1
|
Setoyama D, Han D, Tian J, Lee H, Shin H, Nga H, Nguyen T, Moon J, Jang H, Kim E, Choe S, Ju S, Choi D, Kwon O, Yi H. Comparative Analysis of Primary Sarcopenia and End-Stage Renal Disease-Related Muscle Wasting Using Multi-Omics Approaches. J Cachexia Sarcopenia Muscle 2025; 16:e13749. [PMID: 40207397 PMCID: PMC11982700 DOI: 10.1002/jcsm.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/16/2024] [Accepted: 01/29/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Age-related primary sarcopenia and end-stage renal disease (ESRD)-related muscle wasting are discrete entities; however, both manifest as a decline in skeletal muscle mass and strength. The etiological pathways differ, with aging factors implicated in sarcopenia and a combination of uremic factors, including haemodialysis, contributing to ESRD-related muscle wasting. Understanding these molecular nuances is imperative for targeted interventions, and the integration of proteomic and metabolomic data elucidate these intricate processes. METHODS We generated detailed clinical data and multi-omics data (plasma proteomics and metabolomics) for 78 participants to characterise sarcopenia (n = 28; mean age, 72.6 ± 7.0 years) or ESRD (n = 22; 61.6 ± 5.5 years) compared with controls (n = 28; 69.3 ± 5.7 years). Muscle mass was measured using bioelectrical impedance analysis and handgrip strength. Five-times sit-to-stand test performance was measured for all participants. Sarcopenia was diagnosed in accordance with the 2019 Consensus Guidelines from the Asian Working Group for Sarcopenia. An abundance of 234 metabolites and 722 protein groups was quantified in all plasma samples using liquid chromatography with tandem mass spectrometry. RESULTS Muscle mass, handgrip strength and lower limb muscle function significantly lower in the sarcopenia group and the ESRD group compared with those in the control group. Metabolomics revealed altered metabolites, highlighting exclusive differences in ESRD-related muscle wasting. Metabolite set enrichment analysis revealed the involvement of numerous metabolic intermediates associated with urea cycle, amino acid metabolism and nucleic acid metabolism. Catecholamines, including epinephrine, dopamine and serotonin, are significantly elevated in the plasma of patients within the ESRD group. Proteomics data exhibited a clearer distinction among the three groups compared with the metabolomics data, particularly in distinguishing the control group from the sarcopenia group. The ciliary neurotrophic factor receptor was top-ranked in terms of the variable importance of projection scores. Plasma AHNAK protein levels was higher in the sarcopenia group but was lower in the ESRD group. Proteomic set enrichment analysis revealed enrichment of several pathways related to sarcopenia, such as hemopexin, defence response and cell differentiation, in sarcopenia group. Multi-omic integration analysis revealed associations between relevant metabolites, including catecholamines, and a group of annotated proteins in extracellular exosomes. CONCLUSIONS We identified distinct multi-omic signatures in individuals with ESRD or sarcopenia, providing new insights into the mechanisms underlying ESRD-related muscle wasting, which differ from primary sarcopenia. These findings may support interventions for context-dependent muscle loss and contribute to the development of targeted treatments and preventive strategies for muscle wasting.
