1
|
Macías F, Ulloa M, Clapp C, Martínez de la Escalera G, Arnold E. Prolactin protects hippocampal neurons against H2O2-induced neurotoxicity by suppressing BAX and NOX4 via the NF-κB signaling pathway. PLoS One 2024; 19:e0313328. [PMID: 39499702 PMCID: PMC11537405 DOI: 10.1371/journal.pone.0313328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/22/2024] [Indexed: 11/07/2024] Open
Abstract
Reactive oxygen species (ROS) are physiological byproducts of neuronal metabolism. However, an imbalance between ROS generation and antioxidant capacity, often driven by dysregulated pro-oxidant enzymes like nicotinamide adenine dinucleotide phosphate oxidases (NOX), can result in deleterious oxidative stress. This oxidative stress is a critical factor in the pathogenesis of neurodegenerative diseases. While interventions with broad-spectrum antioxidants have demonstrated limited efficacy, the modulation of endogenous antioxidant mechanisms presents a promising therapeutic avenue. Here, we investigated the potential of the neuroprotective hormone prolactin to mitigate oxidative stress and subsequent neuronal cell death. Prolactin protected primary mouse hippocampal neurons from hydrogen peroxide (H2O2)-induced oxidative damage. Prolactin reduced ROS levels, lipid peroxidation, and apoptosis, and its effects were occluded by a specific prolactin receptor antagonist (G129R-hPRL). Mechanistically, prolactin suppressed H2O2-induced mRNA upregulation of pro-oxidative Nox4 and pro-apoptotic Bax. Moreover, prolactin induced nuclear factor kappa B (NF-κB) nuclear translocation, and the inhibition of the NF-κB signaling pathway abolished the neuroprotective and transcriptional effects of prolactin, indicating its central role in prolactin-mediated protection. Our findings indicate that prolactin exerts potent antioxidant and neuroprotective effects by modulating the expression of Nox4 and Bax, thereby reducing ROS generation and neuronal apoptosis. This study underscores the therapeutic potential of prolactin in attenuating oxidative stress and suggests a possible role in the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Fernando Macías
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Miriam Ulloa
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
- CONAHCYT–Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, Querétaro, México
| |
Collapse
|
2
|
Grattan DR. Does the brain make prolactin? J Neuroendocrinol 2024; 36:e13432. [PMID: 39041379 DOI: 10.1111/jne.13432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
The prolactin receptor (Prlr) is widely expressed in the brain, particularly in the hypothalamus. Prolactin also has an increasing range of well-characterised effects on central nervous system function. Because of this, over many years, there has been interest in whether the hormone itself is also expressed within the brain, perhaps acting as a neuropeptide to regulate brain function via its receptor in neurons. The aim of this invited review is to critically evaluate the evidence for brain production of prolactin. Unlike the evidence for the Prlr, evidence for brain prolactin is inconsistent and variable. A range of different antibodies have been used, each characterising a different distribution of prolactin-like immunoreactivity. Prolactin mRNA has been detected in the brain, but only at levels markedly lower than seen in the pituitary gland. Importantly, it has largely only been detected by highly sensitive amplification-based techniques, and the extreme sensitivity means there is a risk of false-positive data. Modern in situ hybridisation methods and single-cell RNA sequencing have not provided supporting evidence, but it is hard to prove a negative! Finally, I acknowledge and discuss the possibility that prolactin might be produced in the brain under specific circumstances, such as to promote a neuroprotective response to cell damage. Collectively, however, based on this analysis, I have formed the opinion that brain production of prolactin is unlikely, and even if occurs, it is of little physiological consequence. Most, if not all of the brain actions of prolactin can be explained by pituitary prolactin gaining access to the brain.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
3
|
Castillo X, Ortiz G, Arnold E, Wu Z, Tovar Y Romo LB, Clapp C, Martínez de la Escalera G. The influence of the prolactin/vasoinhibin axis on post-stroke lesion volume, astrogliosis, and survival. J Neuroendocrinol 2024; 36:e13415. [PMID: 38808481 DOI: 10.1111/jne.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/16/2024] [Accepted: 05/04/2024] [Indexed: 05/30/2024]
Abstract
Ischemic stroke is a significant global health issue, ranking fifth among all causes of death and a leading cause of serious long-term disability. Ischemic stroke leads to severe outcomes, including permanent brain damage and neuronal dysfunction. Therefore, decreasing and preventing neuronal injuries caused by stroke has been the focus of therapeutic research. In recent years, many studies have shown that fluctuations in hormonal levels influence the prognosis of ischemic stroke. Thus, it is relevant to understand the role of hormones in the pathophysiological mechanisms of ischemic stroke for preventing and treating this health issue. Here, we investigate the contribution of the prolactin/vasoinhibin axis, an endocrine system regulating blood vessel growth, immune processes, and neuronal survival, to the pathophysiology of ischemic stroke. Male mice with brain overexpression of prolactin or vasoinhibin by adeno-associated virus (AAV) intracerebroventricular injection or lacking the prolactin receptor (Prlr-/-) were exposed to transient middle cerebral artery occlusion (tMCAO) for 45 min followed by 48 h of reperfusion. Overexpression of vasoinhibin or the absence of the prolactin receptor led to an increased lesion volume and decreased survival rates in mice following tMCAO, whereas overexpression of prolactin had no effect. In addition, astrocytic distribution in the penumbra was altered, glial fibrillary acidic protein and S100b mRNA expressions were reduced, and interleukin-6 mRNA expression increased in the ischemic hemisphere of mice overexpressing vasoinhibin. Of note, prolactin receptor-null mice (Prlr-/-) showed a marked increase in serum vasoinhibin levels. Furthermore, vasoinhibin decreased astrocyte numbers in mixed hippocampal neuron-glia cultures. These observations suggest that increased vasoinhibin levels may hinder astrocytes' protective reactivity. Overall, this study suggests the involvement of the prolactin/vasoinhibin axis in the pathophysiology of ischemic stroke-induced brain injury and provides insights into the impact of its dysregulation on astrocyte reactivity and lesion size. Understanding these mechanisms could help develop therapeutic interventions in ischemic stroke and other related neurological disorders.
