5 %, P=0.071; THc3: 143.1+/-6.4 % vs. 122.0±4.8 %, P=0.020; THc4: 146.1+/-6.2 % vs. 120.7+/-5.7 %, P=0.007 and THc5: 143.2+/-7.7 % vs. 119.2+/-7.2 %, P=0.038). During THc1-5, significant decreases in HR from T0 were observed in all groups, while changes in MAP were observed in the group that received yohimbine intravenously. These findings suggest that blockade of the alpha2-adrenegic receptors in the caudal raphe region might have an important role in sympathetic responses to AIHc.
Collapse
Affiliation(s)
- K Madirazza
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia.
| | | | | | | | | |
Collapse
|
10
|
Nakamura K, Morrison SF. Central sympathetic network for thermoregulatory responses to psychological stress. Auton Neurosci 2021; 237:102918. [PMID: 34823147 DOI: 10.1016/j.autneu.2021.102918] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/05/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022]
Abstract
In mammals, many types of psychological stressors elicit a variety of sympathoexcitatory responses paralleling the classic fight-or-flight response to a threat to survival, including increased body temperature via brown adipose tissue thermogenesis and cutaneous vasoconstriction, and increased skeletal muscle blood flow via tachycardia and visceral vasoconstriction. Although these responses are usually supportive for stress coping, aberrant sympathetic responses to stress can lead to clinical issues in psychosomatic medicine. Sympathetic stress responses are mediated mostly by sympathetic premotor drives from the rostral medullary raphe region (rMR) and partly by those from the rostral ventrolateral medulla (RVLM). Hypothalamomedullary descending pathways from the dorsomedial hypothalamus (DMH) to the rMR and RVLM mediate important, stress-driven sympathoexcitatory transmission to the premotor neurons to drive the thermal and cardiovascular responses. The DMH also likely sends an excitatory input to the paraventricular hypothalamic nucleus to stimulate stress hormone release. Neurons in the DMH receive a stress-related excitation from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT) in the ventromedial prefrontal cortex. By connecting the corticolimbic emotion circuit to the central sympathetic and somatic motor systems, the DP/DTT → DMH pathway plays as the primary mediator of the psychosomatic signaling that drives a variety of sympathetic and behavioral stress responses. These brain regions together with other stress-related regions constitute a central neural network for physiological stress responses. This network model is relevant to understanding the central mechanisms by which stress and emotions affect autonomic regulations of homeostasis and to developing new therapeutic strategies for various stress-related disorders.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Shaun F Morrison
- Department of Neurological Surgery, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
11
|
A hypothalamomedullary network for physiological responses to environmental stresses. Nat Rev Neurosci 2021; 23:35-52. [PMID: 34728833 DOI: 10.1038/s41583-021-00532-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 02/07/2023]
Abstract
Various environmental stressors, such as extreme temperatures (hot and cold), pathogens, predators and insufficient food, can threaten life. Remarkable progress has recently been made in understanding the central circuit mechanisms of physiological responses to such stressors. A hypothalamomedullary neural pathway from the dorsomedial hypothalamus (DMH) to the rostral medullary raphe region (rMR) regulates sympathetic outflows to effector organs for homeostasis. Thermal and infection stress inputs to the preoptic area dynamically alter the DMH → rMR transmission to elicit thermoregulatory, febrile and cardiovascular responses. Psychological stress signalling from a ventromedial prefrontal cortical area to the DMH drives sympathetic and behavioural responses for stress coping, representing a psychosomatic connection from the corticolimbic emotion circuit to the autonomic and somatic motor systems. Under starvation stress, medullary reticular neurons activated by hunger signalling from the hypothalamus suppress thermogenic drive from the rMR for energy saving and prime mastication to promote food intake. This Perspective presents a combined neural network for environmental stress responses, providing insights into the central circuit mechanism for the integrative regulation of systemic organs.
Collapse
|
12
|
Kono Y, Yokota S, Fukushi I, Arima Y, Onimaru H, Okazaki S, Takeda K, Yazawa I, Yoshizawa M, Hasebe Y, Koizumi K, Pokorski M, Toda T, Sugita K, Okada Y. Structural and functional connectivity from the dorsomedial hypothalamus to the ventral medulla as a chronological amplifier of sympathetic outflow. Sci Rep 2020; 10:13325. [PMID: 32770006 PMCID: PMC7414200 DOI: 10.1038/s41598-020-70234-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022] Open
Abstract
Psychological stress activates the hypothalamus, augments the sympathetic nervous output, and elevates blood pressure via excitation of the ventral medullary cardiovascular regions. However, anatomical and functional connectivity from the hypothalamus to the ventral medullary cardiovascular regions has not been fully elucidated. We investigated this issue by tract-tracing and functional imaging in rats. Retrograde tracing revealed the rostral ventrolateral medulla was innervated by neurons in the ipsilateral dorsomedial hypothalamus (DMH). Anterograde tracing showed DMH neurons projected to the ventral medullary cardiovascular regions with axon terminals in contiguity with tyrosine hydroxylase-immunoreactive neurons. By voltage-sensitive dye imaging, dynamics of ventral medullary activation evoked by electrical stimulation of the DMH were analyzed in the diencephalon-lower brainstem-spinal cord preparation of rats. Although the activation of the ventral medulla induced by single pulse stimulation of the DMH was brief, tetanic stimulation caused activation of the DMH sustained into the post-stimulus phase, resulting in delayed recovery. We suggest that prolonged excitation of the DMH, which is triggered by tetanic electrical stimulation and could also be triggered by psychological stress in a real life, induces further prolonged excitation of the medullary cardiovascular networks, and could contribute to the pathological elevation of blood pressure. The connectivity from the DMH to the medullary cardiovascular networks serves as a chronological amplifier of stress-induced sympathetic excitation. This notion will be the anatomical and pathophysiological basis to understand the mechanisms of stress-induced sustained augmentation of sympathetic activity.
Collapse
Affiliation(s)
- Yosuke Kono
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.,Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Shigefumi Yokota
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Isato Fukushi
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.,Faculty of Health Sciences, Uekusa Gakuen University, Chiba, 264-0007, Japan
| | - Yosuke Arima
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo, Shimane, 693-8501, Japan
| | - Hiroshi Onimaru
- Department of Physiology, Showa University School of Medicine, Shinagawa, Tokyo, 142-8555, Japan
| | - Shuntaro Okazaki
- Faculty of Human Sciences, Waseda University, Tokorozawa, Saitama, 359-1192, Japan
| | - Kotaro Takeda
- Faculty of Rehabilitation, School of Healthcare, Fujita Health University, Toyoake, Aichi, 470-1192, Japan
| | - Itaru Yazawa
- Global Research Center for Innovative Life Science, Hoshi University, Shinagawa, Tokyo, 142-8501, Japan
| | - Masashi Yoshizawa
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.,Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Yohei Hasebe
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan.,Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Keiichi Koizumi
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | | | - Takako Toda
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Kanji Sugita
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, 409-3898, Japan
| | - Yasumasa Okada
- Clinical Research Center, Murayama Medical Center, 2-37-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| |
Collapse
|
13
|
Guyenet PG, Stornetta RL, Souza GMPR, Abbott SBG, Brooks VL. Neuronal Networks in Hypertension: Recent Advances. Hypertension 2020; 76:300-311. [PMID: 32594802 DOI: 10.1161/hypertensionaha.120.14521] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurogenic hypertension is associated with excessive sympathetic nerve activity to the kidneys and portions of the cardiovascular system. Here we examine the brain regions that cause heightened sympathetic nerve activity in animal models of neurogenic hypertension, and we discuss the triggers responsible for the changes in neuronal activity within these regions. We highlight the limitations of the evidence and, whenever possible, we briefly address the pertinence of the findings to human hypertension. The arterial baroreflex reduces arterial blood pressure variability and contributes to the arterial blood pressure set point. This set point can also be elevated by a newly described cerebral blood flow-dependent and astrocyte-mediated sympathetic reflex. Both reflexes converge on the presympathetic neurons of the rostral medulla oblongata, and both are plausible causes of neurogenic hypertension. Sensory afferent dysfunction (reduced baroreceptor activity, increased renal, or carotid body afferent) contributes to many forms of neurogenic hypertension. Neurogenic hypertension can also result from activation of brain nuclei or sensory afferents by excess circulating hormones (leptin, insulin, Ang II [angiotensin II]) or sodium. Leptin raises blood vessel sympathetic nerve activity by activating the carotid bodies and subsets of arcuate neurons. Ang II works in the lamina terminalis and probably throughout the brain stem and hypothalamus. Sodium is sensed primarily in the lamina terminalis. Regardless of its cause, the excess sympathetic nerve activity is mediated to some extent by activation of presympathetic neurons located in the rostral ventrolateral medulla or the paraventricular nucleus of the hypothalamus. Increased activity of the orexinergic neurons also contributes to hypertension in selected models.
