1
|
Marin JJG, Cives-Losada C, Macias RIR, Romero MR, Marijuan RP, Hortelano-Hernandez N, Delgado-Calvo K, Villar C, Gonzalez-Santiago JM, Monte MJ, Asensio M. Impact of liver diseases and pharmacological interactions on the transportome involved in hepatic drug disposition. Biochem Pharmacol 2024; 228:116166. [PMID: 38527556 DOI: 10.1016/j.bcp.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
The liver plays a pivotal role in drug disposition owing to the expression of transporters accounting for the uptake at the sinusoidal membrane and the efflux across the basolateral and canalicular membranes of hepatocytes of many different compounds. Moreover, intracellular mechanisms of phases I and II biotransformation generate, in general, inactive compounds that are more polar and easier to eliminate into bile or refluxed back toward the blood for their elimination by the kidneys, which becomes crucial when the biliary route is hampered. The set of transporters expressed at a given time, i.e., the so-called transportome, is encoded by genes belonging to two gene superfamilies named Solute Carriers (SLC) and ATP-Binding Cassette (ABC), which account mainly, but not exclusively, for the uptake and efflux of endogenous substances and xenobiotics, which include many different drugs. Besides the existence of genetic variants, which determines a marked interindividual heterogeneity regarding liver drug disposition among patients, prevalent diseases, such as cirrhosis, non-alcoholic steatohepatitis, primary sclerosing cholangitis, primary biliary cirrhosis, viral hepatitis, hepatocellular carcinoma, cholangiocarcinoma, and several cholestatic liver diseases, can alter the transportome and hence affect the pharmacokinetics of drugs used to treat these patients. Moreover, hepatic drug transporters are involved in many drug-drug interactions (DDI) that challenge the safety of using a combination of agents handled by these proteins. Updated information on these questions has been organized in this article by superfamilies and families of members of the transportome involved in hepatic drug disposition.
Collapse
Affiliation(s)
- Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Rebeca P Marijuan
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | | | - Kevin Delgado-Calvo
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain
| | - Carmen Villar
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Jesus M Gonzalez-Santiago
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain; Department of Gastroenterology and Hepatology, University Hospital of Salamanca, Salamanca, Spain
| | - Maria J Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEPHARM), University of Salamanca, IBSAL, Salamanca, Spain; Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
2
|
Stepanova M, Aherne CM. Adenosine in Intestinal Epithelial Barrier Function. Cells 2024; 13:381. [PMID: 38474346 PMCID: PMC10930693 DOI: 10.3390/cells13050381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 03/14/2024] Open
Abstract
At the intestinal front, several lines of defense are in place to resist infection and injury, the mucus layer, gut microbiome and strong epithelial junctions, to name a few. Their collaboration creates a resilient barrier. In intestinal disorders, such as inflammatory bowel disease (IBD), barrier function is compromised, which results in rampant inflammation and tissue injury. In response to the destruction, the intestinal epithelium releases adenosine, a small but powerful nucleoside that functions as an alarm signal. Amidst the chaos of inflammation, adenosine aims to restore order. Within the scope of its effects is the ability to regulate intestinal epithelial barrier integrity. This review aims to define the contributions of adenosine to mucus production, microbiome-dependent barrier protection, tight junction dynamics, chloride secretion and acid-base balance to reinforce its importance in the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Mariya Stepanova
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland;
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carol M. Aherne
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland;
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Gong C, Bertagnolli LN, Boulton DW, Coppola P. A Literature Review of Changes in Phase II Drug-Metabolizing Enzyme and Drug Transporter Expression during Pregnancy. Pharmaceutics 2023; 15:2624. [PMID: 38004602 PMCID: PMC10674389 DOI: 10.3390/pharmaceutics15112624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The purpose of this literature review is to comprehensively summarize changes in the expression of phase II drug-metabolizing enzymes and drug transporters in both the pregnant woman and the placenta. Using PubMed®, a systematic search was conducted to identify literature relevant to drug metabolism and transport in pregnancy. PubMed was searched with pre-specified terms during the period of 26 May 2023 to 10 July 2023. The final dataset of 142 manuscripts was evaluated for evidence regarding the effect of gestational age and hormonal regulation on the expression of phase II enzymes (n = 16) and drug transporters (n = 38) in the pregnant woman and in the placenta. This comprehensive review exposes gaps in current knowledge of phase II enzyme and drug transporter localization, expression, and regulation during pregnancy, which emphasizes the need for further research. Moreover, the information collected in this review regarding phase II drug-metabolizing enzyme and drug transporter changes will aid in optimizing pregnancy physiologically based pharmacokinetic (PBPK) models to inform dose selection in the pregnant population.
Collapse
Affiliation(s)
- Christine Gong
- School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Lynn N. Bertagnolli
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - David W. Boulton
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Gaithersburg, MD 20878, USA
| | - Paola Coppola
- AstraZeneca LP, Biopharmaceuticals R&D, Clinical Pharmacology & Safety Sciences, Clinical Pharmacology & Quantitative Pharmacology, Cambridge CB2 0AA, UK
| |
Collapse
|
4
|
Hau RK, Wright SH, Cherrington NJ. Addressing the Clinical Importance of Equilibrative Nucleoside Transporters in Drug Discovery and Development. Clin Pharmacol Ther 2023; 114:780-794. [PMID: 37404197 PMCID: PMC11347013 DOI: 10.1002/cpt.2984] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023]
Abstract
The US Food and Drug Administration (FDA), European Medicines Agency (EMA), and Pharmaceuticals and Medical Devices Agency (PMDA) guidances on small-molecule drug-drug interactions (DDIs), with input from the International Transporter Consortium (ITC), recommend the evaluation of nine drug transporters. Although other clinically relevant drug uptake and efflux transporters have been discussed in ITC white papers, they have been excluded from further recommendation by the ITC and are not included in current regulatory guidances. These include the ubiquitously expressed equilibrative nucleoside transporters (ENT) 1 and ENT2, which have been recognized by the ITC for their potential role in clinically relevant nucleoside analog drug interactions for patients with cancer. Although there is comparatively limited clinical evidence supporting their role in DDI risk or other adverse drug reactions (ADRs) compared with the nine highlighted transporters, several in vitro and in vivo studies have identified ENT interactions with non-nucleoside/non-nucleotide drugs, in addition to nucleoside/nucleotide analogs. Some noteworthy examples of compounds that interact with ENTs include cannabidiol and selected protein kinase inhibitors, as well as the nucleoside analogs remdesivir, EIDD-1931, gemcitabine, and fialuridine. Consequently, DDIs involving the ENTs may be responsible for therapeutic inefficacy or off-target toxicity. Evidence suggests that ENT1 and ENT2 should be considered as transporters potentially involved in clinically relevant DDIs and ADRs, thereby warranting further investigation and regulatory consideration.
Collapse
Affiliation(s)
- Raymond K Hau
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| | - Stephen H Wright
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, Arizona, USA
| | - Nathan J Cherrington
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
5
|
Persaud AK, Bernier MC, Massey MA, Agrawal S, Kaur T, Nayak D, Xie Z, Weadick B, Raj R, Hill K, Abbott N, Joshi A, Anabtawi N, Bryant C, Somogyi A, Cruz-Monserrate Z, Amari F, Coppola V, Sparreboom A, Baker SD, Unadkat JD, Phelps MA, Govindarajan R. Increased renal elimination of endogenous and synthetic pyrimidine nucleosides in concentrative nucleoside transporter 1 deficient mice. Nat Commun 2023; 14:3175. [PMID: 37264059 PMCID: PMC10235067 DOI: 10.1038/s41467-023-38789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Concentrative nucleoside transporters (CNTs) are active nucleoside influx systems, but their in vivo roles are poorly defined. By generating CNT1 knockout (KO) mice, here we identify a role of CNT1 in the renal reabsorption of nucleosides. Deletion of CNT1 in mice increases the urinary excretion of endogenous pyrimidine nucleosides with compensatory alterations in purine nucleoside metabolism. In addition, CNT1 KO mice exhibits high urinary excretion of the nucleoside analog gemcitabine (dFdC), which results in poor tumor growth control in CNT1 KO mice harboring syngeneic pancreatic tumors. Interestingly, increasing the dFdC dose to attain an area under the concentration-time curve level equivalent to that achieved by wild-type (WT) mice rescues antitumor efficacy. The findings provide new insights into how CNT1 regulates reabsorption of endogenous and synthetic nucleosides in murine kidneys and suggest that the functional status of CNTs may account for the optimal action of pyrimidine nucleoside analog therapeutics in humans.
Collapse
Affiliation(s)
- Avinash K Persaud
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Matthew C Bernier
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael A Massey
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- The Center for Life Sciences Education, College of Arts and Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Shipra Agrawal
- Division of Nephrology & Hypertension, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Tejinder Kaur
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Debasis Nayak
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Zhiliang Xie
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Brenna Weadick
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Ruchika Raj
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kasey Hill
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Nicole Abbott
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Arnav Joshi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Nadeen Anabtawi
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Claire Bryant
- Center for Clinical & Translational Research, Nationwide Children's Hospital, Columbus, OH, 43210, USA
| | - Arpad Somogyi
- Campus Chemical Instrument Center Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH, 43210, USA
| | - Zobeida Cruz-Monserrate
- Division of Gastroenterology, Hepatology, and Nutrition, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Foued Amari
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Genetically Engineered Mouse Modeling Core, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Alex Sparreboom
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharyn D Baker
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Jashvant D Unadkat
- Department of Pharmaceutics, College of Pharmacy, University of Washington, Seattle, WA, 98195, USA
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA
| | - Mitch A Phelps
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
- Pharmacoanalytic Shared Resource (PhASR), The Ohio State University, Columbus, OH, 43205, USA
| | - Rajgopal Govindarajan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA.
- Translational Therapeutics, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
6
|
Hau RK, Wright SH, Cherrington NJ. Drug Transporters at the Human Blood-Testis Barrier. Drug Metab Dispos 2023; 51:560-571. [PMID: 36732077 PMCID: PMC10158500 DOI: 10.1124/dmd.122.001186] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/06/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Transporters are involved in the movement of many physiologically important molecules across cell membranes and have a substantial impact on the pharmacological and toxicological effect of xenobiotics. Many transporters have been studied in the context of disposition to, or toxicity in, organs such as the kidney and liver; however, transporters in the testes are increasingly gaining recognition for their role in drug transport across the blood-testis barrier (BTB). The BTB is an epithelial membrane barrier formed by adjacent Sertoli cells (SCs) in the seminiferous tubules that form intercellular junctional complexes to protect developing germ cells from the external environment. Consequently, many charged or large polar molecules cannot cross this barrier without assistance from a transporter. SCs express a variety of drug uptake and efflux transporters to control the flux of endogenous and exogenous molecules across the BTB. Recent studies have identified several transport pathways in SCs that allow certain drugs to circumvent the human BTB. These pathways may exist in other species, such as rodents and nonhuman primates; however, there is (1) a lack of information on their expression and/or localization in these species, and (2) conflicting reports on localization of some transporters that have been evaluated in rodents compared with humans. This review outlines the current knowledge on the expression and localization of pharmacologically relevant drug transporters in human testes and calls attention to the insufficient and contradictory understanding of testicular transporters in other species that are commonly used in drug disposition and toxicity studies. SIGNIFICANCE STATEMENT: While the expression, localization, and function of many xenobiotic transporters have been studied in organs such as the kidney and liver, the characterization of transporters in the testes is scarce. This review summarizes the expression and localization of common pharmacologically-relevant transporters in human testes that have significant implications for the development of drugs that can cross the blood-testis barrier. Potential expression differences between humans and rodents highlighted here suggest rodents may be inappropriate for some testicular disposition and toxicity studies.