Collapse
Affiliation(s)
- Daiki Setoyama
- Department of Clinical Chemistry and Laboratory MedicineKyushu University HospitalFukuokaJapan
| | - Dohyun Han
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Jingwen Tian
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ho Yeop Lee
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyun Suk Shin
- Proteomics Core FacilitySeoul National University Hospital Biomedical Research InstituteSeoulSouth Korea
| | - Ha Thi Nga
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Thi Linh Nguyen
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Ji Sun Moon
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
| | - Hyo Ju Jang
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
| | - Evonne Kim
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
| | - Seong‐Kyu Choe
- Department of Medicine, Graduate SchoolWonkwang UniversityIksanSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
| | - Sang Hyeon Ju
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Dae Eun Choi
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| | - Obin Kwon
- Department of Biomedical Sciences, BK21 FOUR Biomedical Science ProgramSeoul National University College of MedicineSeoulSouth Korea
- Department of Biochemistry and Molecular BiologySeoul National University College of MedicineSeoulSouth Korea
- Genomic Medicine Institute, Medical Research CenterSeoul National UniversitySeoulSouth Korea
| | - Hyon‐Seung Yi
- Laboratory of Endocrinology and Immune SystemChungnam National University School of MedicineDaejeonSouth Korea
- Department of Medical ScienceChungnam National University School of MedicineDaejeonSouth Korea
- Sarcopenia Total Solution CenterWonkwang UniversityIksanSouth Korea
- Department of Internal MedicineChungnam National University School of MedicineDaejeonSouth Korea
| |
Collapse
|
2
|
Sgobba MN, Musio B, Pastrana CI, Todisco S, Schlosserovà N, Mastropirro F, Favia M, Radesco A, Duarte IF, De Grassi A, Volpicella M, Gallo V, Pierri CL, Ciani E, Guerra L. Serum Starvation Enhances the Antitumor Activity of Natural Matrices: Insights into Bioactive Molecules from Dromedary Urine Extracts. Molecules 2025; 30:821. [PMID: 40005133 PMCID: PMC11858132 DOI: 10.3390/molecules30040821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Natural matrices have historically been a cornerstone in drug discovery, offering a rich source of structurally diverse and biologically active compounds. However, research on natural products often faces significant challenges due to the complexity of natural matrices, such as urine, and the limitations of bioactivity assessment assays. To ensure reliable insights, it is crucial to optimize experimental conditions to reveal the bioactive potential of samples, thereby improving the validity of statistical analyses. Approaches in metabolomics further strengthen this process by identifying and focusing on the most promising compounds within natural matrices, enhancing the precision of bioactive metabolite prioritization. In this study, we assessed the bioactivity of 17 dromedary urine samples on human renal cells under serum-reduced conditions (1%FBS) in order to minimize possible FBS-derived interfering factors. Using viability assays and Annexin V/PI staining, we found that the tumor renal cell lines Caki-1 and RCC-Shaw were more sensitive to the cytotoxic effects of the small molecules present in dromedary urine compared to non-tumor HK-2 cells. Employing NMR metabolomics analysis combined with detected in vitro activity, our statistical model highlights the presence of bioactive compounds in dromedary urine, such as azelaic acid and phenylacetyl glycine, underscoring its potential as a sustainable source of bioactive molecules within the framework of green chemistry and circular economy initiatives.
Collapse
Affiliation(s)
- Maria Noemi Sgobba
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Biagia Musio
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
| | - Carlos Iglesias Pastrana
- Faculty of Veterinary Sciences, Department of Genetics, University of Córdoba, 14071 Córdoba, Spain;
| | - Stefano Todisco
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
| | - Nikola Schlosserovà
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Federica Mastropirro
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Maria Favia
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari “Aldo Moro”, Piazza Giulio Cesare, 70124 Bari, Italy;
| | - Antonio Radesco
- Istituto Tumori “Giovanni Paolo II” I.R.C.C.S., Viale Orazio Flacco 65, 70124 Bari, Italy
| | - Iola F. Duarte
- Department of Chemistry, CICECO—Aveiro Institute of Materials and LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Vito Gallo
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via Orabona 4, 70125 Bari, Italy; (B.M.); (S.T.); (V.G.)
- Innovative Solutions S.r.l.—Spin-Off Company of the Polytechnic University of Bari, Zona H 150/B, 70015 Noci, Italy
| | - Ciro Leonardo Pierri
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | - Elena Ciani
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (F.M.); (A.D.G.); (M.V.); (E.C.); (L.G.)