Collapse
Affiliation(s)
- Patrice G Guyenet
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Ruth L Stornetta
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - George M P R Souza
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Stephen B G Abbott
- From the Department of Pharmacology, University of Virginia, Charlottesville (P.G.G., R.L.S., G.M.P.R.S., S.B.G.A.)
| | - Virginia L Brooks
- Department of Chemical Physiology and Biochemistry, Oregon Health & Sciences University, Portland (V.L.B.)
| |
Collapse
|
14
|
Kataoka N, Shima Y, Nakajima K, Nakamura K. A central master driver of psychosocial stress responses in the rat. Science 2020; 367:1105-1112. [DOI: 10.1126/science.aaz4639] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/04/2020] [Indexed: 12/16/2022]
Abstract
The mechanism by which psychological stress elicits various physiological responses is unknown. We discovered a central master neural pathway in rats that drives autonomic and behavioral stress responses by connecting the corticolimbic stress circuits to the hypothalamus. Psychosocial stress signals from emotion-related forebrain regions activated a VGLUT1-positive glutamatergic pathway from the dorsal peduncular cortex and dorsal tenia tecta (DP/DTT), an unexplored prefrontal cortical area, to the dorsomedial hypothalamus (DMH), a hypothalamic autonomic center. Genetic ablation and optogenetics revealed that the DP/DTT→DMH pathway drives thermogenic, hyperthermic, and cardiovascular sympathetic responses to psychosocial stress without contributing to basal homeostasis. This pathway also mediates avoidance behavior from psychosocial stressors. Given the variety of stress responses driven by the DP/DTT→DMH pathway, the DP/DTT can be a potential target for treating psychosomatic disorders.
Collapse
|
15
|
Macefield VG, Henderson LA. Identifying Increases in Activity of the Human RVLM Through MSNA-Coupled fMRI. Front Neurosci 2020; 13:1369. [PMID: 32038124 PMCID: PMC6985468 DOI: 10.3389/fnins.2019.01369] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/04/2019] [Indexed: 11/13/2022] Open
Abstract
AIM We initially developed concurrent recording of muscle sympathetic nerve activity (MSNA) and functional magnetic resonance imaging (fMRI) of the brain to functionally identify the human homolog of the rostral ventrolateral medulla (RVLM). Here we summarize the cortical and subcortical connections to the RVLM, as identified using MSNA-coupled fMRI. METHODS MSNA was recorded via tungsten microelectrodes inserted into the peroneal nerve. Gradient echo, echo-planar fMRI was performed at 3T (Philips Achieva). 200 volumes (46 axial slices (TR = 8 s, TE = 4 s, flip angle = 90°, raw voxel size = 1.5 × 1.5 × 2.75 mm) were collected in a 4 s-ON, 4 s-OFF sparse sampling protocol and MSNA measured in each 1 s epoch in the 4-s period between scans. Blood oxygen level dependent (BOLD) signal intensity was measured in the corresponding 1 s epoch 4 s later to account for peripheral neural conduction and central neurovascular coupling delays. RESULTS BOLD signal intensity was positively related to bursts of MSNA in the RVLM, dorsomedial hypothalamus (DMH), ventromedial hypothalamus (VMH), insula, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex (PCC), and precuneus, and negatively related in the caudal ventrolateral medulla (CVLM), nucleus tractus solitarius (NTS), and the midbrain periaqueductal gray (PAG). During physiological increases in MSNA (tonic muscle pain), MSNA-coupled BOLD signal intensity was greater in RVLM, NTS, PAG, DMH, dlPFC, medial prefrontal cortex (mPFC), precuneus, and anterior cingulate cortex (ACC) than at rest. During pathophysiological increases in MSNA [obstructive sleep apnoea (OSA)] signal intensity was also higher in dlPFC, mPFC, ACC, and precuneus than in controls. Conversely, signal intensity was lower in RVLM in OSA than in controls, which we interpret as reflecting a withdrawal of active inhibition of the RVLM. CONCLUSION These results suggest that multiple cortical and subcortical areas are functionally coupled to the RVLM, which in turn is functionally coupled to the generation of spontaneous bursts of MSNA and their augmentation during physiological and pathophysiological increase in vasoconstrictor drive.
Collapse
Affiliation(s)
- Vaughan G. Macefield
- Human Autonomic Neurophysiology Laboratory, School of Medicine, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Physiology, School of Biomedical Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A. Henderson
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
17
|
A time to fight: Circadian control of aggression and associated autonomic support. Auton Neurosci 2018; 217:35-40. [PMID: 30704973 DOI: 10.1016/j.autneu.2018.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
The central circadian clock, located in the suprachiasmatic nucleus of the mammalian hypothalamus (SCN), regulates daily behavioral rhythms including the temporal propensity for aggressive behavior. Such aggression propensity rhythms are regulated by a functional circuit from the SCN to neurons that drive attack behavior in the ventromedial hypothalamus (VMH), via a relay in the subparaventricular zone (SPZ). In addition to this pathway, the SCN also regulates sleep-wake and locomotor activity rhythms, via the SPZ, in a circuit to the dorsomedial hypothalamus (DMH), a structure that is also known to play a key role in autonomic function and the sympathetic "fight-or-flight" response (which prepares the body for action in stressful situations such as an agonistic encounter). While the autonomic nervous system is known to be under pronounced circadian control, it is less apparent how such autonomic rhythms and their underlying circuitry may support the temporal propensity for aggressive behavior. Additionally, it is unclear how circadian and autonomic dysfunction may contribute to aberrant social and emotional behavior, such as agitation and aggression. Here we review the literature concerning interactions between the circadian and autonomic systems and aggression, and we discuss the implications of these relationships for human neural and behavioral pathologies.
Collapse
|
18
|
Abstract
The rostral ventromedial medulla (RVM) has a well-documented role in pain modulation and exerts antinociceptive and pronociceptive influences mediated by 2 distinct classes of neurons, OFF-cells and ON-cells. OFF-cells are defined by a sudden pause in firing in response to nociceptive inputs, whereas ON-cells are characterized by a "burst" of activity. Although these reflex-related changes in ON- and OFF-cell firing are critical to their pain-modulating function, the pathways mediating these responses have not been identified. The present experiments were designed to test the hypothesis that nociceptive input to the RVM is relayed through the parabrachial complex (PB). In electrophysiological studies, ON- and OFF-cells were recorded in the RVM of lightly anesthetized male rats before and after an infusion of lidocaine or muscimol into PB. The ON-cell burst and OFF-cell pause evoked by noxious heat or mechanical probing were substantially attenuated by inactivation of the lateral, but not medial, parabrachial area. Retrograde tracing studies showed that neurons projecting to the RVM were scattered throughout PB. Few of these neurons expressed calcitonin gene-related peptide, suggesting that the RVM projection from PB is distinct from that to the amygdala. These data show that a substantial component of "bottom-up" nociceptive drive to RVM pain-modulating neurons is relayed through the PB. While the PB is well known as an important relay for ascending nociceptive information, its functional connection with the RVM allows the spinoparabrachial pathway to access descending control systems as part of a recurrent circuit.