Collapse
Affiliation(s)
- Raymond K Hau
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Stephen H Wright
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| | - Nathan J Cherrington
- College of Pharmacy, Department of Pharmacology & Toxicology (R.K.H., N.J.C.) and College of Medicine, Department of Physiology (S.H.W.), The University of Arizona, Tucson, Arizona
| |
Collapse
|
7
|
Cerveny L, Karbanova S, Karahoda R, Horackova H, Jiraskova L, Ali MNH, Staud F. Assessment of the role of nucleoside transporters, P-glycoprotein, breast cancer resistance protein, and multidrug resistance-associated protein 2 in the placental transport of entecavir using in vitro, ex vivo, and in situ methods. Toxicol Appl Pharmacol 2023; 463:116427. [PMID: 36801311 DOI: 10.1016/j.taap.2023.116427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The nucleoside analog entecavir (ETV) is a first-line pharmacotherapy for chronic hepatitis B in adult and pediatric patients. However, due to insufficient data on placental transfer and its effects on pregnancy, ETV administration is not recommended for women after conception. To expand knowledge of safety, we focused on evaluating the contribution of nucleoside transporters (NBMPR sensitive ENTs and Na+ dependent CNTs) and efflux transporters, P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance-associated transporter 2 (ABCC2), to the placental kinetics of ETV. We observed that NBMPR and nucleosides (adenosine and/or uridine) inhibited [3H]ETV uptake into BeWo cells, microvillous membrane vesicles, and fresh villous fragments prepared from the human term placenta, while Na+ depletion had no effect. Using a dual perfusion study in an open-circuit setup, we showed that maternal-to-fetal and fetal-to-maternal clearances of [3H]ETV in the rat term placenta were decreased by NBMPR and uridine. Net efflux ratios calculated for bidirectional transport studies performed in MDCKII cells expressing human ABCB1, ABCG2, or ABCC2 were close to the value of one. Consistently, no significant decrease in fetal perfusate was observed in the closed-circuit setup of dual perfusion studies, suggesting that active efflux does not significantly reduce maternal-to-fetal transport. In conclusion, ENTs (most likely ENT1), but not CNTs, ABCB1, ABCG2, and ABCC2, contribute significantly to the placental kinetics of ETV. Future studies should investigate the placental/fetal toxicity of ETV, the impact of drug-drug interactions on ENT1, and interindividual variability in ENT1 expression on the placental uptake and fetal exposure to ETV.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Mohammed Naji Husaen Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| |
Collapse
|
8
|
Taggi V, Riera Romo M, Piquette-Miller M, Meyer zu Schwabedissen HE, Neuhoff S. Transporter Regulation in Critical Protective Barriers: Focus on Brain and Placenta. Pharmaceutics 2022; 14:pharmaceutics14071376. [PMID: 35890272 PMCID: PMC9319476 DOI: 10.3390/pharmaceutics14071376] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/24/2022] [Indexed: 01/06/2023] Open
Abstract
Drug transporters play an important role in the maintenance of chemical balance and homeostasis in different tissues. In addition to their physiological functions, they are crucial for the absorption, distribution, and elimination of many clinically important drugs, thereby impacting therapeutic efficacy and toxicity. Increasing evidence has demonstrated that infectious, metabolic, inflammatory, and neurodegenerative diseases alter the expression and function of drug transporters. However, the current knowledge on transporter regulation in critical protective barriers, such as the brain and placenta, is still limited and requires more research. For instance, while many studies have examined P-glycoprotein, it is evident that research on the regulation of highly expressed transporters in the blood–brain barrier and blood–placental barrier are lacking. The aim of this review is to summarize the currently available literature in order to better understand transporter regulation in these critical barriers.
Collapse
Affiliation(s)
- Valerio Taggi
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (V.T.); (H.E.M.z.S.)
| | - Mario Riera Romo
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | - Micheline Piquette-Miller
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S 3M2, Canada; (M.R.R.); (M.P.-M.)
| | | | - Sibylle Neuhoff
- Certara UK Ltd., Simcyp Division, Sheffield S1 2BJ, UK
- Correspondence:
| |
Collapse
|
9
|
Wu Z, Han Z, Zhou W, Sun X, Chen L, Yang S, Hu J, Li C. Insight into the Nucleoside Transport and Inhibition of Human ENT1. Curr Res Struct Biol 2022; 4:192-205. [PMID: 35677775 PMCID: PMC9168172 DOI: 10.1016/j.crstbi.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
The human equilibrative nucleoside transporter 1 (hENT1) is an effective controller of adenosine signaling by regulating its extracellular and intracellular concentration, and has become a solid drug target of clinical used adenosine reuptake inhibitors (AdoRIs). Currently, the mechanisms of adenosine transport and inhibition for hENT1 remain unclear, which greatly limits the in-depth understanding of its inner workings as well as the development of novel inhibitors. In this work, the dynamic details of hENT1 underlie adenosine transport and the inhibition mechanism of the non-nucleoside AdoRIs dilazep both were investigated by comparative long-time unbiased molecular dynamics simulations. The calculation results show that the conformational transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. One of the trimethoxyphenyl rings in dilazep serves as the adenosyl moiety of the endogenous adenosine substrate to competitively occupy the orthosteric site of hENT1. Due to extensive and various VDW interactions with N30, M33, M84, P308 and F334, the other trimethoxyphenyl ring is stuck in the opportunistic site near the extracellular side preventing the complete occlusion of thin gate simultaneously. Obviously, dilazep shows significant inhibitory activity by disrupting the local induce-fit action in substrate binding cavity and blocking the transport cycle of whole protein. This study not only reveals the nucleoside transport mechanism by hENT1 at atomic level, but also provides structural guidance for the subsequent design of novel non-nucleoside AdoRIs with enhanced pharmacologic properties. The transitions of hENT1 from the outward open to metastable occluded state are mainly driven by TM1, TM2, TM7 and TM9. The induce-fit action by adenosine recognition precedes. inward contraction of the extracellular side. Dilazep exerts its special hENT1 inhibitory function through competitive binding and allosteric regulation. A gating strategy of extracellular loop is revealed to ensure adenosine is firmly located in the transport cavity.
Collapse
Affiliation(s)
- Zhixiang Wu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Wenxue Zhou
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Lei Chen
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Shuang Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China
- Corresponding author. Key Laboratory of Medicinal and Edible Plants Resources, Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, 610106, China.
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
- Corresponding author. Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
10
|
Säll C, Fogt Hjorth C. In vitro drug-drug interactions of decitabine and tetrahydrouridine involving drug transporters and drug metabolising enzymes. Xenobiotica 2021; 52:1-15. [PMID: 34913834 DOI: 10.1080/00498254.2021.2018628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
1. NDec is a novel, oral, fixed-dose formulation of decitabine and tetrahydrouridine that is currently being developed for the treatment of patients with sickle cell disease. Here, we examine the potential for both components of NDec to interact with key drug metabolising enzymes (tetrahydrouridine only) and drug transporters (decitabine and tetrahydrouridine).2. This study assessed the inhibition and induction of cytochrome P450 (CYP) enzymes by tetrahydrouridine, as well as the involvement of specific drug metabolising enzymes in tetrahydrouridine metabolism. Inhibition of efflux and uptake transporters by both decitabine and tetrahydrouridine was also studied.3. Tetrahydrouridine did not inhibit or induce relevant CYP enzymes at concentrations ranging from 0.1 to 100 μM. Metabolism of tetrahydrouridine did not occur in the presence of the human drug metabolising enzymes tested. Tetrahydrouridine showed weak inhibition towards the MATE2-K transporter (∼30% inhibition at 5 and 50 μM), which was not deemed clinically relevant. Tetrahydrouridine did not inhibit any of the remaining uptake or efflux transporters. Decitabine (0.5 and 5 μM) did not inhibit any of the evaluated uptake or efflux drug transporters.4. Data presented confirm that tetrahydrouridine and decitabine are unlikely to be involved in metabolism- or transporter-based drug-drug interactions.
Collapse
|
11
|
Yamashita M, Markert UR. Overview of Drug Transporters in Human Placenta. Int J Mol Sci 2021; 22:ijms222313149. [PMID: 34884954 PMCID: PMC8658420 DOI: 10.3390/ijms222313149] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023] Open
Abstract
The transport of drugs across the placenta is a point of great importance in pharmacotherapy during pregnancy. However, the knowledge of drug transport in pregnancy is mostly based on experimental clinical data, and the underlying biological mechanisms are not fully understood. In this review, we summarize the current knowledge of drug transporters in the human placenta. We only refer to human data since the placenta demonstrates great diversity among species. In addition, we describe the experimental models that have been used in human placental transport studies and discuss their availability. A better understanding of placental drug transporters will be beneficial for the health of pregnant women who need drug treatment and their fetuses.
Collapse
Affiliation(s)
- Michiko Yamashita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Osaka University, Osaka 5650871, Japan
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
- Correspondence:
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, Jena University Hospital, Am Klinikum 1, 07747 Jena, Germany;
| |
Collapse
|
12
|
Cerveny L, Murthi P, Staud F. HIV in pregnancy: Mother-to-child transmission, pharmacotherapy, and toxicity. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166206. [PMID: 34197912 DOI: 10.1016/j.bbadis.2021.166206] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/18/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
An estimated 1.3 million pregnant women were living with HIV in 2018. HIV infection is associated with adverse pregnancy outcomes and all HIV-positive pregnant women, regardless of their clinical stage, should receive a combination of antiretroviral drugs to suppress maternal viral load and prevent vertical fetal infection. Although antiretroviral treatment in pregnant women has undoubtedly minimized mother-to-child transmission of HIV, several uncertainties remain. For example, while pregnancy is accompanied by changes in pharmacokinetic parameters, relevant data from clinical studies are lacking. Similarly, long-term adverse effects of exposure to antiretrovirals on fetuses have not been studied in detail. Here, we review current knowledge on HIV effects on the placenta and developing fetus, recommended antiretroviral regimens, and pharmacokinetic considerations with particular focus on placental transport. We also discuss recent advances in antiretroviral research and potential effects of antiretroviral treatment on placental/fetal development and programming.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic
| | - Padma Murthi
- Department of Medicine, School of Clinical Sciences, and Department of Pharmacology, Monash Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia; Hudson Institute of Medical Research, The Ritchie Centre, Clayton, Victoria, Australia; Department of Obstetrics and Gynaecology, The University of Melbourne, Parkville, Victoria, Australia
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic.
| |
Collapse
|
13
|
Yuasa H, Yasujima T, Inoue K. Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biol Pharm Bull 2021; 43:1293-1300. [PMID: 32879202 DOI: 10.1248/bpb.b20-00342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has long been suggested that a Na+-dependent carrier-mediated transport system is involved in the absorption of nucleobases and analogs, including some drugs currently in therapeutic use, for their uptake at the brush border membrane of epithelial cells in the small intestine, mainly based on studies in non-primate experimental animals. The presence of this transport system was indeed proved by the recent identification of sodium-dependent nucleobase transporter 1 (SNBT1/Slc23a4) as its molecular entity in rats. However, this transporter has been found to be genetically deficient in humans and higher primates. Aware of this deficiency, we need to revisit the issue of the absorption of these compounds in the human small intestine so that we can understand the mechanisms and gain information to assure the more rational use and development of drugs analogous to nucleobases. Here, we review the current understanding of the intestinal absorption of nucleobases and analogs. This includes recent knowledge about the efflux transport of those compounds across the basolateral membrane when exiting epithelial cells, following brush border uptake, in order to complete the overall absorption process; the facilitative transporters of equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) may be involved in that in many animal species, including human and rat, without any major species differences.
Collapse
Affiliation(s)
- Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
14
|
Sharma HP, Halder N, Singh SB, Velpandian T. Evaluation of the Presence and Functional Importance of Nucleoside Transporters in Lacrimal Gland for Tear Disposition of Intravenously Injected Substrate in Rabbits. Curr Eye Res 2021; 46:1659-1665. [PMID: 33941003 DOI: 10.1080/02713683.2021.1925698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: Purpose of the current study was to assess the presence and functionality of the nucleoside transporters in the lacrimal gland for the tear disposition of its substrate given intravenously in rabbits.Materials and Methods: Rabbits were divided into two groups - control and blocker pretreated. The blocker pretreated group received 5 mg/kg of dipyridamole 30 min before ribavirin (substrate), which was given at a dose of 2.5 mg/kg. All the treatments were given intravenously. Blood and tear samples were collected at 5, 15, 30, 60, 90, 120, 180, 240, 300 and 360 min (n = 4; each time point) after substrate administration. Tear samples were collected on Schirmer's strips, and plasma was separated immediately after blood collection. All the samples were stored at -80°C until analysis by LC-MS/MS.Results: Plasma ribavirin concentration for blocker pretreated group showed significantly (p < .05) higher levels at 5, 15, 30, 60, 120, 180 and 300 min as compared to the control group. Similarly, tear ribavirin concentration for blocker pretreated group also showed a significant (p < .05) increase at 5, 15, 60, 90, 180, 240 and 300 min compared to the control group. Plasma and tear AUC(0-6) for blocker pretreated group was 1.7 (p < .001) and 2.42 (p < .001) folds higher in a significant manner as compared to the control group, respectively. Percentage penetration of ribavirin from plasma to tears was also different between control and blocker pretreated group. Permeation ratio of ribavirin from plasma to tear for blocker pretreated group was found to be 1.4-folds higher in a significant (p < .05) manner.Conclusion: It is evident from the results that nucleoside transporters are present in lacrimal gland. The blocker treatment induced increase in tear transport of ribavirin indicates the possibility of the presence of nucleoside transporters on the apical side of lacrimal acinar cells in the uptake position.