| |
Collapse
|
3
|
Akumwami S, Kitada K, Fujisawa Y, Kundo NK, Rahman MM, Morishita A, Kitamura H, Rahman A, Ogino Y, Nishiyama A. Chronic activation of β-adrenergic receptors leads to tissue water and electrolyte retention. J Pharmacol Exp Ther 2025; 392:100017. [PMID: 40023610 DOI: 10.1124/jpet.124.002185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024] Open
Abstract
β-Adrenergic receptors (β-ARs) are expressed on the membranes of various cell types, and their activation affects body water balance by modulating renal sodium and water excretion, cardiovascular function, and metabolic processes. However, β-AR-associated body fluid imbalance has not been well characterized. In the present study, we hypothesized that chronic β-AR stimulation increases electrolyte and water content at the tissue level. We evaluated the effects of isoproterenol, a nonselective β-AR agonist, on electrolyte and water balance at the tissue level. Continuous isoproterenol administration for 14 days induced cardiac hypertrophy, associated with sodium-driven water retention in the heart; increased the total body sodium, potassium, and water contents at the tissue level; and increased the water intake and blood pressure of mice. There was greater urine output in response to the isoproterenol-induced body water retention. These isoproterenol-induced changes were reduced by propranolol, a nonselective β receptor inhibitor. Isoproterenol-treated mice, even without excessive water intake, had higher total body electrolyte and water contents, and this tissue water retention was associated with lower dry body mass, suggesting that β-AR stimulation in the absence of excess water intake induces catabolism and water retention. These findings suggest that β-AR activation induces tissue sodium and potassium retention, leading to body fluid retention, with or without excess water intake. This characterization of β-AR-induced electrolyte and fluid abnormalities improves our understanding of the pharmacological effects of β-AR inhibitors. SIGNIFICANCE STATEMENT: This study has shown that chronic β-adrenergic receptor (β-AR) stimulation causes cardiac hypertrophy associated with sodium-driven water retention in the heart and increases the accumulation of body sodium, potassium, and water at the tissue level. This characterization of the β-AR-induced abnormalities in electrolyte and water balance at the tissue level improves our understanding of the roles of β-AR in physiology and pathophysiology and the pharmacological effects of β-AR inhibitors.
Collapse
Affiliation(s)
- Steeve Akumwami
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Kento Kitada
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Yoshihide Fujisawa
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Netish Kumar Kundo
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan; Department of Pharmacy, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Bangladesh
| | - Md Moshiur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Hiroaki Kitamura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Asadur Rahman
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Yuichi Ogino
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|
4
|
Castagna A, Mango G, Martinelli N, Marzano L, Moruzzi S, Friso S, Pizzolo F. Sodium Chloride Cotransporter in Hypertension. Biomedicines 2024; 12:2580. [PMID: 39595146 PMCID: PMC11591633 DOI: 10.3390/biomedicines12112580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The sodium chloride cotransporter (NCC) is essential for electrolyte balance, blood pressure regulation, and pathophysiology of hypertension as it mediates the reabsorption of ultrafiltered sodium in the renal distal convoluted tubule. Given its pivotal role in the maintenance of extracellular fluid volume, the NCC is regulated by a complex network of cellular pathways, which eventually results in either its phosphorylation, enhancing sodium and chloride ion absorption from urines, or dephosphorylation and ubiquitination, which conversely decrease NCC activity. Several factors could influence NCC function, including genetic alterations, hormonal stimuli, and pharmacological treatments. The NCC's central role is also highlighted by several abnormalities resulting from genetic mutations in its gene and consequently in its structure, leading to dysregulation of blood pressure control. In the last decade, among other improvements, the acquisition of knowledge on the NCC and other renal ion channels has been favored by studies on extracellular vesicles (EVs). Dietary sodium and potassium intake are also implicated in the tuning of NCC activity. In this narrative review, we present the main cornerstones and recent evidence related to NCC control, focusing on the context of blood pressure pathophysiology, and promising new therapeutical approaches.
Collapse
Affiliation(s)
- Annalisa Castagna
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Gabriele Mango
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Nicola Martinelli
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Luigi Marzano
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Sara Moruzzi
- Unit of Internal Medicine B, Department of Medicine, University of Verona School of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Policlinico “G.B. Rossi”, 37134 Verona, Italy; (L.M.); (S.M.)
| | - Simonetta Friso
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| | - Francesca Pizzolo
- Department of Medicine, University of Verona, 37134 Verona, Italy; (A.C.); (G.M.); (N.M.); (S.F.)