Collapse
|
19
|
Shi Z, Madden CJ, Brooks VL. Arcuate neuropeptide Y inhibits sympathetic nerve activity via multiple neuropathways. J Clin Invest 2017. [PMID: 28628036 PMCID: PMC5490747 DOI: 10.1172/jci92008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Obesity increases sympathetic nerve activity (SNA) via activation of proopiomelanocortin neurons in the arcuate nucleus (ArcN), and this action requires simultaneous withdrawal of tonic neuropeptide Y (NPY) sympathoinhibition. However, the sites and neurocircuitry by which NPY decreases SNA are unclear. Here, using designer receptors exclusively activated by designer drugs (DREADDs) to selectively activate or inhibit ArcN NPY neurons expressing agouti-related peptide (AgRP) in mice, we have demonstrated that this neuronal population tonically suppresses splanchnic SNA (SSNA), arterial pressure, and heart rate via projections to the paraventricular nucleus (PVN) and dorsomedial hypothalamus (DMH). First, we found that ArcN NPY/AgRP fibers closely appose PVN and DMH presympathetic neurons. Second, nanoinjections of NPY or an NPY receptor Y1 (NPY1R) antagonist into PVN or DMH decreased or increased SSNA, respectively. Third, blockade of DMH NPY1R reversed the sympathoinhibition elicited by selective, DREADD-mediated activation of ArcN NPY/AgRP neurons. Finally, stimulation of ArcN NPY/AgRP terminal fields in the PVN and DMH decreased SSNA. Considering that chronic obesity decreases ArcN NPY content, we propose that the ArcN NPY neuropathway to the PVN and DMH is pivotal in obesity-induced elevations in SNA.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology and
| | - Christopher J Madden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon, USA
| | | |
Collapse
|
20
|
Dempsey B, Le S, Turner A, Bokiniec P, Ramadas R, Bjaalie JG, Menuet C, Neve R, Allen AM, Goodchild AK, McMullan S. Mapping and Analysis of the Connectome of Sympathetic Premotor Neurons in the Rostral Ventrolateral Medulla of the Rat Using a Volumetric Brain Atlas. Front Neural Circuits 2017; 11:9. [PMID: 28298886 PMCID: PMC5331070 DOI: 10.3389/fncir.2017.00009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/06/2017] [Indexed: 01/27/2023] Open
Abstract
Spinally projecting neurons in the rostral ventrolateral medulla (RVLM) play a critical role in the generation of vasomotor sympathetic tone and are thought to receive convergent input from neurons at every level of the neuraxis; the factors that determine their ongoing activity remain unresolved. In this study we use a genetically restricted viral tracing strategy to definitively map their spatially diffuse connectome. We infected bulbospinal RVLM neurons with a recombinant rabies variant that drives reporter expression in monosynaptically connected input neurons and mapped their distribution using an MRI-based volumetric atlas and a novel image alignment and visualization tool that efficiently translates the positions of neurons captured in conventional photomicrographs to Cartesian coordinates. We identified prominent inputs from well-established neurohumoral and viscero-sympathetic sensory actuators, medullary autonomic and respiratory subnuclei, and supramedullary autonomic nuclei. The majority of inputs lay within the brainstem (88–94%), and included putative respiratory neurons in the pre-Bötzinger Complex and post-inspiratory complex that are therefore likely to underlie respiratory-sympathetic coupling. We also discovered a substantial and previously unrecognized input from the region immediately ventral to nucleus prepositus hypoglossi. In contrast, RVLM sympathetic premotor neurons were only sparsely innervated by suprapontine structures including the paraventricular nucleus, lateral hypothalamus, periaqueductal gray, and superior colliculus, and we found almost no evidence of direct inputs from the cortex or amygdala. Our approach can be used to quantify, standardize and share complete neuroanatomical datasets, and therefore provides researchers with a platform for presentation, analysis and independent reanalysis of connectomic data.
Collapse
Affiliation(s)
- Bowen Dempsey
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Sheng Le
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Anita Turner
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Phil Bokiniec
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Radhika Ramadas
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Jan G Bjaalie
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Clement Menuet
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Rachael Neve
- Viral Core Facility, McGovern Institute for Brain Research, Massachusetts Institute of Technology Cambridge, MA, USA
| | - Andrew M Allen
- Department of Physiology, University of Melbourne Melbourne, VIC, Australia
| | - Ann K Goodchild
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| | - Simon McMullan
- Faculty of Medicine and Health Sciences, Neurobiology of Vital Systems, Macquarie University Sydney, NSW, Australia
| |
Collapse
|
21
|
Sévoz-Couche C, Brouillard C. Key role of 5-HT 3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity. Neurosci Biobehav Rev 2016; 74:423-432. [PMID: 27131969 DOI: 10.1016/j.neubiorev.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
| | - Charly Brouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
22
|
Nakamura K. Neural circuit for psychological stress-induced hyperthermia. Temperature (Austin) 2015; 2:352-61. [PMID: 27227049 PMCID: PMC4843917 DOI: 10.1080/23328940.2015.1070944] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/04/2015] [Accepted: 07/04/2015] [Indexed: 11/03/2022] Open
Abstract
Psychological stress-induced hyperthermia (PSH) is a basic physiological stress response to increase physical performances to defend homeostasis and life from stressors, such as natural enemies. However, excessive and long-lasting stressors can lead to chronic hyperthermia, particularly recognized in humans as a psychosomatic symptom called “psychogenic fever.” The sympathetic and neuroendocrine responses that can contribute to PSH include brown adipose tissue (BAT) thermogenesis, cutaneous vasoconstriction, tachycardia and glucocorticoid secretion. Research on the central circuits underlying these stress responses has recently revealed several fundamental circuit mechanisms including hypothalamomedullary pathways driving the sympathetic stress responses. Psychological stress activates a monosynaptic glutamatergic excitatory neurotransmission from the dorsomedial hypothalamus (DMH) to sympathetic premotor neurons in the rostral medullary raphe region (rMR) to drive BAT thermogenesis and tachycardia, leading to the development of PSH. This glutamatergic neurotransmission could be potentiated by orexin neurons in the lateral hypothalamus through their projections to the rMR. Psychological stress also activates another monosynaptic pathway from the DMH to the paraventricular hypothalamic nucleus to stimulate the hypothalamo-pituitary-adrenal axis for the secretion of glucocorticoids. PSH is independent from the prostaglandin-mediated trigger mechanism for inflammation-induced fever, and several forebrain regions are considered to provide stress-driven inputs to the DMH to activate the sympathetic- and neuroendocrine-driving neurons. The circuit mechanism of PSH based on animal experiments would be relevant to understandings of the etiology of psychogenic fever in humans. This review describes the current understandings of the central circuit mechanism of PSH with recent important progress in research.
Collapse
Affiliation(s)
- Kazuhiro Nakamura
- Department of Integrative Physiology; Nagoya University Graduate School of Medicine, Nagoya, Japan; Precursory Research for Embryonic Science and Technology; Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
23
|
Dampney RAL. Central mechanisms regulating coordinated cardiovascular and respiratory function during stress and arousal. Am J Physiol Regul Integr Comp Physiol 2015; 309:R429-43. [PMID: 26041109 DOI: 10.1152/ajpregu.00051.2015] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 05/28/2015] [Indexed: 02/07/2023]
Abstract
Actual or potentially threatening stimuli in the external environment (i.e., psychological stressors) trigger highly coordinated defensive behavioral responses that are accompanied by appropriate autonomic and respiratory changes. As discussed in this review, several brain regions and pathways have major roles in subserving the cardiovascular and respiratory responses to threatening stimuli, which may vary from relatively mild acute arousing stimuli to more prolonged life-threatening stimuli. One key region is the dorsomedial hypothalamus, which receives inputs from the cortex, amygdala, and other forebrain regions and which is critical for generating autonomic, respiratory, and neuroendocrine responses to psychological stressors. Recent studies suggest that the dorsomedial hypothalamus also receives an input from the dorsolateral column in the midbrain periaqueductal gray, which is another key region involved in the integration of stress-evoked cardiorespiratory responses. In addition, it has recently been shown that neurons in the midbrain colliculi can generate highly synchronized autonomic, respiratory, and somatomotor responses to visual, auditory, and somatosensory inputs. These collicular neurons may be part of a subcortical defense system that also includes the basal ganglia and which is well adapted to responding to threats that require an immediate stereotyped response that does not involve the cortex. The basal ganglia/colliculi system is phylogenetically ancient. In contrast, the defense system that includes the dorsomedial hypothalamus and cortex evolved at a later time, and appears to be better adapted to generating appropriate responses to more sustained threatening stimuli that involve cognitive appraisal.
Collapse
Affiliation(s)
- Roger A L Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Silva F, Guidine PAM, Machado NL, Xavier CH, de Menezes R, Moraes-Santos T, Moraes MF, Chianca DA. The role of dorsomedial hypotalamus ionotropic glutamate receptors in the hypertensive and tachycardic responses evoked by Tityustoxin intracerebroventricular injection. Neurotoxicology 2015; 47:54-61. [DOI: 10.1016/j.neuro.2014.12.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/12/2014] [Accepted: 12/15/2014] [Indexed: 02/07/2023]
|
25
|
Simonds S, Pryor J, Ravussin E, Greenway F, Dileone R, Allen A, Bassi J, Elmquist J, Keogh J, Henning E, Myers M, Licinio J, Brown R, Enriori P, O’Rahilly S, Sternson S, Grove K, Spanswick D, Farooqi I, Cowley M. Leptin mediates the increase in blood pressure associated with obesity. Cell 2014; 159:1404-16. [PMID: 25480301 PMCID: PMC4259491 DOI: 10.1016/j.cell.2014.10.058] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/31/2014] [Accepted: 10/30/2014] [Indexed: 02/02/2023]
Abstract
Obesity is associated with increased blood pressure (BP), which in turn increases the risk of cardiovascular diseases. We found that the increase in leptin levels seen in diet-induced obesity (DIO) drives an increase in BP in rodents, an effect that was not seen in animals deficient in leptin or leptin receptors (LepR). Furthermore, humans with loss-of-function mutations in leptin and the LepR have low BP despite severe obesity. Leptin's effects on BP are mediated by neuronal circuits in the dorsomedial hypothalamus (DMH), as blocking leptin with a specific antibody, antagonist, or inhibition of the activity of LepR-expressing neurons in the DMH caused a rapid reduction of BP in DIO mice, independent of changes in weight. Re-expression of LepRs in the DMH of DIO LepR-deficient mice caused an increase in BP. These studies demonstrate that leptin couples changes in weight to changes in BP in mammalian species.