Collapse
Affiliation(s)
- Hanuman Prasad Sharma
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | - Nabanita Halder
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| | | | - T Velpandian
- Ocular Pharmacology & Pharmacy Division, Dr. Rajendra Prasad Centre for Ophthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Abstract
Nucleosides play central roles in all facets of life, from metabolism to cellular signaling. Because of their physiochemical properties, nucleosides are lipid bilayer impermeable and thus rely on dedicated transport systems to cross biological membranes. In humans, two unrelated protein families mediate nucleoside membrane transport: the concentrative and equilibrative nucleoside transporter families. The objective of this review is to provide a broad outlook on the current status of nucleoside transport research. We will discuss the role played by nucleoside transporters in human health and disease, with emphasis placed on recent structural advancements that have revealed detailed molecular principles of these important cellular transport systems and exploitable pharmacological features.
Collapse
Affiliation(s)
- Nicholas J. Wright
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University Medical Center, 303 Research Drive, Durham, North Carolina, 27710, USA
- Correspondence and requests for materials should be addressed to: S.-Y. Lee., , tel: 919-684-1005, fax: 919-684-8885
| |
Collapse
|
16
|
Yamamura T, Narumi K, Ohata T, Satoh H, Mori T, Furugen A, Kobayashi M, Iseki K. Characterization of deoxyribonucleoside transport mediated by concentrative nucleoside transporters. Biochem Biophys Res Commun 2021; 558:120-125. [PMID: 33910126 DOI: 10.1016/j.bbrc.2021.04.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/18/2021] [Indexed: 12/28/2022]
Abstract
Human concentrative nucleoside transporters (CNTs) are responsible for cellular uptake of ribonucleosides; however, although it is important to better characterize CNT-subtype specificity to understand the systemic disposition of deoxyribonucleosides (dNs) and their analogs, the involvement of CNTs in transporting dNs is not fully understood. In this study, using COS-7 cells that transiently expressed CNT1, CNT2, or CNT3, we investigated if CNTs could transport not only ribonucleosides but also dNs, i.e., 2'-deoxyadenosine (dAdo), 2'-deoxyguanosine (dGuo), and 2'-deoxycytidine (dCyd). The cellular uptake study demonstrated that dAdo and dGuo were taken up by CNT2 but not by CNT1. Although dCyd was taken up by CNT1, no significant uptake was detected in COS-7 cells expressing CNT2. Similarly, these dNs were transported by CNT3. The apparent Km values of their uptake were as follows: CNT1, Km = 141 μM for dCyd; CNT2, Km = 62.4 μM and 54.9 μM for dAdo and dGuo, respectively; CNT3, Km = 14.7 μM and 34.4 μM for dGuo and dCyd, respectively. These results demonstrate that CNTs contribute not only to ribonucleoside transport but also to the transport of dNs. Moreover, our data indicated that CNT1 and CNT2 selectively transported pyrimidine and purine dNs, respectively, and CNT3 was shown to transport both pyrimidine and purine dNs.
Collapse
Affiliation(s)
- Taiki Yamamura
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Tsukika Ohata
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hiroshi Satoh
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Takao Mori
- Research and Development division, Hokkaido Research Institute, Nissei Bio Co. Ltd, Eniwa, Hokkaido, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharma Sciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
17
|
Boces-Pascual C, Mata-Ventosa A, Martín-Satué M, Boix L, Gironella M, Pastor-Anglada M, Pérez-Torras S. OncomiRs miR-106a and miR-17 negatively regulate the nucleoside-derived drug transporter hCNT1. Cell Mol Life Sci 2021; 78:7505-7518. [PMID: 34647142 PMCID: PMC8629896 DOI: 10.1007/s00018-021-03959-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/10/2021] [Accepted: 09/29/2021] [Indexed: 12/17/2022]
Abstract
High-affinity uptake of natural nucleosides as well as nucleoside derivatives used in anticancer therapies is mediated by human concentrative nucleoside transporters (hCNTs). hCNT1, the hCNT family member that specifically transports pyrimidines, is also a transceptor involved in tumor progression. In particular, oncogenesis appears to be associated with hCNT1 downregulation in some cancers, although the underlying mechanisms are largely unknown. Here, we sought to address changes in colorectal and pancreatic ductal adenocarcinoma-both of which are important digestive cancers-in the context of treatment with fluoropyrimidine derivatives. An analysis of cancer samples and matching non-tumoral adjacent tissues revealed downregulation of hCNT1 protein in both types of tumor. Further exploration of the putative regulation of hCNT1 by microRNAs (miRNAs), which are highly deregulated in these cancers, revealed a direct relationship between the oncomiRs miR-106a and miR-17 and the loss of hCNT1. Collectively, our findings provide the first demonstration that hCNT1 inhibition by these oncomiRs could contribute to chemoresistance to fluoropyrimidine-based treatments in colorectal and pancreatic cancer.
Collapse
Affiliation(s)
- Clara Boces-Pascual
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Aida Mata-Ventosa
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Mireia Martín-Satué
- grid.5841.80000 0004 1937 0247Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Campus of Bellvitge, University of Barcelona, Hospitalet de Llobregat, Barcelona, Spain ,grid.413396.a0000 0004 1768 8905Biomedical Research Institute of Bellvitge (IDIBELL), Oncobell Program, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Loreto Boix
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.5841.80000 0004 1937 0247Barcelona Clinic Liver Cancer (BCLC) Group, Liver Unit, Hospital Clínic of Barcelona, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Fundació Clínic per a la Recerca Biomèdica (FCRB), University of Barcelona, Barcelona, Spain
| | - Meritxell Gironella
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.10403.36Gastrointestinal & Pancreatic Oncology Group, Hospital Clinic of Barcelona/Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Marçal Pastor-Anglada
- grid.5841.80000 0004 1937 0247Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain ,grid.411160.30000 0001 0663 8628Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Molecular Pharmacology and Experimental Therapeutics, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER EHD), Instituto de Salud Carlos III, Madrid, Spain. .,Institut de Recerca Sant Joan de Déu (IR SJD-CERCA), Esplugues de Llobregat, Barcelona, Spain.
| |
Collapse
|
18
|
Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5197626. [PMID: 33344638 PMCID: PMC7732376 DOI: 10.1155/2020/5197626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/05/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Equilibrative nucleoside transporter 2 (ENT2) is a bidirectional transporter embedded in the biological membrane and is ubiquitously found in most tissue and cell types. ENT2 mediates the uptake of purine and pyrimidine nucleosides and nucleobase besides transporting a variety of nucleoside-derived drugs, mostly in anticancer therapy. Since high expression of ENT2 has been correlated with advanced stages of different types of cancers, consequently, this has gained significant interest in the role of ENT2 as a potential therapeutic target. Furthermore, ENT2 plays critical roles in signaling pathway and cell cycle progression. Therefore, elucidating the physiological roles of ENT2 and its properties may contribute to a better understanding of ENT2 roles beyond their transportation mechanism. This review is aimed at highlighting the main roles of ENT2 and at providing a brief update on the recent research.
Collapse
|
19
|
Randazzo O, Papini F, Mantini G, Gregori A, Parrino B, Liu DSK, Cascioferro S, Carbone D, Peters GJ, Frampton AE, Garajova I, Giovannetti E. "Open Sesame?": Biomarker Status of the Human Equilibrative Nucleoside Transporter-1 and Molecular Mechanisms Influencing its Expression and Activity in the Uptake and Cytotoxicity of Gemcitabine in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113206. [PMID: 33142664 PMCID: PMC7692081 DOI: 10.3390/cancers12113206] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive tumor characterized by early invasiveness, rapid progression and resistance to treatment. For more than twenty years, gemcitabine has been the main therapy for PDAC both in the palliative and adjuvant setting. After the introduction of FOLFIRINOX as an upfront treatment for metastatic disease, gemcitabine is still commonly used in combination with nab-paclitaxel as an alternative first-line regimen, as well as a monotherapy in elderly patients unfit for combination chemotherapy. As a hydrophilic nucleoside analogue, gemcitabine requires nucleoside transporters to permeate the plasma membrane, and a major role in the uptake of this drug is played by human equilibrative nucleoside transporter 1 (hENT-1). Several studies have proposed hENT-1 as a biomarker for gemcitabine efficacy in PDAC. A recent comprehensive multimodal analysis of hENT-1 status evaluated its predictive role by both immunohistochemistry (with five different antibodies), and quantitative-PCR, supporting the use of the 10D7G2 antibody. High hENT-1 levels observed with this antibody were associated with prolonged disease-free status and overall-survival in patients receiving gemcitabine adjuvant chemotherapy. This commentary aims to critically discuss this analysis and lists molecular factors influencing hENT-1 expression. Improved knowledge on these factors should help the identification of subgroups of patients who may benefit from specific therapies and overcome the limitations of traditional biomarker studies.
Collapse
Affiliation(s)
- Ornella Randazzo
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Filippo Papini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
| | - Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
| | - Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Daniela Carbone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, 90123 Palermo, Italy; (B.P.); (S.C.); (D.C.)
| | - Godefridus J. Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Department of Biochemistry, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College, Hammersmith Hospital campus, London W12 0NN, UK;
- Faculty of Health and Medical Sciences, The Leggett Building, University of Surrey, Guildford GU2 7XH, UK
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| | - Ingrid Garajova
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Medical Oncology Unit, University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), 1081 HV Amsterdam, The Netherlands; (O.R.); (F.P.); (G.M.); (A.G.); (G.J.P.); (I.G.)
- Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, 56017 Pisa, Italy
- Correspondence: (A.E.F.); (E.G.); Tel.: +31-003-120-444-2633 (E.G.)
| |
Collapse
|
20
|
Li Q, Lin H, Niu Y, Liu Y, Wang Z, Song L, Gao L, Li L. Mangiferin promotes intestinal elimination of uric acid by modulating intestinal transporters. Eur J Pharmacol 2020; 888:173490. [PMID: 32827538 DOI: 10.1016/j.ejphar.2020.173490] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 01/13/2023]
Abstract
Increasing evidence shows that the intestinal tract plays an important role in maintaining urate homeostasis and might be a potential therapeutic target for hyperuricaemia. However, uric acid-lowering drugs available in the clinic do not target intestinal excretion as a therapeutic strategy. We previously reported that mangiferin had potent hypouricaemic effects in hyperuricaemic animals. However, the underlying mechanisms are not completely clear. Here, we investigated the effects of mangiferin on the intestinal excretion of urate and its underlying mechanisms. The data revealed that mangiferin concentration-dependently promoted the intestinal secretion of endogenous urate in in situ intestinal closed loops in normal and hyperuricaemic mice, as well as inhibited the absorption of exogenous uric acid perfused into the intestinal loops in rats. Administration of mangiferin not only decreased the serum urate levels in the hyperuricaemic mice but also increased the protein expression of ATP-binding cassette transporter, subfamily G, member 2 (ABCG2) and inhibited the protein expression of glucose transporter 9 (GLUT 9) in the intestine. These findings suggested that intestinal ABCG2 and GLUT9 might be pivotal and possible action sites for the observed hypouricaemic effects. Moreover, no significant changes in intestinal xanthine oxidoreductase activities were observed, suggesting that mangiferin did not affect intestinal uric acid generation in the hyperuricaemic mice. Overall, promoting intestinal elimination of urate by upregulating ABCG2 expression and downregulating GLUT9 expression might be an important mechanism underlying mangiferin lowering serum uric acid levels. Mangiferin supplementation might be beneficial for the prevention and treatment of hyperuricaemia.