| |
Collapse
|
5
|
Xiang W, Li L, Qin M, Li L, Yu H, Wang F, Ni S, Shen A, Lu H, Ni H, Wang Y. Diminished nuclear-localized β-adrenoceptor signalling activates YAP to promote kidney fibrosis in diabetic nephropathy. Br J Pharmacol 2024. [PMID: 39359016 DOI: 10.1111/bph.17347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 05/27/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE Diabetic nephropathy (DN) is a leading cause of chronic kidney disease (CKD), which is characterized by mesangial matrix expansion that involves dysfunctional mesangial cells (MCs). However, the underlying mechanisms remain unclear. This study aims to delineate the spatiotemporal contribution of adrenergic signalling in diabetic kidney fibrosis to reveal potential therapeutic targets. EXPERIMENTAL APPROACH A model of diabetic nephropathy was induced by in db/db mice. Gene expression in kidneys was profiled by RNA-seq analyses, western blot and immunostaining. Subcellular-localized fluorescence resonance energy transfer (FRET) biosensors determined adrenergic signalling microdomains in MCs. Effects of oral rolipram, a phosphodiesterase 4 (PDE4) inhibitor, on the model were measured. KEY RESULTS Our model exhibited impaired kidney function with elevated expression of adrenergic and fibrotic genes, including Adrb1, PDEs, Acta2 and Tgfβ. RNA-seq analysis revealed that MCs with dysregulated YAP pathway were crucial to the extracellular matrix secretion in kidneys from diabetic nephropathy patients. In cultured MCs, TGF-β promoted profibrotic gene transcription, which was regulated by nuclear-localized β-adrenoceptor signalling. Mechanistically, TGF-β treatment diminished nuclear-specific cAMP signalling in MCs and reduced PKA-dependent phosphorylation of YAP, leading to its activation. In parallel, db/db mouse kidneys showed increased expressions of PDE4B and PDE4D. Treatment with oral rolipram alleviated kidney fibrosis in db/db mice. CONCLUSION AND IMPLICATIONS Diabetic nephropathy impaired nuclear-localized β1-adrenoceptor-cAMP signalling microdomain through upregulating PDE4 expression, promoting fibrosis in MCs via PKA dephosphorylation-dependent YAP activation. Our results suggest PDE4 inhibition as a promising strategy for alleviating kidney fibrosis in diabetic nephropathy.
Collapse
Affiliation(s)
- Wenjing Xiang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lei Li
- School of Public Health, Xi'an Jiao Tong University, Xi'an, China
| | - Manman Qin
- Mass Spectrometry Laboratory for BioSample analysis, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Lei Li
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hualong Yu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Fangyuan Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Siyuan Ni
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Ao Shen
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The State & NMPA Key Laboratory of Respiratory Disease School of Pharmaceutical Sciences & The Fifth Affiliated Hospital Guangzhou Medical University, Guangzhou, China
| | - Haocheng Lu
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Haibo Ni
- Department of Pharmacology, University of California at Davis, Davis, California, USA
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, Shenzhen, China
| |
Collapse
|
6
|
Su J, Yang L, Sun Z, Zhan X. Personalized Drug Therapy: Innovative Concept Guided With Proteoformics. Mol Cell Proteomics 2024; 23:100737. [PMID: 38354979 PMCID: PMC10950891 DOI: 10.1016/j.mcpro.2024.100737] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024] Open
Abstract
Personalized medicine can reduce adverse effects, enhance drug efficacy, and optimize treatment outcomes, which represents the essence of personalized medicine in the pharmacy field. Protein drugs are crucial in the field of personalized drug therapy and are currently the mainstay, which possess higher target specificity and biological activity than small-molecule chemical drugs, making them efficient in regulating disease-related biological processes, and have significant potential in the development of personalized drugs. Currently, protein drugs are designed and developed for specific protein targets based on patient-specific protein data. However, due to the rapid development of two-dimensional gel electrophoresis and mass spectrometry, it is now widely recognized that a canonical protein actually includes multiple proteoforms, and the differences between these proteoforms will result in varying responses to drugs. The variation in the effects of different proteoforms can be significant and the impact can even alter the intended benefit of a drug, potentially making it harmful instead of lifesaving. As a result, we propose that protein drugs should shift from being targeted through the lens of protein (proteomics) to being targeted through the lens of proteoform (proteoformics). This will enable the development of personalized protein drugs that are better equipped to meet patients' specific needs and disease characteristics. With further development in the field of proteoformics, individualized drug therapy, especially personalized protein drugs aimed at proteoforms as a drug target, will improve the understanding of disease mechanisms, discovery of new drug targets and signaling pathways, provide a theoretical basis for the development of new drugs, aid doctors in conducting health risk assessments and making more cost-effective targeted prevention strategies conducted by artificial intelligence/machine learning, promote technological innovation, and provide more convenient treatment tailored to individualized patient profile, which will benefit the affected individuals and society at large.