Collapse
Affiliation(s)
- Stephanie E. Simonds
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jack T. Pryor
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK,Neurosolutions Ltd., Coventry CV4 7ZS, UK
| | - Eric Ravussin
- The Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Frank L. Greenway
- The Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Ralph Dileone
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Andrew M. Allen
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Jaspreet Bassi
- Department of Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Joel K. Elmquist
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Elana Henning
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Martin G. Myers
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julio Licinio
- Mind and Brain Theme, South Australian Health and Medical Research Institute and Department of Psychiatry, School of Medicine, Flinders University, Adelaide, SA 5001, Australia
| | - Russell D. Brown
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Pablo J. Enriori
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Scott M. Sternson
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kevin L. Grove
- Division of Diabetes, Obesity & Metabolism, Oregon National Primate Research Center, Portland, OR 97239, USA
| | - David C. Spanswick
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia,Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK,Corresponding author
| | - Michael A. Cowley
- Department of Physiology, Monash Obesity and Diabetes Institute, Monash University, Clayton, VIC 3800, Australia,Corresponding author
| |
Collapse
|
26
|
Kataoka N, Hioki H, Kaneko T, Nakamura K. Psychological stress activates a dorsomedial hypothalamus-medullary raphe circuit driving brown adipose tissue thermogenesis and hyperthermia. Cell Metab 2014; 20:346-58. [PMID: 24981837 DOI: 10.1016/j.cmet.2014.05.018] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/14/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
Psychological stress-induced hyperthermia (PSH) is a fundamental autonomic stress response observed in many mammalian species. Here we show a hypothalamomedullary, glutamatergic neural pathway for psychological stress signaling that drives the sympathetic thermogenesis in brown adipose tissue (BAT) that contributes to PSH. Using in vivo drug nanoinjections into rat brain and thermotelemetry, we demonstrate that the rostral medullary raphe region (rMR) and dorsomedial hypothalamus (DMH) mediate a psychosocial stress-induced thermogenesis in BAT and PSH. Functional neuroanatomy indicates that the DMH functions as a hub for stress signaling, with monosynaptic projections to the rMR for sympathetic outputs and to the paraventricular hypothalamic nucleus for neuroendocrine outputs. Optogenetic experiments showed that the DMH-rMR monosynaptic pathway drives BAT thermogenesis and cardiovascular responses. These findings make an important contribution to our understanding of the central autonomic circuitries linking stress coping with energy homeostasis-potentially underlying the etiology of psychogenic fever, a major psychosomatic symptom.
Collapse
Affiliation(s)
- Naoya Kataoka
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Hioki
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kazuhiro Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
27
|
Llewellyn-Smith IJ, Mueller PJ. Immunoreactivity for the NMDA NR1 subunit in bulbospinal catecholamine and serotonin neurons of rat ventral medulla. Auton Neurosci 2013; 177:114-22. [PMID: 23562375 DOI: 10.1016/j.autneu.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 02/11/2013] [Accepted: 02/28/2013] [Indexed: 02/02/2023]
Abstract
Bulbospinal neurons in the ventral medulla play important roles in the regulation of sympathetic outflow. Physiological evidence suggests that these neurons are activated by N-methyl-D-aspartate (NMDA) and non-NMDA subtypes of glutamate receptors. In this study, we examined bulbospinal neurons in the ventral medulla for the presence of immunoreactivity for the NMDA NR1 subunit, which is essential for NMDA receptor function. Rats received bilateral injections of cholera toxin B into the tenth thoracic spinal segment to label bulbospinal neurons. Triple immunofluorescent labeling was used to detect cholera toxin B with a blue fluorophore, NR1 with a red fluorophore, and either tyrosine hydroxylase or tryptophan hydroxylase with a green fluorophore. In the rostral ventrolateral medulla, NR1 occurred in all bulbospinal tyrosine hydroxylase-positive neurons and 96% of bulbospinal tyrosine hydroxylase-negative neurons, which were more common in sections containing the facial nucleus. In the raphe pallidus, the parapyramidal region, and the marginal layer, 98% of bulbospinal tryptophan hydroxylase-positive neurons contained NR1 immunoreactivity. NR1 was also present in all of the bulbospinal tryptophan hydroxylase-negative neurons, which comprised 20% of bulbospinal neurons in raphe pallidus and the parapyramidal region. These results show that virtually all bulbospinal tyrosine hydroxylase and non-tyrosine hydroxylase neurons in the rostral ventrolateral medulla and virtually all bulbospinal serotonin and non-serotonin neurons in raphe pallidus and the parapyramidal region express NR1, the obligatory subunit of the NMDA receptor. NMDA receptors on bulbospinal neurons in the rostral ventral medulla likely influence sympathoexcitation in normal and pathological conditions.
Collapse
Affiliation(s)
- Ida J Llewellyn-Smith
- Cardiovascular Medicine, Physiology and Centre for Neuroscience, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia; Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | | |
Collapse
|
28
|
Wagner KM, Roeder Z, Desrochers K, Buhler AV, Heinricher MM, Cleary DR. The dorsomedial hypothalamus mediates stress-induced hyperalgesia and is the source of the pronociceptive peptide cholecystokinin in the rostral ventromedial medulla. Neuroscience 2013; 238:29-38. [PMID: 23415792 DOI: 10.1016/j.neuroscience.2013.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 01/18/2013] [Accepted: 02/05/2013] [Indexed: 12/31/2022]
Abstract
While intense or highly arousing stressors have long been known to suppress pain, relatively mild or chronic stress can enhance pain. The mechanisms underlying stress-induced hyperalgesia (SIH) are only now being defined. The physiological and neuroendocrine effects of mild stress are mediated by the dorsomedial hypothalamus (DMH), which has documented connections with the rostral ventromedial medulla (RVM), a brainstem region capable of facilitating nociception. We hypothesized that stress engages both the DMH and the RVM to produce hyperalgesia. Direct pharmacological activation of the DMH increased sensitivity to mechanical stimulation in awake animals, confirming that the DMH can mediate behavioral hyperalgesia. A behavioral model of mild stress also produced mechanical hyperalgesia, which was blocked by inactivation of either the DMH or the RVM. The neuropeptide cholecystokinin (CCK) acts in the RVM to enhance nociception and is abundant in the DMH. Using a retrograde tracer and immunohistochemical labeling, we determined that CCK-expressing neurons in the DMH are the only significant supraspinal source of CCK in the RVM. However, not all neurons projecting from the DMH to the RVM contained CCK, and microinjection of the CCK2 receptor antagonist YM022 in the RVM did not interfere with SIH, suggesting that transmitters in addition to CCK play a significant role in this connection during acute stress. While the RVM has a well-established role in facilitation of nociception, the DMH, with its well-documented role in stress, may also be engaged in a number of chronic or abnormal pain states. Taken as a whole, these findings establish an anatomical and functional connection between the DMH and RVM by which stress can facilitate pain.
Collapse
Affiliation(s)
- K M Wagner
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | | | |
Collapse
|
29
|
Simonds SE, Cowley MA. Hypertension in obesity: is leptin the culprit? Trends Neurosci 2013; 36:121-32. [PMID: 23333346 DOI: 10.1016/j.tins.2013.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/07/2013] [Indexed: 01/15/2023]
Abstract
The number of obese or overweight humans continues to increase worldwide. Hypertension is a serious disease that often develops in obesity, but it is not clear how obesity increases the risk of hypertension. However, both obesity and hypertension increase the risk of cardiovascular diseases (CVD). In this review, we examine how obesity may increase the risk of developing hypertension. Specifically, we discuss how the adipose-derived hormone leptin influences the sympathetic nervous system (SNS), through actions in the brain to elevate energy expenditure (EE) while also contributing to hypertension in obesity.