Collapse
Affiliation(s)
- Qiurui Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Hua Lin
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Yanfen Niu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Yan Liu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Zhenyu Wang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China
| | - Liudong Song
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming, 650500, China
| | - Lihui Gao
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China.
| | - Ling Li
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, 650500, China.
| |
Collapse
|
21
|
Guanosine, a guanine-based nucleoside relaxed isolated corpus cavernosum from mice through cGMP accumulation. Purinergic Signal 2020; 16:241-249. [PMID: 32458299 DOI: 10.1007/s11302-020-09702-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/01/2020] [Indexed: 10/24/2022] Open
Abstract
In corpus cavernosum (CC), guanosine triphosphate (GTP) is converted into cyclic guanosine monophosphate (cGMP) to induce erection. The action of cGMP is terminated by phosphodiesterases and efflux transporters, which pump cGMP out of the cell. The nucleotides, GTP, and cGMP were detected in the extracellular space, and their hydrolysis lead to the formation of intermediate products, among them guanosine. Therefore, our study aims to pharmacologically characterize the effect of guanosine in isolated CC from mice. The penis was isolated and functional and biochemical analyses were carried out. The guanine-based nucleotides GTP, guanosine diphosphate, guanosine monophosphate, and cGMP relaxed mice corpus cavernosum, but the relaxation (90.7 ± 12.5%) induced by guanosine (0.000001-1 mM) was greater than that of the nucleotides (~ 45%, P < 0.05). Guanosine-induced relaxation was not altered in the presence of adenosine type 2A and 2B receptor antagonists. No augment was observed in the intracellular levels of cyclic adenosine monophosphate in tissues stimulated with guanosine. Inhibitors of nitric oxide synthase (L-NAME, 100 μM) and soluble guanylate cyclase (ODQ, 10 μM) produced a significant reduction in guanosine-induced relaxation in all concentrations studied, while in the presence of tadalafil (300 nM), a significant increase was observed. Pre-incubation of guanosine (100 μM) produced a 6.6-leftward shift in tadalafil-induced relaxation. The intracellular levels of cGMP were greater when CC was stimulated with guanosine. Inhibitors of ecto-nucleotidases and xanthine oxidase did not interfere in the response induced by guanosine. In conclusion, our study shows that guanosine relaxes mice CC and opens the possibility to test its role in models of erectile dysfunction.
Collapse
|
22
|
Kabeya T, Mima S, Imakura Y, Miyashita T, Ogura I, Yamada T, Yasujima T, Yuasa H, Iwao T, Matsunaga T. Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells. Drug Metab Pharmacokinet 2020; 35:374-382. [PMID: 32651148 DOI: 10.1016/j.dmpk.2020.04.334] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/25/2022]
Abstract
To develop a novel intestinal drug absorption system using intestinal epithelial cells derived from human induced pluripotent stem (iPS) cells, the cells must possess sufficient pharmacokinetic functions. However, the CYP3A4/5 activities of human iPS cell-derived small intestinal epithelial cells prepared using conventional differentiation methods is low. Further, studies of the CYP3A4/5 activities of human iPS-derived and primary small intestinal cells are not available. To fill this gap in our knowledge, here we used forskolin to develop a new differentiation protocol that activates adenosine monophosphate signaling. mRNA expressions of human iPS cell-derived small intestinal epithelial cells, such as small intestine markers, drug-metabolizing enzymes, and drug transporters, were comparable to or greater than those of the adult small intestine. The activities of CYP3A4/5 in the differentiated cells were equal to those of human primary small intestinal cells. The differentiated cells had P-glycoprotein and PEPT1 activities equivalent to those of Caco-2 cells. Differentiated cells were superior to Caco-2 cells for predicting the membrane permeability of drugs that were absorbed through a paracellular pathway and via drug transporters. In summary, here we produced human iPS cell-derived small intestinal epithelial cells with CYP3A4/5 activities equivalent to those of human primary small intestinal cells.
Collapse
Affiliation(s)
- Tomoki Kabeya
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Shinji Mima
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Yuki Imakura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Toshihide Miyashita
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Izumi Ogura
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tadanori Yamada
- Bioscience & Engineering Laboratory, Research & Development Management Headquarters, FUJIFILM Corporation, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Takahiro Iwao
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan.
| | - Tamihide Matsunaga
- Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
23
|
Takenaka R, Yasujima T, Furukawa J, Hishikawa Y, Yamashiro T, Ohta K, Inoue K, Yuasa H. Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2 Cells. J Pharm Sci 2020; 109:2622-2628. [PMID: 32339528 DOI: 10.1016/j.xphs.2020.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/24/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Equilibrative nucleobase transporter 1 (ENBT1/SLC43A3) has recently been identified as a purine-selective nucleobase transporter. Although it is highly expressed in the liver, its role in nucleobase transport has not been confirmed yet in hepatocytes or any relevant cell models. We, therefore, examined its role in adenine transport in the HepG2 cell line as a human hepatocyte model. The uptake of [3H]adenine in HepG2 cells was highly saturable, indicating the involvement of carrier-mediated transport. The carrier-mediated transport component, for which the Michaelis constant was estimated to be 0.268 μM, was sensitive to decynium-22, an ENBT1 inhibitor, with the half maximal inhibitory concentration of 2.59 μM, which was comparable to that of 2.30 μM for [3H]adenine uptake by ENBT1 in its transient transfectant human embryonic kidney 293 cells. Although equilibrative nucleoside transporter 1 (ENT1/SLC29A1) and ENT2/SLC29A2 are also known to be able to transport adenine, [3H]adenine uptake in HepG2 cells was not inhibited by the ENT1/2-specific inhibitor of either dipyridamole or nitrobenzylthioinosine. Finally, [3H]adenine uptake was extensively reduced by silencing of ENBT1 by RNA interference in the hepatocyte model. All these results, taken together, suggest the predominant role of ENBT1 in the uptake of adenine in HepG2 cells.
Collapse
Affiliation(s)
- Risa Takenaka
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Tomoya Yasujima
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
| | - Junji Furukawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Yosuke Hishikawa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Takahiro Yamashiro
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | - Kinya Ohta
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyama-ku, Nagoya 463-8521, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hiroaki Yuasa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| |
Collapse
|
24
|
Jia Y, Wang N, Zhang Y, Xue D, Lou H, Liu X. Alteration in the Function and Expression of SLC and ABC Transporters in the Neurovascular Unit in Alzheimer's Disease and the Clinical Significance. Aging Dis 2020; 11:390-404. [PMID: 32257549 PMCID: PMC7069460 DOI: 10.14336/ad.2019.0519] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/19/2019] [Indexed: 12/17/2022] Open
Abstract
The neurovascular unit (NVU) plays an important role in maintaining the function of the central nervous system (CNS). Emerging evidence has indicated that the NVU changes function and molecules at the early stage of Alzheimer’s disease (AD), which initiates multiple pathways of neurodegeneration. Cell types in the NVU have become attractive targets in the interventional treatment of AD. The NVU transportation system contains a variety of proteins involved in compound transport and neurotransmission. Brain transporters can be classified as members of the solute carrier (SLC) and ATP-binding cassette (ABC) families in the NVU. Moreover, the transporters can regulate both endogenous toxins, including amyloid-beta (Aβ) and xenobiotic homeostasis, in the brains of AD patients. Genome-wide association studies (GWAS) have identified some transporter gene variants as susceptibility loci for late-onset AD. Therefore, the present study summarizes changes in blood-brain barrier (BBB) permeability in AD, identifies the location of SLC and ABC transporters in the brain and focuses on major SLC and ABC transporters that contribute to AD pathology.
Collapse
Affiliation(s)
- Yongming Jia
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Na Wang
- 2Department of Pathophysiology, Basic Medical Science College, Qiqihar Medical University, Qiqihar, China
| | - Yingbo Zhang
- 3College of Pathology, Qiqihar Medical University, Qiqihar, China
| | - Di Xue
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| | - Haoming Lou
- 4Department of Medicinal Chemistry and Chemistry of Chinese Materia Medica, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Xuewei Liu
- 1Department of Neuropharmacology, College of Pharmacy, Qiqihar Medical University, Qiqihar, China
| |
Collapse
|
25
|
Hodel EM, Marzolini C, Waitt C, Rakhmanina N. Pharmacokinetics, Placental and Breast Milk Transfer of Antiretroviral Drugs in Pregnant and Lactating Women Living with HIV. Curr Pharm Des 2020; 25:556-576. [PMID: 30894103 DOI: 10.2174/1381612825666190320162507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Remarkable progress has been achieved in the identification of HIV infection in pregnant women and in the prevention of vertical HIV transmission through maternal antiretroviral treatment (ART) and neonatal antiretroviral drug (ARV) prophylaxis in the last two decades. Millions of women globally are receiving combination ART throughout pregnancy and breastfeeding, periods associated with significant biological and physiological changes affecting the pharmacokinetics (PK) and pharmacodynamics (PD) of ARVs. The objective of this review was to summarize currently available knowledge on the PK of ARVs during pregnancy and transport of maternal ARVs through the placenta and into the breast milk. We also summarized main safety considerations for in utero and breast milk ARVs exposures in infants. METHODS We conducted a review of the pharmacological profiles of ARVs in pregnancy and during breastfeeding obtained from published clinical studies. Selected maternal PK studies used a relatively rich sampling approach at each ante- and postnatal sampling time point. For placental and breast milk transport of ARVs, we selected the studies that provided ratios of maternal to the cord (M:C) plasma and breast milk to maternal plasma (M:P) concentrations, respectively. RESULTS We provide an overview of the physiological changes during pregnancy and their effect on the PK parameters of ARVs by drug class in pregnancy, which were gathered from 45 published studies. The PK changes during pregnancy affect the dosing of several protease inhibitors during pregnancy and limit the use of several ARVs, including three single tablet regimens with integrase inhibitors or protease inhibitors co-formulated with cobicistat due to suboptimal exposures. We further analysed the currently available data on the mechanism of the transport of ARVs from maternal plasma across the placenta and into the breast milk and summarized the effect of pregnancy on placental and of breastfeeding on mammal gland drug transporters, as well as physicochemical properties, C:M and M:P ratios of individual ARVs by drug class. Finally, we discussed the major safety issues of fetal and infant exposure to maternal ARVs. CONCLUSIONS Available pharmacological data provide evidence that physiological changes during pregnancy affect maternal, and consequently, fetal ARV exposure. Limited available data suggest that the expression of drug transporters may vary throughout pregnancy and breastfeeding thereby possibly impacting the amount of ARV crossing the placenta and secreted into the breast milk. The drug transporter's role in the fetal/child exposure to maternal ARVs needs to be better understood. Our analysis underscores the need for more pharmacological studies with innovative study design, sparse PK sampling, improved study data reporting and PK modelling in pregnant and breastfeeding women living with HIV to optimize their treatment choices and maternal and child health outcomes.
Collapse
Affiliation(s)
- E M Hodel
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Molecular & Clinical Pharmacology, Liverpool, United Kingdom.,Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Division of Paediatric Pharmacology & Pharmacometrics, University of Basel Children's Hospital, Basel, Switzerland
| | - C Marzolini
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Molecular & Clinical Pharmacology, Liverpool, United Kingdom.,Division of Infectious Diseases and Hospital Epidemiology, University Hospital of Basel, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - C Waitt
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Molecular & Clinical Pharmacology, Liverpool, United Kingdom.,Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda.,Royal Liverpool University Hospital, Liverpool, United Kingdom
| | - N Rakhmanina
- Department of Pediatrics, The George Washington University, School of Medicine & Health Sciences, Washington, DC, United States.,Division of Infectious Diseases, Children's National Medical Center, Washington, DC, United States.,Elizabeth Glaser Pediatric AIDS Foundation, Washington, DC, United States
| |
Collapse
|
26
|
Abdelkawy KS, El-Haggar SM, Ziada DH, Ebaid NF, El-Magd MA, Elbarbry FA. The effect of genetic variations on ribavirin pharmacokinetics and treatment response in HCV-4 Egyptian patients receiving sofosbuvir/daclatasvir and ribavirin. Biomed Pharmacother 2019; 121:109657. [PMID: 31810127 DOI: 10.1016/j.biopha.2019.109657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
PURPOSE This study aimed to investigate the effect of single nucleotide polymorphisms (SNPs) of genes involved in ribavirin (RBV) transport (SLC28A2 gene, ABCB1 gene and ABCB11 gene) on the clinical outcome and pharmacokinetics of ribavirin in HCV- 4 Egyptian patients. METHOD 100 patients treated with sofosbuvir/daclatasvir and ribavirin for 12 weeks. The SNP genotyping was performed by real-time PCR using high resolution melting analysis. Ribavirin plasma trough concentrations were determined at week 4 of therapy using a liquid chromatography/tandem mass spectrometry (LC-MS/MS). For clinical outcomes, sustained virological response (SVR), liver function tests (ALT and AST), total bilirubin, albumin, serum creatinine, hemoglobin, leukocyte count, and platelet count were measured. RESULTS Concerning RBV pharmacokinetics, ABCB1 2677 G > T SNP and ABCB11 1331 T > C SNP were statistically associated with RBV Ctrough levels after 4 weeks of therapy. ABCB11 1331 T > C SNP revealed significant association with clinical outcomes (SVR). SLC28A2-146 A > T SNP has not showed any statistically significant association with RBV plasma levels or response. CONCLUSION SNP genotyping for ABCB1 and ABCB11 genes can help in better personalized medicine for maximizing response for ribavirin as explored by the significant association between polymorphism in ABCB1 and ABCB11 genes and ribavirin pharmacokinetics and the significant association of ABCB11 1331 T > C SNP with clinical response.