Collapse
Affiliation(s)
- Junwen Su
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lamei Yang
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziran Sun
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianquan Zhan
- Medical Science and Technology Innovation Center, Shandong Provincial Key Medical and Health Laboratory of Ovarian Cancer Multiomics, & Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
7
|
Li X, Shi R, Yan L, Chu W, Sun R, Zheng B, Wang S, Tan H, Wang X, Gao Y. Natural product rhynchophylline prevents stress-induced hair graying by preserving melanocyte stem cells via the β2 adrenergic pathway suppression. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:54. [PMID: 38036925 PMCID: PMC10689686 DOI: 10.1007/s13659-023-00421-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Norepinephrine (NA), a stress hormone, can accelerate hair graying by binding to β2 adrenergic receptors (β2AR) on melanocyte stem cells (McSCs). From this, NA-β2AR axis could be a potential target for preventing the stress effect. However, identifying selective blockers for β2AR has been a key challenge. Therefore, in this study, advanced computer-aided drug design (CADD) techniques were harnessed to screen natural molecules, leading to the discovery of rhynchophylline as a promising compound. Rhynchophylline exhibited strong and stable binding within the active site of β2AR, as verified by molecular docking and dynamic simulation assays. When administered to cells, rhynchophylline effectively inhibited NA-β2AR signaling. This intervention resulted in a significant reduction of hair graying in a stress-induced mouse model, from 28.5% to 8.2%. To gain a deeper understanding of the underlying mechanisms, transcriptome sequencing was employed, which revealed that NA might disrupt melanogenesis by affecting intracellular calcium balance and promoting cell apoptosis. Importantly, rhynchophylline acted as a potent inhibitor of these downstream pathways. In conclusion, the study demonstrated that rhynchophylline has the potential to mitigate the negative impact of NA on melanogenesis by targeting β2AR, thus offering a promising solution for preventing stress-induced hair graying.
Collapse
Affiliation(s)
- Xinxin Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518026, China
| | - Runlu Shi
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lingchen Yan
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China
| | - Ruishuang Sun
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Guangzhou, 510317, China
| | - Binkai Zheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Shuai Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
- The Yonghe Medical Beauty Clinic Department, Guangzhou, 510630, China
| | - Hui Tan
- Center for Child Care and Mental Health, Shenzhen Children's Hospital Affiliated to Shantou University Medical College, Shenzhen, 518026, China.
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ying Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
- Department of Anesthesiology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233004, China.
- Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, 528000, China.
| |
Collapse
|
8
|
Ben-Shalom N, Sandbank E, Abramovitz L, Hezroni H, Levine T, Trachtenberg E, Fogel N, Mor M, Yefet R, Stoler-Barak L, Hagin D, Nakai A, Noda M, Suzuki K, Shulman Z, Ben-Eliyahu S, Freund NT. β2-adrenergic signaling promotes higher-affinity B cells and antibodies. Brain Behav Immun 2023; 113:66-82. [PMID: 37369341 DOI: 10.1016/j.bbi.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
Stress-induced β2-adrenergic receptor (β2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological β2AR blocking or when the experiments were conducted in β2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following β2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo β2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, β2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a β2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated β2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.