Collapse
Affiliation(s)
- Stephanie E Simonds
- Monash Obesity & Diabetes Institute, Department of Physiology, Monash University, Clayton, VIC, Australia
| | | |
Collapse
|
30
|
Fealey RD. Interoception and autonomic nervous system reflexes thermoregulation. HANDBOOK OF CLINICAL NEUROLOGY 2013; 117:79-88. [DOI: 10.1016/b978-0-444-53491-0.00007-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Kiriazis H, Jennings NL, Davern P, Lambert G, Su Y, Pang T, Du X, La Greca L, Head GA, Hannan AJ, Du XJ. Neurocardiac dysregulation and neurogenic arrhythmias in a transgenic mouse model of Huntington's disease. J Physiol 2012; 590:5845-60. [PMID: 22890713 DOI: 10.1113/jphysiol.2012.238113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Huntington's disease (HD) is a heritable neurodegenerative disorder, with heart disease implicated as one major cause of death. While the responsible mechanism remains unknown, autonomic nervous system (ANS) dysfunction may play a role. We studied the cardiac phenotype in R6/1 transgenic mice at early (3 months old) and advanced (7 months old) stages of HD. While exhibiting a modest reduction in cardiomyocyte diameter, R6/1 mice had preserved baseline cardiac function. Conscious ECG telemetry revealed the absence of 24-h variation of heart rate (HR), and higher HR levels than wild-type littermates in young but not older R6/1 mice. Older R6/1 mice had increased plasma level of noradrenaline (NA), which was associated with reduced cardiac NA content. R6/1 mice also had unstable R-R intervals that were reversed following atropine treatment, suggesting parasympathetic nervous activation, and developed brady- and tachyarrhythmias, including paroxysmal atrial fibrillation and sudden death. c-Fos immunohistochemistry revealed greater numbers of active neurons in ANS-regulatory regions of R6/1 brains. Collectively, R6/1 mice exhibit profound ANS-cardiac dysfunction involving both sympathetic and parasympathetic limbs, that may be related to altered central autonomic pathways and lead to cardiac arrhythmias and sudden death.
Collapse
Affiliation(s)
- Helen Kiriazis
- Baker IDI Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Simonds SE, Cowley MA, Enriori PJ. Leptin increasing sympathetic nerve outflow in obesity: A cure for obesity or a potential contributor to metabolic syndrome? Adipocyte 2012; 1:177-181. [PMID: 23700530 PMCID: PMC3609095 DOI: 10.4161/adip.20690] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Obesity is a global problem and effective drug therapy treatment is still unavailable. Obesity develops due to an imbalance between energy intake and energy expenditure (EE). Understanding what happens to EE in obesity may be the key to developing new treatments for obesity. If EE in obesity can be elevated, it could be a potential therapeutic target. We recently discovered that in baseline conditions obese mice have increased EE, in terms of thermogenesis. However, this increase in EE is not great enough to offset the elevated calorie intake that leads to the development of obesity. In obesity, the adipose derived hormone leptin is significantly elevated. This elevated leptin concentration appears to cause an increase in thermogenesis through increased sympathetic nerve activity (SNA) to brown adipose tissue deposits. The brain region of the dorsomedial hypothalamus (DMH) appears to be a key region that leptin activates in obesity to cause this increased thermogenesis. One unsettling finding is that the sympathetic nervous system (SNS) in obesity is elevated via leptin and it seems unlikely that SNA would be selectivity increased to only brown adipose tissue. Previously, it has been observed that leptin can increase SNA to numerous organs including the kidney. Furthermore, in obesity, SNA is increased in numerous organs. This leads to the critical question: is the leptin-mediated elevation of SNA and thermogenesis also chronically activating the kidney and contributing to the development of hypertension in obesity?
Collapse
Affiliation(s)
- Stephanie E. Simonds
- Department of Physiology; Monash Obesity and Diabetes Institute (MODI); Monash University; Clayton, VIC Australia
| | - Michael A. Cowley
- Department of Physiology; Monash Obesity and Diabetes Institute (MODI); Monash University; Clayton, VIC Australia
| | - Pablo J. Enriori
- Department of Physiology; Monash Obesity and Diabetes Institute (MODI); Monash University; Clayton, VIC Australia
| |
Collapse
|
33
|
Horiuchi J, Atik A, Iigaya K, McDowall LM, Killinger S, Dampney RAL. Activation of 5-hydroxytryptamine-1A receptors suppresses cardiovascular responses evoked from the paraventricular nucleus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1088-97. [DOI: 10.1152/ajpregu.00144.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activation of central 5-hydroxytryptamine-1A (5-HT1A) receptors powerfully inhibits stress-evoked cardiovascular responses mediated by the dorsomedial hypothalamus (DMH), as well as responses evoked by direct activation of neurons within the DMH. The hypothalamic paraventricular nucleus (PVN) also has a crucial role in cardiovascular regulation and is believed to regulate heart rate and renal sympathetic activity via pathways that are independent of the DMH. In this study, we determined whether cardiovascular responses evoked from the PVN are also modulated by activation of central 5-HT1A receptors. In anesthetized rats, the increases in heart rate and renal sympathetic nerve activity evoked by bicuculline injection into the PVN were greatly reduced (by 54% and 61%, respectively) by intravenous administration of (±)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), an agonist of 5-HT1A receptors, but were then completely restored by subsequent administration of WAY-100635, a selective antagonist of 5-HT1A receptors. Microinjection of 8-OH-DPAT directly into the PVN did not significantly affect the responses to bicuculline injection into the PVN, nor did systemic administration of WAY-100635 alone. In control experiments, a large renal sympathoexcitatory response was evoked from both the PVN and DMH but not from the intermediate region in between; thus the evoked responses from the PVN were not due to activation of neurons in the DMH. The results indicate that activation of central 5-HT1A receptors located outside the PVN powerfully inhibits the tachycardia and renal sympathoexcitation evoked by stimulation of neurons in the PVN.
Collapse
Affiliation(s)
- Jouji Horiuchi
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Alp Atik
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Kamon Iigaya
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Lachlan M. McDowall
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Suzanne Killinger
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| | - Roger A. L. Dampney
- School of Medical Sciences (Physiology) and Bosch Institute, University of Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Marques FZ, Campain AE, Davern PJ, Yang YHJ, Head GA, Morris BJ. Genes influencing circadian differences in blood pressure in hypertensive mice. PLoS One 2011; 6:e19203. [PMID: 21541337 PMCID: PMC3082552 DOI: 10.1371/journal.pone.0019203] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/29/2011] [Indexed: 01/11/2023] Open
Abstract
Essential hypertension is a common multifactorial heritable condition in which increased sympathetic outflow from the central nervous system is involved in the elevation in blood pressure (BP), as well as the exaggerated morning surge in BP that is a risk factor for myocardial infarction and stroke in hypertensive patients. The Schlager BPH/2J mouse is a genetic model of hypertension in which increased sympathetic outflow from the hypothalamus has an important etiological role in the elevation of BP. Schlager hypertensive mice exhibit a large variation in BP between the active and inactive periods of the day, and also show a morning surge in BP. To investigate the genes responsible for the circadian variation in BP in hypertension, hypothalamic tissue was collected from BPH/2J and normotensive BPN/3J mice at the ‘peak’ (n = 12) and ‘trough’ (n = 6) of diurnal BP. Using Affymetrix GeneChip® Mouse Gene 1.0 ST Arrays, validation by quantitative real-time PCR and a statistical method that adjusted for clock genes, we identified 212 hypothalamic genes whose expression differed between ‘peak’ and ‘trough’ BP in the hypertensive strain. These included genes with known roles in BP regulation, such as vasopressin, oxytocin and thyrotropin releasing hormone, as well as genes not recognized previously as regulators of BP, including chemokine (C-C motif) ligand 19, hypocretin and zinc finger and BTB domain containing 16. Gene ontology analysis showed an enrichment of terms for inflammatory response, mitochondrial proton-transporting ATP synthase complex, structural constituent of ribosome, amongst others. In conclusion, we have identified genes whose expression differs between the peak and trough of 24-hour circadian BP in BPH/2J mice, pointing to mechanisms responsible for diurnal variation in BP. The findings may assist in the elucidation of the mechanism for the morning surge in BP in essential hypertension.
Collapse
Affiliation(s)
- Francine Z. Marques
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
| | - Anna E. Campain
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Pamela J. Davern
- Neuropharmacology Laboratory, Baker IDI Heart Research Institute, Melbourne, Australia
| | - Yee Hwa J. Yang
- School of Mathematics and Statistics, The University of Sydney, Sydney, Australia
| | - Geoffrey A. Head
- Neuropharmacology Laboratory, Baker IDI Heart Research Institute, Melbourne, Australia
| | - Brian J. Morris
- Basic and Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, The University of Sydney, Sydney, Australia
- * E-mail:
| |
Collapse
|
35
|
Fontes MAP, Xavier CH, de Menezes RCA, Dimicco JA. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. Neuroscience 2011; 184:64-74. [PMID: 21435377 DOI: 10.1016/j.neuroscience.2011.03.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 11/15/2022]
Abstract
Psychological stress elicits increases in sympathetic activity accompanied by a marked cardiovascular response. Revealing the relevant central mechanisms involved in this phenomenon could contribute significantly to our understanding of the pathogenesis of stress-related cardiovascular diseases, and the key to this understanding is the identification of the nuclei, pathways and neurotransmitters involved in the organization of the cardiovascular response to stress. The present review will focus specifically on the dorsomedial hypothalamus, a brain region now known to play a primary role in the synaptic integration underlying the cardiovascular response to emotional stress.