Collapse
Affiliation(s)
- Ximena Castillo
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Georgina Ortiz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - Edith Arnold
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- CONAHCYT-Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM-Juriquilla, Querétaro, Mexico
| | - Zhijian Wu
- Ocular Gene Therapy Laboratory, Neurobiology, National Eye Institute (NIH), Bethesda, Maryland, USA
| | - Luis B Tovar Y Romo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | | |
Collapse
|
4
|
Costa-Brito AR, Gonçalves I, Santos CRA. The brain as a source and a target of prolactin in mammals. Neural Regen Res 2022; 17:1695-1702. [PMID: 35017416 PMCID: PMC8820687 DOI: 10.4103/1673-5374.332124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Prolactin is a polypeptide hormone associated with an extensive variety of biological functions. Among the roles of prolactin in vertebrates, some were preserved throughout evolution. This is the case of its function in the brain, where prolactin receptors, are expressed in different structures of the central nervous system. In the brain, prolactin actions are principally associated with reproduction and parental behavior, and involves the modulation of adult neurogenesis, neuroprotection, and neuroplasticity, especially during pregnancy, thereby preparing the brain to parenthood. Prolactin is mainly produced by specialized cells in the anterior pituitary gland. However, during vertebrate evolution many other extrapituitary tissues do also produce prolactin, like the immune system, endothelial cells, reproductive structures and in several regions of the brain. This review summarizes the relevance of prolactin for brain function, the sources of prolactin in the central nervous system, as well as its local production and secretion. A highlight on the impact of prolactin in human neurological diseases is also provided.
Collapse
Affiliation(s)
- Ana R Costa-Brito
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre; C4-UBI -Cloud Computing Competence Centre, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
5
|
Clapp C, Ortiz G, García-Rodrigo JF, Ledesma-Colunga MG, Martínez-Díaz OF, Adán N, Martínez de la Escalera G. Dual Roles of Prolactin and Vasoinhibin in Inflammatory Arthritis. Front Endocrinol (Lausanne) 2022; 13:905756. [PMID: 35721729 PMCID: PMC9202596 DOI: 10.3389/fendo.2022.905756] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
The term inflammatory arthritis defines a family of diseases, including rheumatoid arthritis (RA), caused by an overactive immune system, and influenced by host aspects including sex, reproductive state, and stress. Prolactin (PRL) is a sexually dimorphic, reproductive, stress-related hormone long-linked to RA under the general assumption that it aggravates the disease. However, this conclusion remains controversial since PRL has both negative and positive outcomes in RA that may depend on the hormone circulating levels, synthesis by joint tissues, and complex interactions at the inflammatory milieu. The inflamed joint is rich in matrix metalloproteases that cleave PRL to vasoinhibin, a PRL fragment with proinflammatory effects and the ability to inhibit the hyperpermeability and growth of blood vessels. This review addresses this field with the idea that explanatory mechanisms lie within the PRL/vasoinhibin axis, an integrative framework influencing not only the levels of systemic and local PRL, but also the proteolytic conversion of PRL to vasoinhibin, as vasoinhibin itself has dual actions on joint inflammation. In this review, we discuss recent findings from mouse models suggesting the upregulation of endogenous vasoinhibin by the pro-inflammatory environment and showing dichotomous actions and signaling mechanisms of PRL and vasoinhibin on joint inflammation that are cell-specific and context-dependent. We hypothesize that these opposing actions work together to balance the inflammatory response and provide new insights for understanding the pathophysiology of RA and the development of new treatments.
Collapse
|