Collapse
Affiliation(s)
- Noam Ben-Shalom
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Elad Sandbank
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Lilach Abramovitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Hadas Hezroni
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Talia Levine
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Estherina Trachtenberg
- The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel
| | - Nadav Fogel
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel
| | - Michael Mor
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Ron Yefet
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David Hagin
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel; Allergy and Clinical Immunology Unit, Department of Medicine, Tel Aviv Sourasky Medical Center, 623906, Israel
| | - Akiko Nakai
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaki Noda
- Center for Stem Cell and Regenerative Medicine, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuhiro Suzuki
- Laboratory of Immune Response Dynamics, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan; Department of Immune Response Dynamics, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan; Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shamgar Ben-Eliyahu
- The School of Psychological Sciences, Tel Aviv University, 6997801, Israel; The Sagol School of Neurosciences, Gordon Faculty of Social Sciences, Tel Aviv University, Israel.
| | - Natalia T Freund
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, 6997801 Israel.
| |
Collapse
|
9
|
Zhong QM, Zheng YH, Wang JL. Seasonal flexibility of the gut structure and physiology in Eremias multiocellata. J Comp Physiol B 2023; 193:281-291. [PMID: 36995414 DOI: 10.1007/s00360-023-01485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Although gut seasonal plasticity has been extensively reported, studies on physiological flexibility, such as water-salt transportation and motility in reptiles, are limited. Therefore, this study investigated the intestinal histology and gene expression involved in water-salt transport (AQP1, AQP3, NCC, and NKCC2) and motility regulation (nNOS, CHRM2, and ADRB2) in desert-dwelling Eremias multiocellata during winter (hibernating period) and summer (active period). The results showed that mucosal thickness, the villus width and height, the enterocyte height of the small intestine, and the mucosal and submucosal thicknesses of the large intestine were greater in winter than in summer. However, submucosal thickness of the small intestine and muscularis thickness of the large intestine were lower in winter than in summer. Furthermore, AQP1, AQP3, NCC, nNOS, CHRM2, and ADRB2 expressions in the small intestine were higher in winter than in summer; AQP1, AQP3, and nNOS expressions in the large intestine were lower in winter than in summer, with the upregulation of NCC and CHRM2 expressions; no significant seasonal differences were found in intestinal NKCC2 expression. These results suggest that (i) intestinal water-salt transport activity is flexible during seasonal changes where AQP1, AQP3 and NCC play a vital role, (ii) the intestinal motilities are attenuated through the concerted regulation of nNOS, CHRM2, and ADRB2, and (iii) the physiological flexibility of the small and large intestine may be discrepant due to their functional differences. This study reveals the intestinal regulation and adaptation mechanisms in E. multiocellata in response to the hibernation season.
Collapse
Affiliation(s)
- Qiu-Mei Zhong
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China
| | - Yang-Hui Zheng
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China
| | - Jian-Li Wang
- College of Biological Sciences and Engineering, North Minzu University, Yinchuan, 750021, China.
- Key Laboratory of Ecological Protection of Agro-Pastoral Ecotones in the Yellow River Basin of National Ethnic Affairs Commission, Yinchuan, 750021, China.
| |
Collapse
|
10
|
Sauerbruch T, Hennenberg M, Trebicka J, Schierwagen R. Beta-blockers in patients with liver cirrhosis: Pragmatism or perfection? Front Med (Lausanne) 2023; 9:1100966. [PMID: 36743678 PMCID: PMC9891090 DOI: 10.3389/fmed.2022.1100966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
With increasing decompensation, hyperdynamic circulatory disturbance occurs in liver cirrhosis despite activation of vasoconstrictors. Here, the concept of a therapy with non-selective beta-blockers was established decades ago. They lower elevated portal pressure, protect against variceal hemorrhage, and may also have pleiotropic immunomodulatory effects. Recently, the beneficial effect of carvedilol, which blocks alpha and beta receptors, has been highlighted. Carvedilol leads to "biased-signaling" via recruitment of beta-arrestin. This effect and its consequences have not been sufficiently investigated in patients with liver cirrhosis. Also, a number of questions remain open regarding the expression of beta-receptors and its intracellular signaling and the respective consequences in the intra- and extrahepatic tissue compartments. Despite the undisputed role of non-selective beta-blockers in the treatment of liver cirrhosis, we still can improve the knowledge as to when and how beta-blockers should be used in which patients.
Collapse
Affiliation(s)
- Tilman Sauerbruch
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Martin Hennenberg
- Department of Urology, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jonel Trebicka
- Department of Internal Medicine B, University of Münster, Münster, Germany
- European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Robert Schierwagen
- Department of Internal Medicine B, University of Münster, Münster, Germany
| |
Collapse
|