Collapse
Affiliation(s)
- M A P Fontes
- Laboratório de Hipertensão, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
36
|
Differential responses of sympathetic premotor neurons in the rostral ventrolateral medulla to stimulation of the dorsomedial hypothalamus in rabbits. Brain Res 2010; 1356:44-53. [PMID: 20713029 DOI: 10.1016/j.brainres.2010.08.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 02/07/2023]
Abstract
Electrical stimulation of the posterior dorsomedial hypothalamus (DMH) elicits a defense response, including vasodilation in the skeletal muscles and vasoconstriction in the viscera. To examine whether sympathetic premotor neurons in the rostral ventrolateral medulla (RVLM) participate in these differential vascular responses, RVLM neuron activity, renal sympathetic nerve activity (RSNA), renal vessel conductance (RVC), skeletal muscular vessel conductance (MVC), arterial pressure (AP), and heart rate (HR) were simultaneously measured in urethane-anesthetized, vagotomized, and immobilized rabbits. Electrical stimulation of the DMH increased RSNA, MVC, AP, and HR but decreased RVC. The RVLM neurons were classified into three groups according to their responses to tetanic (10s) stimulation of the DMH. Twenty neurons (Type I) were excited, 17 (Type II) were inhibited, and 2 (Type III) did not respond. To the short-train (100 ms) stimulation, all of the Type I neurons showed excitation; in contrast, 12 Type II neurons showed biphasic response that was early excitation followed by inhibition. The remainder showed only inhibition. Type III neurons also did not respond to the short-train stimulation. These results indicated that regional differences in responses of sympathetic nerves in the defense response are supported by functional differentiation of sympathetic premotor neurons in the RVLM.
Collapse
|
37
|
Cao WH, Madden CJ, Morrison SF. Inhibition of brown adipose tissue thermogenesis by neurons in the ventrolateral medulla and in the nucleus tractus solitarius. Am J Physiol Regul Integr Comp Physiol 2010; 299:R277-90. [PMID: 20410479 DOI: 10.1152/ajpregu.00039.2010] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Neurons in the ventrolateral medulla (VLM) and in the nucleus tractus solitarius (NTS) play important roles in the regulation of cardiovascular and other autonomic functions. In the present study, we demonstrate an inhibition of brown adipose tissue (BAT) thermogenesis evoked by activation of neurons in the VLM, as well as by neurons in the intermediate NTS, of chloralose/urethane-anesthetized, artificially ventilated rats. Activation of neurons in either rostral VLM or caudal VLM with N-methyl-d-aspartate (12 nmol) reversed the cold-evoked increase in BAT sympathetic nerve activity (SNA), BAT temperature, and end-expired CO(2). Disinhibition of neurons in either VLM or NTS with the GABA(A) receptor antagonist, bicuculline (30 pmol), reversed the increases in BAT SNA, BAT temperature, and end-expired CO(2) that were elicited 1) by cold defense; 2) during the febrile model of nanoinjection of prostaglandin E(2) into the medial preoptic area; 3) by activation of neurons in the dorsomedial hypothalamus or in the rostral raphe pallidus (rRPa); or 4) by the micro-opioid receptor agonist fentanyl. Combined, but not separate, inhibitions of neurons in the VLM and in the NTS, with the GABA(A) receptor agonist, muscimol (120 pmol/site), produced increases in BAT SNA, BAT temperature, and expired CO(2), which were reversed by nanoinjection of glycine (30 nmol) into the rRPa. These findings suggest that VLM and NTS contain neurons whose activation inhibits BAT thermogenesis, that these neurons receive GABAergic inputs that are active under these experimental conditions, and that neurons in both sites contribute to the tonic inhibition of sympathetic premotor neuronal activity in the rRPa that maintains a low level of BAT thermogenesis in normothermic conditions.
Collapse
Affiliation(s)
- Wei-Hua Cao
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|
38
|
Functional asymmetry in the descending cardiovascular pathways from dorsomedial hypothalamic nucleus. Neuroscience 2009; 164:1360-8. [DOI: 10.1016/j.neuroscience.2009.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 09/04/2009] [Accepted: 09/08/2009] [Indexed: 12/20/2022]
|
39
|
Davern PJ, Chen D, Head GA, Chavez CA, Walther T, Mayorov DN. Role of Angiotensin II Type 1A Receptors in Cardiovascular Reactivity and Neuronal Activation After Aversive Stress in Mice. Hypertension 2009; 54:1262-8. [DOI: 10.1161/hypertensionaha.109.139741] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We determined whether genetic deficiency of angiotensin II Type 1A (AT
1A
) receptors in mice results in altered neuronal responsiveness and reduced cardiovascular reactivity to stress. Telemetry devices were used to measure mean arterial pressure, heart rate, and activity. Before stress, lower resting mean arterial pressure was recorded in AT
1A
−/−
(85±2 mm Hg) than in AT
1A
+/+
(112±2 mm Hg) mice; heart rate was not different between groups. Cage-switch stress for 90 minutes elevated blood pressure by +24±2 mm Hg in AT
1A
+/+
and +17±2 mm Hg in AT
1A
−/−
mice (
P
<0.01), and heart rate increased by +203±9 bpm in AT
1A
+/+
and +121±9 bpm in AT
1A
−/−
mice (
P
<0.001). Locomotor activation was less in AT
1A
−/−
(3.0±0.4 U) than in AT
1A
+/+
animals (6.0±0.4 U), but differences in blood pressure and heart rate persisted during nonactive periods. In contrast to wild-type mice, spontaneous baroreflex sensitivity was not inhibited by stress in AT
1A
−/−
mice. After cage-switch stress, c-Fos immunoreactivity was less in the paraventricular (
P
<0.001) and dorsomedial (
P
=0.001) nuclei of the hypothalamus and rostral ventrolateral medulla (
P
<0.001) in AT
1A
−/−
compared with AT
1A
+/+
mice. Conversely, greater c-Fos immunoreactivity was observed in the medial nucleus of the amygdala, caudal ventrolateral medulla, and nucleus of the solitary tract (
P
<0.001) of AT
1A
−/−
compared with AT
1A
+/+
mice. Greater activation of the amygdala suggests that AT
1A
receptors normally inhibit the degree of stress-induced anxiety, whereas the lesser activation of the hypothalamus and rostral ventrolateral medulla suggests that AT
1A
receptors play a key role in autonomic cardiovascular reactions to acute aversive stress, as well as for stress-induced inhibition of the baroreflex.
Collapse
Affiliation(s)
- Pamela J. Davern
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Daian Chen
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Geoffrey A. Head
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Carolina A. Chavez
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Thomas Walther
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Dmitry N. Mayorov
- From the Baker IDI Heart and Diabetes Institute (P.J.D., G.A.H.), Melbourne, Victoria, Australia; Departments of Physiology (D.C.) and Pharmacology (C.A.C., D.N.M.), University of Melbourne, Victoria, Australia; Centre for Biomedical Sciences (T.W.), Hull York Medical School, University of Hull, Hull, United Kingdom; Excellence Cluster Cardio-Pulmonary System (T.W.), Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
40
|
Horiuchi J, McDowall LM, Dampney RAL. Vasomotor and respiratory responses evoked from the dorsolateral periaqueductal grey are mediated by the dorsomedial hypothalamus. J Physiol 2009; 587:5149-62. [PMID: 19752114 DOI: 10.1113/jphysiol.2009.179739] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Activation of neurons in the dorsomedial hypothalamus (DMH) evokes increases in mean arterial pressure (MAP), sympathetic activity, heart rate (HR) and respiratory activity. Results of previous studies suggest that the DMH-evoked increases in MAP and HR are mediated by neurons within the periaqueductal grey (PAG), but a recent study has proposed that the converse is also true, i.e. that increases in MAP and HR evoked from the PAG depend upon neuronal activity in the DMH. In this study in anaesthetized rats, we examined the functional relationship between the DMH and PAG in regulating renal sympathetic nerve activity (RSNA) and respiratory activity (determined by measuring phrenic nerve activity (PNA)). Bilateral microinjections of the neuronal inhibitor muscimol into the DMH virtually abolished the increases in MAP, RSNA and PNA burst rate and amplitude evoked from the dorsolateral (dl) PAG. In contrast, multiple bilateral injections of much larger (10 times) doses of muscimol or of the local anaesthetic lignocaine into sites in the dlPAG at three different rostrocaudal levels did not reduce the magnitude or duration of the sympathetic vasomotor and respiratory responses evoked by disinhibition of neurons in the DMH. Thus, sympathetic vasomotor and respiratory responses generated from the dlPAG are dependent upon neuronal activity in the DMH, but not the converse. The results of this study together with those of previous studies indicate that the PAG regulates cardiovascular and respiratory function via both ascending projections to the DMH and descending projections to the ventral medulla, that originate from different PAG subregions.