Collapse
Affiliation(s)
- K S Abdelkawy
- Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Egypt.
| | - S M El-Haggar
- Clinical Pharmacy, Faculty of Pharmacy, Tanta University, Egypt.
| | - D H Ziada
- Tropical Medicine and Infectious Diseases, Faculty of Medicine, Tanta University, Egypt.
| | - N F Ebaid
- Clinical Pharmacy, Faculty of Pharmacy, Kafrelsheikh University, Egypt.
| | - M A El-Magd
- Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Egypt.
| | - F A Elbarbry
- Pacific University Oregon School of Pharmacy, 222 SE 8thAve., Hillsboro, OR, 97123, USA.
| |
Collapse
|
27
|
Liu L, Liu X. Contributions of Drug Transporters to Blood-Placental Barrier. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:505-548. [PMID: 31571173 DOI: 10.1007/978-981-13-7647-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The placenta is the only organ linking two different individuals, mother and fetus, termed as blood-placental barrier. The functions of the blood-placental barrier are to regulate material transfer between the maternal and fetal circulation. The main functional units are the chorionic villi within which fetal blood is separated by only three or four cell layers (placental membrane) from maternal blood in the surrounding intervillous space. A series of drug transporters such as P-glycoprotein (P-GP), breast cancer resistance protein (BCRP), multidrug resistance-associated proteins (MRP1, MRP2, MRP3, MRP4, and MRP5), organic anion-transporting polypeptides (OATP4A1, OATP1A2, OATP1B3, and OATP3A1), organic anion transporter 4 (OAT4), organic cation transporter 3 (OCT3), organic cation/carnitine transporters (OCTN1 and OCTN2), multidrug and toxin extrusion 1 (MATE1), and equilibrative nucleoside transporters (ENT1 and ENT2) have been demonstrated on the apical membrane of syncytiotrophoblast, some of which also expressed on the basolateral membrane of syncytiotrophoblast or fetal capillary endothelium. These transporters are involved in transport of most drugs in the placenta, in turn, affecting drug distribution in fetus. Moreover, expressions of these transporters in the placenta often vary along with the gestational ages and are also affected by pathophysiological factor. This chapter will mainly illustrate function and expression of these transporters in placentas, their contribution to drug distribution in fetus, and their clinical significance.
Collapse
Affiliation(s)
- Li Liu
- China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
28
|
Nishimura T, Sano Y, Takahashi Y, Noguchi S, Uchida Y, Takagi A, Tanaka T, Katakura S, Nakashima E, Tachikawa M, Maruyama T, Terasaki T, Tomi M. Quantification of ENT1 and ENT2 Proteins at the Placental Barrier and Contribution of These Transporters to Ribavirin Uptake. J Pharm Sci 2019; 108:3917-3922. [PMID: 31520644 DOI: 10.1016/j.xphs.2019.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 09/02/2019] [Accepted: 09/06/2019] [Indexed: 12/28/2022]
Abstract
The aims of this study are to quantify the protein levels of nucleoside transporters in placental microvillous membranes (MVMs) and to clarify the contributions of these transporters to ribavirin uptake at the placental barrier. Placental MVMs of human and rat expressed equilibrative nucleoside transporter (ENT) 1 protein, whereas the expression of ENT2 protein was obscure. Maternal-to-fetal transfer of [3H]ribavirin in rats was much higher than that of [14C]sucrose. The uptake of [3H]ribavirin by rat placental trophoblast TR-TBT 18 d-1 cells, which functionally express both ENT1 and ENT2 proteins, was saturable, and was significantly inhibited by 0.1 μM nitrobenzylthioinosine, which selectively abolishes ENT1-mediated uptake. Dipyridamole at 10 μM is capable of inhibiting ENT2 as well as ENT1, but a degree of inhibition by 10 μM dipyridamole on [3H]ribavirin uptake was not much different from that by 0.1 μM nitrobenzylthioinosine (ENT1-specific inhibitor). Therefore, ENT2 may contribute little to [3H]ribavirin uptake by these cells. Rat ENT1 cRNA-injected oocytes showed increased [3H]ribavirin uptake compared with water-injected oocytes, while rat ENT2 cRNA-injected oocytes did not. In conclusion, ENT1 protein expressed in placental MVMs appears to play a predominant role in the uptake of ribavirin.
Collapse
Affiliation(s)
- Tomohiro Nishimura
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Yuichiro Sano
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Yu Takahashi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Saki Noguchi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Yasuo Uchida
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Akinori Takagi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; Laboratory of Applied Therapeutics, Center for Education and Research on Clinical Pharmacy, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Takahiro Tanaka
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Satomi Katakura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emi Nakashima
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan
| | - Masanori Tachikawa
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Tetsuo Maruyama
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Tetsuya Terasaki
- Division of Membrane Transport and Drug Targeting, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Masatoshi Tomi
- Division of Pharmaceutics, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan.
| |
Collapse
|
29
|
Zeng Q, Bai M, Li C, Lu S, Ma Z, Zhao Y, Zhou H, Jiang H, Sun D, Zheng C. Multiple Drug Transporters Contribute to the Placental Transfer of Emtricitabine. Antimicrob Agents Chemother 2019; 63:e00199-19. [PMID: 31160284 PMCID: PMC6658773 DOI: 10.1128/aac.00199-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 11/20/2022] Open
Abstract
Emtricitabine (FTC) is a first-line antiviral drug recommended for the treatment of AIDS during pregnancy. We hypothesized that transporters located in the placenta contribute to FTC transfer across the blood-placenta barrier. BeWo cells, cell models with stable or transient expression of transporter genes, primary human trophoblast cells (PHTCs), and small interfering RNAs (siRNAs) were applied to demonstrate which transporters were involved. FTC accumulation in BeWo cells was reduced markedly by inhibitors of equilibrative nucleoside transporters (ENTs), concentrative nucleoside transporters (CNTs), organic cation transporters (OCTs), and organic cation/carnitine transporter 1 (OCTN1) and increased by inhibitors of breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs). ENT1, CNT1, OCTN1, MRP1/2/3, and BCRP, but not ENT2, CNT3, OCTN2, or multidrug resistance protein 1 (MDR1), were found to transport FTC. FTC accumulation in PHTCs was decreased significantly by inhibitors of ENTs and OCTN1. These results suggest that ENT1, CNT1, and OCTN1 probably contribute to FTC uptake from maternal circulation to trophoblasts and that ENT1, CNT1, and MRP1 are likely involved in FTC transport between trophoblasts and fetal blood, whereas BCRP and MRP1/2/3 facilitate FTC transport from trophoblasts to maternal circulation. Coexistence of tenofovir or efavirenz with FTC in the cell medium did not influence FTC accumulation in BeWo cells or PHTCs.
Collapse
Affiliation(s)
- Qingquan Zeng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Mengru Bai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cui Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuanghui Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yunchun Zhao
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongli Sun
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Caihong Zheng
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Thompson BR, Hu Y, Smith DE. Mechanisms of gemcitabine oral absorption as determined by in situ intestinal perfusions in mice. Biochem Pharmacol 2019; 168:57-64. [PMID: 31207211 DOI: 10.1016/j.bcp.2019.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/12/2019] [Indexed: 01/23/2023]
Abstract
Gemcitabine is a widely used chemotherapeutic drug that is administered via intravenous infusion due to a low oral bioavailability of only 10%. This low oral bioavailability is believed to be the result of gemcitabine's low intestinal permeability and oral absorption, followed by significant presystemic metabolism. In the present study, we sought to define the mechanisms of gemcitabine intestinal permeability, the potential for saturation of intestinal uptake, and the transporter(s) responsible for mediating the oral absorption of drug using in situ single-pass intestinal perfusions in mice. Concentration-dependent studies were performed for gemcitabine over 0.5-2000 μM, along with studies of 5 μM gemcitabine in a sodium-containing buffer ± thymidine (which can inhibit concentrative (i.e., CNT1 and CNT3) and equilibrative (i.e., ENT1 and ENT2) nucleoside transporters) or dilazep (which can inhibit ENT1 and ENT2), or in a sodium-free buffer (which can inhibit CNT1 and CNT3). Our findings demonstrated that gemcitabine was, in fact, a high-permeability drug in the intestine at low concentrations, that jejunal uptake of gemcitabine was saturable and mediated almost exclusively by nucleoside transporters, and that jejunal flux was mediated by both high-affinity, low-capacity (Km = 27.4 µM, Vmax = 3.6 pmol/cm2/s) and low-affinity, high-capacity (Km = 700 µM, Vmax = 35.9 pmol/cm2/s) transport systems. Thus, CNTs and ENTs at the apical membrane allow for gemcitabine uptake from the lumen to enterocyte, whereas ENTs at the basolateral membrane allow for gemcitabine efflux from the enterocyte to portal venous blood.
Collapse
Affiliation(s)
- Brian R Thompson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yongjun Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
31
|
Mayati A, Moreau A, Jouan E, Febvre-James M, Denizot C, Parmentier Y, Fardel O. mRNA Expression and Activity of Nucleoside Transporters in Human Hepatoma HepaRG Cells. Pharmaceutics 2018; 10:pharmaceutics10040246. [PMID: 30469356 PMCID: PMC6320972 DOI: 10.3390/pharmaceutics10040246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/12/2018] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
The HepaRG cell line is a highly differentiated human hepatoma cell line, displaying the expression of various drug transporters. However, functional expression of nucleoside transporters remains poorly characterized in HepaRG cells, although these transporters play a key role in hepatic uptake of antiviral and anticancer drugs. The present study was, therefore, designed to characterize the expression, activity and regulation of equilibrative (ENT) and concentrative (CNT) nucleoside transporter isoforms in differentiated HepaRG cells. These cells were found to exhibit a profile of nucleoside transporter mRNAs similar to that found in human hepatocytes, i.e., notable expression of ENT1, ENT2 and CNT1, with very low or no expression of CNT2 and CNT3. ENT1 activity was, next, demonstrated to be the main uridine transport activity present in HepaRG cells, like in cultured human hepatocytes. Various physiological factors, such as protein kinase C (PKC) activation or treatment by inflammatory cytokines or hepatocyte growth factor (HGF), were additionally found to regulate expression of ENT1, ENT2 and CNT1; PKC activation and HGF notably concomitantly induced mRNA expression and activity of ENT1 in HepaRG cells. Overall, these data suggest that HepaRG cells may be useful for analyzing cellular pharmacokinetics of nucleoside-like drugs in human hepatic cells, especially of those handled by ENT1.
Collapse
Affiliation(s)
- Abdullah Mayati
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Amélie Moreau
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Marie Febvre-James
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| | - Claire Denizot
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Yannick Parmentier
- Centre de Pharmacocinétique, Technologie Servier, F-45000 Orléans, France.