Collapse
Affiliation(s)
- Jouji Horiuchi
- School of Medical Sciences (Physiology and Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | |
Collapse
|
41
|
Tsuchimochi H, Nakamoto T, Matsukawa K. Centrally evoked increase in adrenal sympathetic outflow elicits immediate secretion of adrenaline in anaesthetized rats. Exp Physiol 2009; 95:93-106. [PMID: 19700518 DOI: 10.1113/expphysiol.2009.048553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine whether feedforward control by central command activates preganglionic adrenal sympathetic nerve activity (AdSNA) and releases catecholamines from the adrenal medulla, we investigated the effects of electrical stimulation of the hypothalamic locomotor region on preganglionic AdSNA and secretion rate of adrenal catecholamines in anaesthetized rats. Pre- or postganglionic AdSNA was verified by temporary sympathetic ganglionic blockade with trimethaphan. Adrenal venous blood was collected every 30 s to determine adrenal catecholamine output and blood flow. Hypothalamic stimulation for 30 s (50 Hz, 100-200 microA) induced rapid activation of preganglionic AdSNA by 83-181% depending on current intensity, which was followed by an immediate increase of 123-233% in adrenal adrenaline output. Hypothalamic stimulation also increased postganglionic AdSNA by 42-113% and renal sympathetic nerve activity by 94-171%. Hypothalamic stimulation induced preferential secretion of adrenal adrenaline compared with noradrenaline, because the ratio of adrenaline to noradrenaline increased greatly during hypothalamic stimulation. As soon as the hypothalamic stimulation was terminated, preganglionic AdSNA returned to the prestimulation level in a few seconds, and the elevated catecholamine output decayed within 30-60 s. Adrenal blood flow and vascular resistance were not affected or slightly decreased by hypothalamic stimulation. Thus, it is likely that feedforward control of catecholamine secretion from the adrenal medulla plays a role in conducting rapid hormonal control of the cardiovascular system at the beginning of exercise.
Collapse
Affiliation(s)
- Hirotsugu Tsuchimochi
- Department of Physiology, Graduate School of Health Sciences, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8551, Japan
| | | | | |
Collapse
|
42
|
Hosking KG, Fels RJ, Kenney MJ. Inhibition of RVLM synaptic activation at peak hyperthermia reduces visceral sympathetic nerve discharge. Auton Neurosci 2009; 150:104-10. [PMID: 19589733 DOI: 10.1016/j.autneu.2009.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/03/2009] [Accepted: 06/05/2009] [Indexed: 02/07/2023]
Abstract
Hyperthermia is an environmental stressor that produces marked increases in visceral sympathetic nerve discharge (SND) in young rats. The brainstem in rats contains the essential neural circuitry for mediating visceral sympathetic activation; however, specific brainstem sites involved remain virtually unknown. The rostral ventral lateral medulla (RVLM) is a key central nervous system region involved in the maintenance of basal SND and in mediating sympathetic nerve responses evoked from supraspinal sites. In the present study we tested the hypothesis that inhibition of RVLM synaptic activation at peak hyperthermia (internal body temperature, Tc, increased to 41.5 degrees C) would affect heating-induced visceral sympathetic activation. Experiments were completed in chloralose-urethane anesthetized, baroreceptor-intact and sinoaortic-denervated, 3-6 month-old Sprague-Dawley rats. Bilateral inhibition of RVLM synaptic activation produced by muscimol microinjections (400 and 800 pmol) at 41.5 degrees C resulted in immediate and significant reductions in peak heating-induced renal and splenic sympathoexcitation. Interruption of RVLM synaptic activation and axonal transmission by lidocaine microinjections (40 nmol) at 41.5 degrees C produced significant reductions in hyperthermia-induced sympathetic activation to similar levels produced by RVLM muscimol microinjections. The total amount of SND inhibited by RVLM muscimol and lidocaine microinjections was significantly more during hyperthermia (41.5 degrees C) than normothermia (38 degrees C). These findings demonstrate that maintenance of sympathetic activation at peak hyperthermia is dependent on the integrity of RVLM neural circuits.
Collapse
Affiliation(s)
- Kimberley G Hosking
- Department of Anatomy and Physiology, Kansas State University, Manhattan, KS 66506, USA
| | | | | |
Collapse
|
43
|
Cetas JS, Lee DR, Alkayed NJ, Wang R, Iliff JJ, Heinricher MM. Brainstem control of cerebral blood flow and application to acute vasospasm following experimental subarachnoid hemorrhage. Neuroscience 2009; 163:719-29. [PMID: 19539726 DOI: 10.1016/j.neuroscience.2009.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 06/10/2009] [Accepted: 06/12/2009] [Indexed: 11/19/2022]
Abstract
Symptomatic ischemia following aneurysmal subarachnoid hemorrhage (SAH) is common but poorly understood and inadequately treated. Severe constriction of the major arteries at the base of the brain, termed vasospasm, traditionally has been thought to be a proximal event underlying these ischemias, although microvascular changes also have been described. The vast majority of studies aimed at understanding the pathogenesis of ischemic deficits, and vasospasm have focused on the interaction of the "spasmogen" of the extravasated blood with the smooth muscle and endothelium of the arteries. This has led to a comparative neglect of the contribution of the CNS to the maintenance of cerebral perfusion. In the present study, we focused on the role of the rostral ventromedial medulla (RVM) in modulating cerebral perfusion at rest and following an experimental SAH in the rat. Changes in cerebral blood flow (CBF) were measured using laser-Doppler flowmetry and three-dimensional optical microangiography. Focal application of a GABA(A) receptor agonist and antagonist was used to respectively inactivate and activate the RVM. We show here that the RVM modulates cerebral blood flow under resting conditions, and further, contributes to restoration of cerebral perfusion following a high-grade SAH. Failure of this brainstem compensatory mechanism could be significant for acute perfusion deficits seen in patients following subarachnoid hemorrhage.
Collapse
Affiliation(s)
- J S Cetas
- Department of Neurological Surgery, Oregon Health & Science University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97239-3098, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Villela DC, da Silva Junior LG, Fontes MAP. Activation of 5-HT receptors in the periaqueductal gray attenuates the tachycardia evoked from dorsomedial hypothalamus. Auton Neurosci 2009; 148:36-43. [DOI: 10.1016/j.autneu.2009.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 02/09/2009] [Accepted: 02/13/2009] [Indexed: 11/24/2022]
|
45
|
Furlan JC, Fehlings MG. Cardiovascular complications after acute spinal cord injury: pathophysiology, diagnosis, and management. Neurosurg Focus 2009; 25:E13. [PMID: 18980473 DOI: 10.3171/foc.2008.25.11.e13] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiovascular complications in the acute stage following traumatic spinal cord injury (SCI) require prompt medical attention to avoid neurological compromise, morbidity, and death. In this review, the authors summarize the neural regulation of the cardiovascular system as well as the pathophysiology, diagnosis, and management of major cardiovascular complications that can occur following acute (up to 30 days) traumatic SCI. Hypotension (both supine and orthostatic), autonomic dysreflexia, and cardiac arrhythmias (including persistent bradycardia) are attributed to the loss of supraspinal control of the sympathetic nervous system that commonly occurs in patients with severe spinal cord lesions at T-6 or higher. Current evidence-based guidelines recommend: 1) monitoring of cardiac and hemodynamic parameters in the acute phase of SCI; 2) maintenance of a minimum mean arterial blood pressure of 85 mm Hg during the hyperacute phase (1 week after SCI); 3) timely detection and appropriate treatment of neurogenic shock and cardiac arrhythmias; and 4) immediate and adequate treatment of episodes of acute autonomic dysreflexia. In addition to these forms of cardiovascular dysfunction, individuals with acute SCIs are at high risk for deep venous thrombosis (DVT) and pulmonary embolism due to loss of mobility and, potentially, altered fibrinolytic activity, abnormal platelet function, and impaired circadian variations of hemostatic and fibrinolytic parameters. Current evidence supports a recommendation for thromboprophylaxis using mechanical methods and anticoagulants during the acute stage up to 3 months following SCI, depending on the severity and level of injury. Low-molecular-weight heparin is the first choice for anticoagulant prophylaxis in patients with acute SCI. Although there is insufficient evidence to recommend (or refute) the use of screening tests for DVT in asymptomatic adults with acute SCI, this strategy may detect asymptomatic DVT in at least 9.4% of individuals who undergo thromboprophylaxis using lowmolecular- weight heparin. Indications and treatment of DVT and acute pulmonary embolism are well established and are summarized in this review. Recognition of cardiovascular complications after acute SCI is essential to minimize adverse outcomes and to optimize recovery.
Collapse
Affiliation(s)
- Julio C Furlan
- Division of Genetics and Development, Toronto Western Research Institute, University Health Network, Ontario, Canada
| | | |
Collapse
|
46
|
Martenson ME, Cetas JS, Heinricher MM. A possible neural basis for stress-induced hyperalgesia. Pain 2009; 142:236-244. [PMID: 19232470 DOI: 10.1016/j.pain.2009.01.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/30/2008] [Accepted: 01/09/2009] [Indexed: 12/26/2022]
Abstract
Intense stress and fear have long been known to give rise to a suppression of pain termed "stress-induced analgesia", mediated by brainstem pain-modulating circuitry, including pain-inhibiting neurons of the rostral ventromedial medulla. However, stress does not invariably suppress pain, and indeed, may exacerbate it. Although there is a growing support for the idea of "stress-induced hyperalgesia", the neurobiological basis for this effect remains almost entirely unknown. Using simultaneous single-cell recording and functional analysis, we show here that stimulation of the dorsomedial nucleus of the hypothalamus, known to be a critical component of central mechanisms mediating neuroendocrine, cardiovascular and thermogenic responses to mild or "emotional" stressors such as air puff, also triggers thermal hyperalgesia by recruiting pain-facilitating neurons, "ON-cells", in the rostral ventromedial medulla. Activity of identified RVM ON-cells, OFF-cells and NEUTRAL cells, nociceptive withdrawal thresholds, rectal temperature, and heart rate were recorded in lightly anesthetized rats. In addition to the expected increases in body temperature and heart rate, disinhibition of the DMH induced a robust activation of ON-cells, suppression of OFF-cell firing and behavioral hyperalgesia. Blocking ON-cell activation prevented hyperalgesia, but did not interfere with DMH-induced thermogenesis or tachycardia, pointing to differentiation of neural substrates for autonomic and nociceptive modulation within the RVM. These data demonstrate a top-down activation of brainstem pain-facilitating neurons, and suggest a possible neural circuit for stress-induced hyperalgesia.
Collapse
Affiliation(s)
- Melissa E Martenson
- Department of Neurological Surgery, CR-137, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | |
Collapse
|
47
|
Cardiac and renal baroreflex control during stress in conscious renovascular hypertensive rabbits: effect of rilmenidine. J Hypertens 2009; 27:132-41. [PMID: 19145779 DOI: 10.1097/hjh.0b013e328317a7a7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE We examined whether renal sympathetic nerve activity (RSNA) and heart rate (HR) baroreflexes in conscious rabbits were altered by exposure to a combination of stress and hypertension and determined how this was modified by acute and chronic treatment with the sympathoinhibitory agent rilmenidine. METHODS Rabbits were made hypertensive with a renal-artery clip and a renal nerve recording electrode was implanted 4-5 weeks later. After recovery, baroreflexes were measured before and during airjet stress and again after receiving rilmenidine (either acutely or by infusion for 3 weeks). RESULTS Renal clipping increased mean arterial pressure (MAP) and shifted baroreflex RSNA and HR curves rightward. The HR and RSNA upper plateaus were similar to those of normotensive animals but HR baroreflex sensitivity was reduced in the hypertensive group. Airjet stress lowered HR baroreflex sensitivity in sham but not in hypertensive rabbits. By contrast, stress increased the baroreflex-induced maximum RSNA in hypertensive animals but not in normotensive rabbits. MAP variability was greater in the hypertensive group but was unaffected by airjet stress. Acute and chronic rilmenidine lowered MAP to close to normotensive levels, markedly reduced MAP variability and RSNA but did not prevent the RSNA baroreflex facilitation produced by airjet stress. CONCLUSION Baroreflex control of HR was diminished by either hypertension or acute airjet stress but the effects were not additive. Although the baroreflex-induced RSNA maximum was increased by stress only in hypertensive animals, rilmenidine was effective in minimizing the reflex autonomic disturbances produced by hypertension and stress.
Collapse
|
48
|
de Menezes RCA, Zaretsky DV, Fontes MAP, DiMicco JA. Cardiovascular and thermal responses evoked from the periaqueductal grey require neuronal activity in the hypothalamus. J Physiol 2009; 587:1201-15. [PMID: 19171660 DOI: 10.1113/jphysiol.2008.161463] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Stimulation of neurons in the lateral/dorsolateral periaqueductal grey (l/dlPAG) produces increases in heart rate (HR) and mean arterial pressure (MAP) that are, according to traditional views, mediated through projections to medullary autonomic centres and independent of forebrain mechanisms. Recent studies in rats suggest that neurons in the l/dlPAG are downstream effectors responsible for responses evoked from the dorsomedial hypothalamus (DMH) from which similar cardiovascular changes and increase in core body temperature (T(co)) can be elicited. We hypothesized that, instead, autonomic effects evoked from the l/dlPAG depend on neuronal activity in the DMH. Thus, we examined the effect of microinjection of the neuronal inhibitor muscimol into the DMH on increases in HR, MAP and T(co) produced by microinjection of N-methyl-D-aspartate (NMDA) into the l/dlPAG in conscious rats. Microinjection of muscimol alone modestly decreased baseline HR and MAP but failed to alter T(co). Microinjection of NMDA into the l/dlPAG caused marked increases in all three variables, and these were virtually abolished by prior injection of muscimol into the DMH. Similar microinjection of glutamate receptor antagonists into the DMH also suppressed increases in HR and abolished increases in T(co) evoked from the PAG. In contrast, microinjection of muscimol into the hypothalamic paraventricular nucleus failed to reduce changes evoked from the PAG and actually enhanced the increase in T(co). Thus, our data suggest that increases in HR, MAP and T(co) evoked from the l/dlPAG require neuronal activity in the DMH, challenging traditional views of the place of the PAG in central autonomic neural circuitry.
Collapse
Affiliation(s)
- Rodrigo C A de Menezes
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
49
|
Salo LM, Nalivaiko E, Anderson CR, McAllen RM. Control of cardiac rate, contractility, and atrioventricular conduction by medullary raphe neurons in anesthetized rats. Am J Physiol Heart Circ Physiol 2008; 296:H318-24. [PMID: 19074673 DOI: 10.1152/ajpheart.00951.2008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sympathetic actions of medullary raphé neurons on heart rate (HR), atrioventricular conduction, ventricular contractility, and rate of relaxation were examined in nine urethane-anesthetized (1-1.5 g/kg iv), artificially ventilated rats that had been adrenalectomized and given atropine methylnitrate (1 mg/kg iv). Mean arterial pressure (MAP), ECG, and left ventricular pressure were recorded. The peak rates of rise and fall in the first derivative of left ventricular (LV) pressure (dP/dtmax and dP/dtmin, respectively) and the stimulus-R ($-R) interval were measured during brief periods of atrial pacing at 8.5 Hz before and after ventral medullary raphé neurons were activated by dl-homocysteic acid (DLH, 0.1 M) or inhibited by GABA (0.3 M) in local microinjections (90 nl). LV dP/dtmax values were corrected for the confounding effect of MAP, determined at the end of the experiments after giving propranolol (1 mg/kg iv) to block sympathetic actions on the heart. DLH microinjections into the ventral medullary raphé region increased HR by 44 +/- 2 beats/min, LV dP/dtmax by 1,055 +/- 156 mmHg/s, and the negative value of LV dP/dtmin by 729 +/- 204 mmHg/s (all, P < 0.001) while shortening the $-R interval by 2.8 +/- 0.8 ms (P < 0.01). GABA microinjections caused no significant change in HR, LV dP/dtmax, or $-R interval but reduced LV dP/dtmin from -5,974 +/- 93 to -5,548 +/- 171 mmHg/s and MAP from 115 +/- 4 to 105 +/- 5 mmHg (both, P < 0.01). Rises in tail skin temperature confirmed that GABA injections effectively inhibited raphé neurons. When activated, the neurons in the ventral medullary raphé region thus enhance atrioventricular conduction, ventricular contractility, and relaxation in parallel with HR, but they provide little or no tonic sympathetic drive to the heart.
Collapse
Affiliation(s)
- Lauren M Salo
- Howard Florey Institute, University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
50
|
Neuropeptide Y in the rostral ventrolateral medulla blocks somatosympathetic reflexes in anesthetized rats. Auton Neurosci 2008; 142:64-70. [DOI: 10.1016/j.autneu.2008.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 05/07/2008] [Accepted: 05/08/2008] [Indexed: 01/21/2023]
|