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
- Pôle Biologie, Centre Hospitalier Universitaire, F-35033 Rennes, France.
| |
Collapse
|
32
|
Cerveny L, Ptackova Z, Ceckova M, Karahoda R, Karbanova S, Jiraskova L, Greenwood SL, Glazier JD, Staud F. Equilibrative Nucleoside Transporter 1 (ENT1, SLC29A1) Facilitates Transfer of the Antiretroviral Drug Abacavir across the Placenta. Drug Metab Dispos 2018; 46:1817-1826. [PMID: 30097436 DOI: 10.1124/dmd.118.083329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Abacavir is a preferred antiretroviral drug for preventing mother-to-child human immunodeficiency virus transmission; however, mechanisms of its placental transfer have not been satisfactorily described to date. Because abacavir is a nucleoside-derived drug, we hypothesized that the nucleoside transporters, equilibrative nucleoside transporters (ENTs, SLC29A) and/or Na+-dependent concentrative nucleoside transporters (CNTs, SLC28A), may play a role in its passage across the placenta. To test this hypothesis, we performed uptake experiments using the choriocarcinoma-derived BeWo cell line, human fresh villous fragments, and microvillous plasma membrane (MVM) vesicles. Using endogenous substrates of nucleoside transporters, [3H]-adenosine (ENTs, CNT2, and CNT3) and [3H]-thymidine (ENTs, CNT1, and CNT3), we showed significant activity of ENT1 and CNT2 in BeWo cells, whereas experiments in the villous fragments and MVM vesicles, representing a model of the apical membrane of a syncytiotrophoblast, revealed only ENT1 activity. When testing [3H]-abacavir uptakes, we showed that of the nucleoside transporters, ENT1 plays the dominant role in abacavir uptake into placental tissues, whereas contribution of Na+-dependent transport, most likely mediated by CNTs, was observed only in BeWo cells. Subsequent experiments with dually perfused rat term placentas showed that Ent1 contributes significantly to overall [3H]-abacavir placental transport. Finally, we quantified the expression of SLC29A in first- and third-trimester placentas, revealing that SLC29A1 is the dominant isoform. Neither SLC29A1 nor SLC29A2 expression changed over the course of placental development, but there was considerable interindividual variability in their expression. Therefore, drug-drug interactions and the effect of interindividual variability in placental ENT1 expression on abacavir disposition into fetal circulation should be further investigated to guarantee safe and effective abacavir-based combination therapies in pregnancy.
Collapse
Affiliation(s)
- Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Martina Ceckova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Sara Karbanova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Lucie Jiraskova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Susan L Greenwood
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Jocelyn D Glazier
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czech Republic (L.C., Z.P., M.C., R.K., S.K., L.J., F.S.) and Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester, University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom (S.L.G., J.D.G.)
| |
Collapse
|
33
|
Pfeifer E, Parrott J, Lee GT, Domalakes E, Zhou H, He L, Mason CW. Regulation of human placental drug transporters in HCV infection and their influence on direct acting antiviral medications. Placenta 2018; 69:32-39. [PMID: 30213482 PMCID: PMC6140346 DOI: 10.1016/j.placenta.2018.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/11/2018] [Accepted: 07/09/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION The objectives of this study were to determine how HCV infection affects placental drug transporters, and to determine the role of drug transporters on the cellular accumulation of direct-acting antiviral drugs in human trophoblasts. METHODS Eighty-four ABC and SLC transporter genes were first screened in normal and HCV infected pregnant women using PCR profiler array. The changes in expression were confirmed by qPCR and Western blot. The impact of selected drug transporters on the cellular accumulation of radiolabeled antiviral drugs sofosbuvir, entecavir, and tenofovir was measured in primary human trophoblasts (PHT) and BeWo b30 cells in the presence or absence of transporter-specific inhibitors. PHT were then treated with CL097, ssRNA40, and imquimod to determine the impact of Toll-like receptor (TLR) 7/8 activation on drug transporter expression. RESULTS The expression of the ABC efflux transporters ABCB1/P-gp and ABCG2/BCRP was increased in placenta of women with HCV, while the nucleoside transporters SLC29A1/ENT1 and SLC29A2/ENT2 remained unchanged. The accumulation of sofosbuvir and tenofovir was unaffected by inhibition of these transporters in trophoblast cells. Entecavir accumulation was decreased by the inhibition of ENT2. P-gp and BCRP inhibition enhanced entecavir accumulation in BeWo b30, but not PHT. Overall, there was little effect of TLR7/8 activation on these drug transporters, and the accumulation of entecavir in PHT. DISCUSSION The data suggest that expression of placental drug transporters and selection of antiviral drug may impact fetal drug exposure in pregnancies complicated by HCV infections.
Collapse
Affiliation(s)
- Emily Pfeifer
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Jessica Parrott
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Gene T Lee
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Ericka Domalakes
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Helen Zhou
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Lily He
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA
| | - Clifford W Mason
- Division of Research, Department of Obstetrics and Gynecology, University of Kansas School of Medicine, Kansas City, KS, 66208, USA; Center for Perinatal Research, University of Kansas School of Medicine, Kansas City, KS, 66208, USA.
| |
Collapse
|
34
|
Vaskó B, Juhász V, Tóth B, Kurunczi A, Fekete Z, Krisjanis Zolnerciks J, Kis E, Magnan R, Bidon-Chanal Badia A, Pastor-Anglada M, Hazai E, Bikadi Z, Fülöp F, Krajcsi P. Inhibitor selectivity of CNTs and ENTs. Xenobiotica 2018; 49:840-851. [PMID: 30022699 DOI: 10.1080/00498254.2018.1501832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The concentrative nucleoside transporters (CNT; solute carrier family 28 (SLC28)) and the equilibrative nucleoside transporters (ENT; solute carrier family 29 (SLC29)) are important therapeutic targets but may also mediate toxicity or adverse events. To explore the relative role of the base and the monosaccharide moiety in inhibitor selectivity we selected compounds that either harbor an arabinose moiety or a cytosine moiety, as these groups had several commercially available drug members. The screening data showed that more compounds harboring a cytosine moiety displayed potent interactions with the CNTs than compounds harboring the arabinose moiety. In contrast, ENTs showed a preference for compounds with an arabinose moiety. The correlation between CNT1 and CNT3 was good as five of six compounds displayed IC50 values within the threefold threshold and one displayed a borderline 4-fold difference. For CNT1 and CNT2 as well as for CNT2 and CNT3 only two of six IC50 values correlated and one displayed a borderline 4-fold difference. Interestingly, of the six compounds that potently interacted with both ENT1 and ENT2 only nelarabine displayed selectivity. Our data show differences between inhibitor selectivities of CNTs and ENTs as well as differences within the CNT family members.
Collapse
Affiliation(s)
| | | | - Beáta Tóth
- b SOLVO Biotechnology , Budaörs , Hungary
| | | | | | | | - Emese Kis
- a SOLVO Biotechnology , Szeged , Hungary
| | | | - Axel Bidon-Chanal Badia
- c Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Facultat de Farmàcia i Ciències de l'Alimentació and Institute of Biomedicine (IBUB), Campus de l'Alimentació de Torribera , Universitat de Barcelona , Santa Coloma de Gramenet , Spain
| | - Marçal Pastor-Anglada
- d Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia and Institute of Biomedicine (IBUB) , Universitat de Barcelona , Barcelona , Spain.,e Oncology Program , National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III , Madrid , Spain
| | | | | | - Ferenc Fülöp
- g Institute of Pharmaceutical Chemistry, University of Szeged , Szeged , Hungary
| | - Peter Krajcsi
- a SOLVO Biotechnology , Szeged , Hungary.,h Department of Morphology and Physiology, Faculty of Health Sciences , Semmelweis University , Budapest , Hungary.,i Faculty of Information Technology and Bionics , Pázmány Péter Catholic University , Budapest , Hungary
| |
Collapse
|
35
|
Pastor-Anglada M, Urtasun N, Pérez-Torras S. Intestinal Nucleoside Transporters: Function, Expression, and Regulation. Compr Physiol 2018; 8:1003-1017. [PMID: 29978890 DOI: 10.1002/cphy.c170039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The gastrointestinal tract is the absorptive organ for nutrients found in foods after digestion. Nucleosides and, to a lesser extent nucleobases, are the late products of nucleoprotein digestion. These metabolites are absorbed by nucleoside (and nucleobase) transporter (NT) proteins. NTs are differentially distributed along the gastrointestinal tract showing also polarized expression in epithelial cells. Concentrative nucleoside transporters (CNTs) are mainly located at the apical side of enterocytes, whereas equilibrative nucleoside transporters (ENTs) facilitate the basolateral efflux of nucleosides and nucleobases to the bloodstream. Moreover, selected nucleotides and the bioactive nucleoside adenosine act directly on intestinal cells modulating purinergic signaling. NT-polarized insertion is tightly regulated. However, not much is known about the modulation of intestinal NT function in humans, probably due to the lack of appropriate cell models retaining CNT functional expression. Thus, the possibility of nutritional regulation of intestinal NTs has been addressed using animal models. Besides the nutrition-related role of NT proteins, orally administered drugs also need to cross the intestinal barrier, this event being a major determinant of drug bioavailability. In this regard, NT proteins might also play a role in pharmacology, thereby allowing the absorption of nucleoside- and nucleobase-derived drugs. The relative broad selectivity of these membrane transporters also suggests clinically relevant drug-drug interactions when using combined therapies. This review focuses on all these physiological and pharmacological aspects of NT protein biology. © 2017 American Physiological Society. Compr Physiol 8:1003-1017, 2018.
Collapse
Affiliation(s)
- Marçal Pastor-Anglada
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Nerea Urtasun
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| | - Sandra Pérez-Torras
- Biochemistry and Molecular Pharmacology Section, Department of Biochemistry and Molecular Biomedicine, Institute of Biomedicine (IBUB), University of Barcelona, Barcelona, Spain.,Oncology Program, National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBER EHD), Instituto de Salud Carlos III, Barcelona, Spain.,Genetics, Molecular Biology and Gene Therapy Program, Institut de Recerca Sant Joan de Déu (IR SJD), Esplugues de Llobregat, Barcelona, Spain
| |
Collapse
|
36
|
Jiraskova L, Cerveny L, Karbanova S, Ptackova Z, Staud F. Expression of Concentrative Nucleoside Transporters ( SLC28A) in the Human Placenta: Effects of Gestation Age and Prototype Differentiation-Affecting Agents. Mol Pharm 2018; 15:2732-2741. [PMID: 29782174 DOI: 10.1021/acs.molpharmaceut.8b00238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Equilibrative ( SLC29A) and concentrative ( SLC28A) nucleoside transporters contribute to proper placental development and mediate uptake of nucleosides/nucleoside-derived drugs. We analyzed placental expression of SLC28A mRNA during gestation. Moreover, we studied in choriocarcinoma-derived BeWo cells whether SLC29A and SLC28A mRNA levels can be modulated by activity of adenylyl cyclase, retinoic acid receptor activation, CpG islands methylation, or histone acetylation, using forskolin, all- trans-retinoic acid, 5-azacytidine, and sodium butyrate/sodium valproate, respectively. We found that expression of SLC28A1, SLC28A2, and SLC28A3 increases during gestation and reveals considerable interindividual variability. SLC28A2 was shown to be a dominant subtype in the first-trimester and term human placenta, while SLC28A1 exhibited negligible expression in the term placenta only. In BeWo cells, we detected mRNA of SLC28A2 and SLC28A3. Levels of the latter were affected by 5-azacytidine and all- trans-retinoic acid, while the former was modulated by sodium valproate (but not sodium butyrate), all- trans-retinoic acid, 5-azacytidine, and forskolin that caused 25-fold increase in SLC28A2 mRNA; we documented by analysis of syncytin-1 that the observed changes in SLC28A expression do not correlate with the morphological differentiation state of BeWo cells. Upregulated SLC28A2 mRNA was reflected in elevated uptake of [3H]-adenosine, high-affinity substrate of concentrative nucleoside transporter 2. Using KT-5720 and inhibitors of phosphodiesterases, we subsequently confirmed importance of cAMP/protein kinase A pathway in SLC28A2 regulation. On the other hand, SLC29A genes exhibited constitutive expression and none of the tested compounds increased SLC28A1 expression to detectable levels. In conclusion, we provide the first evidence that methylation status and activation of retinoic acid receptor affect placental SLC28A2 and SLC28A3 transcription and substrates of concentrative nucleoside transporter 2 might be taken up in higher extent in placentas with overactivated cAMP/protein kinase A pathway and likely in the term placenta.
Collapse
Affiliation(s)
- Lucie Jiraskova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Sara Karbanova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Zuzana Ptackova
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| | - Frantisek Staud
- Department of Pharmacology and Toxicology , Charles University, Faculty of Pharmacy in Hradec Kralove , Akademika Heyrovskeho 1203 , 50005 Hradec Kralove , Czech Republic
| |
Collapse
|
37
|
The Placental Barrier: the Gate and the Fate in Drug Distribution. Pharm Res 2018; 35:71. [DOI: 10.1007/s11095-017-2286-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022]
|
38
|
Takahashi K, Yoshisue K, Chiba M, Nakanishi T, Tamai I. Contribution of equilibrative nucleoside transporter(s) to intestinal basolateral and apical transports of anticancer trifluridine. Biopharm Drug Dispos 2017; 39:38-46. [PMID: 29055025 DOI: 10.1002/bdd.2110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/01/2017] [Accepted: 10/02/2017] [Indexed: 11/10/2022]
Abstract
Trifluridine (FTD) exhibits anticancer activities after its oral administration despite its hydrophilic nature. It was previously reported that concentrative nucleoside transporter (CNT) 1 mediates the apical uptake of FTD in human small intestinal epithelial cells (HIECs). In the present study, FTD was also identified as a substrate for equilibrative nucleoside transporter (ENT) 1 and ENT2 in transporter gene-transfected cells. An immunocytochemical analysis revealed that ENT1 was expressed at the basolateral and apical membranes of HIECs. Cellular accumulation increased in the presence of S-(4-nitrobenzyl)-6-thioinosine (NBMPR), an ENT selective inhibitor. Cytotoxicity in HIEC monolayers at low FTD concentrations was increased by NBMPR, and this may have been due to inhibition of the ENT-mediated basolateral transport of FTD by NBMPR. These results suggest that ENTs reduce the intestinal cytotoxicity of FTD by facilitating its basolateral efflux. On the other hand, the intracellular accumulation and cytotoxicity of FTD in HIECs were decreased at higher concentrations of FTD by NBMPR, and this may have been due to the NBMPR inhibition of the apical uptake of FTD, which has been suggested to be mediated by CNTs and ENTs. In conclusion, ENTs were responsible for intestinal transepithelial permeation by mediating the basolateral efflux of FTD after its uptake by CNT1 from the apical side, resulting in decreases in its intracellular accumulation and intestinal toxicity in humans. Equilibrative nucleoside transporters may also partially contribute to the low-affinity uptake of FTD across the apical membrane along with high-affinity CNT1.
Collapse
Affiliation(s)
- Koichi Takahashi
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan.,Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Kunihiro Yoshisue
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan
| | - Masato Chiba
- Pharmacokinetics Research Laboratories, Discovery and Preclinical Research Division, Taiho Pharmaceutical Co. Ltd, Tsukuba, Ibaraki, Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| |
Collapse
|
39
|
Karbanova S, Cerveny L, Ceckova M, Ptackova Z, Jiraskova L, Greenwood S, Staud F. Role of nucleoside transporters in transplacental pharmacokinetics of nucleoside reverse transcriptase inhibitors zidovudine and emtricitabine. Placenta 2017; 60:86-92. [PMID: 29208244 DOI: 10.1016/j.placenta.2017.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/29/2017] [Accepted: 10/30/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Zidovudine (AZT) and emtricitabine (FTC) are effective and well tolerated antiretroviral drugs, routinely used in the prevention of perinatal HIV transmission. However, precise mechanism(s) involved in their transfer from mother to fetus are not fully elucidated. Since both drugs are nucleoside analogues, we hypothesized that the mechanisms of their transplacental passage might include equilibrative nucleoside transporters, ENT1 and/or ENT2. METHODS To address this issue, we performed in vitro accumulation assays in the BeWo placental trophoblast cell line, ex vivo uptake studies in fresh villous fragments isolated from human placenta and in situ dually perfused rat term placenta experiments. RESULTS Applying this complex array of methods, we did not prove that ENTs play a significant role in transfer of AZT or FTC across the placenta. DISCUSSION We conclude that the transplacental passage of AZT and FTC is independent of ENTs. Disposition of either compound into the fetal circulation should thus not be affected by ENT-mediated drug-drug interactions or placental expression of the transporters.
Collapse
Affiliation(s)
- S Karbanova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - L Cerveny
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - M Ceckova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - Z Ptackova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - L Jiraskova
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic
| | - S Greenwood
- Maternal and Fetal Health Research Centre, Institute of Human Development, University of Manchester, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - F Staud
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| |
Collapse
|
40
|
Phytotherapeutics: The Emerging Role of Intestinal and Hepatocellular Transporters in Drug Interactions with Botanical Supplements. Molecules 2017; 22:molecules22101699. [PMID: 29065448 PMCID: PMC6151444 DOI: 10.3390/molecules22101699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/30/2017] [Accepted: 10/02/2017] [Indexed: 01/17/2023] Open
Abstract
In herbalism, botanical supplements are commonly believed to be safe remedies, however, botanical supplements and dietary ingredients interact with transport and metabolic processes, affecting drug disposition. Although a large number of studies have described that botanical supplements interfere with drug metabolism, the mode of their interaction with drug transport processes is not well described. Such interactions may result in serious undesired effects and changed drug efficacy, therefore, some studies on interaction between botanical supplement ingredients and drug transporters such as P-gp and OATPs are described here, suggesting that the interaction between botanical supplements and the drug transporters is clinically significant.
Collapse
|
41
|
Rahman MF, Askwith C, Govindarajan R. Molecular determinants of acidic pH-dependent transport of human equilibrative nucleoside transporter 3. J Biol Chem 2017; 292:14775-14785. [PMID: 28729424 DOI: 10.1074/jbc.m117.787952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 07/11/2017] [Indexed: 12/16/2022] Open
Abstract
Equilibrative nucleoside transporters (ENTs) translocate hydrophilic nucleosides across cellular membranes and are essential for salvage nucleotide synthesis and purinergic signaling. Unlike the prototypic human ENT members hENT1 and hENT2, which mediate plasma membrane nucleoside transport at pH 7.4, hENT3 is an acidic pH-activated lysosomal transporter partially localized to mitochondria. Recent studies demonstrate that hENT3 is indispensable for lysosomal homeostasis, and that mutations in hENT3 can result in a spectrum of lysosomal storage-like disorders. However, despite hENT3's prominent role in lysosome pathophysiology, the molecular basis of hENT3-mediated transport is unknown. Therefore, we sought to examine the mechanistic basis of acidic pH-driven hENT3 nucleoside transport with site-directed mutagenesis, homology modeling, and [3H]adenosine flux measurements in mutant RNA-injected Xenopus oocytes. Scanning mutagenesis of putative residues responsible for pH-dependent transport via hENT3 revealed that the ionization states of Asp-219 and Glu-447, and not His, strongly determined the pH-dependent transport permissible-impermissible states of the transporter. Except for substitution with certain isosteric and polar residues, substitution of either Asp-219 or Glu-447 with any other residues resulted in robust activity that was pH-independent. Dual substitution of Asp-219 and Glu-447 to Ala sustained pH-independent activity over a broad range of physiological pH (pH 5.5-7.4), which also maintained stringent substrate selectivity toward endogenous nucleosides and clinically used nucleoside drugs. Our results suggest a putative pH-sensing role for Asp-219 and Glu-447 in hENT3 and that the size, ionization state, or electronegative polarity at these positions is crucial for obligate acidic pH-dependent activity.
Collapse
Affiliation(s)
- Md Fazlur Rahman
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy
| | | | - Rajgopal Govindarajan
- From the Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, .,the Translational Therapeutics Program, Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
42
|
Satoh S, Mori K, Onomura D, Ueda Y, Dansako H, Honda M, Kaneko S, Ikeda M, Kato N. Ribavirin suppresses hepatic lipogenesis through inosine monophosphate dehydrogenase inhibition: Involvement of adenosine monophosphate-activated protein kinase-related kinases and retinoid X receptor α. Hepatol Commun 2017; 1:550-563. [PMID: 29404478 PMCID: PMC5678905 DOI: 10.1002/hep4.1065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/30/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022] Open
Abstract
Ribavirin (RBV) has been widely used as an antiviral reagent, specifically for patients with chronic hepatitis C. We previously demonstrated that adenosine kinase, which monophosphorylates RBV into the metabolically active form, is a key determinant for RBV sensitivity against hepatitis C virus RNA replication. However, the precise mechanism of RBV action and whether RBV affects cellular metabolism remain unclear. Analysis of liver gene expression profiles obtained from patients with advanced chronic hepatitis C treated with the combination of pegylated interferon and RBV showed that the adenosine kinase expression level tends to be lower in patients who are overweight and significantly decreases with progression to advanced fibrosis stages. In our effort to investigate whether RBV affects cellular metabolism, we found that RBV treatment under clinically achievable concentrations suppressed lipogenesis in hepatic cells. In this process, guanosine triphosphate depletion through inosine monophosphate dehydrogenase inhibition by RBV and adenosine monophosphate-activated protein kinase-related kinases, especially microtubule affinity regulating kinase 4, were required. In addition, RBV treatment led to the down-regulation of retinoid X receptor α (RXRα), a key nuclear receptor in various metabolic processes, including lipogenesis. Moreover, we found that guanosine triphosphate depletion in cells induced the down-regulation of RXRα, which was mediated by microtubule affinity regulating kinase 4. Overexpression of RXRα attenuated the RBV action for suppression of lipogenic genes and intracellular neutral lipids, suggesting that down-regulation of RXRα was required for the suppression of lipogenesis in RBV action. Conclusion: We provide novel insights about RBV action in lipogenesis and its mechanisms involving inosine monophosphate dehydrogenase inhibition, adenosine monophosphate-activated protein kinase-related kinases, and down-regulation of RXRα. RBV may be a potential reagent for anticancer therapy against the active lipogenesis involved in hepatocarcinogenesis. (Hepatology Communications 2017;1:550-563).
Collapse
Affiliation(s)
- Shinya Satoh
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Kyoko Mori
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Daichi Onomura
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Youki Ueda
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Hiromichi Dansako
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| | - Masao Honda
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Shuichi Kaneko
- Department of Gastroenterology Kanazawa University Graduate School of Medicine Kanazawa Japan
| | - Masanori Ikeda
- Division of Persistent and Oncogenic Viruses Center for Chronic Viral Diseases, Graduate School of Medical and Dental Sciences, Kagoshima University Kagoshima Japan
| | - Nobuyuki Kato
- Department of Tumor Virology Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences Okayama Japan
| |
Collapse
|
43
|
Morris ME, Rodriguez-Cruz V, Felmlee MA. SLC and ABC Transporters: Expression, Localization, and Species Differences at the Blood-Brain and the Blood-Cerebrospinal Fluid Barriers. AAPS JOURNAL 2017; 19:1317-1331. [PMID: 28664465 DOI: 10.1208/s12248-017-0110-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB) separate the brain and cerebrospinal fluid (CSF) from the systemic circulation and represent a barrier to the uptake of both endogenous compounds and xenobiotics into the brain. For compounds whose passive diffusion is limited due to their ionization or hydrophilicity, membrane transporters can facilitate their uptake across the BBB or BCSFB. Members of the solute carrier (SLC) and ATP-binding case (ABC) families are present on these barriers. Differences exist in the localization and expression of transport proteins between the BBB and BCSFB, resulting in functional differences in transport properties. This review focuses on the expression, membrane localization, and different isoforms present at each barrier. Diseases that affect the central nervous system including brain tumors, HIV, Alzheimer's disease, Parkinson's disease, and stroke affect the integrity and expression of transporters at the BBB and BCSFB and will be briefly reviewed.
Collapse
Affiliation(s)
- Marilyn E Morris
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA.
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, 14214-8033, USA
| | - Melanie A Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J Long School of Pharmacy and Health Sciences, University of the Pacific, 3601 Pacific Ave, Stockton, California, 95211, USA
| |
Collapse
|
44
|
Salsoso R, Farías M, Gutiérrez J, Pardo F, Chiarello DI, Toledo F, Leiva A, Mate A, Vázquez CM, Sobrevia L. Adenosine and preeclampsia. Mol Aspects Med 2017; 55:126-139. [DOI: 10.1016/j.mam.2016.12.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/16/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023]
|
45
|
Büttner B, Knoth H, Kramer M, Oertel R, Seeling A, Sockel K, von Bonin M, Stölzel F, Alakel N, Platzbecker U, Röllig C, Ehninger G, Bornhäuser M, Schetelig J, Middeke JM. Impact of pharmacokinetics on the toxicity and efficacy of clofarabine in patients with relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 2017; 58:2865-2874. [PMID: 28509593 DOI: 10.1080/10428194.2017.1319051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Common side effects of clofarabine (CFB) are liver toxicity, particularly a transient elevation of transaminases and skin toxicity. We studied the correlation of pharmacokinetic (PK) parameters with these toxicities and the efficacy of CFB in patients with relapsed or refractory acute myeloid leukemia. Clofarabine PK parameters showed large inter-individual variability. A higher CFB area under the curve was significantly associated with higher transaminase levels (p = .011 for aspartate aminotransferase (AST), adjusted for age, sex, cumulated CFB dosage, baseline AST, and glomerular filtration rate (GFR)). No significant association could be found between maximum concentration and the liver toxicity parameters. The occurrence of skin toxicity and the response to re-induction chemotherapy evaluated at day 15 were also not associated with PK. In conclusion, a higher individual CFB exposure is associated with increased liver toxicity reflected by elevated liver enzymes, without having an impact on anti-leukemic efficacy.
Collapse
Affiliation(s)
- Bozena Büttner
- a Klinikapotheke, Universitätsklinikum Carl Gustav Carus der TU Dresden , Dresden , Germany
| | - Holger Knoth
- a Klinikapotheke, Universitätsklinikum Carl Gustav Carus der TU Dresden , Dresden , Germany
| | - Michael Kramer
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Reinhard Oertel
- c Institut für Klinische Pharmakologie, Medizinische Fakultät Carl Gustav Carus der TU , Dresden , Germany
| | - Andreas Seeling
- d Institut für Pharmazie, Friedrich-Schiller-Universität Jena , Jena , Germany
| | - Katja Sockel
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Malte von Bonin
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany.,e German Cancer Consortium (DKTK) , Heidelberg , Germany.,f Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ) , Heidelberg , Germany
| | - Friedrich Stölzel
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Nael Alakel
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Uwe Platzbecker
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Christoph Röllig
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Gerhard Ehninger
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| | - Martin Bornhäuser
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany.,f Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ) , Heidelberg , Germany.,g National Center for Tumor Diseases (NCT) , Heidelberg , Germany
| | - Johannes Schetelig
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany.,h DKMS, German Bone Marrow Donor Center , Tübingen , Germany
| | - Jan Moritz Middeke
- b Universitätsklinikum Carl Gustav Carus der TU Dresden , Medizinische Klinik und Poliklinik I , Dresden , Germany
| |
Collapse
|
46
|
Takagi A, Nishimura T, Akashi T, Tomi M, Nakashima E. Contribution of equilibrative nucleoside transporter (ENT) 2 to fluorouracil transport in rat placental trophoblast cells. Drug Metab Pharmacokinet 2017; 32:151-156. [DOI: 10.1016/j.dmpk.2016.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
|
47
|
Ma Z, Yang X, Jiang T, Bai M, Zheng C, Zeng S, Sun D, Jiang H. Multiple SLC and ABC Transporters Contribute to the Placental Transfer of Entecavir. Drug Metab Dispos 2017; 45:269-278. [PMID: 28062543 DOI: 10.1124/dmd.116.073304] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/04/2017] [Indexed: 02/13/2025] Open
Abstract
Entecavir (ETV), a nucleoside analog with high efficacy against hepatitis B virus, is recommended as a first-line antiviral drug for the treatment of chronic hepatitis B. However, scant information is available on the use of ETV in pregnancy. To better understand the safety of ETV in pregnant women, we aimed to demonstrate whether ETV could permeate placental barrier and the underlying mechanism. Our study showed that small amount of ETV could permeate across placenta in mice. ETV accumulation in activated or nonactivated BeWo cells (treated with or without forskolin) was sharply reduced in the presence of 100 µM of adenosine, cytidine, and in Na+ free medium, indicating that nucleoside transporters possibly mediate the uptake of ETV. Furthermore, ETV was proved to be a substrate of concentrative nucleoside transporter (CNT) 2 and CNT3, of organic cation transporter (OCT) 3, and of breast cancer resistance protein (BCRP) using transfected cells expressing respective transporters. The inhibition of ETV uptake in primary human trophoblast cells further confirmed that equilibrative nucleoside transporter (ENT) 1/2, CNT2/3, OCT3, and organic cation/carnitine transporter (OCTN) 2 might be involved in ETV transfer in human placenta. Therefore, ETV uptake from maternal circulation to trophoblast cells was possibly transported by CNT2/3, ENT1/2, and OCTN2, whereas ETV efflux from trophoblast cells to fetal circulation was mediated by OCT3, and efflux from trophoblast cells to maternal circulation might be mediated by BCRP, multidrug resistance-associated protein 2, and P-glycoprotein. The information obtained in the present study may provide a basis for the use of ETV in pregnancy.
Collapse
Affiliation(s)
- Zhiyuan Ma
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Xi Yang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Ting Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Mengru Bai
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Caihong Zheng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Su Zeng
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Dongli Sun
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| | - Huidi Jiang
- Laboratory of Pharmaceutical Analysis and Drug Metabolism, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China (Z.M., X.Y., T.J., M.B., S.Z., H.J.); and Women's Hospital School of Medicine Zhejiang University, Hangzhou, China (C.Z., D.S.)
| |
Collapse
|
48
|
Jacobson DL, Patel K, Williams PL, Geffner ME, Siberry GK, Dimeglio LA, Crain MJ, Mirza A, Chen JS, McFarland EJ, Kacanek D, Silio M, Rich K, Borkowsky W, Van Dyke RB, Miller TL. Growth at 2 Years of Age in HIV-exposed Uninfected Children in the United States by Trimester of Maternal Antiretroviral Initiation. Pediatr Infect Dis J 2017; 36:189-197. [PMID: 27798548 PMCID: PMC5526594 DOI: 10.1097/inf.0000000000001387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Abnormal childhood growth may affect future health. Maternal tenofovir (TFV) use was associated with lower body length and head circumference at 1 year of age in HIV-exposed uninfected (HEU) US children. METHODS We studied 509 HEU children in the US-based Surveillance Monitoring of Antiretroviral Therapy Toxicities cohort whose HIV-infected mothers were not using antiretrovirals at the last menstrual period and began combination antiretroviral therapy (cART) in pregnancy (cART initiators). We examined adjusted associations between antiretrovirals and Centers for Disease Control 2000 growth Z scores at 2 years of age within trimester of cART initiation: weight (weight Z score), length (length Z score), weight-for-length [weight-for-length Z score (WFLZ)], triceps skinfold Z score (TSFZ) and head circumference (head circumference Z score). RESULTS Mothers mean age was 28.6 years; 57% were black non-Hispanic and 19% delivered at <37 weeks gestation. At 2 years, mean weight Z score, length Z score, WFLZ and head circumference Z score were above average (P < 0.05), whereas TSFZ (P = 0.57) did not differ from average. WFLZ was >1.64 standard deviation (SD) (>95th percentile) in 13%. Among children of first-trimester cART initiators, TFV+emtricitabine-exposed children had slightly higher mean WFLZ (0.45 SD; 95% confidence interval: -0.10 to 1.00) and lower TSFZ (-0.55 SD; 95% confidence interval: -1.07 to -0.02) compared with zidovudine+lamivudine-exposed children. TSFZ was lower in those exposed to boosted protease inhibitors. In contrast, growth in children of second trimester cART initiators did not differ by antiretroviral exposures. CONCLUSION Growth was above average in HEU; 13% were obese. Maternal TFV use was not associated with lower length or head circumference at 2 years of age, as hypothesized, but may be related to greater weight among those exposed to cART early in pregnancy.
Collapse
Affiliation(s)
- Denise L. Jacobson
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | - Kunjal Patel
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Paige L. Williams
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston MA, USA,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Mitchell E. Geffner
- The Saban Research Institute, Children’s Hospital Los Angeles, Keck School of Medicine of USC, Los Angeles, USA
| | - George K. Siberry
- Maternal and Pediatric Infectious Disease (MPID) Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, USA
| | | | - Marilyn J. Crain
- Department of Pediatrics, University of Alabama School of Medicine, Birmingham, USA
| | | | - Janet S. Chen
- Drexel University College of Medicine, Philadelphia, USA
| | | | - Deborah Kacanek
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston MA, USA
| | | | | | | | | | - Tracie L. Miller
- Division of Pediatric Clinical Research, Department of Pediatrics, Miller School of Medicine at the University of Miami, Miami, USA
| | | |
Collapse
|
49
|
Endres CJ, Moss AM, Ishida K, Govindarajan R, Unadkat JD. The role of the equilibrative nucleoside transporter 1 on tissue and fetal distribution of ribavirin in the mouse. Biopharm Drug Dispos 2017; 37:336-44. [PMID: 27194214 DOI: 10.1002/bdd.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/11/2016] [Accepted: 05/14/2016] [Indexed: 11/07/2022]
Abstract
Ribavirin is used for the treatment of hepatitis C virus (HCV) infection. The equilibrative nucleoside transporter 1 (ENT1) expressed in hepatocytes transports ribavirin into the liver, the site of efficacy of the drug. However, it is still unclear whether ENT1 plays a dominant role in the hepatic distribution of the drug in vivo. In addition, due to fetal toxicity, administration of ribavirin to pregnant women with HCV infection is contraindicated. ENT1 might play a role in the fetal distribution and therefore the fetal toxicity of ribavirin. The aim of the present study was to investigate the in vivo contribution of ENT1 to the tissue distribution of ribavirin. When compared with that in Ent1(+/+) mice, the ribavirin tissue to plasma concentration ratio (including phosphorylated metabolites) in Ent1(-/-) mice at 15 min and 6 h after intravenous [(3) H]-ribavirin (3 mg/kg) administration was consistently and significantly decreased in the liver and the pancreas. Likewise, when compared with the Ent1(+/+) mice, the fetal distribution of ribavirin at 15 min after administration was significantly reduced in Ent1(-/-) fetuses and placenta. In contrast, there was no significant difference between Ent1(+/+), Ent1(+/-) and Ent1(-/-) mice in the fetal or placental to maternal plasma ribavirin concentration ratio at 2 h after ribavirin administration. The findings in the present study suggest that ENT1 plays a pivotal role in the distribution of ribavirin into tissues including the liver and pancreas, but affects only the rate, but not the extent, of ribavirin distribution into the fetus. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Aaron M Moss
- Department of Pharmaceutics, Seattle, Washington, USA
| | - Kazuya Ishida
- Department of Pharmaceutics, Seattle, Washington, USA
| | | | | |
Collapse
|
50
|
Oyarzún C, Garrido W, Alarcón S, Yáñez A, Sobrevia L, Quezada C, San Martín R. Adenosine contribution to normal renal physiology and chronic kidney disease. Mol Aspects Med 2017; 55:75-89. [PMID: 28109856 DOI: 10.1016/j.mam.2017.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/11/2017] [Accepted: 01/13/2017] [Indexed: 12/12/2022]
Abstract
Adenosine is a nucleoside that is particularly interesting to many scientific and clinical communities as it has important physiological and pathophysiological roles in the kidney. The distribution of adenosine receptors has only recently been elucidated; therefore it is likely that more biological roles of this nucleoside will be unveiled in the near future. Since the discovery of the involvement of adenosine in renal vasoconstriction and regulation of local renin production, further evidence has shown that adenosine signaling is also involved in the tubuloglomerular feedback mechanism, sodium reabsorption and the adaptive response to acute insults, such as ischemia. However, the most interesting finding was the increased adenosine levels in chronic kidney diseases such as diabetic nephropathy and also in non-diabetic animal models of renal fibrosis. When adenosine is chronically increased its signaling via the adenosine receptors may change, switching to a state that induces renal damage and produces phenotypic changes in resident cells. This review discusses the physiological and pathophysiological roles of adenosine and pays special attention to the mechanisms associated with switching homeostatic nucleoside levels to increased adenosine production in kidneys affected by CKD.
Collapse
Affiliation(s)
- Carlos Oyarzún
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Wallys Garrido
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Alarcón
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Alejandro Yáñez
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston QLD 4029, Queensland, Australia
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Science Faculty, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|